1 /*
2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/metadataOnStackMark.hpp"
27 #include "code/codeCache.hpp"
28 #include "code/icBuffer.hpp"
29 #include "gc_implementation/g1/bufferingOopClosure.hpp"
30 #include "gc_implementation/g1/concurrentG1Refine.hpp"
31 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
32 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
33 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
34 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
35 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
36 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
37 #include "gc_implementation/g1/g1EvacFailure.hpp"
38 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
39 #include "gc_implementation/g1/g1Log.hpp"
40 #include "gc_implementation/g1/g1MarkSweep.hpp"
41 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
42 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
43 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
44 #include "gc_implementation/g1/g1RemSet.inline.hpp"
45 #include "gc_implementation/g1/g1RootProcessor.hpp"
46 #include "gc_implementation/g1/g1StringDedup.hpp"
47 #include "gc_implementation/g1/g1YCTypes.hpp"
48 #include "gc_implementation/g1/heapRegion.inline.hpp"
49 #include "gc_implementation/g1/heapRegionRemSet.hpp"
50 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
51 #include "gc_implementation/g1/vm_operations_g1.hpp"
52 #include "gc_implementation/shared/gcHeapSummary.hpp"
53 #include "gc_implementation/shared/gcTimer.hpp"
54 #include "gc_implementation/shared/gcTrace.hpp"
55 #include "gc_implementation/shared/gcTraceTime.hpp"
56 #include "gc_implementation/shared/isGCActiveMark.hpp"
57 #include "memory/allocation.hpp"
58 #include "memory/gcLocker.inline.hpp"
59 #include "memory/generationSpec.hpp"
60 #include "memory/iterator.hpp"
61 #include "memory/referenceProcessor.hpp"
62 #include "oops/oop.inline.hpp"
63 #include "oops/oop.pcgc.inline.hpp"
64 #include "runtime/orderAccess.inline.hpp"
65 #include "runtime/vmThread.hpp"
66 
67 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
68 
69 // turn it on so that the contents of the young list (scan-only /
70 // to-be-collected) are printed at "strategic" points before / during
71 // / after the collection --- this is useful for debugging
72 #define YOUNG_LIST_VERBOSE 0
73 // CURRENT STATUS
74 // This file is under construction.  Search for "FIXME".
75 
76 // INVARIANTS/NOTES
77 //
78 // All allocation activity covered by the G1CollectedHeap interface is
79 // serialized by acquiring the HeapLock.  This happens in mem_allocate
80 // and allocate_new_tlab, which are the "entry" points to the
81 // allocation code from the rest of the JVM.  (Note that this does not
82 // apply to TLAB allocation, which is not part of this interface: it
83 // is done by clients of this interface.)
84 
85 // Local to this file.
86 
87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
88   bool _concurrent;
89 public:
RefineCardTableEntryClosure()90   RefineCardTableEntryClosure() : _concurrent(true) { }
91 
do_card_ptr(jbyte * card_ptr,uint worker_i)92   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
93     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
94     // This path is executed by the concurrent refine or mutator threads,
95     // concurrently, and so we do not care if card_ptr contains references
96     // that point into the collection set.
97     assert(!oops_into_cset, "should be");
98 
99     if (_concurrent && SuspendibleThreadSet::should_yield()) {
100       // Caller will actually yield.
101       return false;
102     }
103     // Otherwise, we finished successfully; return true.
104     return true;
105   }
106 
set_concurrent(bool b)107   void set_concurrent(bool b) { _concurrent = b; }
108 };
109 
110 
111 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
112   size_t _num_processed;
113   CardTableModRefBS* _ctbs;
114   int _histo[256];
115 
116  public:
ClearLoggedCardTableEntryClosure()117   ClearLoggedCardTableEntryClosure() :
118     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
119   {
120     for (int i = 0; i < 256; i++) _histo[i] = 0;
121   }
122 
do_card_ptr(jbyte * card_ptr,uint worker_i)123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
124     unsigned char* ujb = (unsigned char*)card_ptr;
125     int ind = (int)(*ujb);
126     _histo[ind]++;
127 
128     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
129     _num_processed++;
130 
131     return true;
132   }
133 
num_processed()134   size_t num_processed() { return _num_processed; }
135 
print_histo()136   void print_histo() {
137     gclog_or_tty->print_cr("Card table value histogram:");
138     for (int i = 0; i < 256; i++) {
139       if (_histo[i] != 0) {
140         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
141       }
142     }
143   }
144 };
145 
146 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
147  private:
148   size_t _num_processed;
149 
150  public:
RedirtyLoggedCardTableEntryClosure()151   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
152 
do_card_ptr(jbyte * card_ptr,uint worker_i)153   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
154     *card_ptr = CardTableModRefBS::dirty_card_val();
155     _num_processed++;
156     return true;
157   }
158 
num_processed() const159   size_t num_processed() const { return _num_processed; }
160 };
161 
YoungList(G1CollectedHeap * g1h)162 YoungList::YoungList(G1CollectedHeap* g1h) :
163     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
164     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
165   guarantee(check_list_empty(false), "just making sure...");
166 }
167 
push_region(HeapRegion * hr)168 void YoungList::push_region(HeapRegion *hr) {
169   assert(!hr->is_young(), "should not already be young");
170   assert(hr->get_next_young_region() == NULL, "cause it should!");
171 
172   hr->set_next_young_region(_head);
173   _head = hr;
174 
175   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
176   ++_length;
177 }
178 
add_survivor_region(HeapRegion * hr)179 void YoungList::add_survivor_region(HeapRegion* hr) {
180   assert(hr->is_survivor(), "should be flagged as survivor region");
181   assert(hr->get_next_young_region() == NULL, "cause it should!");
182 
183   hr->set_next_young_region(_survivor_head);
184   if (_survivor_head == NULL) {
185     _survivor_tail = hr;
186   }
187   _survivor_head = hr;
188   ++_survivor_length;
189 }
190 
empty_list(HeapRegion * list)191 void YoungList::empty_list(HeapRegion* list) {
192   while (list != NULL) {
193     HeapRegion* next = list->get_next_young_region();
194     list->set_next_young_region(NULL);
195     list->uninstall_surv_rate_group();
196     // This is called before a Full GC and all the non-empty /
197     // non-humongous regions at the end of the Full GC will end up as
198     // old anyway.
199     list->set_old();
200     list = next;
201   }
202 }
203 
empty_list()204 void YoungList::empty_list() {
205   assert(check_list_well_formed(), "young list should be well formed");
206 
207   empty_list(_head);
208   _head = NULL;
209   _length = 0;
210 
211   empty_list(_survivor_head);
212   _survivor_head = NULL;
213   _survivor_tail = NULL;
214   _survivor_length = 0;
215 
216   _last_sampled_rs_lengths = 0;
217 
218   assert(check_list_empty(false), "just making sure...");
219 }
220 
check_list_well_formed()221 bool YoungList::check_list_well_formed() {
222   bool ret = true;
223 
224   uint length = 0;
225   HeapRegion* curr = _head;
226   HeapRegion* last = NULL;
227   while (curr != NULL) {
228     if (!curr->is_young()) {
229       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
230                              "incorrectly tagged (y: %d, surv: %d)",
231                              p2i(curr->bottom()), p2i(curr->end()),
232                              curr->is_young(), curr->is_survivor());
233       ret = false;
234     }
235     ++length;
236     last = curr;
237     curr = curr->get_next_young_region();
238   }
239   ret = ret && (length == _length);
240 
241   if (!ret) {
242     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
243     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
244                            length, _length);
245   }
246 
247   return ret;
248 }
249 
check_list_empty(bool check_sample)250 bool YoungList::check_list_empty(bool check_sample) {
251   bool ret = true;
252 
253   if (_length != 0) {
254     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
255                   _length);
256     ret = false;
257   }
258   if (check_sample && _last_sampled_rs_lengths != 0) {
259     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
260     ret = false;
261   }
262   if (_head != NULL) {
263     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
264     ret = false;
265   }
266   if (!ret) {
267     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
268   }
269 
270   return ret;
271 }
272 
273 void
rs_length_sampling_init()274 YoungList::rs_length_sampling_init() {
275   _sampled_rs_lengths = 0;
276   _curr               = _head;
277 }
278 
279 bool
rs_length_sampling_more()280 YoungList::rs_length_sampling_more() {
281   return _curr != NULL;
282 }
283 
284 void
rs_length_sampling_next()285 YoungList::rs_length_sampling_next() {
286   assert( _curr != NULL, "invariant" );
287   size_t rs_length = _curr->rem_set()->occupied();
288 
289   _sampled_rs_lengths += rs_length;
290 
291   // The current region may not yet have been added to the
292   // incremental collection set (it gets added when it is
293   // retired as the current allocation region).
294   if (_curr->in_collection_set()) {
295     // Update the collection set policy information for this region
296     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
297   }
298 
299   _curr = _curr->get_next_young_region();
300   if (_curr == NULL) {
301     _last_sampled_rs_lengths = _sampled_rs_lengths;
302     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
303   }
304 }
305 
306 void
reset_auxilary_lists()307 YoungList::reset_auxilary_lists() {
308   guarantee( is_empty(), "young list should be empty" );
309   assert(check_list_well_formed(), "young list should be well formed");
310 
311   // Add survivor regions to SurvRateGroup.
312   _g1h->g1_policy()->note_start_adding_survivor_regions();
313   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
314 
315   int young_index_in_cset = 0;
316   for (HeapRegion* curr = _survivor_head;
317        curr != NULL;
318        curr = curr->get_next_young_region()) {
319     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
320 
321     // The region is a non-empty survivor so let's add it to
322     // the incremental collection set for the next evacuation
323     // pause.
324     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
325     young_index_in_cset += 1;
326   }
327   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
328   _g1h->g1_policy()->note_stop_adding_survivor_regions();
329 
330   _head   = _survivor_head;
331   _length = _survivor_length;
332   if (_survivor_head != NULL) {
333     assert(_survivor_tail != NULL, "cause it shouldn't be");
334     assert(_survivor_length > 0, "invariant");
335     _survivor_tail->set_next_young_region(NULL);
336   }
337 
338   // Don't clear the survivor list handles until the start of
339   // the next evacuation pause - we need it in order to re-tag
340   // the survivor regions from this evacuation pause as 'young'
341   // at the start of the next.
342 
343   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
344 
345   assert(check_list_well_formed(), "young list should be well formed");
346 }
347 
print()348 void YoungList::print() {
349   HeapRegion* lists[] = {_head,   _survivor_head};
350   const char* names[] = {"YOUNG", "SURVIVOR"};
351 
352   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
353     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
354     HeapRegion *curr = lists[list];
355     if (curr == NULL)
356       gclog_or_tty->print_cr("  empty");
357     while (curr != NULL) {
358       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
359                              HR_FORMAT_PARAMS(curr),
360                              p2i(curr->prev_top_at_mark_start()),
361                              p2i(curr->next_top_at_mark_start()),
362                              curr->age_in_surv_rate_group_cond());
363       curr = curr->get_next_young_region();
364     }
365   }
366 
367   gclog_or_tty->cr();
368 }
369 
reset_from_card_cache(uint start_idx,size_t num_regions)370 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
371   OtherRegionsTable::invalidate(start_idx, num_regions);
372 }
373 
on_commit(uint start_idx,size_t num_regions,bool zero_filled)374 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
375   // The from card cache is not the memory that is actually committed. So we cannot
376   // take advantage of the zero_filled parameter.
377   reset_from_card_cache(start_idx, num_regions);
378 }
379 
push_dirty_cards_region(HeapRegion * hr)380 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
381 {
382   // Claim the right to put the region on the dirty cards region list
383   // by installing a self pointer.
384   HeapRegion* next = hr->get_next_dirty_cards_region();
385   if (next == NULL) {
386     HeapRegion* res = (HeapRegion*)
387       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
388                           NULL);
389     if (res == NULL) {
390       HeapRegion* head;
391       do {
392         // Put the region to the dirty cards region list.
393         head = _dirty_cards_region_list;
394         next = (HeapRegion*)
395           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
396         if (next == head) {
397           assert(hr->get_next_dirty_cards_region() == hr,
398                  "hr->get_next_dirty_cards_region() != hr");
399           if (next == NULL) {
400             // The last region in the list points to itself.
401             hr->set_next_dirty_cards_region(hr);
402           } else {
403             hr->set_next_dirty_cards_region(next);
404           }
405         }
406       } while (next != head);
407     }
408   }
409 }
410 
pop_dirty_cards_region()411 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
412 {
413   HeapRegion* head;
414   HeapRegion* hr;
415   do {
416     head = _dirty_cards_region_list;
417     if (head == NULL) {
418       return NULL;
419     }
420     HeapRegion* new_head = head->get_next_dirty_cards_region();
421     if (head == new_head) {
422       // The last region.
423       new_head = NULL;
424     }
425     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
426                                           head);
427   } while (hr != head);
428   assert(hr != NULL, "invariant");
429   hr->set_next_dirty_cards_region(NULL);
430   return hr;
431 }
432 
433 #ifdef ASSERT
434 // A region is added to the collection set as it is retired
435 // so an address p can point to a region which will be in the
436 // collection set but has not yet been retired.  This method
437 // therefore is only accurate during a GC pause after all
438 // regions have been retired.  It is used for debugging
439 // to check if an nmethod has references to objects that can
440 // be move during a partial collection.  Though it can be
441 // inaccurate, it is sufficient for G1 because the conservative
442 // implementation of is_scavengable() for G1 will indicate that
443 // all nmethods must be scanned during a partial collection.
is_in_partial_collection(const void * p)444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
445   if (p == NULL) {
446     return false;
447   }
448   return heap_region_containing(p)->in_collection_set();
449 }
450 #endif
451 
452 // Returns true if the reference points to an object that
453 // can move in an incremental collection.
is_scavengable(const void * p)454 bool G1CollectedHeap::is_scavengable(const void* p) {
455   HeapRegion* hr = heap_region_containing(p);
456   return !hr->isHumongous();
457 }
458 
check_ct_logs_at_safepoint()459 void G1CollectedHeap::check_ct_logs_at_safepoint() {
460   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
461   CardTableModRefBS* ct_bs = g1_barrier_set();
462 
463   // Count the dirty cards at the start.
464   CountNonCleanMemRegionClosure count1(this);
465   ct_bs->mod_card_iterate(&count1);
466   int orig_count = count1.n();
467 
468   // First clear the logged cards.
469   ClearLoggedCardTableEntryClosure clear;
470   dcqs.apply_closure_to_all_completed_buffers(&clear);
471   dcqs.iterate_closure_all_threads(&clear, false);
472   clear.print_histo();
473 
474   // Now ensure that there's no dirty cards.
475   CountNonCleanMemRegionClosure count2(this);
476   ct_bs->mod_card_iterate(&count2);
477   if (count2.n() != 0) {
478     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
479                            count2.n(), orig_count);
480   }
481   guarantee(count2.n() == 0, "Card table should be clean.");
482 
483   RedirtyLoggedCardTableEntryClosure redirty;
484   dcqs.apply_closure_to_all_completed_buffers(&redirty);
485   dcqs.iterate_closure_all_threads(&redirty, false);
486   gclog_or_tty->print_cr("Log entries = " SIZE_FORMAT ", dirty cards = %d.",
487                          clear.num_processed(), orig_count);
488   guarantee(redirty.num_processed() == clear.num_processed(),
489             err_msg("Redirtied " SIZE_FORMAT " cards, bug cleared " SIZE_FORMAT,
490                     redirty.num_processed(), clear.num_processed()));
491 
492   CountNonCleanMemRegionClosure count3(this);
493   ct_bs->mod_card_iterate(&count3);
494   if (count3.n() != orig_count) {
495     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
496                            orig_count, count3.n());
497     guarantee(count3.n() >= orig_count, "Should have restored them all.");
498   }
499 }
500 
501 // Private class members.
502 
503 G1CollectedHeap* G1CollectedHeap::_g1h;
504 
505 // Private methods.
506 
507 HeapRegion*
new_region_try_secondary_free_list(bool is_old)508 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
509   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
510   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
511     if (!_secondary_free_list.is_empty()) {
512       if (G1ConcRegionFreeingVerbose) {
513         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
514                                "secondary_free_list has %u entries",
515                                _secondary_free_list.length());
516       }
517       // It looks as if there are free regions available on the
518       // secondary_free_list. Let's move them to the free_list and try
519       // again to allocate from it.
520       append_secondary_free_list();
521 
522       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
523              "empty we should have moved at least one entry to the free_list");
524       HeapRegion* res = _hrm.allocate_free_region(is_old);
525       if (G1ConcRegionFreeingVerbose) {
526         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
527                                "allocated " HR_FORMAT " from secondary_free_list",
528                                HR_FORMAT_PARAMS(res));
529       }
530       return res;
531     }
532 
533     // Wait here until we get notified either when (a) there are no
534     // more free regions coming or (b) some regions have been moved on
535     // the secondary_free_list.
536     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
537   }
538 
539   if (G1ConcRegionFreeingVerbose) {
540     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
541                            "could not allocate from secondary_free_list");
542   }
543   return NULL;
544 }
545 
new_region(size_t word_size,bool is_old,bool do_expand)546 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
547   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
548          "the only time we use this to allocate a humongous region is "
549          "when we are allocating a single humongous region");
550 
551   HeapRegion* res;
552   if (G1StressConcRegionFreeing) {
553     if (!_secondary_free_list.is_empty()) {
554       if (G1ConcRegionFreeingVerbose) {
555         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
556                                "forced to look at the secondary_free_list");
557       }
558       res = new_region_try_secondary_free_list(is_old);
559       if (res != NULL) {
560         return res;
561       }
562     }
563   }
564 
565   res = _hrm.allocate_free_region(is_old);
566 
567   if (res == NULL) {
568     if (G1ConcRegionFreeingVerbose) {
569       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
570                              "res == NULL, trying the secondary_free_list");
571     }
572     res = new_region_try_secondary_free_list(is_old);
573   }
574   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
575     // Currently, only attempts to allocate GC alloc regions set
576     // do_expand to true. So, we should only reach here during a
577     // safepoint. If this assumption changes we might have to
578     // reconsider the use of _expand_heap_after_alloc_failure.
579     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
580 
581     ergo_verbose1(ErgoHeapSizing,
582                   "attempt heap expansion",
583                   ergo_format_reason("region allocation request failed")
584                   ergo_format_byte("allocation request"),
585                   word_size * HeapWordSize);
586     if (expand(word_size * HeapWordSize)) {
587       // Given that expand() succeeded in expanding the heap, and we
588       // always expand the heap by an amount aligned to the heap
589       // region size, the free list should in theory not be empty.
590       // In either case allocate_free_region() will check for NULL.
591       res = _hrm.allocate_free_region(is_old);
592     } else {
593       _expand_heap_after_alloc_failure = false;
594     }
595   }
596   return res;
597 }
598 
599 HeapWord*
humongous_obj_allocate_initialize_regions(uint first,uint num_regions,size_t word_size,AllocationContext_t context)600 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
601                                                            uint num_regions,
602                                                            size_t word_size,
603                                                            AllocationContext_t context) {
604   assert(first != G1_NO_HRM_INDEX, "pre-condition");
605   assert(isHumongous(word_size), "word_size should be humongous");
606   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
607 
608   // Index of last region in the series + 1.
609   uint last = first + num_regions;
610 
611   // We need to initialize the region(s) we just discovered. This is
612   // a bit tricky given that it can happen concurrently with
613   // refinement threads refining cards on these regions and
614   // potentially wanting to refine the BOT as they are scanning
615   // those cards (this can happen shortly after a cleanup; see CR
616   // 6991377). So we have to set up the region(s) carefully and in
617   // a specific order.
618 
619   // The word size sum of all the regions we will allocate.
620   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
621   assert(word_size <= word_size_sum, "sanity");
622 
623   // This will be the "starts humongous" region.
624   HeapRegion* first_hr = region_at(first);
625   // The header of the new object will be placed at the bottom of
626   // the first region.
627   HeapWord* new_obj = first_hr->bottom();
628   // This will be the new end of the first region in the series that
629   // should also match the end of the last region in the series.
630   HeapWord* new_end = new_obj + word_size_sum;
631   // This will be the new top of the first region that will reflect
632   // this allocation.
633   HeapWord* new_top = new_obj + word_size;
634 
635   // First, we need to zero the header of the space that we will be
636   // allocating. When we update top further down, some refinement
637   // threads might try to scan the region. By zeroing the header we
638   // ensure that any thread that will try to scan the region will
639   // come across the zero klass word and bail out.
640   //
641   // NOTE: It would not have been correct to have used
642   // CollectedHeap::fill_with_object() and make the space look like
643   // an int array. The thread that is doing the allocation will
644   // later update the object header to a potentially different array
645   // type and, for a very short period of time, the klass and length
646   // fields will be inconsistent. This could cause a refinement
647   // thread to calculate the object size incorrectly.
648   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
649 
650   // We will set up the first region as "starts humongous". This
651   // will also update the BOT covering all the regions to reflect
652   // that there is a single object that starts at the bottom of the
653   // first region.
654   first_hr->set_startsHumongous(new_top, new_end);
655   first_hr->set_allocation_context(context);
656   // Then, if there are any, we will set up the "continues
657   // humongous" regions.
658   HeapRegion* hr = NULL;
659   for (uint i = first + 1; i < last; ++i) {
660     hr = region_at(i);
661     hr->set_continuesHumongous(first_hr);
662     hr->set_allocation_context(context);
663   }
664   // If we have "continues humongous" regions (hr != NULL), then the
665   // end of the last one should match new_end.
666   assert(hr == NULL || hr->end() == new_end, "sanity");
667 
668   // Up to this point no concurrent thread would have been able to
669   // do any scanning on any region in this series. All the top
670   // fields still point to bottom, so the intersection between
671   // [bottom,top] and [card_start,card_end] will be empty. Before we
672   // update the top fields, we'll do a storestore to make sure that
673   // no thread sees the update to top before the zeroing of the
674   // object header and the BOT initialization.
675   OrderAccess::storestore();
676 
677   // Now that the BOT and the object header have been initialized,
678   // we can update top of the "starts humongous" region.
679   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
680          "new_top should be in this region");
681   first_hr->set_top(new_top);
682   if (_hr_printer.is_active()) {
683     HeapWord* bottom = first_hr->bottom();
684     HeapWord* end = first_hr->orig_end();
685     if ((first + 1) == last) {
686       // the series has a single humongous region
687       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
688     } else {
689       // the series has more than one humongous regions
690       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
691     }
692   }
693 
694   // Now, we will update the top fields of the "continues humongous"
695   // regions. The reason we need to do this is that, otherwise,
696   // these regions would look empty and this will confuse parts of
697   // G1. For example, the code that looks for a consecutive number
698   // of empty regions will consider them empty and try to
699   // re-allocate them. We can extend is_empty() to also include
700   // !continuesHumongous(), but it is easier to just update the top
701   // fields here. The way we set top for all regions (i.e., top ==
702   // end for all regions but the last one, top == new_top for the
703   // last one) is actually used when we will free up the humongous
704   // region in free_humongous_region().
705   hr = NULL;
706   for (uint i = first + 1; i < last; ++i) {
707     hr = region_at(i);
708     if ((i + 1) == last) {
709       // last continues humongous region
710       assert(hr->bottom() < new_top && new_top <= hr->end(),
711              "new_top should fall on this region");
712       hr->set_top(new_top);
713       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
714     } else {
715       // not last one
716       assert(new_top > hr->end(), "new_top should be above this region");
717       hr->set_top(hr->end());
718       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
719     }
720   }
721   // If we have continues humongous regions (hr != NULL), then the
722   // end of the last one should match new_end and its top should
723   // match new_top.
724   assert(hr == NULL ||
725          (hr->end() == new_end && hr->top() == new_top), "sanity");
726   check_bitmaps("Humongous Region Allocation", first_hr);
727 
728   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
729   _allocator->increase_used(first_hr->used());
730   _humongous_set.add(first_hr);
731 
732   return new_obj;
733 }
734 
735 // If could fit into free regions w/o expansion, try.
736 // Otherwise, if can expand, do so.
737 // Otherwise, if using ex regions might help, try with ex given back.
humongous_obj_allocate(size_t word_size,AllocationContext_t context)738 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
739   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
740 
741   verify_region_sets_optional();
742 
743   uint first = G1_NO_HRM_INDEX;
744   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
745 
746   if (obj_regions == 1) {
747     // Only one region to allocate, try to use a fast path by directly allocating
748     // from the free lists. Do not try to expand here, we will potentially do that
749     // later.
750     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
751     if (hr != NULL) {
752       first = hr->hrm_index();
753     }
754   } else {
755     // We can't allocate humongous regions spanning more than one region while
756     // cleanupComplete() is running, since some of the regions we find to be
757     // empty might not yet be added to the free list. It is not straightforward
758     // to know in which list they are on so that we can remove them. We only
759     // need to do this if we need to allocate more than one region to satisfy the
760     // current humongous allocation request. If we are only allocating one region
761     // we use the one-region region allocation code (see above), that already
762     // potentially waits for regions from the secondary free list.
763     wait_while_free_regions_coming();
764     append_secondary_free_list_if_not_empty_with_lock();
765 
766     // Policy: Try only empty regions (i.e. already committed first). Maybe we
767     // are lucky enough to find some.
768     first = _hrm.find_contiguous_only_empty(obj_regions);
769     if (first != G1_NO_HRM_INDEX) {
770       _hrm.allocate_free_regions_starting_at(first, obj_regions);
771     }
772   }
773 
774   if (first == G1_NO_HRM_INDEX) {
775     // Policy: We could not find enough regions for the humongous object in the
776     // free list. Look through the heap to find a mix of free and uncommitted regions.
777     // If so, try expansion.
778     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
779     if (first != G1_NO_HRM_INDEX) {
780       // We found something. Make sure these regions are committed, i.e. expand
781       // the heap. Alternatively we could do a defragmentation GC.
782       ergo_verbose1(ErgoHeapSizing,
783                     "attempt heap expansion",
784                     ergo_format_reason("humongous allocation request failed")
785                     ergo_format_byte("allocation request"),
786                     word_size * HeapWordSize);
787 
788       _hrm.expand_at(first, obj_regions);
789       g1_policy()->record_new_heap_size(num_regions());
790 
791 #ifdef ASSERT
792       for (uint i = first; i < first + obj_regions; ++i) {
793         HeapRegion* hr = region_at(i);
794         assert(hr->is_free(), "sanity");
795         assert(hr->is_empty(), "sanity");
796         assert(is_on_master_free_list(hr), "sanity");
797       }
798 #endif
799       _hrm.allocate_free_regions_starting_at(first, obj_regions);
800     } else {
801       // Policy: Potentially trigger a defragmentation GC.
802     }
803   }
804 
805   HeapWord* result = NULL;
806   if (first != G1_NO_HRM_INDEX) {
807     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
808                                                        word_size, context);
809     assert(result != NULL, "it should always return a valid result");
810 
811     // A successful humongous object allocation changes the used space
812     // information of the old generation so we need to recalculate the
813     // sizes and update the jstat counters here.
814     g1mm()->update_sizes();
815   }
816 
817   verify_region_sets_optional();
818 
819   return result;
820 }
821 
allocate_new_tlab(size_t word_size)822 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
823   assert_heap_not_locked_and_not_at_safepoint();
824   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
825 
826   uint dummy_gc_count_before;
827   uint dummy_gclocker_retry_count = 0;
828   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
829 }
830 
831 HeapWord*
mem_allocate(size_t word_size,bool * gc_overhead_limit_was_exceeded)832 G1CollectedHeap::mem_allocate(size_t word_size,
833                               bool*  gc_overhead_limit_was_exceeded) {
834   assert_heap_not_locked_and_not_at_safepoint();
835 
836   // Loop until the allocation is satisfied, or unsatisfied after GC.
837   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
838     uint gc_count_before;
839 
840     HeapWord* result = NULL;
841     if (!isHumongous(word_size)) {
842       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
843     } else {
844       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
845     }
846     if (result != NULL) {
847       return result;
848     }
849 
850     // Create the garbage collection operation...
851     VM_G1CollectForAllocation op(gc_count_before, word_size);
852     op.set_allocation_context(AllocationContext::current());
853 
854     // ...and get the VM thread to execute it.
855     VMThread::execute(&op);
856 
857     if (op.prologue_succeeded() && op.pause_succeeded()) {
858       // If the operation was successful we'll return the result even
859       // if it is NULL. If the allocation attempt failed immediately
860       // after a Full GC, it's unlikely we'll be able to allocate now.
861       HeapWord* result = op.result();
862       if (result != NULL && !isHumongous(word_size)) {
863         // Allocations that take place on VM operations do not do any
864         // card dirtying and we have to do it here. We only have to do
865         // this for non-humongous allocations, though.
866         dirty_young_block(result, word_size);
867       }
868       return result;
869     } else {
870       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
871         return NULL;
872       }
873       assert(op.result() == NULL,
874              "the result should be NULL if the VM op did not succeed");
875     }
876 
877     // Give a warning if we seem to be looping forever.
878     if ((QueuedAllocationWarningCount > 0) &&
879         (try_count % QueuedAllocationWarningCount == 0)) {
880       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
881     }
882   }
883 
884   ShouldNotReachHere();
885   return NULL;
886 }
887 
attempt_allocation_slow(size_t word_size,AllocationContext_t context,uint * gc_count_before_ret,uint * gclocker_retry_count_ret)888 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
889                                                    AllocationContext_t context,
890                                                    uint* gc_count_before_ret,
891                                                    uint* gclocker_retry_count_ret) {
892   // Make sure you read the note in attempt_allocation_humongous().
893 
894   assert_heap_not_locked_and_not_at_safepoint();
895   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
896          "be called for humongous allocation requests");
897 
898   // We should only get here after the first-level allocation attempt
899   // (attempt_allocation()) failed to allocate.
900 
901   // We will loop until a) we manage to successfully perform the
902   // allocation or b) we successfully schedule a collection which
903   // fails to perform the allocation. b) is the only case when we'll
904   // return NULL.
905   HeapWord* result = NULL;
906   for (int try_count = 1; /* we'll return */; try_count += 1) {
907     bool should_try_gc;
908     uint gc_count_before;
909 
910     {
911       MutexLockerEx x(Heap_lock);
912       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
913                                                                                     false /* bot_updates */);
914       if (result != NULL) {
915         return result;
916       }
917 
918       // If we reach here, attempt_allocation_locked() above failed to
919       // allocate a new region. So the mutator alloc region should be NULL.
920       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
921 
922       if (GC_locker::is_active_and_needs_gc()) {
923         if (g1_policy()->can_expand_young_list()) {
924           // No need for an ergo verbose message here,
925           // can_expand_young_list() does this when it returns true.
926           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
927                                                                                        false /* bot_updates */);
928           if (result != NULL) {
929             return result;
930           }
931         }
932         should_try_gc = false;
933       } else {
934         // The GCLocker may not be active but the GCLocker initiated
935         // GC may not yet have been performed (GCLocker::needs_gc()
936         // returns true). In this case we do not try this GC and
937         // wait until the GCLocker initiated GC is performed, and
938         // then retry the allocation.
939         if (GC_locker::needs_gc()) {
940           should_try_gc = false;
941         } else {
942           // Read the GC count while still holding the Heap_lock.
943           gc_count_before = total_collections();
944           should_try_gc = true;
945         }
946       }
947     }
948 
949     if (should_try_gc) {
950       bool succeeded;
951       result = do_collection_pause(word_size, gc_count_before, &succeeded,
952                                    GCCause::_g1_inc_collection_pause);
953       if (result != NULL) {
954         assert(succeeded, "only way to get back a non-NULL result");
955         return result;
956       }
957 
958       if (succeeded) {
959         // If we get here we successfully scheduled a collection which
960         // failed to allocate. No point in trying to allocate
961         // further. We'll just return NULL.
962         MutexLockerEx x(Heap_lock);
963         *gc_count_before_ret = total_collections();
964         return NULL;
965       }
966     } else {
967       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
968         MutexLockerEx x(Heap_lock);
969         *gc_count_before_ret = total_collections();
970         return NULL;
971       }
972       // The GCLocker is either active or the GCLocker initiated
973       // GC has not yet been performed. Stall until it is and
974       // then retry the allocation.
975       GC_locker::stall_until_clear();
976       (*gclocker_retry_count_ret) += 1;
977     }
978 
979     // We can reach here if we were unsuccessful in scheduling a
980     // collection (because another thread beat us to it) or if we were
981     // stalled due to the GC locker. In either can we should retry the
982     // allocation attempt in case another thread successfully
983     // performed a collection and reclaimed enough space. We do the
984     // first attempt (without holding the Heap_lock) here and the
985     // follow-on attempt will be at the start of the next loop
986     // iteration (after taking the Heap_lock).
987     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
988                                                                            false /* bot_updates */);
989     if (result != NULL) {
990       return result;
991     }
992 
993     // Give a warning if we seem to be looping forever.
994     if ((QueuedAllocationWarningCount > 0) &&
995         (try_count % QueuedAllocationWarningCount == 0)) {
996       warning("G1CollectedHeap::attempt_allocation_slow() "
997               "retries %d times", try_count);
998     }
999   }
1000 
1001   ShouldNotReachHere();
1002   return NULL;
1003 }
1004 
attempt_allocation_humongous(size_t word_size,uint * gc_count_before_ret,uint * gclocker_retry_count_ret)1005 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1006                                                         uint* gc_count_before_ret,
1007                                                         uint* gclocker_retry_count_ret) {
1008   // The structure of this method has a lot of similarities to
1009   // attempt_allocation_slow(). The reason these two were not merged
1010   // into a single one is that such a method would require several "if
1011   // allocation is not humongous do this, otherwise do that"
1012   // conditional paths which would obscure its flow. In fact, an early
1013   // version of this code did use a unified method which was harder to
1014   // follow and, as a result, it had subtle bugs that were hard to
1015   // track down. So keeping these two methods separate allows each to
1016   // be more readable. It will be good to keep these two in sync as
1017   // much as possible.
1018 
1019   assert_heap_not_locked_and_not_at_safepoint();
1020   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1021          "should only be called for humongous allocations");
1022 
1023   // Humongous objects can exhaust the heap quickly, so we should check if we
1024   // need to start a marking cycle at each humongous object allocation. We do
1025   // the check before we do the actual allocation. The reason for doing it
1026   // before the allocation is that we avoid having to keep track of the newly
1027   // allocated memory while we do a GC.
1028   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1029                                            word_size)) {
1030     collect(GCCause::_g1_humongous_allocation);
1031   }
1032 
1033   // We will loop until a) we manage to successfully perform the
1034   // allocation or b) we successfully schedule a collection which
1035   // fails to perform the allocation. b) is the only case when we'll
1036   // return NULL.
1037   HeapWord* result = NULL;
1038   for (int try_count = 1; /* we'll return */; try_count += 1) {
1039     bool should_try_gc;
1040     uint gc_count_before;
1041 
1042     {
1043       MutexLockerEx x(Heap_lock);
1044 
1045       // Given that humongous objects are not allocated in young
1046       // regions, we'll first try to do the allocation without doing a
1047       // collection hoping that there's enough space in the heap.
1048       result = humongous_obj_allocate(word_size, AllocationContext::current());
1049       if (result != NULL) {
1050         return result;
1051       }
1052 
1053       if (GC_locker::is_active_and_needs_gc()) {
1054         should_try_gc = false;
1055       } else {
1056          // The GCLocker may not be active but the GCLocker initiated
1057         // GC may not yet have been performed (GCLocker::needs_gc()
1058         // returns true). In this case we do not try this GC and
1059         // wait until the GCLocker initiated GC is performed, and
1060         // then retry the allocation.
1061         if (GC_locker::needs_gc()) {
1062           should_try_gc = false;
1063         } else {
1064           // Read the GC count while still holding the Heap_lock.
1065           gc_count_before = total_collections();
1066           should_try_gc = true;
1067         }
1068       }
1069     }
1070 
1071     if (should_try_gc) {
1072       // If we failed to allocate the humongous object, we should try to
1073       // do a collection pause (if we're allowed) in case it reclaims
1074       // enough space for the allocation to succeed after the pause.
1075 
1076       bool succeeded;
1077       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1078                                    GCCause::_g1_humongous_allocation);
1079       if (result != NULL) {
1080         assert(succeeded, "only way to get back a non-NULL result");
1081         return result;
1082       }
1083 
1084       if (succeeded) {
1085         // If we get here we successfully scheduled a collection which
1086         // failed to allocate. No point in trying to allocate
1087         // further. We'll just return NULL.
1088         MutexLockerEx x(Heap_lock);
1089         *gc_count_before_ret = total_collections();
1090         return NULL;
1091       }
1092     } else {
1093       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1094         MutexLockerEx x(Heap_lock);
1095         *gc_count_before_ret = total_collections();
1096         return NULL;
1097       }
1098       // The GCLocker is either active or the GCLocker initiated
1099       // GC has not yet been performed. Stall until it is and
1100       // then retry the allocation.
1101       GC_locker::stall_until_clear();
1102       (*gclocker_retry_count_ret) += 1;
1103     }
1104 
1105     // We can reach here if we were unsuccessful in scheduling a
1106     // collection (because another thread beat us to it) or if we were
1107     // stalled due to the GC locker. In either can we should retry the
1108     // allocation attempt in case another thread successfully
1109     // performed a collection and reclaimed enough space.  Give a
1110     // warning if we seem to be looping forever.
1111 
1112     if ((QueuedAllocationWarningCount > 0) &&
1113         (try_count % QueuedAllocationWarningCount == 0)) {
1114       warning("G1CollectedHeap::attempt_allocation_humongous() "
1115               "retries %d times", try_count);
1116     }
1117   }
1118 
1119   ShouldNotReachHere();
1120   return NULL;
1121 }
1122 
attempt_allocation_at_safepoint(size_t word_size,AllocationContext_t context,bool expect_null_mutator_alloc_region)1123 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1124                                                            AllocationContext_t context,
1125                                                            bool expect_null_mutator_alloc_region) {
1126   assert_at_safepoint(true /* should_be_vm_thread */);
1127   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1128                                              !expect_null_mutator_alloc_region,
1129          "the current alloc region was unexpectedly found to be non-NULL");
1130 
1131   if (!isHumongous(word_size)) {
1132     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1133                                                       false /* bot_updates */);
1134   } else {
1135     HeapWord* result = humongous_obj_allocate(word_size, context);
1136     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1137       g1_policy()->set_initiate_conc_mark_if_possible();
1138     }
1139     return result;
1140   }
1141 
1142   ShouldNotReachHere();
1143 }
1144 
1145 class PostMCRemSetClearClosure: public HeapRegionClosure {
1146   G1CollectedHeap* _g1h;
1147   ModRefBarrierSet* _mr_bs;
1148 public:
PostMCRemSetClearClosure(G1CollectedHeap * g1h,ModRefBarrierSet * mr_bs)1149   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1150     _g1h(g1h), _mr_bs(mr_bs) {}
1151 
doHeapRegion(HeapRegion * r)1152   bool doHeapRegion(HeapRegion* r) {
1153     HeapRegionRemSet* hrrs = r->rem_set();
1154 
1155     if (r->continuesHumongous()) {
1156       // We'll assert that the strong code root list and RSet is empty
1157       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1158       assert(hrrs->occupied() == 0, "RSet should be empty");
1159       return false;
1160     }
1161 
1162     _g1h->reset_gc_time_stamps(r);
1163     hrrs->clear();
1164     // You might think here that we could clear just the cards
1165     // corresponding to the used region.  But no: if we leave a dirty card
1166     // in a region we might allocate into, then it would prevent that card
1167     // from being enqueued, and cause it to be missed.
1168     // Re: the performance cost: we shouldn't be doing full GC anyway!
1169     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1170 
1171     return false;
1172   }
1173 };
1174 
clear_rsets_post_compaction()1175 void G1CollectedHeap::clear_rsets_post_compaction() {
1176   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1177   heap_region_iterate(&rs_clear);
1178 }
1179 
1180 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1181   G1CollectedHeap*   _g1h;
1182   UpdateRSOopClosure _cl;
1183   int                _worker_i;
1184 public:
RebuildRSOutOfRegionClosure(G1CollectedHeap * g1,int worker_i=0)1185   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1186     _cl(g1->g1_rem_set(), worker_i),
1187     _worker_i(worker_i),
1188     _g1h(g1)
1189   { }
1190 
doHeapRegion(HeapRegion * r)1191   bool doHeapRegion(HeapRegion* r) {
1192     if (!r->continuesHumongous()) {
1193       _cl.set_from(r);
1194       r->oop_iterate(&_cl);
1195     }
1196     return false;
1197   }
1198 };
1199 
1200 class ParRebuildRSTask: public AbstractGangTask {
1201   G1CollectedHeap* _g1;
1202 public:
ParRebuildRSTask(G1CollectedHeap * g1)1203   ParRebuildRSTask(G1CollectedHeap* g1)
1204     : AbstractGangTask("ParRebuildRSTask"),
1205       _g1(g1)
1206   { }
1207 
work(uint worker_id)1208   void work(uint worker_id) {
1209     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1210     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1211                                           _g1->workers()->active_workers(),
1212                                          HeapRegion::RebuildRSClaimValue);
1213   }
1214 };
1215 
1216 class PostCompactionPrinterClosure: public HeapRegionClosure {
1217 private:
1218   G1HRPrinter* _hr_printer;
1219 public:
doHeapRegion(HeapRegion * hr)1220   bool doHeapRegion(HeapRegion* hr) {
1221     assert(!hr->is_young(), "not expecting to find young regions");
1222     if (hr->is_free()) {
1223       // We only generate output for non-empty regions.
1224     } else if (hr->startsHumongous()) {
1225       if (hr->region_num() == 1) {
1226         // single humongous region
1227         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1228       } else {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1230       }
1231     } else if (hr->continuesHumongous()) {
1232       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1233     } else if (hr->is_old()) {
1234       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1235     } else {
1236       ShouldNotReachHere();
1237     }
1238     return false;
1239   }
1240 
PostCompactionPrinterClosure(G1HRPrinter * hr_printer)1241   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1242     : _hr_printer(hr_printer) { }
1243 };
1244 
print_hrm_post_compaction()1245 void G1CollectedHeap::print_hrm_post_compaction() {
1246   PostCompactionPrinterClosure cl(hr_printer());
1247   heap_region_iterate(&cl);
1248 }
1249 
do_collection(bool explicit_gc,bool clear_all_soft_refs,size_t word_size)1250 bool G1CollectedHeap::do_collection(bool explicit_gc,
1251                                     bool clear_all_soft_refs,
1252                                     size_t word_size) {
1253   assert_at_safepoint(true /* should_be_vm_thread */);
1254 
1255   if (GC_locker::check_active_before_gc()) {
1256     return false;
1257   }
1258 
1259   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1260   gc_timer->register_gc_start();
1261 
1262   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1263   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1264 
1265   SvcGCMarker sgcm(SvcGCMarker::FULL);
1266   ResourceMark rm;
1267 
1268   print_heap_before_gc();
1269   trace_heap_before_gc(gc_tracer);
1270 
1271   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1272 
1273   verify_region_sets_optional();
1274 
1275   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1276                            collector_policy()->should_clear_all_soft_refs();
1277 
1278   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1279 
1280   {
1281     IsGCActiveMark x;
1282 
1283     // Timing
1284     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1285     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1286 
1287     {
1288       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1289       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1290       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1291 
1292       double start = os::elapsedTime();
1293       g1_policy()->record_full_collection_start();
1294 
1295       // Note: When we have a more flexible GC logging framework that
1296       // allows us to add optional attributes to a GC log record we
1297       // could consider timing and reporting how long we wait in the
1298       // following two methods.
1299       wait_while_free_regions_coming();
1300       // If we start the compaction before the CM threads finish
1301       // scanning the root regions we might trip them over as we'll
1302       // be moving objects / updating references. So let's wait until
1303       // they are done. By telling them to abort, they should complete
1304       // early.
1305       _cm->root_regions()->abort();
1306       _cm->root_regions()->wait_until_scan_finished();
1307       append_secondary_free_list_if_not_empty_with_lock();
1308 
1309       gc_prologue(true);
1310       increment_total_collections(true /* full gc */);
1311       increment_old_marking_cycles_started();
1312 
1313       assert(used() == recalculate_used(), "Should be equal");
1314 
1315       verify_before_gc();
1316 
1317       check_bitmaps("Full GC Start");
1318       pre_full_gc_dump(gc_timer);
1319 
1320       COMPILER2_PRESENT(DerivedPointerTable::clear());
1321 
1322       // Disable discovery and empty the discovered lists
1323       // for the CM ref processor.
1324       ref_processor_cm()->disable_discovery();
1325       ref_processor_cm()->abandon_partial_discovery();
1326       ref_processor_cm()->verify_no_references_recorded();
1327 
1328       // Abandon current iterations of concurrent marking and concurrent
1329       // refinement, if any are in progress. We have to do this before
1330       // wait_until_scan_finished() below.
1331       concurrent_mark()->abort();
1332 
1333       // Make sure we'll choose a new allocation region afterwards.
1334       _allocator->release_mutator_alloc_region();
1335       _allocator->abandon_gc_alloc_regions();
1336       g1_rem_set()->cleanupHRRS();
1337 
1338       // We should call this after we retire any currently active alloc
1339       // regions so that all the ALLOC / RETIRE events are generated
1340       // before the start GC event.
1341       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1342 
1343       // We may have added regions to the current incremental collection
1344       // set between the last GC or pause and now. We need to clear the
1345       // incremental collection set and then start rebuilding it afresh
1346       // after this full GC.
1347       abandon_collection_set(g1_policy()->inc_cset_head());
1348       g1_policy()->clear_incremental_cset();
1349       g1_policy()->stop_incremental_cset_building();
1350 
1351       tear_down_region_sets(false /* free_list_only */);
1352       g1_policy()->set_gcs_are_young(true);
1353 
1354       // See the comments in g1CollectedHeap.hpp and
1355       // G1CollectedHeap::ref_processing_init() about
1356       // how reference processing currently works in G1.
1357 
1358       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1359       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1360 
1361       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1362       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1363 
1364       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1365       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1366 
1367       // Do collection work
1368       {
1369         HandleMark hm;  // Discard invalid handles created during gc
1370         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1371       }
1372 
1373       assert(num_free_regions() == 0, "we should not have added any free regions");
1374       rebuild_region_sets(false /* free_list_only */);
1375 
1376       // Enqueue any discovered reference objects that have
1377       // not been removed from the discovered lists.
1378       ref_processor_stw()->enqueue_discovered_references();
1379 
1380       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1381 
1382       MemoryService::track_memory_usage();
1383 
1384       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1385       ref_processor_stw()->verify_no_references_recorded();
1386 
1387       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1388       ClassLoaderDataGraph::purge();
1389       MetaspaceAux::verify_metrics();
1390 
1391       // Note: since we've just done a full GC, concurrent
1392       // marking is no longer active. Therefore we need not
1393       // re-enable reference discovery for the CM ref processor.
1394       // That will be done at the start of the next marking cycle.
1395       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1396       ref_processor_cm()->verify_no_references_recorded();
1397 
1398       reset_gc_time_stamp();
1399       // Since everything potentially moved, we will clear all remembered
1400       // sets, and clear all cards.  Later we will rebuild remembered
1401       // sets. We will also reset the GC time stamps of the regions.
1402       clear_rsets_post_compaction();
1403       check_gc_time_stamps();
1404 
1405       // Resize the heap if necessary.
1406       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1407 
1408       if (_hr_printer.is_active()) {
1409         // We should do this after we potentially resize the heap so
1410         // that all the COMMIT / UNCOMMIT events are generated before
1411         // the end GC event.
1412 
1413         print_hrm_post_compaction();
1414         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1415       }
1416 
1417       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1418       if (hot_card_cache->use_cache()) {
1419         hot_card_cache->reset_card_counts();
1420         hot_card_cache->reset_hot_cache();
1421       }
1422 
1423       // Rebuild remembered sets of all regions.
1424       if (G1CollectedHeap::use_parallel_gc_threads()) {
1425         uint n_workers =
1426           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1427                                                   workers()->active_workers(),
1428                                                   Threads::number_of_non_daemon_threads());
1429         assert(UseDynamicNumberOfGCThreads ||
1430                n_workers == workers()->total_workers(),
1431                "If not dynamic should be using all the  workers");
1432         workers()->set_active_workers(n_workers);
1433         // Set parallel threads in the heap (_n_par_threads) only
1434         // before a parallel phase and always reset it to 0 after
1435         // the phase so that the number of parallel threads does
1436         // no get carried forward to a serial phase where there
1437         // may be code that is "possibly_parallel".
1438         set_par_threads(n_workers);
1439 
1440         ParRebuildRSTask rebuild_rs_task(this);
1441         assert(check_heap_region_claim_values(
1442                HeapRegion::InitialClaimValue), "sanity check");
1443         assert(UseDynamicNumberOfGCThreads ||
1444                workers()->active_workers() == workers()->total_workers(),
1445                "Unless dynamic should use total workers");
1446         // Use the most recent number of  active workers
1447         assert(workers()->active_workers() > 0,
1448                "Active workers not properly set");
1449         set_par_threads(workers()->active_workers());
1450         workers()->run_task(&rebuild_rs_task);
1451         set_par_threads(0);
1452         assert(check_heap_region_claim_values(
1453                HeapRegion::RebuildRSClaimValue), "sanity check");
1454         reset_heap_region_claim_values();
1455       } else {
1456         RebuildRSOutOfRegionClosure rebuild_rs(this);
1457         heap_region_iterate(&rebuild_rs);
1458       }
1459 
1460       // Rebuild the strong code root lists for each region
1461       rebuild_strong_code_roots();
1462 
1463       // Purge code root memory
1464       purge_code_root_memory();
1465 
1466       if (true) { // FIXME
1467         MetaspaceGC::compute_new_size();
1468       }
1469 
1470 #ifdef TRACESPINNING
1471       ParallelTaskTerminator::print_termination_counts();
1472 #endif
1473 
1474       // Discard all rset updates
1475       JavaThread::dirty_card_queue_set().abandon_logs();
1476       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1477 
1478       _young_list->reset_sampled_info();
1479       // At this point there should be no regions in the
1480       // entire heap tagged as young.
1481       assert(check_young_list_empty(true /* check_heap */),
1482              "young list should be empty at this point");
1483 
1484       // Update the number of full collections that have been completed.
1485       increment_old_marking_cycles_completed(false /* concurrent */);
1486 
1487       _hrm.verify_optional();
1488       verify_region_sets_optional();
1489 
1490       verify_after_gc();
1491 
1492       // Clear the previous marking bitmap, if needed for bitmap verification.
1493       // Note we cannot do this when we clear the next marking bitmap in
1494       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1495       // objects marked during a full GC against the previous bitmap.
1496       // But we need to clear it before calling check_bitmaps below since
1497       // the full GC has compacted objects and updated TAMS but not updated
1498       // the prev bitmap.
1499       if (G1VerifyBitmaps) {
1500         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1501       }
1502       check_bitmaps("Full GC End");
1503 
1504       // Start a new incremental collection set for the next pause
1505       assert(g1_policy()->collection_set() == NULL, "must be");
1506       g1_policy()->start_incremental_cset_building();
1507 
1508       clear_cset_fast_test();
1509 
1510       _allocator->init_mutator_alloc_region();
1511 
1512       double end = os::elapsedTime();
1513       g1_policy()->record_full_collection_end();
1514 
1515       if (G1Log::fine()) {
1516         g1_policy()->print_heap_transition();
1517       }
1518 
1519       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1520       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1521       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1522       // before any GC notifications are raised.
1523       g1mm()->update_sizes();
1524 
1525       gc_epilogue(true);
1526     }
1527 
1528     if (G1Log::finer()) {
1529       g1_policy()->print_detailed_heap_transition(true /* full */);
1530     }
1531 
1532     print_heap_after_gc();
1533     trace_heap_after_gc(gc_tracer);
1534 
1535     post_full_gc_dump(gc_timer);
1536 
1537     gc_timer->register_gc_end();
1538     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1539   }
1540 
1541   return true;
1542 }
1543 
do_full_collection(bool clear_all_soft_refs)1544 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1545   // do_collection() will return whether it succeeded in performing
1546   // the GC. Currently, there is no facility on the
1547   // do_full_collection() API to notify the caller than the collection
1548   // did not succeed (e.g., because it was locked out by the GC
1549   // locker). So, right now, we'll ignore the return value.
1550   bool dummy = do_collection(true,                /* explicit_gc */
1551                              clear_all_soft_refs,
1552                              0                    /* word_size */);
1553 }
1554 
1555 // This code is mostly copied from TenuredGeneration.
1556 void
1557 G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size)1558 resize_if_necessary_after_full_collection(size_t word_size) {
1559   // Include the current allocation, if any, and bytes that will be
1560   // pre-allocated to support collections, as "used".
1561   const size_t used_after_gc = used();
1562   const size_t capacity_after_gc = capacity();
1563   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1564 
1565   // This is enforced in arguments.cpp.
1566   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1567          "otherwise the code below doesn't make sense");
1568 
1569   // We don't have floating point command-line arguments
1570   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1571   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1572   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1573   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1574 
1575   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1576   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1577 
1578   // We have to be careful here as these two calculations can overflow
1579   // 32-bit size_t's.
1580   double used_after_gc_d = (double) used_after_gc;
1581   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1582   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1583 
1584   // Let's make sure that they are both under the max heap size, which
1585   // by default will make them fit into a size_t.
1586   double desired_capacity_upper_bound = (double) max_heap_size;
1587   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1588                                     desired_capacity_upper_bound);
1589   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1590                                     desired_capacity_upper_bound);
1591 
1592   // We can now safely turn them into size_t's.
1593   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1594   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1595 
1596   // This assert only makes sense here, before we adjust them
1597   // with respect to the min and max heap size.
1598   assert(minimum_desired_capacity <= maximum_desired_capacity,
1599          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1600                  "maximum_desired_capacity = " SIZE_FORMAT,
1601                  minimum_desired_capacity, maximum_desired_capacity));
1602 
1603   // Should not be greater than the heap max size. No need to adjust
1604   // it with respect to the heap min size as it's a lower bound (i.e.,
1605   // we'll try to make the capacity larger than it, not smaller).
1606   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1607   // Should not be less than the heap min size. No need to adjust it
1608   // with respect to the heap max size as it's an upper bound (i.e.,
1609   // we'll try to make the capacity smaller than it, not greater).
1610   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1611 
1612   if (capacity_after_gc < minimum_desired_capacity) {
1613     // Don't expand unless it's significant
1614     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1615     ergo_verbose4(ErgoHeapSizing,
1616                   "attempt heap expansion",
1617                   ergo_format_reason("capacity lower than "
1618                                      "min desired capacity after Full GC")
1619                   ergo_format_byte("capacity")
1620                   ergo_format_byte("occupancy")
1621                   ergo_format_byte_perc("min desired capacity"),
1622                   capacity_after_gc, used_after_gc,
1623                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1624     expand(expand_bytes);
1625 
1626     // No expansion, now see if we want to shrink
1627   } else if (capacity_after_gc > maximum_desired_capacity) {
1628     // Capacity too large, compute shrinking size
1629     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1630     ergo_verbose4(ErgoHeapSizing,
1631                   "attempt heap shrinking",
1632                   ergo_format_reason("capacity higher than "
1633                                      "max desired capacity after Full GC")
1634                   ergo_format_byte("capacity")
1635                   ergo_format_byte("occupancy")
1636                   ergo_format_byte_perc("max desired capacity"),
1637                   capacity_after_gc, used_after_gc,
1638                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1639     shrink(shrink_bytes);
1640   }
1641 }
1642 
1643 
1644 HeapWord*
satisfy_failed_allocation(size_t word_size,AllocationContext_t context,bool * succeeded)1645 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1646                                            AllocationContext_t context,
1647                                            bool* succeeded) {
1648   assert_at_safepoint(true /* should_be_vm_thread */);
1649 
1650   *succeeded = true;
1651   // Let's attempt the allocation first.
1652   HeapWord* result =
1653     attempt_allocation_at_safepoint(word_size,
1654                                     context,
1655                                     false /* expect_null_mutator_alloc_region */);
1656   if (result != NULL) {
1657     assert(*succeeded, "sanity");
1658     return result;
1659   }
1660 
1661   // In a G1 heap, we're supposed to keep allocation from failing by
1662   // incremental pauses.  Therefore, at least for now, we'll favor
1663   // expansion over collection.  (This might change in the future if we can
1664   // do something smarter than full collection to satisfy a failed alloc.)
1665   result = expand_and_allocate(word_size, context);
1666   if (result != NULL) {
1667     assert(*succeeded, "sanity");
1668     return result;
1669   }
1670 
1671   // Expansion didn't work, we'll try to do a Full GC.
1672   bool gc_succeeded = do_collection(false, /* explicit_gc */
1673                                     false, /* clear_all_soft_refs */
1674                                     word_size);
1675   if (!gc_succeeded) {
1676     *succeeded = false;
1677     return NULL;
1678   }
1679 
1680   // Retry the allocation
1681   result = attempt_allocation_at_safepoint(word_size,
1682                                            context,
1683                                            true /* expect_null_mutator_alloc_region */);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Then, try a Full GC that will collect all soft references.
1690   gc_succeeded = do_collection(false, /* explicit_gc */
1691                                true,  /* clear_all_soft_refs */
1692                                word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation once more
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                            context,
1701                                            true /* expect_null_mutator_alloc_region */);
1702   if (result != NULL) {
1703     assert(*succeeded, "sanity");
1704     return result;
1705   }
1706 
1707   assert(!collector_policy()->should_clear_all_soft_refs(),
1708          "Flag should have been handled and cleared prior to this point");
1709 
1710   // What else?  We might try synchronous finalization later.  If the total
1711   // space available is large enough for the allocation, then a more
1712   // complete compaction phase than we've tried so far might be
1713   // appropriate.
1714   assert(*succeeded, "sanity");
1715   return NULL;
1716 }
1717 
1718 // Attempting to expand the heap sufficiently
1719 // to support an allocation of the given "word_size".  If
1720 // successful, perform the allocation and return the address of the
1721 // allocated block, or else "NULL".
1722 
expand_and_allocate(size_t word_size,AllocationContext_t context)1723 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1724   assert_at_safepoint(true /* should_be_vm_thread */);
1725 
1726   verify_region_sets_optional();
1727 
1728   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1729   ergo_verbose1(ErgoHeapSizing,
1730                 "attempt heap expansion",
1731                 ergo_format_reason("allocation request failed")
1732                 ergo_format_byte("allocation request"),
1733                 word_size * HeapWordSize);
1734   if (expand(expand_bytes)) {
1735     _hrm.verify_optional();
1736     verify_region_sets_optional();
1737     return attempt_allocation_at_safepoint(word_size,
1738                                            context,
1739                                            false /* expect_null_mutator_alloc_region */);
1740   }
1741   return NULL;
1742 }
1743 
expand(size_t expand_bytes)1744 bool G1CollectedHeap::expand(size_t expand_bytes) {
1745   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1746   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1747                                        HeapRegion::GrainBytes);
1748   ergo_verbose2(ErgoHeapSizing,
1749                 "expand the heap",
1750                 ergo_format_byte("requested expansion amount")
1751                 ergo_format_byte("attempted expansion amount"),
1752                 expand_bytes, aligned_expand_bytes);
1753 
1754   if (is_maximal_no_gc()) {
1755     ergo_verbose0(ErgoHeapSizing,
1756                       "did not expand the heap",
1757                       ergo_format_reason("heap already fully expanded"));
1758     return false;
1759   }
1760 
1761   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1762   assert(regions_to_expand > 0, "Must expand by at least one region");
1763 
1764   uint expanded_by = _hrm.expand_by(regions_to_expand);
1765 
1766   if (expanded_by > 0) {
1767     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1768     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1769     g1_policy()->record_new_heap_size(num_regions());
1770   } else {
1771     ergo_verbose0(ErgoHeapSizing,
1772                   "did not expand the heap",
1773                   ergo_format_reason("heap expansion operation failed"));
1774     // The expansion of the virtual storage space was unsuccessful.
1775     // Let's see if it was because we ran out of swap.
1776     if (G1ExitOnExpansionFailure &&
1777         _hrm.available() >= regions_to_expand) {
1778       // We had head room...
1779       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1780     }
1781   }
1782   return regions_to_expand > 0;
1783 }
1784 
shrink_helper(size_t shrink_bytes)1785 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1786   size_t aligned_shrink_bytes =
1787     ReservedSpace::page_align_size_down(shrink_bytes);
1788   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1789                                          HeapRegion::GrainBytes);
1790   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1791 
1792   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1793   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1794 
1795   ergo_verbose3(ErgoHeapSizing,
1796                 "shrink the heap",
1797                 ergo_format_byte("requested shrinking amount")
1798                 ergo_format_byte("aligned shrinking amount")
1799                 ergo_format_byte("attempted shrinking amount"),
1800                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1801   if (num_regions_removed > 0) {
1802     g1_policy()->record_new_heap_size(num_regions());
1803   } else {
1804     ergo_verbose0(ErgoHeapSizing,
1805                   "did not shrink the heap",
1806                   ergo_format_reason("heap shrinking operation failed"));
1807   }
1808 }
1809 
shrink(size_t shrink_bytes)1810 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1811   verify_region_sets_optional();
1812 
1813   // We should only reach here at the end of a Full GC which means we
1814   // should not not be holding to any GC alloc regions. The method
1815   // below will make sure of that and do any remaining clean up.
1816   _allocator->abandon_gc_alloc_regions();
1817 
1818   // Instead of tearing down / rebuilding the free lists here, we
1819   // could instead use the remove_all_pending() method on free_list to
1820   // remove only the ones that we need to remove.
1821   tear_down_region_sets(true /* free_list_only */);
1822   shrink_helper(shrink_bytes);
1823   rebuild_region_sets(true /* free_list_only */);
1824 
1825   _hrm.verify_optional();
1826   verify_region_sets_optional();
1827 }
1828 
1829 // Public methods.
1830 
1831 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1832 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1833 #endif // _MSC_VER
1834 
1835 
G1CollectedHeap(G1CollectorPolicy * policy_)1836 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1837   SharedHeap(policy_),
1838   _g1_policy(policy_),
1839   _dirty_card_queue_set(false),
1840   _into_cset_dirty_card_queue_set(false),
1841   _is_alive_closure_cm(this),
1842   _is_alive_closure_stw(this),
1843   _ref_processor_cm(NULL),
1844   _ref_processor_stw(NULL),
1845   _bot_shared(NULL),
1846   _evac_failure_scan_stack(NULL),
1847   _mark_in_progress(false),
1848   _cg1r(NULL),
1849   _g1mm(NULL),
1850   _refine_cte_cl(NULL),
1851   _full_collection(false),
1852   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1853   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1854   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1855   _humongous_reclaim_candidates(),
1856   _has_humongous_reclaim_candidates(false),
1857   _free_regions_coming(false),
1858   _young_list(new YoungList(this)),
1859   _gc_time_stamp(0),
1860   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1861   _old_plab_stats(OldPLABSize, PLABWeight),
1862   _expand_heap_after_alloc_failure(true),
1863   _surviving_young_words(NULL),
1864   _old_marking_cycles_started(0),
1865   _old_marking_cycles_completed(0),
1866   _concurrent_cycle_started(false),
1867   _heap_summary_sent(false),
1868   _in_cset_fast_test(),
1869   _dirty_cards_region_list(NULL),
1870   _worker_cset_start_region(NULL),
1871   _worker_cset_start_region_time_stamp(NULL),
1872   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1873   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1874   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1875   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1876 
1877   _g1h = this;
1878 
1879   _allocator = G1Allocator::create_allocator(_g1h);
1880   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1881 
1882   int n_queues = MAX2((int)ParallelGCThreads, 1);
1883   _task_queues = new RefToScanQueueSet(n_queues);
1884 
1885   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1886   assert(n_rem_sets > 0, "Invariant.");
1887 
1888   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1889   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1890   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1891 
1892   for (int i = 0; i < n_queues; i++) {
1893     RefToScanQueue* q = new RefToScanQueue();
1894     q->initialize();
1895     _task_queues->register_queue(i, q);
1896     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1897   }
1898   clear_cset_start_regions();
1899 
1900   // Initialize the G1EvacuationFailureALot counters and flags.
1901   NOT_PRODUCT(reset_evacuation_should_fail();)
1902 
1903   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1904 }
1905 
create_aux_memory_mapper(const char * description,size_t size,size_t translation_factor)1906 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1907                                                                  size_t size,
1908                                                                  size_t translation_factor) {
1909   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1910   // Allocate a new reserved space, preferring to use large pages.
1911   ReservedSpace rs(size, preferred_page_size);
1912   G1RegionToSpaceMapper* result  =
1913     G1RegionToSpaceMapper::create_mapper(rs,
1914                                          size,
1915                                          rs.alignment(),
1916                                          HeapRegion::GrainBytes,
1917                                          translation_factor,
1918                                          mtGC);
1919   if (TracePageSizes) {
1920     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1921                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1922   }
1923   return result;
1924 }
1925 
initialize()1926 jint G1CollectedHeap::initialize() {
1927   CollectedHeap::pre_initialize();
1928   os::enable_vtime();
1929 
1930   G1Log::init();
1931 
1932   // Necessary to satisfy locking discipline assertions.
1933 
1934   MutexLocker x(Heap_lock);
1935 
1936   // We have to initialize the printer before committing the heap, as
1937   // it will be used then.
1938   _hr_printer.set_active(G1PrintHeapRegions);
1939 
1940   // While there are no constraints in the GC code that HeapWordSize
1941   // be any particular value, there are multiple other areas in the
1942   // system which believe this to be true (e.g. oop->object_size in some
1943   // cases incorrectly returns the size in wordSize units rather than
1944   // HeapWordSize).
1945   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1946 
1947   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1948   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1949   size_t heap_alignment = collector_policy()->heap_alignment();
1950 
1951   // Ensure that the sizes are properly aligned.
1952   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1953   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1954   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1955 
1956   _refine_cte_cl = new RefineCardTableEntryClosure();
1957 
1958   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1959 
1960   // Reserve the maximum.
1961 
1962   // When compressed oops are enabled, the preferred heap base
1963   // is calculated by subtracting the requested size from the
1964   // 32Gb boundary and using the result as the base address for
1965   // heap reservation. If the requested size is not aligned to
1966   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1967   // into the ReservedHeapSpace constructor) then the actual
1968   // base of the reserved heap may end up differing from the
1969   // address that was requested (i.e. the preferred heap base).
1970   // If this happens then we could end up using a non-optimal
1971   // compressed oops mode.
1972 
1973   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1974                                                  heap_alignment);
1975 
1976   // It is important to do this in a way such that concurrent readers can't
1977   // temporarily think something is in the heap.  (I've actually seen this
1978   // happen in asserts: DLD.)
1979   _reserved.set_word_size(0);
1980   _reserved.set_start((HeapWord*)heap_rs.base());
1981   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1982 
1983   // Create the gen rem set (and barrier set) for the entire reserved region.
1984   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1985   set_barrier_set(rem_set()->bs());
1986   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1987     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1988     return JNI_ENOMEM;
1989   }
1990 
1991   // Also create a G1 rem set.
1992   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1993 
1994   // Carve out the G1 part of the heap.
1995 
1996   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1997   G1RegionToSpaceMapper* heap_storage =
1998     G1RegionToSpaceMapper::create_mapper(g1_rs,
1999                                          g1_rs.size(),
2000                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
2001                                          HeapRegion::GrainBytes,
2002                                          1,
2003                                          mtJavaHeap);
2004   heap_storage->set_mapping_changed_listener(&_listener);
2005 
2006   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2007   G1RegionToSpaceMapper* bot_storage =
2008     create_aux_memory_mapper("Block offset table",
2009                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2010                              G1BlockOffsetSharedArray::N_bytes);
2011 
2012   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2013   G1RegionToSpaceMapper* cardtable_storage =
2014     create_aux_memory_mapper("Card table",
2015                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2016                              G1BlockOffsetSharedArray::N_bytes);
2017 
2018   G1RegionToSpaceMapper* card_counts_storage =
2019     create_aux_memory_mapper("Card counts table",
2020                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2021                              G1BlockOffsetSharedArray::N_bytes);
2022 
2023   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2024   G1RegionToSpaceMapper* prev_bitmap_storage =
2025     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
2026   G1RegionToSpaceMapper* next_bitmap_storage =
2027     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
2028 
2029   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2030   g1_barrier_set()->initialize(cardtable_storage);
2031    // Do later initialization work for concurrent refinement.
2032   _cg1r->init(card_counts_storage);
2033 
2034   // 6843694 - ensure that the maximum region index can fit
2035   // in the remembered set structures.
2036   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2037   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2038 
2039   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2040   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2041   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2042             "too many cards per region");
2043 
2044   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2045 
2046   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2047 
2048   _g1h = this;
2049 
2050   {
2051     HeapWord* start = _hrm.reserved().start();
2052     HeapWord* end = _hrm.reserved().end();
2053     size_t granularity = HeapRegion::GrainBytes;
2054 
2055     _in_cset_fast_test.initialize(start, end, granularity);
2056     _humongous_reclaim_candidates.initialize(start, end, granularity);
2057   }
2058 
2059   // Create the ConcurrentMark data structure and thread.
2060   // (Must do this late, so that "max_regions" is defined.)
2061   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2062   if (_cm == NULL || !_cm->completed_initialization()) {
2063     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2064     return JNI_ENOMEM;
2065   }
2066   _cmThread = _cm->cmThread();
2067 
2068   // Initialize the from_card cache structure of HeapRegionRemSet.
2069   HeapRegionRemSet::init_heap(max_regions());
2070 
2071   // Now expand into the initial heap size.
2072   if (!expand(init_byte_size)) {
2073     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2074     return JNI_ENOMEM;
2075   }
2076 
2077   // Perform any initialization actions delegated to the policy.
2078   g1_policy()->init();
2079 
2080   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2081                                                SATB_Q_FL_lock,
2082                                                G1SATBProcessCompletedThreshold,
2083                                                Shared_SATB_Q_lock);
2084 
2085   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2086                                                 DirtyCardQ_CBL_mon,
2087                                                 DirtyCardQ_FL_lock,
2088                                                 concurrent_g1_refine()->yellow_zone(),
2089                                                 concurrent_g1_refine()->red_zone(),
2090                                                 Shared_DirtyCardQ_lock);
2091 
2092   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2093                                     DirtyCardQ_CBL_mon,
2094                                     DirtyCardQ_FL_lock,
2095                                     -1, // never trigger processing
2096                                     -1, // no limit on length
2097                                     Shared_DirtyCardQ_lock,
2098                                     &JavaThread::dirty_card_queue_set());
2099 
2100   // Initialize the card queue set used to hold cards containing
2101   // references into the collection set.
2102   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2103                                              DirtyCardQ_CBL_mon,
2104                                              DirtyCardQ_FL_lock,
2105                                              -1, // never trigger processing
2106                                              -1, // no limit on length
2107                                              Shared_DirtyCardQ_lock,
2108                                              &JavaThread::dirty_card_queue_set());
2109 
2110   // In case we're keeping closure specialization stats, initialize those
2111   // counts and that mechanism.
2112   SpecializationStats::clear();
2113 
2114   // Here we allocate the dummy HeapRegion that is required by the
2115   // G1AllocRegion class.
2116   HeapRegion* dummy_region = _hrm.get_dummy_region();
2117 
2118   // We'll re-use the same region whether the alloc region will
2119   // require BOT updates or not and, if it doesn't, then a non-young
2120   // region will complain that it cannot support allocations without
2121   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2122   dummy_region->set_eden();
2123   // Make sure it's full.
2124   dummy_region->set_top(dummy_region->end());
2125   G1AllocRegion::setup(this, dummy_region);
2126 
2127   _allocator->init_mutator_alloc_region();
2128 
2129   // Do create of the monitoring and management support so that
2130   // values in the heap have been properly initialized.
2131   _g1mm = new G1MonitoringSupport(this);
2132 
2133   G1StringDedup::initialize();
2134 
2135   return JNI_OK;
2136 }
2137 
stop()2138 void G1CollectedHeap::stop() {
2139   // Stop all concurrent threads. We do this to make sure these threads
2140   // do not continue to execute and access resources (e.g. gclog_or_tty)
2141   // that are destroyed during shutdown.
2142   _cg1r->stop();
2143   _cmThread->stop();
2144   if (G1StringDedup::is_enabled()) {
2145     G1StringDedup::stop();
2146   }
2147 }
2148 
conservative_max_heap_alignment()2149 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2150   return HeapRegion::max_region_size();
2151 }
2152 
ref_processing_init()2153 void G1CollectedHeap::ref_processing_init() {
2154   // Reference processing in G1 currently works as follows:
2155   //
2156   // * There are two reference processor instances. One is
2157   //   used to record and process discovered references
2158   //   during concurrent marking; the other is used to
2159   //   record and process references during STW pauses
2160   //   (both full and incremental).
2161   // * Both ref processors need to 'span' the entire heap as
2162   //   the regions in the collection set may be dotted around.
2163   //
2164   // * For the concurrent marking ref processor:
2165   //   * Reference discovery is enabled at initial marking.
2166   //   * Reference discovery is disabled and the discovered
2167   //     references processed etc during remarking.
2168   //   * Reference discovery is MT (see below).
2169   //   * Reference discovery requires a barrier (see below).
2170   //   * Reference processing may or may not be MT
2171   //     (depending on the value of ParallelRefProcEnabled
2172   //     and ParallelGCThreads).
2173   //   * A full GC disables reference discovery by the CM
2174   //     ref processor and abandons any entries on it's
2175   //     discovered lists.
2176   //
2177   // * For the STW processor:
2178   //   * Non MT discovery is enabled at the start of a full GC.
2179   //   * Processing and enqueueing during a full GC is non-MT.
2180   //   * During a full GC, references are processed after marking.
2181   //
2182   //   * Discovery (may or may not be MT) is enabled at the start
2183   //     of an incremental evacuation pause.
2184   //   * References are processed near the end of a STW evacuation pause.
2185   //   * For both types of GC:
2186   //     * Discovery is atomic - i.e. not concurrent.
2187   //     * Reference discovery will not need a barrier.
2188 
2189   SharedHeap::ref_processing_init();
2190   MemRegion mr = reserved_region();
2191 
2192   // Concurrent Mark ref processor
2193   _ref_processor_cm =
2194     new ReferenceProcessor(mr,    // span
2195                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2196                                 // mt processing
2197                            (int) ParallelGCThreads,
2198                                 // degree of mt processing
2199                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2200                                 // mt discovery
2201                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2202                                 // degree of mt discovery
2203                            false,
2204                                 // Reference discovery is not atomic
2205                            &_is_alive_closure_cm);
2206                                 // is alive closure
2207                                 // (for efficiency/performance)
2208 
2209   // STW ref processor
2210   _ref_processor_stw =
2211     new ReferenceProcessor(mr,    // span
2212                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2213                                 // mt processing
2214                            MAX2((int)ParallelGCThreads, 1),
2215                                 // degree of mt processing
2216                            (ParallelGCThreads > 1),
2217                                 // mt discovery
2218                            MAX2((int)ParallelGCThreads, 1),
2219                                 // degree of mt discovery
2220                            true,
2221                                 // Reference discovery is atomic
2222                            &_is_alive_closure_stw);
2223                                 // is alive closure
2224                                 // (for efficiency/performance)
2225 }
2226 
capacity() const2227 size_t G1CollectedHeap::capacity() const {
2228   return _hrm.length() * HeapRegion::GrainBytes;
2229 }
2230 
reset_gc_time_stamps(HeapRegion * hr)2231 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2232   assert(!hr->continuesHumongous(), "pre-condition");
2233   hr->reset_gc_time_stamp();
2234   if (hr->startsHumongous()) {
2235     uint first_index = hr->hrm_index() + 1;
2236     uint last_index = hr->last_hc_index();
2237     for (uint i = first_index; i < last_index; i += 1) {
2238       HeapRegion* chr = region_at(i);
2239       assert(chr->continuesHumongous(), "sanity");
2240       chr->reset_gc_time_stamp();
2241     }
2242   }
2243 }
2244 
2245 #ifndef PRODUCT
2246 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2247 private:
2248   unsigned _gc_time_stamp;
2249   bool _failures;
2250 
2251 public:
CheckGCTimeStampsHRClosure(unsigned gc_time_stamp)2252   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2253     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2254 
doHeapRegion(HeapRegion * hr)2255   virtual bool doHeapRegion(HeapRegion* hr) {
2256     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2257     if (_gc_time_stamp != region_gc_time_stamp) {
2258       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2259                              "expected %d", HR_FORMAT_PARAMS(hr),
2260                              region_gc_time_stamp, _gc_time_stamp);
2261       _failures = true;
2262     }
2263     return false;
2264   }
2265 
failures()2266   bool failures() { return _failures; }
2267 };
2268 
check_gc_time_stamps()2269 void G1CollectedHeap::check_gc_time_stamps() {
2270   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2271   heap_region_iterate(&cl);
2272   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2273 }
2274 #endif // PRODUCT
2275 
iterate_dirty_card_closure(CardTableEntryClosure * cl,DirtyCardQueue * into_cset_dcq,bool concurrent,uint worker_i)2276 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2277                                                  DirtyCardQueue* into_cset_dcq,
2278                                                  bool concurrent,
2279                                                  uint worker_i) {
2280   // Clean cards in the hot card cache
2281   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2282   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2283 
2284   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2285   size_t n_completed_buffers = 0;
2286   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2287     n_completed_buffers++;
2288   }
2289   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2290   dcqs.clear_n_completed_buffers();
2291   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2292 }
2293 
2294 
2295 // Computes the sum of the storage used by the various regions.
used() const2296 size_t G1CollectedHeap::used() const {
2297   return _allocator->used();
2298 }
2299 
used_unlocked() const2300 size_t G1CollectedHeap::used_unlocked() const {
2301   return _allocator->used_unlocked();
2302 }
2303 
2304 class SumUsedClosure: public HeapRegionClosure {
2305   size_t _used;
2306 public:
SumUsedClosure()2307   SumUsedClosure() : _used(0) {}
doHeapRegion(HeapRegion * r)2308   bool doHeapRegion(HeapRegion* r) {
2309     if (!r->continuesHumongous()) {
2310       _used += r->used();
2311     }
2312     return false;
2313   }
result()2314   size_t result() { return _used; }
2315 };
2316 
recalculate_used() const2317 size_t G1CollectedHeap::recalculate_used() const {
2318   double recalculate_used_start = os::elapsedTime();
2319 
2320   SumUsedClosure blk;
2321   heap_region_iterate(&blk);
2322 
2323   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2324   return blk.result();
2325 }
2326 
should_do_concurrent_full_gc(GCCause::Cause cause)2327 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2328   switch (cause) {
2329     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2330     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2331     case GCCause::_g1_humongous_allocation: return true;
2332     case GCCause::_update_allocation_context_stats_inc: return true;
2333     case GCCause::_wb_conc_mark:            return true;
2334     default:                                return false;
2335   }
2336 }
2337 
2338 #ifndef PRODUCT
allocate_dummy_regions()2339 void G1CollectedHeap::allocate_dummy_regions() {
2340   // Let's fill up most of the region
2341   size_t word_size = HeapRegion::GrainWords - 1024;
2342   // And as a result the region we'll allocate will be humongous.
2343   guarantee(isHumongous(word_size), "sanity");
2344 
2345   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2346     // Let's use the existing mechanism for the allocation
2347     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2348                                                  AllocationContext::system());
2349     if (dummy_obj != NULL) {
2350       MemRegion mr(dummy_obj, word_size);
2351       CollectedHeap::fill_with_object(mr);
2352     } else {
2353       // If we can't allocate once, we probably cannot allocate
2354       // again. Let's get out of the loop.
2355       break;
2356     }
2357   }
2358 }
2359 #endif // !PRODUCT
2360 
increment_old_marking_cycles_started()2361 void G1CollectedHeap::increment_old_marking_cycles_started() {
2362   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2363     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2364     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2365     _old_marking_cycles_started, _old_marking_cycles_completed));
2366 
2367   _old_marking_cycles_started++;
2368 }
2369 
increment_old_marking_cycles_completed(bool concurrent)2370 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2371   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2372 
2373   // We assume that if concurrent == true, then the caller is a
2374   // concurrent thread that was joined the Suspendible Thread
2375   // Set. If there's ever a cheap way to check this, we should add an
2376   // assert here.
2377 
2378   // Given that this method is called at the end of a Full GC or of a
2379   // concurrent cycle, and those can be nested (i.e., a Full GC can
2380   // interrupt a concurrent cycle), the number of full collections
2381   // completed should be either one (in the case where there was no
2382   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2383   // behind the number of full collections started.
2384 
2385   // This is the case for the inner caller, i.e. a Full GC.
2386   assert(concurrent ||
2387          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2388          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2389          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2390                  "is inconsistent with _old_marking_cycles_completed = %u",
2391                  _old_marking_cycles_started, _old_marking_cycles_completed));
2392 
2393   // This is the case for the outer caller, i.e. the concurrent cycle.
2394   assert(!concurrent ||
2395          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2396          err_msg("for outer caller (concurrent cycle): "
2397                  "_old_marking_cycles_started = %u "
2398                  "is inconsistent with _old_marking_cycles_completed = %u",
2399                  _old_marking_cycles_started, _old_marking_cycles_completed));
2400 
2401   _old_marking_cycles_completed += 1;
2402 
2403   // We need to clear the "in_progress" flag in the CM thread before
2404   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2405   // is set) so that if a waiter requests another System.gc() it doesn't
2406   // incorrectly see that a marking cycle is still in progress.
2407   if (concurrent) {
2408     _cmThread->set_idle();
2409   }
2410 
2411   // This notify_all() will ensure that a thread that called
2412   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2413   // and it's waiting for a full GC to finish will be woken up. It is
2414   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2415   FullGCCount_lock->notify_all();
2416 }
2417 
register_concurrent_cycle_start(const Ticks & start_time)2418 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2419   _concurrent_cycle_started = true;
2420   _gc_timer_cm->register_gc_start(start_time);
2421 
2422   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2423   trace_heap_before_gc(_gc_tracer_cm);
2424 }
2425 
register_concurrent_cycle_end()2426 void G1CollectedHeap::register_concurrent_cycle_end() {
2427   if (_concurrent_cycle_started) {
2428     if (_cm->has_aborted()) {
2429       _gc_tracer_cm->report_concurrent_mode_failure();
2430     }
2431 
2432     _gc_timer_cm->register_gc_end();
2433     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2434 
2435     // Clear state variables to prepare for the next concurrent cycle.
2436     _concurrent_cycle_started = false;
2437     _heap_summary_sent = false;
2438   }
2439 }
2440 
trace_heap_after_concurrent_cycle()2441 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2442   if (_concurrent_cycle_started) {
2443     // This function can be called when:
2444     //  the cleanup pause is run
2445     //  the concurrent cycle is aborted before the cleanup pause.
2446     //  the concurrent cycle is aborted after the cleanup pause,
2447     //   but before the concurrent cycle end has been registered.
2448     // Make sure that we only send the heap information once.
2449     if (!_heap_summary_sent) {
2450       trace_heap_after_gc(_gc_tracer_cm);
2451       _heap_summary_sent = true;
2452     }
2453   }
2454 }
2455 
yc_type()2456 G1YCType G1CollectedHeap::yc_type() {
2457   bool is_young = g1_policy()->gcs_are_young();
2458   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2459   bool is_during_mark = mark_in_progress();
2460 
2461   if (is_initial_mark) {
2462     return InitialMark;
2463   } else if (is_during_mark) {
2464     return DuringMark;
2465   } else if (is_young) {
2466     return Normal;
2467   } else {
2468     return Mixed;
2469   }
2470 }
2471 
collect(GCCause::Cause cause)2472 void G1CollectedHeap::collect(GCCause::Cause cause) {
2473   assert_heap_not_locked();
2474 
2475   uint gc_count_before;
2476   uint old_marking_count_before;
2477   uint full_gc_count_before;
2478   bool retry_gc;
2479 
2480   do {
2481     retry_gc = false;
2482 
2483     {
2484       MutexLocker ml(Heap_lock);
2485 
2486       // Read the GC count while holding the Heap_lock
2487       gc_count_before = total_collections();
2488       full_gc_count_before = total_full_collections();
2489       old_marking_count_before = _old_marking_cycles_started;
2490     }
2491 
2492     if (should_do_concurrent_full_gc(cause)) {
2493       // Schedule an initial-mark evacuation pause that will start a
2494       // concurrent cycle. We're setting word_size to 0 which means that
2495       // we are not requesting a post-GC allocation.
2496       VM_G1IncCollectionPause op(gc_count_before,
2497                                  0,     /* word_size */
2498                                  true,  /* should_initiate_conc_mark */
2499                                  g1_policy()->max_pause_time_ms(),
2500                                  cause);
2501       op.set_allocation_context(AllocationContext::current());
2502 
2503       VMThread::execute(&op);
2504       if (!op.pause_succeeded()) {
2505         if (old_marking_count_before == _old_marking_cycles_started) {
2506           retry_gc = op.should_retry_gc();
2507         } else {
2508           // A Full GC happened while we were trying to schedule the
2509           // initial-mark GC. No point in starting a new cycle given
2510           // that the whole heap was collected anyway.
2511         }
2512 
2513         if (retry_gc) {
2514           if (GC_locker::is_active_and_needs_gc()) {
2515             GC_locker::stall_until_clear();
2516           }
2517         }
2518       }
2519     } else if (GC_locker::should_discard(cause, gc_count_before)) {
2520       // Return to be consistent with VMOp failure due to another
2521       // collection slipping in after our gc_count but before our
2522       // request is processed.  _gc_locker collections upgraded by
2523       // GCLockerInvokesConcurrent are handled above and never discarded.
2524       return;
2525     } else {
2526       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2527           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2528 
2529         // Schedule a standard evacuation pause. We're setting word_size
2530         // to 0 which means that we are not requesting a post-GC allocation.
2531         VM_G1IncCollectionPause op(gc_count_before,
2532                                    0,     /* word_size */
2533                                    false, /* should_initiate_conc_mark */
2534                                    g1_policy()->max_pause_time_ms(),
2535                                    cause);
2536         VMThread::execute(&op);
2537       } else {
2538         // Schedule a Full GC.
2539         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2540         VMThread::execute(&op);
2541       }
2542     }
2543   } while (retry_gc);
2544 }
2545 
is_in(const void * p) const2546 bool G1CollectedHeap::is_in(const void* p) const {
2547   if (_hrm.reserved().contains(p)) {
2548     // Given that we know that p is in the reserved space,
2549     // heap_region_containing_raw() should successfully
2550     // return the containing region.
2551     HeapRegion* hr = heap_region_containing_raw(p);
2552     return hr->is_in(p);
2553   } else {
2554     return false;
2555   }
2556 }
2557 
2558 #ifdef ASSERT
is_in_exact(const void * p) const2559 bool G1CollectedHeap::is_in_exact(const void* p) const {
2560   bool contains = reserved_region().contains(p);
2561   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2562   if (contains && available) {
2563     return true;
2564   } else {
2565     return false;
2566   }
2567 }
2568 #endif
2569 
2570 // Iteration functions.
2571 
2572 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2573 
2574 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2575   ExtendedOopClosure* _cl;
2576 public:
IterateOopClosureRegionClosure(ExtendedOopClosure * cl)2577   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
doHeapRegion(HeapRegion * r)2578   bool doHeapRegion(HeapRegion* r) {
2579     if (!r->continuesHumongous()) {
2580       r->oop_iterate(_cl);
2581     }
2582     return false;
2583   }
2584 };
2585 
oop_iterate(ExtendedOopClosure * cl)2586 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2587   IterateOopClosureRegionClosure blk(cl);
2588   heap_region_iterate(&blk);
2589 }
2590 
2591 // Iterates an ObjectClosure over all objects within a HeapRegion.
2592 
2593 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2594   ObjectClosure* _cl;
2595 public:
IterateObjectClosureRegionClosure(ObjectClosure * cl)2596   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
doHeapRegion(HeapRegion * r)2597   bool doHeapRegion(HeapRegion* r) {
2598     if (! r->continuesHumongous()) {
2599       r->object_iterate(_cl);
2600     }
2601     return false;
2602   }
2603 };
2604 
object_iterate(ObjectClosure * cl)2605 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2606   IterateObjectClosureRegionClosure blk(cl);
2607   heap_region_iterate(&blk);
2608 }
2609 
2610 // Calls a SpaceClosure on a HeapRegion.
2611 
2612 class SpaceClosureRegionClosure: public HeapRegionClosure {
2613   SpaceClosure* _cl;
2614 public:
SpaceClosureRegionClosure(SpaceClosure * cl)2615   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
doHeapRegion(HeapRegion * r)2616   bool doHeapRegion(HeapRegion* r) {
2617     _cl->do_space(r);
2618     return false;
2619   }
2620 };
2621 
space_iterate(SpaceClosure * cl)2622 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2623   SpaceClosureRegionClosure blk(cl);
2624   heap_region_iterate(&blk);
2625 }
2626 
heap_region_iterate(HeapRegionClosure * cl) const2627 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2628   _hrm.iterate(cl);
2629 }
2630 
2631 void
heap_region_par_iterate_chunked(HeapRegionClosure * cl,uint worker_id,uint num_workers,jint claim_value) const2632 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2633                                                  uint worker_id,
2634                                                  uint num_workers,
2635                                                  jint claim_value) const {
2636   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2637 }
2638 
2639 class ResetClaimValuesClosure: public HeapRegionClosure {
2640 public:
doHeapRegion(HeapRegion * r)2641   bool doHeapRegion(HeapRegion* r) {
2642     r->set_claim_value(HeapRegion::InitialClaimValue);
2643     return false;
2644   }
2645 };
2646 
reset_heap_region_claim_values()2647 void G1CollectedHeap::reset_heap_region_claim_values() {
2648   ResetClaimValuesClosure blk;
2649   heap_region_iterate(&blk);
2650 }
2651 
reset_cset_heap_region_claim_values()2652 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2653   ResetClaimValuesClosure blk;
2654   collection_set_iterate(&blk);
2655 }
2656 
2657 #ifdef ASSERT
2658 // This checks whether all regions in the heap have the correct claim
2659 // value. I also piggy-backed on this a check to ensure that the
2660 // humongous_start_region() information on "continues humongous"
2661 // regions is correct.
2662 
2663 class CheckClaimValuesClosure : public HeapRegionClosure {
2664 private:
2665   jint _claim_value;
2666   uint _failures;
2667   HeapRegion* _sh_region;
2668 
2669 public:
CheckClaimValuesClosure(jint claim_value)2670   CheckClaimValuesClosure(jint claim_value) :
2671     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
doHeapRegion(HeapRegion * r)2672   bool doHeapRegion(HeapRegion* r) {
2673     if (r->claim_value() != _claim_value) {
2674       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2675                              "claim value = %d, should be %d",
2676                              HR_FORMAT_PARAMS(r),
2677                              r->claim_value(), _claim_value);
2678       ++_failures;
2679     }
2680     if (!r->isHumongous()) {
2681       _sh_region = NULL;
2682     } else if (r->startsHumongous()) {
2683       _sh_region = r;
2684     } else if (r->continuesHumongous()) {
2685       if (r->humongous_start_region() != _sh_region) {
2686         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2687                                "HS = " PTR_FORMAT ", should be " PTR_FORMAT,
2688                                HR_FORMAT_PARAMS(r),
2689                                p2i(r->humongous_start_region()),
2690                                p2i(_sh_region));
2691         ++_failures;
2692       }
2693     }
2694     return false;
2695   }
failures()2696   uint failures() { return _failures; }
2697 };
2698 
check_heap_region_claim_values(jint claim_value)2699 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2700   CheckClaimValuesClosure cl(claim_value);
2701   heap_region_iterate(&cl);
2702   return cl.failures() == 0;
2703 }
2704 
2705 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2706 private:
2707   jint _claim_value;
2708   uint _failures;
2709 
2710 public:
CheckClaimValuesInCSetHRClosure(jint claim_value)2711   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2712     _claim_value(claim_value), _failures(0) { }
2713 
failures()2714   uint failures() { return _failures; }
2715 
doHeapRegion(HeapRegion * hr)2716   bool doHeapRegion(HeapRegion* hr) {
2717     assert(hr->in_collection_set(), "how?");
2718     assert(!hr->isHumongous(), "H-region in CSet");
2719     if (hr->claim_value() != _claim_value) {
2720       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2721                              "claim value = %d, should be %d",
2722                              HR_FORMAT_PARAMS(hr),
2723                              hr->claim_value(), _claim_value);
2724       _failures += 1;
2725     }
2726     return false;
2727   }
2728 };
2729 
check_cset_heap_region_claim_values(jint claim_value)2730 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2731   CheckClaimValuesInCSetHRClosure cl(claim_value);
2732   collection_set_iterate(&cl);
2733   return cl.failures() == 0;
2734 }
2735 #endif // ASSERT
2736 
2737 // Clear the cached CSet starting regions and (more importantly)
2738 // the time stamps. Called when we reset the GC time stamp.
clear_cset_start_regions()2739 void G1CollectedHeap::clear_cset_start_regions() {
2740   assert(_worker_cset_start_region != NULL, "sanity");
2741   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2742 
2743   int n_queues = MAX2((int)ParallelGCThreads, 1);
2744   for (int i = 0; i < n_queues; i++) {
2745     _worker_cset_start_region[i] = NULL;
2746     _worker_cset_start_region_time_stamp[i] = 0;
2747   }
2748 }
2749 
2750 // Given the id of a worker, obtain or calculate a suitable
2751 // starting region for iterating over the current collection set.
start_cset_region_for_worker(uint worker_i)2752 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2753   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2754 
2755   HeapRegion* result = NULL;
2756   unsigned gc_time_stamp = get_gc_time_stamp();
2757 
2758   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2759     // Cached starting region for current worker was set
2760     // during the current pause - so it's valid.
2761     // Note: the cached starting heap region may be NULL
2762     // (when the collection set is empty).
2763     result = _worker_cset_start_region[worker_i];
2764     assert(result == NULL || result->in_collection_set(), "sanity");
2765     return result;
2766   }
2767 
2768   // The cached entry was not valid so let's calculate
2769   // a suitable starting heap region for this worker.
2770 
2771   // We want the parallel threads to start their collection
2772   // set iteration at different collection set regions to
2773   // avoid contention.
2774   // If we have:
2775   //          n collection set regions
2776   //          p threads
2777   // Then thread t will start at region floor ((t * n) / p)
2778 
2779   result = g1_policy()->collection_set();
2780   if (G1CollectedHeap::use_parallel_gc_threads()) {
2781     uint cs_size = g1_policy()->cset_region_length();
2782     uint active_workers = workers()->active_workers();
2783     assert(UseDynamicNumberOfGCThreads ||
2784              active_workers == workers()->total_workers(),
2785              "Unless dynamic should use total workers");
2786 
2787     uint end_ind   = (cs_size * worker_i) / active_workers;
2788     uint start_ind = 0;
2789 
2790     if (worker_i > 0 &&
2791         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2792       // Previous workers starting region is valid
2793       // so let's iterate from there
2794       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2795       OrderAccess::loadload();
2796       result = _worker_cset_start_region[worker_i - 1];
2797     }
2798 
2799     for (uint i = start_ind; i < end_ind; i++) {
2800       result = result->next_in_collection_set();
2801     }
2802   }
2803 
2804   // Note: the calculated starting heap region may be NULL
2805   // (when the collection set is empty).
2806   assert(result == NULL || result->in_collection_set(), "sanity");
2807   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2808          "should be updated only once per pause");
2809   _worker_cset_start_region[worker_i] = result;
2810   OrderAccess::storestore();
2811   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2812   return result;
2813 }
2814 
collection_set_iterate(HeapRegionClosure * cl)2815 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2816   HeapRegion* r = g1_policy()->collection_set();
2817   while (r != NULL) {
2818     HeapRegion* next = r->next_in_collection_set();
2819     if (cl->doHeapRegion(r)) {
2820       cl->incomplete();
2821       return;
2822     }
2823     r = next;
2824   }
2825 }
2826 
collection_set_iterate_from(HeapRegion * r,HeapRegionClosure * cl)2827 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2828                                                   HeapRegionClosure *cl) {
2829   if (r == NULL) {
2830     // The CSet is empty so there's nothing to do.
2831     return;
2832   }
2833 
2834   assert(r->in_collection_set(),
2835          "Start region must be a member of the collection set.");
2836   HeapRegion* cur = r;
2837   while (cur != NULL) {
2838     HeapRegion* next = cur->next_in_collection_set();
2839     if (cl->doHeapRegion(cur) && false) {
2840       cl->incomplete();
2841       return;
2842     }
2843     cur = next;
2844   }
2845   cur = g1_policy()->collection_set();
2846   while (cur != r) {
2847     HeapRegion* next = cur->next_in_collection_set();
2848     if (cl->doHeapRegion(cur) && false) {
2849       cl->incomplete();
2850       return;
2851     }
2852     cur = next;
2853   }
2854 }
2855 
next_compaction_region(const HeapRegion * from) const2856 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2857   HeapRegion* result = _hrm.next_region_in_heap(from);
2858   while (result != NULL && result->isHumongous()) {
2859     result = _hrm.next_region_in_heap(result);
2860   }
2861   return result;
2862 }
2863 
space_containing(const void * addr) const2864 Space* G1CollectedHeap::space_containing(const void* addr) const {
2865   return heap_region_containing(addr);
2866 }
2867 
block_start(const void * addr) const2868 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2869   Space* sp = space_containing(addr);
2870   return sp->block_start(addr);
2871 }
2872 
block_size(const HeapWord * addr) const2873 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2874   Space* sp = space_containing(addr);
2875   return sp->block_size(addr);
2876 }
2877 
block_is_obj(const HeapWord * addr) const2878 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2879   Space* sp = space_containing(addr);
2880   return sp->block_is_obj(addr);
2881 }
2882 
supports_tlab_allocation() const2883 bool G1CollectedHeap::supports_tlab_allocation() const {
2884   return true;
2885 }
2886 
tlab_capacity(Thread * ignored) const2887 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2888   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2889 }
2890 
tlab_used(Thread * ignored) const2891 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2892   return young_list()->eden_used_bytes();
2893 }
2894 
2895 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2896 // must be smaller than the humongous object limit.
max_tlab_size() const2897 size_t G1CollectedHeap::max_tlab_size() const {
2898   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2899 }
2900 
unsafe_max_tlab_alloc(Thread * ignored) const2901 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2902   // Return the remaining space in the cur alloc region, but not less than
2903   // the min TLAB size.
2904 
2905   // Also, this value can be at most the humongous object threshold,
2906   // since we can't allow tlabs to grow big enough to accommodate
2907   // humongous objects.
2908 
2909   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2910   size_t max_tlab = max_tlab_size() * wordSize;
2911   if (hr == NULL) {
2912     return max_tlab;
2913   } else {
2914     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2915   }
2916 }
2917 
max_capacity() const2918 size_t G1CollectedHeap::max_capacity() const {
2919   return _hrm.reserved().byte_size();
2920 }
2921 
millis_since_last_gc()2922 jlong G1CollectedHeap::millis_since_last_gc() {
2923   // assert(false, "NYI");
2924   return 0;
2925 }
2926 
prepare_for_verify()2927 void G1CollectedHeap::prepare_for_verify() {
2928   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2929     ensure_parsability(false);
2930   }
2931   g1_rem_set()->prepare_for_verify();
2932 }
2933 
allocated_since_marking(oop obj,HeapRegion * hr,VerifyOption vo)2934 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2935                                               VerifyOption vo) {
2936   switch (vo) {
2937   case VerifyOption_G1UsePrevMarking:
2938     return hr->obj_allocated_since_prev_marking(obj);
2939   case VerifyOption_G1UseNextMarking:
2940     return hr->obj_allocated_since_next_marking(obj);
2941   case VerifyOption_G1UseMarkWord:
2942     return false;
2943   default:
2944     ShouldNotReachHere();
2945   }
2946   return false; // keep some compilers happy
2947 }
2948 
top_at_mark_start(HeapRegion * hr,VerifyOption vo)2949 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2950   switch (vo) {
2951   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2952   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2953   case VerifyOption_G1UseMarkWord:    return NULL;
2954   default:                            ShouldNotReachHere();
2955   }
2956   return NULL; // keep some compilers happy
2957 }
2958 
is_marked(oop obj,VerifyOption vo)2959 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2960   switch (vo) {
2961   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2962   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2963   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2964   default:                            ShouldNotReachHere();
2965   }
2966   return false; // keep some compilers happy
2967 }
2968 
top_at_mark_start_str(VerifyOption vo)2969 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2970   switch (vo) {
2971   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2972   case VerifyOption_G1UseNextMarking: return "NTAMS";
2973   case VerifyOption_G1UseMarkWord:    return "NONE";
2974   default:                            ShouldNotReachHere();
2975   }
2976   return NULL; // keep some compilers happy
2977 }
2978 
2979 class VerifyRootsClosure: public OopClosure {
2980 private:
2981   G1CollectedHeap* _g1h;
2982   VerifyOption     _vo;
2983   bool             _failures;
2984 public:
2985   // _vo == UsePrevMarking -> use "prev" marking information,
2986   // _vo == UseNextMarking -> use "next" marking information,
2987   // _vo == UseMarkWord    -> use mark word from object header.
VerifyRootsClosure(VerifyOption vo)2988   VerifyRootsClosure(VerifyOption vo) :
2989     _g1h(G1CollectedHeap::heap()),
2990     _vo(vo),
2991     _failures(false) { }
2992 
failures()2993   bool failures() { return _failures; }
2994 
do_oop_nv(T * p)2995   template <class T> void do_oop_nv(T* p) {
2996     T heap_oop = oopDesc::load_heap_oop(p);
2997     if (!oopDesc::is_null(heap_oop)) {
2998       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2999       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3000         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3001                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3002         if (_vo == VerifyOption_G1UseMarkWord) {
3003           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3004         }
3005         obj->print_on(gclog_or_tty);
3006         _failures = true;
3007       }
3008     }
3009   }
3010 
do_oop(oop * p)3011   void do_oop(oop* p)       { do_oop_nv(p); }
do_oop(narrowOop * p)3012   void do_oop(narrowOop* p) { do_oop_nv(p); }
3013 };
3014 
3015 class G1VerifyCodeRootOopClosure: public OopClosure {
3016   G1CollectedHeap* _g1h;
3017   OopClosure* _root_cl;
3018   nmethod* _nm;
3019   VerifyOption _vo;
3020   bool _failures;
3021 
do_oop_work(T * p)3022   template <class T> void do_oop_work(T* p) {
3023     // First verify that this root is live
3024     _root_cl->do_oop(p);
3025 
3026     if (!G1VerifyHeapRegionCodeRoots) {
3027       // We're not verifying the code roots attached to heap region.
3028       return;
3029     }
3030 
3031     // Don't check the code roots during marking verification in a full GC
3032     if (_vo == VerifyOption_G1UseMarkWord) {
3033       return;
3034     }
3035 
3036     // Now verify that the current nmethod (which contains p) is
3037     // in the code root list of the heap region containing the
3038     // object referenced by p.
3039 
3040     T heap_oop = oopDesc::load_heap_oop(p);
3041     if (!oopDesc::is_null(heap_oop)) {
3042       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3043 
3044       // Now fetch the region containing the object
3045       HeapRegion* hr = _g1h->heap_region_containing(obj);
3046       HeapRegionRemSet* hrrs = hr->rem_set();
3047       // Verify that the strong code root list for this region
3048       // contains the nmethod
3049       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3050         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3051                                "from nmethod " PTR_FORMAT " not in strong "
3052                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3053                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3054         _failures = true;
3055       }
3056     }
3057   }
3058 
3059 public:
G1VerifyCodeRootOopClosure(G1CollectedHeap * g1h,OopClosure * root_cl,VerifyOption vo)3060   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3061     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3062 
do_oop(oop * p)3063   void do_oop(oop* p) { do_oop_work(p); }
do_oop(narrowOop * p)3064   void do_oop(narrowOop* p) { do_oop_work(p); }
3065 
set_nmethod(nmethod * nm)3066   void set_nmethod(nmethod* nm) { _nm = nm; }
failures()3067   bool failures() { return _failures; }
3068 };
3069 
3070 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3071   G1VerifyCodeRootOopClosure* _oop_cl;
3072 
3073 public:
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure * oop_cl)3074   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3075     _oop_cl(oop_cl) {}
3076 
do_code_blob(CodeBlob * cb)3077   void do_code_blob(CodeBlob* cb) {
3078     nmethod* nm = cb->as_nmethod_or_null();
3079     if (nm != NULL) {
3080       _oop_cl->set_nmethod(nm);
3081       nm->oops_do(_oop_cl);
3082     }
3083   }
3084 };
3085 
3086 class YoungRefCounterClosure : public OopClosure {
3087   G1CollectedHeap* _g1h;
3088   int              _count;
3089  public:
YoungRefCounterClosure(G1CollectedHeap * g1h)3090   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
do_oop(oop * p)3091   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
do_oop(narrowOop * p)3092   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3093 
count()3094   int count() { return _count; }
reset_count()3095   void reset_count() { _count = 0; };
3096 };
3097 
3098 class VerifyKlassClosure: public KlassClosure {
3099   YoungRefCounterClosure _young_ref_counter_closure;
3100   OopClosure *_oop_closure;
3101  public:
VerifyKlassClosure(G1CollectedHeap * g1h,OopClosure * cl)3102   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
do_klass(Klass * k)3103   void do_klass(Klass* k) {
3104     k->oops_do(_oop_closure);
3105 
3106     _young_ref_counter_closure.reset_count();
3107     k->oops_do(&_young_ref_counter_closure);
3108     if (_young_ref_counter_closure.count() > 0) {
3109       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3110     }
3111   }
3112 };
3113 
3114 class VerifyLivenessOopClosure: public OopClosure {
3115   G1CollectedHeap* _g1h;
3116   VerifyOption _vo;
3117 public:
VerifyLivenessOopClosure(G1CollectedHeap * g1h,VerifyOption vo)3118   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3119     _g1h(g1h), _vo(vo)
3120   { }
do_oop(narrowOop * p)3121   void do_oop(narrowOop *p) { do_oop_work(p); }
do_oop(oop * p)3122   void do_oop(      oop *p) { do_oop_work(p); }
3123 
do_oop_work(T * p)3124   template <class T> void do_oop_work(T *p) {
3125     oop obj = oopDesc::load_decode_heap_oop(p);
3126     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3127               "Dead object referenced by a not dead object");
3128   }
3129 };
3130 
3131 class VerifyObjsInRegionClosure: public ObjectClosure {
3132 private:
3133   G1CollectedHeap* _g1h;
3134   size_t _live_bytes;
3135   HeapRegion *_hr;
3136   VerifyOption _vo;
3137 public:
3138   // _vo == UsePrevMarking -> use "prev" marking information,
3139   // _vo == UseNextMarking -> use "next" marking information,
3140   // _vo == UseMarkWord    -> use mark word from object header.
VerifyObjsInRegionClosure(HeapRegion * hr,VerifyOption vo)3141   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3142     : _live_bytes(0), _hr(hr), _vo(vo) {
3143     _g1h = G1CollectedHeap::heap();
3144   }
do_object(oop o)3145   void do_object(oop o) {
3146     VerifyLivenessOopClosure isLive(_g1h, _vo);
3147     assert(o != NULL, "Huh?");
3148     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3149       // If the object is alive according to the mark word,
3150       // then verify that the marking information agrees.
3151       // Note we can't verify the contra-positive of the
3152       // above: if the object is dead (according to the mark
3153       // word), it may not be marked, or may have been marked
3154       // but has since became dead, or may have been allocated
3155       // since the last marking.
3156       if (_vo == VerifyOption_G1UseMarkWord) {
3157         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3158       }
3159 
3160       o->oop_iterate_no_header(&isLive);
3161       if (!_hr->obj_allocated_since_prev_marking(o)) {
3162         size_t obj_size = o->size();    // Make sure we don't overflow
3163         _live_bytes += (obj_size * HeapWordSize);
3164       }
3165     }
3166   }
live_bytes()3167   size_t live_bytes() { return _live_bytes; }
3168 };
3169 
3170 class PrintObjsInRegionClosure : public ObjectClosure {
3171   HeapRegion *_hr;
3172   G1CollectedHeap *_g1;
3173 public:
PrintObjsInRegionClosure(HeapRegion * hr)3174   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3175     _g1 = G1CollectedHeap::heap();
3176   };
3177 
do_object(oop o)3178   void do_object(oop o) {
3179     if (o != NULL) {
3180       HeapWord *start = (HeapWord *) o;
3181       size_t word_sz = o->size();
3182       gclog_or_tty->print("\nPrinting obj " PTR_FORMAT " of size " SIZE_FORMAT
3183                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3184                           p2i(o), word_sz,
3185                           _g1->isMarkedPrev(o),
3186                           _g1->isMarkedNext(o),
3187                           _hr->obj_allocated_since_prev_marking(o));
3188       HeapWord *end = start + word_sz;
3189       HeapWord *cur;
3190       int *val;
3191       for (cur = start; cur < end; cur++) {
3192         val = (int *) cur;
3193         gclog_or_tty->print("\t " PTR_FORMAT ": %d\n", p2i(val), *val);
3194       }
3195     }
3196   }
3197 };
3198 
3199 class VerifyRegionClosure: public HeapRegionClosure {
3200 private:
3201   bool             _par;
3202   VerifyOption     _vo;
3203   bool             _failures;
3204 public:
3205   // _vo == UsePrevMarking -> use "prev" marking information,
3206   // _vo == UseNextMarking -> use "next" marking information,
3207   // _vo == UseMarkWord    -> use mark word from object header.
VerifyRegionClosure(bool par,VerifyOption vo)3208   VerifyRegionClosure(bool par, VerifyOption vo)
3209     : _par(par),
3210       _vo(vo),
3211       _failures(false) {}
3212 
failures()3213   bool failures() {
3214     return _failures;
3215   }
3216 
doHeapRegion(HeapRegion * r)3217   bool doHeapRegion(HeapRegion* r) {
3218     if (!r->continuesHumongous()) {
3219       bool failures = false;
3220       r->verify(_vo, &failures);
3221       if (failures) {
3222         _failures = true;
3223       } else {
3224         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3225         r->object_iterate(&not_dead_yet_cl);
3226         if (_vo != VerifyOption_G1UseNextMarking) {
3227           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3228             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3229                                    "max_live_bytes " SIZE_FORMAT " "
3230                                    "< calculated " SIZE_FORMAT,
3231                                    p2i(r->bottom()), p2i(r->end()),
3232                                    r->max_live_bytes(),
3233                                  not_dead_yet_cl.live_bytes());
3234             _failures = true;
3235           }
3236         } else {
3237           // When vo == UseNextMarking we cannot currently do a sanity
3238           // check on the live bytes as the calculation has not been
3239           // finalized yet.
3240         }
3241       }
3242     }
3243     return false; // stop the region iteration if we hit a failure
3244   }
3245 };
3246 
3247 // This is the task used for parallel verification of the heap regions
3248 
3249 class G1ParVerifyTask: public AbstractGangTask {
3250 private:
3251   G1CollectedHeap* _g1h;
3252   VerifyOption     _vo;
3253   bool             _failures;
3254 
3255 public:
3256   // _vo == UsePrevMarking -> use "prev" marking information,
3257   // _vo == UseNextMarking -> use "next" marking information,
3258   // _vo == UseMarkWord    -> use mark word from object header.
G1ParVerifyTask(G1CollectedHeap * g1h,VerifyOption vo)3259   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3260     AbstractGangTask("Parallel verify task"),
3261     _g1h(g1h),
3262     _vo(vo),
3263     _failures(false) { }
3264 
failures()3265   bool failures() {
3266     return _failures;
3267   }
3268 
work(uint worker_id)3269   void work(uint worker_id) {
3270     HandleMark hm;
3271     VerifyRegionClosure blk(true, _vo);
3272     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3273                                           _g1h->workers()->active_workers(),
3274                                           HeapRegion::ParVerifyClaimValue);
3275     if (blk.failures()) {
3276       _failures = true;
3277     }
3278   }
3279 };
3280 
verify(bool silent,VerifyOption vo)3281 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3282   if (SafepointSynchronize::is_at_safepoint()) {
3283     assert(Thread::current()->is_VM_thread(),
3284            "Expected to be executed serially by the VM thread at this point");
3285 
3286     if (!silent) { gclog_or_tty->print("Roots "); }
3287     VerifyRootsClosure rootsCl(vo);
3288     VerifyKlassClosure klassCl(this, &rootsCl);
3289     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3290 
3291     // We apply the relevant closures to all the oops in the
3292     // system dictionary, class loader data graph, the string table
3293     // and the nmethods in the code cache.
3294     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3295     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3296 
3297     {
3298       G1RootProcessor root_processor(this);
3299       root_processor.process_all_roots(&rootsCl,
3300                                        &cldCl,
3301                                        &blobsCl);
3302     }
3303 
3304     bool failures = rootsCl.failures() || codeRootsCl.failures();
3305 
3306     if (vo != VerifyOption_G1UseMarkWord) {
3307       // If we're verifying during a full GC then the region sets
3308       // will have been torn down at the start of the GC. Therefore
3309       // verifying the region sets will fail. So we only verify
3310       // the region sets when not in a full GC.
3311       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3312       verify_region_sets();
3313     }
3314 
3315     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3316     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3317       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3318              "sanity check");
3319 
3320       G1ParVerifyTask task(this, vo);
3321       assert(UseDynamicNumberOfGCThreads ||
3322         workers()->active_workers() == workers()->total_workers(),
3323         "If not dynamic should be using all the workers");
3324       int n_workers = workers()->active_workers();
3325       set_par_threads(n_workers);
3326       workers()->run_task(&task);
3327       set_par_threads(0);
3328       if (task.failures()) {
3329         failures = true;
3330       }
3331 
3332       // Checks that the expected amount of parallel work was done.
3333       // The implication is that n_workers is > 0.
3334       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3335              "sanity check");
3336 
3337       reset_heap_region_claim_values();
3338 
3339       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3340              "sanity check");
3341     } else {
3342       VerifyRegionClosure blk(false, vo);
3343       heap_region_iterate(&blk);
3344       if (blk.failures()) {
3345         failures = true;
3346       }
3347     }
3348     if (!silent) gclog_or_tty->print("RemSet ");
3349     rem_set()->verify();
3350 
3351     if (G1StringDedup::is_enabled()) {
3352       if (!silent) gclog_or_tty->print("StrDedup ");
3353       G1StringDedup::verify();
3354     }
3355 
3356     if (failures) {
3357       gclog_or_tty->print_cr("Heap:");
3358       // It helps to have the per-region information in the output to
3359       // help us track down what went wrong. This is why we call
3360       // print_extended_on() instead of print_on().
3361       print_extended_on(gclog_or_tty);
3362       gclog_or_tty->cr();
3363 #ifndef PRODUCT
3364       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3365         concurrent_mark()->print_reachable("at-verification-failure",
3366                                            vo, false /* all */);
3367       }
3368 #endif
3369       gclog_or_tty->flush();
3370     }
3371     guarantee(!failures, "there should not have been any failures");
3372   } else {
3373     if (!silent) {
3374       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3375       if (G1StringDedup::is_enabled()) {
3376         gclog_or_tty->print(", StrDedup");
3377       }
3378       gclog_or_tty->print(") ");
3379     }
3380   }
3381 }
3382 
verify(bool silent)3383 void G1CollectedHeap::verify(bool silent) {
3384   verify(silent, VerifyOption_G1UsePrevMarking);
3385 }
3386 
verify(bool guard,const char * msg)3387 double G1CollectedHeap::verify(bool guard, const char* msg) {
3388   double verify_time_ms = 0.0;
3389 
3390   if (guard && total_collections() >= VerifyGCStartAt) {
3391     double verify_start = os::elapsedTime();
3392     HandleMark hm;  // Discard invalid handles created during verification
3393     prepare_for_verify();
3394     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3395     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3396   }
3397 
3398   return verify_time_ms;
3399 }
3400 
verify_before_gc()3401 void G1CollectedHeap::verify_before_gc() {
3402   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3403   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3404 }
3405 
verify_after_gc()3406 void G1CollectedHeap::verify_after_gc() {
3407   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3408   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3409 }
3410 
3411 class PrintRegionClosure: public HeapRegionClosure {
3412   outputStream* _st;
3413 public:
PrintRegionClosure(outputStream * st)3414   PrintRegionClosure(outputStream* st) : _st(st) {}
doHeapRegion(HeapRegion * r)3415   bool doHeapRegion(HeapRegion* r) {
3416     r->print_on(_st);
3417     return false;
3418   }
3419 };
3420 
is_obj_dead_cond(const oop obj,const HeapRegion * hr,const VerifyOption vo) const3421 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3422                                        const HeapRegion* hr,
3423                                        const VerifyOption vo) const {
3424   switch (vo) {
3425   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3426   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3427   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3428   default:                            ShouldNotReachHere();
3429   }
3430   return false; // keep some compilers happy
3431 }
3432 
is_obj_dead_cond(const oop obj,const VerifyOption vo) const3433 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3434                                        const VerifyOption vo) const {
3435   switch (vo) {
3436   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3437   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3438   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3439   default:                            ShouldNotReachHere();
3440   }
3441   return false; // keep some compilers happy
3442 }
3443 
print_on(outputStream * st) const3444 void G1CollectedHeap::print_on(outputStream* st) const {
3445   st->print(" %-20s", "garbage-first heap");
3446   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3447             capacity()/K, used_unlocked()/K);
3448   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3449             p2i(_hrm.reserved().start()),
3450             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3451             p2i(_hrm.reserved().end()));
3452   st->cr();
3453   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3454   uint young_regions = _young_list->length();
3455   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3456             (size_t) young_regions * HeapRegion::GrainBytes / K);
3457   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3458   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3459             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3460   st->cr();
3461   MetaspaceAux::print_on(st);
3462 }
3463 
print_extended_on(outputStream * st) const3464 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3465   print_on(st);
3466 
3467   // Print the per-region information.
3468   st->cr();
3469   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3470                "HS=humongous(starts), HC=humongous(continues), "
3471                "CS=collection set, F=free, TS=gc time stamp, "
3472                "PTAMS=previous top-at-mark-start, "
3473                "NTAMS=next top-at-mark-start)");
3474   PrintRegionClosure blk(st);
3475   heap_region_iterate(&blk);
3476 }
3477 
print_on_error(outputStream * st) const3478 void G1CollectedHeap::print_on_error(outputStream* st) const {
3479   this->CollectedHeap::print_on_error(st);
3480 
3481   if (_cm != NULL) {
3482     st->cr();
3483     _cm->print_on_error(st);
3484   }
3485 }
3486 
print_gc_threads_on(outputStream * st) const3487 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3488   if (G1CollectedHeap::use_parallel_gc_threads()) {
3489     workers()->print_worker_threads_on(st);
3490   }
3491   _cmThread->print_on(st);
3492   st->cr();
3493   _cm->print_worker_threads_on(st);
3494   _cg1r->print_worker_threads_on(st);
3495   if (G1StringDedup::is_enabled()) {
3496     G1StringDedup::print_worker_threads_on(st);
3497   }
3498 }
3499 
gc_threads_do(ThreadClosure * tc) const3500 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3501   if (G1CollectedHeap::use_parallel_gc_threads()) {
3502     workers()->threads_do(tc);
3503   }
3504   tc->do_thread(_cmThread);
3505   _cg1r->threads_do(tc);
3506   if (G1StringDedup::is_enabled()) {
3507     G1StringDedup::threads_do(tc);
3508   }
3509 }
3510 
print_tracing_info() const3511 void G1CollectedHeap::print_tracing_info() const {
3512   // We'll overload this to mean "trace GC pause statistics."
3513   if (TraceGen0Time || TraceGen1Time) {
3514     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3515     // to that.
3516     g1_policy()->print_tracing_info();
3517   }
3518   if (G1SummarizeRSetStats) {
3519     g1_rem_set()->print_summary_info();
3520   }
3521   if (G1SummarizeConcMark) {
3522     concurrent_mark()->print_summary_info();
3523   }
3524   g1_policy()->print_yg_surv_rate_info();
3525   SpecializationStats::print();
3526 }
3527 
3528 #ifndef PRODUCT
3529 // Helpful for debugging RSet issues.
3530 
3531 class PrintRSetsClosure : public HeapRegionClosure {
3532 private:
3533   const char* _msg;
3534   size_t _occupied_sum;
3535 
3536 public:
doHeapRegion(HeapRegion * r)3537   bool doHeapRegion(HeapRegion* r) {
3538     HeapRegionRemSet* hrrs = r->rem_set();
3539     size_t occupied = hrrs->occupied();
3540     _occupied_sum += occupied;
3541 
3542     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3543                            HR_FORMAT_PARAMS(r));
3544     if (occupied == 0) {
3545       gclog_or_tty->print_cr("  RSet is empty");
3546     } else {
3547       hrrs->print();
3548     }
3549     gclog_or_tty->print_cr("----------");
3550     return false;
3551   }
3552 
PrintRSetsClosure(const char * msg)3553   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3554     gclog_or_tty->cr();
3555     gclog_or_tty->print_cr("========================================");
3556     gclog_or_tty->print_cr("%s", msg);
3557     gclog_or_tty->cr();
3558   }
3559 
~PrintRSetsClosure()3560   ~PrintRSetsClosure() {
3561     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3562     gclog_or_tty->print_cr("========================================");
3563     gclog_or_tty->cr();
3564   }
3565 };
3566 
print_cset_rsets()3567 void G1CollectedHeap::print_cset_rsets() {
3568   PrintRSetsClosure cl("Printing CSet RSets");
3569   collection_set_iterate(&cl);
3570 }
3571 
print_all_rsets()3572 void G1CollectedHeap::print_all_rsets() {
3573   PrintRSetsClosure cl("Printing All RSets");;
3574   heap_region_iterate(&cl);
3575 }
3576 #endif // PRODUCT
3577 
create_g1_heap_summary()3578 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3579 
3580   size_t eden_used_bytes = _young_list->eden_used_bytes();
3581   size_t survivor_used_bytes = _young_list->survivor_used_bytes();
3582   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
3583 
3584   size_t eden_capacity_bytes =
3585     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3586 
3587   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3588   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
3589                        eden_capacity_bytes, survivor_used_bytes, num_regions());
3590 }
3591 
trace_heap(GCWhen::Type when,GCTracer * gc_tracer)3592 void G1CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
3593   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3594   gc_tracer->report_gc_heap_summary(when, heap_summary);
3595 
3596   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3597   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3598 }
3599 
heap()3600 G1CollectedHeap* G1CollectedHeap::heap() {
3601   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3602          "not a garbage-first heap");
3603   return _g1h;
3604 }
3605 
gc_prologue(bool full)3606 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3607   // always_do_update_barrier = false;
3608   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3609   // Fill TLAB's and such
3610   accumulate_statistics_all_tlabs();
3611   ensure_parsability(true);
3612 
3613   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3614       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3615     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3616   }
3617 }
3618 
gc_epilogue(bool full)3619 void G1CollectedHeap::gc_epilogue(bool full) {
3620 
3621   if (G1SummarizeRSetStats &&
3622       (G1SummarizeRSetStatsPeriod > 0) &&
3623       // we are at the end of the GC. Total collections has already been increased.
3624       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3625     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3626   }
3627 
3628   // FIXME: what is this about?
3629   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3630   // is set.
3631   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3632                         "derived pointer present"));
3633   // always_do_update_barrier = true;
3634 
3635   resize_all_tlabs();
3636   allocation_context_stats().update(full);
3637 
3638   // We have just completed a GC. Update the soft reference
3639   // policy with the new heap occupancy
3640   Universe::update_heap_info_at_gc();
3641 }
3642 
do_collection_pause(size_t word_size,uint gc_count_before,bool * succeeded,GCCause::Cause gc_cause)3643 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3644                                                uint gc_count_before,
3645                                                bool* succeeded,
3646                                                GCCause::Cause gc_cause) {
3647   assert_heap_not_locked_and_not_at_safepoint();
3648   g1_policy()->record_stop_world_start();
3649   VM_G1IncCollectionPause op(gc_count_before,
3650                              word_size,
3651                              false, /* should_initiate_conc_mark */
3652                              g1_policy()->max_pause_time_ms(),
3653                              gc_cause);
3654 
3655   op.set_allocation_context(AllocationContext::current());
3656   VMThread::execute(&op);
3657 
3658   HeapWord* result = op.result();
3659   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3660   assert(result == NULL || ret_succeeded,
3661          "the result should be NULL if the VM did not succeed");
3662   *succeeded = ret_succeeded;
3663 
3664   assert_heap_not_locked();
3665   return result;
3666 }
3667 
3668 void
doConcurrentMark()3669 G1CollectedHeap::doConcurrentMark() {
3670   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3671   if (!_cmThread->in_progress()) {
3672     _cmThread->set_started();
3673     CGC_lock->notify();
3674   }
3675 }
3676 
pending_card_num()3677 size_t G1CollectedHeap::pending_card_num() {
3678   size_t extra_cards = 0;
3679   JavaThread *curr = Threads::first();
3680   while (curr != NULL) {
3681     DirtyCardQueue& dcq = curr->dirty_card_queue();
3682     extra_cards += dcq.size();
3683     curr = curr->next();
3684   }
3685   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3686   size_t buffer_size = dcqs.buffer_size();
3687   size_t buffer_num = dcqs.completed_buffers_num();
3688 
3689   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3690   // in bytes - not the number of 'entries'. We need to convert
3691   // into a number of cards.
3692   return (buffer_size * buffer_num + extra_cards) / oopSize;
3693 }
3694 
cards_scanned()3695 size_t G1CollectedHeap::cards_scanned() {
3696   return g1_rem_set()->cardsScanned();
3697 }
3698 
3699 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3700  private:
3701   size_t _total_humongous;
3702   size_t _candidate_humongous;
3703 
3704   DirtyCardQueue _dcq;
3705 
3706   // We don't nominate objects with many remembered set entries, on
3707   // the assumption that such objects are likely still live.
is_remset_small(HeapRegion * region) const3708   bool is_remset_small(HeapRegion* region) const {
3709     HeapRegionRemSet* const rset = region->rem_set();
3710     return G1EagerReclaimHumongousObjectsWithStaleRefs
3711       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3712       : rset->is_empty();
3713   }
3714 
is_typeArray_region(HeapRegion * region) const3715   bool is_typeArray_region(HeapRegion* region) const {
3716     return oop(region->bottom())->is_typeArray();
3717   }
3718 
humongous_region_is_candidate(G1CollectedHeap * heap,HeapRegion * region) const3719   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3720     assert(region->startsHumongous(), "Must start a humongous object");
3721 
3722     // Candidate selection must satisfy the following constraints
3723     // while concurrent marking is in progress:
3724     //
3725     // * In order to maintain SATB invariants, an object must not be
3726     // reclaimed if it was allocated before the start of marking and
3727     // has not had its references scanned.  Such an object must have
3728     // its references (including type metadata) scanned to ensure no
3729     // live objects are missed by the marking process.  Objects
3730     // allocated after the start of concurrent marking don't need to
3731     // be scanned.
3732     //
3733     // * An object must not be reclaimed if it is on the concurrent
3734     // mark stack.  Objects allocated after the start of concurrent
3735     // marking are never pushed on the mark stack.
3736     //
3737     // Nominating only objects allocated after the start of concurrent
3738     // marking is sufficient to meet both constraints.  This may miss
3739     // some objects that satisfy the constraints, but the marking data
3740     // structures don't support efficiently performing the needed
3741     // additional tests or scrubbing of the mark stack.
3742     //
3743     // However, we presently only nominate is_typeArray() objects.
3744     // A humongous object containing references induces remembered
3745     // set entries on other regions.  In order to reclaim such an
3746     // object, those remembered sets would need to be cleaned up.
3747     //
3748     // We also treat is_typeArray() objects specially, allowing them
3749     // to be reclaimed even if allocated before the start of
3750     // concurrent mark.  For this we rely on mark stack insertion to
3751     // exclude is_typeArray() objects, preventing reclaiming an object
3752     // that is in the mark stack.  We also rely on the metadata for
3753     // such objects to be built-in and so ensured to be kept live.
3754     // Frequent allocation and drop of large binary blobs is an
3755     // important use case for eager reclaim, and this special handling
3756     // may reduce needed headroom.
3757 
3758     return is_typeArray_region(region) && is_remset_small(region);
3759   }
3760 
3761  public:
RegisterHumongousWithInCSetFastTestClosure()3762   RegisterHumongousWithInCSetFastTestClosure()
3763   : _total_humongous(0),
3764     _candidate_humongous(0),
3765     _dcq(&JavaThread::dirty_card_queue_set()) {
3766   }
3767 
doHeapRegion(HeapRegion * r)3768   virtual bool doHeapRegion(HeapRegion* r) {
3769     if (!r->startsHumongous()) {
3770       return false;
3771     }
3772     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3773 
3774     bool is_candidate = humongous_region_is_candidate(g1h, r);
3775     uint rindex = r->hrm_index();
3776     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3777     if (is_candidate) {
3778       _candidate_humongous++;
3779       g1h->register_humongous_region_with_in_cset_fast_test(rindex);
3780       // Is_candidate already filters out humongous object with large remembered sets.
3781       // If we have a humongous object with a few remembered sets, we simply flush these
3782       // remembered set entries into the DCQS. That will result in automatic
3783       // re-evaluation of their remembered set entries during the following evacuation
3784       // phase.
3785       if (!r->rem_set()->is_empty()) {
3786         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3787                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3788         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3789         HeapRegionRemSetIterator hrrs(r->rem_set());
3790         size_t card_index;
3791         while (hrrs.has_next(card_index)) {
3792           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3793           if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3794             *card_ptr = CardTableModRefBS::dirty_card_val();
3795             _dcq.enqueue(card_ptr);
3796           }
3797         }
3798         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3799                err_msg("Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3800                hrrs.n_yielded(), r->rem_set()->occupied()));
3801         r->rem_set()->clear_locked();
3802       }
3803       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3804     }
3805     _total_humongous++;
3806 
3807     return false;
3808   }
3809 
total_humongous() const3810   size_t total_humongous() const { return _total_humongous; }
candidate_humongous() const3811   size_t candidate_humongous() const { return _candidate_humongous; }
3812 
flush_rem_set_entries()3813   void flush_rem_set_entries() { _dcq.flush(); }
3814 };
3815 
register_humongous_regions_with_in_cset_fast_test()3816 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3817   if (!G1EagerReclaimHumongousObjects) {
3818     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3819     return;
3820   }
3821   double time = os::elapsed_counter();
3822 
3823   // Collect reclaim candidate information and register candidates with cset.
3824   RegisterHumongousWithInCSetFastTestClosure cl;
3825   heap_region_iterate(&cl);
3826 
3827   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3828   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3829                                                                   cl.total_humongous(),
3830                                                                   cl.candidate_humongous());
3831   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3832 
3833   // Finally flush all remembered set entries to re-check into the global DCQS.
3834   cl.flush_rem_set_entries();
3835 }
3836 
3837 void
setup_surviving_young_words()3838 G1CollectedHeap::setup_surviving_young_words() {
3839   assert(_surviving_young_words == NULL, "pre-condition");
3840   uint array_length = g1_policy()->young_cset_region_length();
3841   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3842   if (_surviving_young_words == NULL) {
3843     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3844                           "Not enough space for young surv words summary.");
3845   }
3846   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3847 #ifdef ASSERT
3848   for (uint i = 0;  i < array_length; ++i) {
3849     assert( _surviving_young_words[i] == 0, "memset above" );
3850   }
3851 #endif // !ASSERT
3852 }
3853 
3854 void
update_surviving_young_words(size_t * surv_young_words)3855 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3856   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3857   uint array_length = g1_policy()->young_cset_region_length();
3858   for (uint i = 0; i < array_length; ++i) {
3859     _surviving_young_words[i] += surv_young_words[i];
3860   }
3861 }
3862 
3863 void
cleanup_surviving_young_words()3864 G1CollectedHeap::cleanup_surviving_young_words() {
3865   guarantee( _surviving_young_words != NULL, "pre-condition" );
3866   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3867   _surviving_young_words = NULL;
3868 }
3869 
3870 class VerifyRegionRemSetClosure : public HeapRegionClosure {
3871   public:
doHeapRegion(HeapRegion * hr)3872     bool doHeapRegion(HeapRegion* hr) {
3873       if (!hr->continuesHumongous()) {
3874         hr->verify_rem_set();
3875       }
3876       return false;
3877     }
3878 };
3879 
3880 #ifdef ASSERT
3881 class VerifyCSetClosure: public HeapRegionClosure {
3882 public:
doHeapRegion(HeapRegion * hr)3883   bool doHeapRegion(HeapRegion* hr) {
3884     // Here we check that the CSet region's RSet is ready for parallel
3885     // iteration. The fields that we'll verify are only manipulated
3886     // when the region is part of a CSet and is collected. Afterwards,
3887     // we reset these fields when we clear the region's RSet (when the
3888     // region is freed) so they are ready when the region is
3889     // re-allocated. The only exception to this is if there's an
3890     // evacuation failure and instead of freeing the region we leave
3891     // it in the heap. In that case, we reset these fields during
3892     // evacuation failure handling.
3893     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3894 
3895     // Here's a good place to add any other checks we'd like to
3896     // perform on CSet regions.
3897     return false;
3898   }
3899 };
3900 #endif // ASSERT
3901 
3902 #if TASKQUEUE_STATS
print_taskqueue_stats_hdr(outputStream * const st)3903 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3904   st->print_raw_cr("GC Task Stats");
3905   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3906   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3907 }
3908 
print_taskqueue_stats(outputStream * const st) const3909 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3910   print_taskqueue_stats_hdr(st);
3911 
3912   TaskQueueStats totals;
3913   const int n = workers() != NULL ? workers()->total_workers() : 1;
3914   for (int i = 0; i < n; ++i) {
3915     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3916     totals += task_queue(i)->stats;
3917   }
3918   st->print_raw("tot "); totals.print(st); st->cr();
3919 
3920   DEBUG_ONLY(totals.verify());
3921 }
3922 
reset_taskqueue_stats()3923 void G1CollectedHeap::reset_taskqueue_stats() {
3924   const int n = workers() != NULL ? workers()->total_workers() : 1;
3925   for (int i = 0; i < n; ++i) {
3926     task_queue(i)->stats.reset();
3927   }
3928 }
3929 #endif // TASKQUEUE_STATS
3930 
log_gc_header()3931 void G1CollectedHeap::log_gc_header() {
3932   if (!G1Log::fine()) {
3933     return;
3934   }
3935 
3936   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3937 
3938   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3939     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3940     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3941 
3942   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3943 }
3944 
log_gc_footer(double pause_time_sec)3945 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3946   if (!G1Log::fine()) {
3947     return;
3948   }
3949 
3950   if (G1Log::finer()) {
3951     if (evacuation_failed()) {
3952       gclog_or_tty->print(" (to-space exhausted)");
3953     }
3954     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3955     g1_policy()->phase_times()->note_gc_end();
3956     g1_policy()->phase_times()->print(pause_time_sec);
3957     g1_policy()->print_detailed_heap_transition();
3958   } else {
3959     if (evacuation_failed()) {
3960       gclog_or_tty->print("--");
3961     }
3962     g1_policy()->print_heap_transition();
3963     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3964   }
3965   gclog_or_tty->flush();
3966 }
3967 
3968 bool
do_collection_pause_at_safepoint(double target_pause_time_ms)3969 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3970   assert_at_safepoint(true /* should_be_vm_thread */);
3971   guarantee(!is_gc_active(), "collection is not reentrant");
3972 
3973   if (GC_locker::check_active_before_gc()) {
3974     return false;
3975   }
3976 
3977   _gc_timer_stw->register_gc_start();
3978 
3979   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3980 
3981   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3982   ResourceMark rm;
3983 
3984   print_heap_before_gc();
3985   trace_heap_before_gc(_gc_tracer_stw);
3986 
3987   verify_region_sets_optional();
3988   verify_dirty_young_regions();
3989 
3990   // This call will decide whether this pause is an initial-mark
3991   // pause. If it is, during_initial_mark_pause() will return true
3992   // for the duration of this pause.
3993   g1_policy()->decide_on_conc_mark_initiation();
3994 
3995   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3996   assert(!g1_policy()->during_initial_mark_pause() ||
3997           g1_policy()->gcs_are_young(), "sanity");
3998 
3999   // We also do not allow mixed GCs during marking.
4000   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
4001 
4002   // Record whether this pause is an initial mark. When the current
4003   // thread has completed its logging output and it's safe to signal
4004   // the CM thread, the flag's value in the policy has been reset.
4005   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
4006 
4007   // Inner scope for scope based logging, timers, and stats collection
4008   {
4009     EvacuationInfo evacuation_info;
4010 
4011     if (g1_policy()->during_initial_mark_pause()) {
4012       // We are about to start a marking cycle, so we increment the
4013       // full collection counter.
4014       increment_old_marking_cycles_started();
4015       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4016     }
4017 
4018     _gc_tracer_stw->report_yc_type(yc_type());
4019 
4020     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4021 
4022     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4023                                                                   workers()->active_workers(),
4024                                                                   Threads::number_of_non_daemon_threads());
4025     assert(UseDynamicNumberOfGCThreads ||
4026            active_workers == workers()->total_workers(),
4027            "If not dynamic should be using all the  workers");
4028     workers()->set_active_workers(active_workers);
4029 
4030 
4031     double pause_start_sec = os::elapsedTime();
4032     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
4033     log_gc_header();
4034 
4035     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4036     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause(),
4037                                 yc_type() == Mixed /* allMemoryPoolsAffected */);
4038 
4039     // If the secondary_free_list is not empty, append it to the
4040     // free_list. No need to wait for the cleanup operation to finish;
4041     // the region allocation code will check the secondary_free_list
4042     // and wait if necessary. If the G1StressConcRegionFreeing flag is
4043     // set, skip this step so that the region allocation code has to
4044     // get entries from the secondary_free_list.
4045     if (!G1StressConcRegionFreeing) {
4046       append_secondary_free_list_if_not_empty_with_lock();
4047     }
4048 
4049     assert(check_young_list_well_formed(), "young list should be well formed");
4050     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
4051            "sanity check");
4052 
4053     // Don't dynamically change the number of GC threads this early.  A value of
4054     // 0 is used to indicate serial work.  When parallel work is done,
4055     // it will be set.
4056 
4057     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
4058       IsGCActiveMark x;
4059 
4060       gc_prologue(false);
4061       increment_total_collections(false /* full gc */);
4062       increment_gc_time_stamp();
4063 
4064       if (VerifyRememberedSets) {
4065         if (!VerifySilently) {
4066           gclog_or_tty->print_cr("[Verifying RemSets before GC]");
4067         }
4068         VerifyRegionRemSetClosure v_cl;
4069         heap_region_iterate(&v_cl);
4070       }
4071 
4072       verify_before_gc();
4073       check_bitmaps("GC Start");
4074 
4075       COMPILER2_PRESENT(DerivedPointerTable::clear());
4076 
4077       // Please see comment in g1CollectedHeap.hpp and
4078       // G1CollectedHeap::ref_processing_init() to see how
4079       // reference processing currently works in G1.
4080 
4081       // Enable discovery in the STW reference processor
4082       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4083                                             true /*verify_no_refs*/);
4084 
4085       {
4086         // We want to temporarily turn off discovery by the
4087         // CM ref processor, if necessary, and turn it back on
4088         // on again later if we do. Using a scoped
4089         // NoRefDiscovery object will do this.
4090         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4091 
4092         // Forget the current alloc region (we might even choose it to be part
4093         // of the collection set!).
4094         _allocator->release_mutator_alloc_region();
4095 
4096         // We should call this after we retire the mutator alloc
4097         // region(s) so that all the ALLOC / RETIRE events are generated
4098         // before the start GC event.
4099         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4100 
4101         // This timing is only used by the ergonomics to handle our pause target.
4102         // It is unclear why this should not include the full pause. We will
4103         // investigate this in CR 7178365.
4104         //
4105         // Preserving the old comment here if that helps the investigation:
4106         //
4107         // The elapsed time induced by the start time below deliberately elides
4108         // the possible verification above.
4109         double sample_start_time_sec = os::elapsedTime();
4110 
4111 #if YOUNG_LIST_VERBOSE
4112         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4113         _young_list->print();
4114         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4115 #endif // YOUNG_LIST_VERBOSE
4116 
4117         g1_policy()->record_collection_pause_start(sample_start_time_sec, *_gc_tracer_stw);
4118 
4119         double scan_wait_start = os::elapsedTime();
4120         // We have to wait until the CM threads finish scanning the
4121         // root regions as it's the only way to ensure that all the
4122         // objects on them have been correctly scanned before we start
4123         // moving them during the GC.
4124         bool waited = _cm->root_regions()->wait_until_scan_finished();
4125         double wait_time_ms = 0.0;
4126         if (waited) {
4127           double scan_wait_end = os::elapsedTime();
4128           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4129         }
4130         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4131 
4132 #if YOUNG_LIST_VERBOSE
4133         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4134         _young_list->print();
4135 #endif // YOUNG_LIST_VERBOSE
4136 
4137         if (g1_policy()->during_initial_mark_pause()) {
4138           concurrent_mark()->checkpointRootsInitialPre();
4139         }
4140 
4141 #if YOUNG_LIST_VERBOSE
4142         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4143         _young_list->print();
4144         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4145 #endif // YOUNG_LIST_VERBOSE
4146 
4147         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4148 
4149         // Make sure the remembered sets are up to date. This needs to be
4150         // done before register_humongous_regions_with_cset(), because the
4151         // remembered sets are used there to choose eager reclaim candidates.
4152         // If the remembered sets are not up to date we might miss some
4153         // entries that need to be handled.
4154         g1_rem_set()->cleanupHRRS();
4155 
4156         register_humongous_regions_with_in_cset_fast_test();
4157 
4158         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4159 
4160         _cm->note_start_of_gc();
4161         // We call this after finalize_cset() to
4162         // ensure that the CSet has been finalized.
4163         _cm->verify_no_cset_oops();
4164 
4165         if (_hr_printer.is_active()) {
4166           HeapRegion* hr = g1_policy()->collection_set();
4167           while (hr != NULL) {
4168             _hr_printer.cset(hr);
4169             hr = hr->next_in_collection_set();
4170           }
4171         }
4172 
4173 #ifdef ASSERT
4174         VerifyCSetClosure cl;
4175         collection_set_iterate(&cl);
4176 #endif // ASSERT
4177 
4178         setup_surviving_young_words();
4179 
4180         // Initialize the GC alloc regions.
4181         _allocator->init_gc_alloc_regions(evacuation_info);
4182 
4183         // Actually do the work...
4184         evacuate_collection_set(evacuation_info);
4185 
4186         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4187 
4188         eagerly_reclaim_humongous_regions();
4189 
4190         g1_policy()->clear_collection_set();
4191 
4192         cleanup_surviving_young_words();
4193 
4194         // Start a new incremental collection set for the next pause.
4195         g1_policy()->start_incremental_cset_building();
4196 
4197         clear_cset_fast_test();
4198 
4199         _young_list->reset_sampled_info();
4200 
4201         // Don't check the whole heap at this point as the
4202         // GC alloc regions from this pause have been tagged
4203         // as survivors and moved on to the survivor list.
4204         // Survivor regions will fail the !is_young() check.
4205         assert(check_young_list_empty(false /* check_heap */),
4206           "young list should be empty");
4207 
4208 #if YOUNG_LIST_VERBOSE
4209         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4210         _young_list->print();
4211 #endif // YOUNG_LIST_VERBOSE
4212 
4213         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4214                                              _young_list->first_survivor_region(),
4215                                              _young_list->last_survivor_region());
4216 
4217         _young_list->reset_auxilary_lists();
4218 
4219         if (evacuation_failed()) {
4220           _allocator->set_used(recalculate_used());
4221           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4222           for (uint i = 0; i < n_queues; i++) {
4223             if (_evacuation_failed_info_array[i].has_failed()) {
4224               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4225             }
4226           }
4227         } else {
4228           // The "used" of the the collection set have already been subtracted
4229           // when they were freed.  Add in the bytes evacuated.
4230           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4231         }
4232 
4233         if (g1_policy()->during_initial_mark_pause()) {
4234           // We have to do this before we notify the CM threads that
4235           // they can start working to make sure that all the
4236           // appropriate initialization is done on the CM object.
4237           concurrent_mark()->checkpointRootsInitialPost();
4238           set_marking_started();
4239           // Note that we don't actually trigger the CM thread at
4240           // this point. We do that later when we're sure that
4241           // the current thread has completed its logging output.
4242         }
4243 
4244         allocate_dummy_regions();
4245 
4246 #if YOUNG_LIST_VERBOSE
4247         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4248         _young_list->print();
4249         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4250 #endif // YOUNG_LIST_VERBOSE
4251 
4252         _allocator->init_mutator_alloc_region();
4253 
4254         {
4255           size_t expand_bytes = g1_policy()->expansion_amount();
4256           if (expand_bytes > 0) {
4257             size_t bytes_before = capacity();
4258             // No need for an ergo verbose message here,
4259             // expansion_amount() does this when it returns a value > 0.
4260             if (!expand(expand_bytes)) {
4261               // We failed to expand the heap. Cannot do anything about it.
4262             }
4263           }
4264         }
4265 
4266         // We redo the verification but now wrt to the new CSet which
4267         // has just got initialized after the previous CSet was freed.
4268         _cm->verify_no_cset_oops();
4269         _cm->note_end_of_gc();
4270 
4271         // This timing is only used by the ergonomics to handle our pause target.
4272         // It is unclear why this should not include the full pause. We will
4273         // investigate this in CR 7178365.
4274         double sample_end_time_sec = os::elapsedTime();
4275         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4276         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4277 
4278         MemoryService::track_memory_usage();
4279 
4280         // In prepare_for_verify() below we'll need to scan the deferred
4281         // update buffers to bring the RSets up-to-date if
4282         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4283         // the update buffers we'll probably need to scan cards on the
4284         // regions we just allocated to (i.e., the GC alloc
4285         // regions). However, during the last GC we called
4286         // set_saved_mark() on all the GC alloc regions, so card
4287         // scanning might skip the [saved_mark_word()...top()] area of
4288         // those regions (i.e., the area we allocated objects into
4289         // during the last GC). But it shouldn't. Given that
4290         // saved_mark_word() is conditional on whether the GC time stamp
4291         // on the region is current or not, by incrementing the GC time
4292         // stamp here we invalidate all the GC time stamps on all the
4293         // regions and saved_mark_word() will simply return top() for
4294         // all the regions. This is a nicer way of ensuring this rather
4295         // than iterating over the regions and fixing them. In fact, the
4296         // GC time stamp increment here also ensures that
4297         // saved_mark_word() will return top() between pauses, i.e.,
4298         // during concurrent refinement. So we don't need the
4299         // is_gc_active() check to decided which top to use when
4300         // scanning cards (see CR 7039627).
4301         increment_gc_time_stamp();
4302 
4303         if (VerifyRememberedSets) {
4304           if (!VerifySilently) {
4305             gclog_or_tty->print_cr("[Verifying RemSets after GC]");
4306           }
4307           VerifyRegionRemSetClosure v_cl;
4308           heap_region_iterate(&v_cl);
4309         }
4310 
4311         verify_after_gc();
4312         check_bitmaps("GC End");
4313 
4314         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4315         ref_processor_stw()->verify_no_references_recorded();
4316 
4317         // CM reference discovery will be re-enabled if necessary.
4318       }
4319 
4320       // We should do this after we potentially expand the heap so
4321       // that all the COMMIT events are generated before the end GC
4322       // event, and after we retire the GC alloc regions so that all
4323       // RETIRE events are generated before the end GC event.
4324       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4325 
4326 #ifdef TRACESPINNING
4327       ParallelTaskTerminator::print_termination_counts();
4328 #endif
4329 
4330       gc_epilogue(false);
4331     }
4332 
4333     // Print the remainder of the GC log output.
4334     log_gc_footer(os::elapsedTime() - pause_start_sec);
4335 
4336     // It is not yet to safe to tell the concurrent mark to
4337     // start as we have some optional output below. We don't want the
4338     // output from the concurrent mark thread interfering with this
4339     // logging output either.
4340 
4341     _hrm.verify_optional();
4342     verify_region_sets_optional();
4343 
4344     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4345     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4346 
4347     print_heap_after_gc();
4348     trace_heap_after_gc(_gc_tracer_stw);
4349 
4350     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4351     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4352     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4353     // before any GC notifications are raised.
4354     g1mm()->update_sizes();
4355 
4356     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4357     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4358     _gc_timer_stw->register_gc_end();
4359     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4360   }
4361   // It should now be safe to tell the concurrent mark thread to start
4362   // without its logging output interfering with the logging output
4363   // that came from the pause.
4364 
4365   if (should_start_conc_mark) {
4366     // CAUTION: after the doConcurrentMark() call below,
4367     // the concurrent marking thread(s) could be running
4368     // concurrently with us. Make sure that anything after
4369     // this point does not assume that we are the only GC thread
4370     // running. Note: of course, the actual marking work will
4371     // not start until the safepoint itself is released in
4372     // SuspendibleThreadSet::desynchronize().
4373     doConcurrentMark();
4374   }
4375 
4376   return true;
4377 }
4378 
init_for_evac_failure(OopsInHeapRegionClosure * cl)4379 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4380   _drain_in_progress = false;
4381   set_evac_failure_closure(cl);
4382   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4383 }
4384 
finalize_for_evac_failure()4385 void G1CollectedHeap::finalize_for_evac_failure() {
4386   assert(_evac_failure_scan_stack != NULL &&
4387          _evac_failure_scan_stack->length() == 0,
4388          "Postcondition");
4389   assert(!_drain_in_progress, "Postcondition");
4390   delete _evac_failure_scan_stack;
4391   _evac_failure_scan_stack = NULL;
4392 }
4393 
remove_self_forwarding_pointers()4394 void G1CollectedHeap::remove_self_forwarding_pointers() {
4395   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4396 
4397   double remove_self_forwards_start = os::elapsedTime();
4398 
4399   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4400 
4401   if (G1CollectedHeap::use_parallel_gc_threads()) {
4402     set_par_threads();
4403     workers()->run_task(&rsfp_task);
4404     set_par_threads(0);
4405   } else {
4406     rsfp_task.work(0);
4407   }
4408 
4409   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4410 
4411   // Reset the claim values in the regions in the collection set.
4412   reset_cset_heap_region_claim_values();
4413 
4414   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4415 
4416   // Now restore saved marks, if any.
4417   assert(_objs_with_preserved_marks.size() ==
4418             _preserved_marks_of_objs.size(), "Both or none.");
4419   while (!_objs_with_preserved_marks.is_empty()) {
4420     oop obj = _objs_with_preserved_marks.pop();
4421     markOop m = _preserved_marks_of_objs.pop();
4422     obj->set_mark(m);
4423   }
4424   _objs_with_preserved_marks.clear(true);
4425   _preserved_marks_of_objs.clear(true);
4426 
4427   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4428 }
4429 
push_on_evac_failure_scan_stack(oop obj)4430 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4431   _evac_failure_scan_stack->push(obj);
4432 }
4433 
drain_evac_failure_scan_stack()4434 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4435   assert(_evac_failure_scan_stack != NULL, "precondition");
4436 
4437   while (_evac_failure_scan_stack->length() > 0) {
4438      oop obj = _evac_failure_scan_stack->pop();
4439      _evac_failure_closure->set_region(heap_region_containing(obj));
4440      obj->oop_iterate_backwards(_evac_failure_closure);
4441   }
4442 }
4443 
4444 oop
handle_evacuation_failure_par(G1ParScanThreadState * _par_scan_state,oop old)4445 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4446                                                oop old) {
4447   assert(obj_in_cs(old),
4448          err_msg("obj: " PTR_FORMAT " should still be in the CSet",
4449                  p2i(old)));
4450   markOop m = old->mark();
4451   oop forward_ptr = old->forward_to_atomic(old);
4452   if (forward_ptr == NULL) {
4453     // Forward-to-self succeeded.
4454     assert(_par_scan_state != NULL, "par scan state");
4455     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4456     uint queue_num = _par_scan_state->queue_num();
4457 
4458     _evacuation_failed = true;
4459     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4460     if (_evac_failure_closure != cl) {
4461       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4462       assert(!_drain_in_progress,
4463              "Should only be true while someone holds the lock.");
4464       // Set the global evac-failure closure to the current thread's.
4465       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4466       set_evac_failure_closure(cl);
4467       // Now do the common part.
4468       handle_evacuation_failure_common(old, m);
4469       // Reset to NULL.
4470       set_evac_failure_closure(NULL);
4471     } else {
4472       // The lock is already held, and this is recursive.
4473       assert(_drain_in_progress, "This should only be the recursive case.");
4474       handle_evacuation_failure_common(old, m);
4475     }
4476     return old;
4477   } else {
4478     // Forward-to-self failed. Either someone else managed to allocate
4479     // space for this object (old != forward_ptr) or they beat us in
4480     // self-forwarding it (old == forward_ptr).
4481     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4482            err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
4483                    "should not be in the CSet",
4484                    p2i(old), p2i(forward_ptr)));
4485     return forward_ptr;
4486   }
4487 }
4488 
handle_evacuation_failure_common(oop old,markOop m)4489 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4490   preserve_mark_if_necessary(old, m);
4491 
4492   HeapRegion* r = heap_region_containing(old);
4493   if (!r->evacuation_failed()) {
4494     r->set_evacuation_failed(true);
4495     _hr_printer.evac_failure(r);
4496   }
4497 
4498   push_on_evac_failure_scan_stack(old);
4499 
4500   if (!_drain_in_progress) {
4501     // prevent recursion in copy_to_survivor_space()
4502     _drain_in_progress = true;
4503     drain_evac_failure_scan_stack();
4504     _drain_in_progress = false;
4505   }
4506 }
4507 
preserve_mark_if_necessary(oop obj,markOop m)4508 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4509   assert(evacuation_failed(), "Oversaving!");
4510   // We want to call the "for_promotion_failure" version only in the
4511   // case of a promotion failure.
4512   if (m->must_be_preserved_for_promotion_failure(obj)) {
4513     _objs_with_preserved_marks.push(obj);
4514     _preserved_marks_of_objs.push(m);
4515   }
4516 }
4517 
mark_object(oop obj)4518 void G1ParCopyHelper::mark_object(oop obj) {
4519   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4520 
4521   // We know that the object is not moving so it's safe to read its size.
4522   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4523 }
4524 
mark_forwarded_object(oop from_obj,oop to_obj)4525 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4526   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4527   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4528   assert(from_obj != to_obj, "should not be self-forwarded");
4529 
4530   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4531   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4532 
4533   // The object might be in the process of being copied by another
4534   // worker so we cannot trust that its to-space image is
4535   // well-formed. So we have to read its size from its from-space
4536   // image which we know should not be changing.
4537   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4538 }
4539 
4540 template <class T>
do_klass_barrier(T * p,oop new_obj)4541 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4542   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4543     _scanned_klass->record_modified_oops();
4544   }
4545 }
4546 
4547 template <G1Barrier barrier, G1Mark do_mark_object>
4548 template <class T>
do_oop_work(T * p)4549 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4550   T heap_oop = oopDesc::load_heap_oop(p);
4551 
4552   if (oopDesc::is_null(heap_oop)) {
4553     return;
4554   }
4555 
4556   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4557 
4558   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4559 
4560   const InCSetState state = _g1->in_cset_state(obj);
4561   if (state.is_in_cset()) {
4562     oop forwardee;
4563     markOop m = obj->mark();
4564     if (m->is_marked()) {
4565       forwardee = (oop) m->decode_pointer();
4566     } else {
4567       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4568     }
4569     assert(forwardee != NULL, "forwardee should not be NULL");
4570     oopDesc::encode_store_heap_oop(p, forwardee);
4571     if (do_mark_object != G1MarkNone && forwardee != obj) {
4572       // If the object is self-forwarded we don't need to explicitly
4573       // mark it, the evacuation failure protocol will do so.
4574       mark_forwarded_object(obj, forwardee);
4575     }
4576 
4577     if (barrier == G1BarrierKlass) {
4578       do_klass_barrier(p, forwardee);
4579     }
4580   } else {
4581     if (state.is_humongous()) {
4582       _g1->set_humongous_is_live(obj);
4583     }
4584     // The object is not in collection set. If we're a root scanning
4585     // closure during an initial mark pause then attempt to mark the object.
4586     if (do_mark_object == G1MarkFromRoot) {
4587       mark_object(obj);
4588     }
4589   }
4590 
4591   if (barrier == G1BarrierEvac) {
4592     _par_scan_state->update_rs(_from, p, _worker_id);
4593   }
4594 }
4595 
4596 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4597 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4598 
4599 class G1ParEvacuateFollowersClosure : public VoidClosure {
4600 protected:
4601   G1CollectedHeap*              _g1h;
4602   G1ParScanThreadState*         _par_scan_state;
4603   RefToScanQueueSet*            _queues;
4604   ParallelTaskTerminator*       _terminator;
4605 
par_scan_state()4606   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
queues()4607   RefToScanQueueSet*      queues()         { return _queues; }
terminator()4608   ParallelTaskTerminator* terminator()     { return _terminator; }
4609 
4610 public:
G1ParEvacuateFollowersClosure(G1CollectedHeap * g1h,G1ParScanThreadState * par_scan_state,RefToScanQueueSet * queues,ParallelTaskTerminator * terminator)4611   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4612                                 G1ParScanThreadState* par_scan_state,
4613                                 RefToScanQueueSet* queues,
4614                                 ParallelTaskTerminator* terminator)
4615     : _g1h(g1h), _par_scan_state(par_scan_state),
4616       _queues(queues), _terminator(terminator) {}
4617 
4618   void do_void();
4619 
4620 private:
4621   inline bool offer_termination();
4622 };
4623 
offer_termination()4624 bool G1ParEvacuateFollowersClosure::offer_termination() {
4625   G1ParScanThreadState* const pss = par_scan_state();
4626   pss->start_term_time();
4627   const bool res = terminator()->offer_termination();
4628   pss->end_term_time();
4629   return res;
4630 }
4631 
do_void()4632 void G1ParEvacuateFollowersClosure::do_void() {
4633   G1ParScanThreadState* const pss = par_scan_state();
4634   pss->trim_queue();
4635   do {
4636     pss->steal_and_trim_queue(queues());
4637   } while (!offer_termination());
4638 }
4639 
4640 class G1KlassScanClosure : public KlassClosure {
4641  G1ParCopyHelper* _closure;
4642  bool             _process_only_dirty;
4643  int              _count;
4644  public:
G1KlassScanClosure(G1ParCopyHelper * closure,bool process_only_dirty)4645   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4646       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
do_klass(Klass * klass)4647   void do_klass(Klass* klass) {
4648     // If the klass has not been dirtied we know that there's
4649     // no references into  the young gen and we can skip it.
4650    if (!_process_only_dirty || klass->has_modified_oops()) {
4651       // Clean the klass since we're going to scavenge all the metadata.
4652       klass->clear_modified_oops();
4653 
4654       // Tell the closure that this klass is the Klass to scavenge
4655       // and is the one to dirty if oops are left pointing into the young gen.
4656       _closure->set_scanned_klass(klass);
4657 
4658       klass->oops_do(_closure);
4659 
4660       _closure->set_scanned_klass(NULL);
4661     }
4662     _count++;
4663   }
4664 };
4665 
4666 class G1ParTask : public AbstractGangTask {
4667 protected:
4668   G1CollectedHeap*       _g1h;
4669   RefToScanQueueSet      *_queues;
4670   G1RootProcessor*       _root_processor;
4671   ParallelTaskTerminator _terminator;
4672   uint _n_workers;
4673 
4674   Mutex _stats_lock;
stats_lock()4675   Mutex* stats_lock() { return &_stats_lock; }
4676 
4677 public:
G1ParTask(G1CollectedHeap * g1h,RefToScanQueueSet * task_queues,G1RootProcessor * root_processor)4678   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4679     : AbstractGangTask("G1 collection"),
4680       _g1h(g1h),
4681       _queues(task_queues),
4682       _root_processor(root_processor),
4683       _terminator(0, _queues),
4684       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4685   {}
4686 
queues()4687   RefToScanQueueSet* queues() { return _queues; }
4688 
work_queue(int i)4689   RefToScanQueue *work_queue(int i) {
4690     return queues()->queue(i);
4691   }
4692 
terminator()4693   ParallelTaskTerminator* terminator() { return &_terminator; }
4694 
set_for_termination(int active_workers)4695   virtual void set_for_termination(int active_workers) {
4696     _root_processor->set_num_workers(active_workers);
4697     terminator()->reset_for_reuse(active_workers);
4698     _n_workers = active_workers;
4699   }
4700 
4701   // Helps out with CLD processing.
4702   //
4703   // During InitialMark we need to:
4704   // 1) Scavenge all CLDs for the young GC.
4705   // 2) Mark all objects directly reachable from strong CLDs.
4706   template <G1Mark do_mark_object>
4707   class G1CLDClosure : public CLDClosure {
4708     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4709     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4710     G1KlassScanClosure                                _klass_in_cld_closure;
4711     bool                                              _claim;
4712 
4713    public:
G1CLDClosure(G1ParCopyClosure<G1BarrierNone,do_mark_object> * oop_closure,bool only_young,bool claim)4714     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4715                  bool only_young, bool claim)
4716         : _oop_closure(oop_closure),
4717           _oop_in_klass_closure(oop_closure->g1(),
4718                                 oop_closure->pss(),
4719                                 oop_closure->rp()),
4720           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4721           _claim(claim) {
4722 
4723     }
4724 
do_cld(ClassLoaderData * cld)4725     void do_cld(ClassLoaderData* cld) {
4726       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4727     }
4728   };
4729 
work(uint worker_id)4730   void work(uint worker_id) {
4731     if (worker_id >= _n_workers) return;  // no work needed this round
4732 
4733     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4734 
4735     {
4736       ResourceMark rm;
4737       HandleMark   hm;
4738 
4739       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4740 
4741       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4742       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4743 
4744       pss.set_evac_failure_closure(&evac_failure_cl);
4745 
4746       bool only_young = _g1h->g1_policy()->gcs_are_young();
4747 
4748       // Non-IM young GC.
4749       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4750       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4751                                                                                only_young, // Only process dirty klasses.
4752                                                                                false);     // No need to claim CLDs.
4753       // IM young GC.
4754       //    Strong roots closures.
4755       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4756       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4757                                                                                false, // Process all klasses.
4758                                                                                true); // Need to claim CLDs.
4759       //    Weak roots closures.
4760       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4761       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4762                                                                                     false, // Process all klasses.
4763                                                                                     true); // Need to claim CLDs.
4764 
4765       OopClosure* strong_root_cl;
4766       OopClosure* weak_root_cl;
4767       CLDClosure* strong_cld_cl;
4768       CLDClosure* weak_cld_cl;
4769 
4770       bool trace_metadata = false;
4771 
4772       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4773         // We also need to mark copied objects.
4774         strong_root_cl = &scan_mark_root_cl;
4775         strong_cld_cl  = &scan_mark_cld_cl;
4776         if (ClassUnloadingWithConcurrentMark) {
4777           weak_root_cl = &scan_mark_weak_root_cl;
4778           weak_cld_cl  = &scan_mark_weak_cld_cl;
4779           trace_metadata = true;
4780         } else {
4781           weak_root_cl = &scan_mark_root_cl;
4782           weak_cld_cl  = &scan_mark_cld_cl;
4783         }
4784       } else {
4785         strong_root_cl = &scan_only_root_cl;
4786         weak_root_cl   = &scan_only_root_cl;
4787         strong_cld_cl  = &scan_only_cld_cl;
4788         weak_cld_cl    = &scan_only_cld_cl;
4789       }
4790 
4791       pss.start_strong_roots();
4792 
4793       _root_processor->evacuate_roots(strong_root_cl,
4794                                       weak_root_cl,
4795                                       strong_cld_cl,
4796                                       weak_cld_cl,
4797                                       trace_metadata,
4798                                       worker_id);
4799 
4800       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4801       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4802                                             weak_root_cl,
4803                                             worker_id);
4804       pss.end_strong_roots();
4805 
4806       {
4807         double start = os::elapsedTime();
4808         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4809         evac.do_void();
4810         double elapsed_sec = os::elapsedTime() - start;
4811         double term_sec = pss.term_time();
4812         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4813         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4814         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4815       }
4816       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4817       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4818 
4819       if (ParallelGCVerbose) {
4820         MutexLocker x(stats_lock());
4821         pss.print_termination_stats(worker_id);
4822       }
4823 
4824       assert(pss.queue_is_empty(), "should be empty");
4825 
4826       // Close the inner scope so that the ResourceMark and HandleMark
4827       // destructors are executed here and are included as part of the
4828       // "GC Worker Time".
4829     }
4830     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4831   }
4832 };
4833 
4834 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4835 private:
4836   BoolObjectClosure* _is_alive;
4837   int _initial_string_table_size;
4838   int _initial_symbol_table_size;
4839 
4840   bool  _process_strings;
4841   int _strings_processed;
4842   int _strings_removed;
4843 
4844   bool  _process_symbols;
4845   int _symbols_processed;
4846   int _symbols_removed;
4847 
4848   bool _do_in_parallel;
4849 public:
G1StringSymbolTableUnlinkTask(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols)4850   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4851     AbstractGangTask("String/Symbol Unlinking"),
4852     _is_alive(is_alive),
4853     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4854     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4855     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4856 
4857     _initial_string_table_size = StringTable::the_table()->table_size();
4858     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4859     if (process_strings) {
4860       StringTable::clear_parallel_claimed_index();
4861     }
4862     if (process_symbols) {
4863       SymbolTable::clear_parallel_claimed_index();
4864     }
4865   }
4866 
~G1StringSymbolTableUnlinkTask()4867   ~G1StringSymbolTableUnlinkTask() {
4868     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4869               err_msg("claim value " INT32_FORMAT " after unlink less than initial string table size " INT32_FORMAT,
4870                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4871     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4872               err_msg("claim value " INT32_FORMAT " after unlink less than initial symbol table size " INT32_FORMAT,
4873                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4874 
4875     if (G1TraceStringSymbolTableScrubbing) {
4876       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4877                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4878                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4879                              strings_processed(), strings_removed(),
4880                              symbols_processed(), symbols_removed());
4881     }
4882   }
4883 
work(uint worker_id)4884   void work(uint worker_id) {
4885     if (_do_in_parallel) {
4886       int strings_processed = 0;
4887       int strings_removed = 0;
4888       int symbols_processed = 0;
4889       int symbols_removed = 0;
4890       if (_process_strings) {
4891         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4892         Atomic::add(strings_processed, &_strings_processed);
4893         Atomic::add(strings_removed, &_strings_removed);
4894       }
4895       if (_process_symbols) {
4896         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4897         Atomic::add(symbols_processed, &_symbols_processed);
4898         Atomic::add(symbols_removed, &_symbols_removed);
4899       }
4900     } else {
4901       if (_process_strings) {
4902         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4903       }
4904       if (_process_symbols) {
4905         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4906       }
4907     }
4908   }
4909 
strings_processed() const4910   size_t strings_processed() const { return (size_t)_strings_processed; }
strings_removed() const4911   size_t strings_removed()   const { return (size_t)_strings_removed; }
4912 
symbols_processed() const4913   size_t symbols_processed() const { return (size_t)_symbols_processed; }
symbols_removed() const4914   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4915 };
4916 
4917 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4918 private:
4919   static Monitor* _lock;
4920 
4921   BoolObjectClosure* const _is_alive;
4922   const bool               _unloading_occurred;
4923   const uint               _num_workers;
4924 
4925   // Variables used to claim nmethods.
4926   nmethod* _first_nmethod;
4927   volatile nmethod* _claimed_nmethod;
4928 
4929   // The list of nmethods that need to be processed by the second pass.
4930   volatile nmethod* _postponed_list;
4931   volatile uint     _num_entered_barrier;
4932 
4933  public:
G1CodeCacheUnloadingTask(uint num_workers,BoolObjectClosure * is_alive,bool unloading_occurred)4934   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4935       _is_alive(is_alive),
4936       _unloading_occurred(unloading_occurred),
4937       _num_workers(num_workers),
4938       _first_nmethod(NULL),
4939       _claimed_nmethod(NULL),
4940       _postponed_list(NULL),
4941       _num_entered_barrier(0)
4942   {
4943     nmethod::increase_unloading_clock();
4944     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4945     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4946   }
4947 
~G1CodeCacheUnloadingTask()4948   ~G1CodeCacheUnloadingTask() {
4949     CodeCache::verify_clean_inline_caches();
4950 
4951     CodeCache::set_needs_cache_clean(false);
4952     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4953 
4954     CodeCache::verify_icholder_relocations();
4955   }
4956 
4957  private:
add_to_postponed_list(nmethod * nm)4958   void add_to_postponed_list(nmethod* nm) {
4959       nmethod* old;
4960       do {
4961         old = (nmethod*)_postponed_list;
4962         nm->set_unloading_next(old);
4963       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4964   }
4965 
clean_nmethod(nmethod * nm)4966   void clean_nmethod(nmethod* nm) {
4967     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4968 
4969     if (postponed) {
4970       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4971       add_to_postponed_list(nm);
4972     }
4973 
4974     // Mark that this thread has been cleaned/unloaded.
4975     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4976     nm->set_unloading_clock(nmethod::global_unloading_clock());
4977   }
4978 
clean_nmethod_postponed(nmethod * nm)4979   void clean_nmethod_postponed(nmethod* nm) {
4980     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4981   }
4982 
4983   static const int MaxClaimNmethods = 16;
4984 
claim_nmethods(nmethod ** claimed_nmethods,int * num_claimed_nmethods)4985   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4986     nmethod* first;
4987     nmethod* last;
4988 
4989     do {
4990       *num_claimed_nmethods = 0;
4991 
4992       first = last = (nmethod*)_claimed_nmethod;
4993 
4994       if (first != NULL) {
4995         for (int i = 0; i < MaxClaimNmethods; i++) {
4996           last = CodeCache::alive_nmethod(CodeCache::next(last));
4997 
4998           if (last == NULL) {
4999             break;
5000           }
5001 
5002           claimed_nmethods[i] = last;
5003           (*num_claimed_nmethods)++;
5004         }
5005       }
5006 
5007     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5008   }
5009 
claim_postponed_nmethod()5010   nmethod* claim_postponed_nmethod() {
5011     nmethod* claim;
5012     nmethod* next;
5013 
5014     do {
5015       claim = (nmethod*)_postponed_list;
5016       if (claim == NULL) {
5017         return NULL;
5018       }
5019 
5020       next = claim->unloading_next();
5021 
5022     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5023 
5024     return claim;
5025   }
5026 
5027  public:
5028   // Mark that we're done with the first pass of nmethod cleaning.
barrier_mark(uint worker_id)5029   void barrier_mark(uint worker_id) {
5030     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5031     _num_entered_barrier++;
5032     if (_num_entered_barrier == _num_workers) {
5033       ml.notify_all();
5034     }
5035   }
5036 
5037   // See if we have to wait for the other workers to
5038   // finish their first-pass nmethod cleaning work.
barrier_wait(uint worker_id)5039   void barrier_wait(uint worker_id) {
5040     if (_num_entered_barrier < _num_workers) {
5041       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5042       while (_num_entered_barrier < _num_workers) {
5043           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5044       }
5045     }
5046   }
5047 
5048   // Cleaning and unloading of nmethods. Some work has to be postponed
5049   // to the second pass, when we know which nmethods survive.
work_first_pass(uint worker_id)5050   void work_first_pass(uint worker_id) {
5051     // The first nmethods is claimed by the first worker.
5052     if (worker_id == 0 && _first_nmethod != NULL) {
5053       clean_nmethod(_first_nmethod);
5054       _first_nmethod = NULL;
5055     }
5056 
5057     int num_claimed_nmethods;
5058     nmethod* claimed_nmethods[MaxClaimNmethods];
5059 
5060     while (true) {
5061       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5062 
5063       if (num_claimed_nmethods == 0) {
5064         break;
5065       }
5066 
5067       for (int i = 0; i < num_claimed_nmethods; i++) {
5068         clean_nmethod(claimed_nmethods[i]);
5069       }
5070     }
5071 
5072     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
5073     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
5074     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5075   }
5076 
work_second_pass(uint worker_id)5077   void work_second_pass(uint worker_id) {
5078     nmethod* nm;
5079     // Take care of postponed nmethods.
5080     while ((nm = claim_postponed_nmethod()) != NULL) {
5081       clean_nmethod_postponed(nm);
5082     }
5083   }
5084 };
5085 
5086 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5087 
5088 class G1KlassCleaningTask : public StackObj {
5089   BoolObjectClosure*                      _is_alive;
5090   volatile jint                           _clean_klass_tree_claimed;
5091   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5092 
5093  public:
G1KlassCleaningTask(BoolObjectClosure * is_alive)5094   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5095       _is_alive(is_alive),
5096       _clean_klass_tree_claimed(0),
5097       _klass_iterator() {
5098   }
5099 
5100  private:
claim_clean_klass_tree_task()5101   bool claim_clean_klass_tree_task() {
5102     if (_clean_klass_tree_claimed) {
5103       return false;
5104     }
5105 
5106     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5107   }
5108 
claim_next_klass()5109   InstanceKlass* claim_next_klass() {
5110     Klass* klass;
5111     do {
5112       klass =_klass_iterator.next_klass();
5113     } while (klass != NULL && !klass->oop_is_instance());
5114 
5115     return (InstanceKlass*)klass;
5116   }
5117 
5118 public:
5119 
clean_klass(InstanceKlass * ik)5120   void clean_klass(InstanceKlass* ik) {
5121     ik->clean_weak_instanceklass_links(_is_alive);
5122 
5123     if (JvmtiExport::has_redefined_a_class()) {
5124       InstanceKlass::purge_previous_versions(ik);
5125     }
5126   }
5127 
work()5128   void work() {
5129     ResourceMark rm;
5130 
5131     // One worker will clean the subklass/sibling klass tree.
5132     if (claim_clean_klass_tree_task()) {
5133       Klass::clean_subklass_tree(_is_alive);
5134     }
5135 
5136     // All workers will help cleaning the classes,
5137     InstanceKlass* klass;
5138     while ((klass = claim_next_klass()) != NULL) {
5139       clean_klass(klass);
5140     }
5141   }
5142 };
5143 
5144 // To minimize the remark pause times, the tasks below are done in parallel.
5145 class G1ParallelCleaningTask : public AbstractGangTask {
5146 private:
5147   G1StringSymbolTableUnlinkTask _string_symbol_task;
5148   G1CodeCacheUnloadingTask      _code_cache_task;
5149   G1KlassCleaningTask           _klass_cleaning_task;
5150 
5151 public:
5152   // The constructor is run in the VMThread.
G1ParallelCleaningTask(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols,uint num_workers,bool unloading_occurred)5153   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5154       AbstractGangTask("Parallel Cleaning"),
5155       _string_symbol_task(is_alive, process_strings, process_symbols),
5156       _code_cache_task(num_workers, is_alive, unloading_occurred),
5157       _klass_cleaning_task(is_alive) {
5158   }
5159 
pre_work_verification()5160   void pre_work_verification() {
5161     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
5162     assert(Thread::current()->is_VM_thread()
5163            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5164   }
5165 
post_work_verification()5166   void post_work_verification() {
5167     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5168   }
5169 
5170   // The parallel work done by all worker threads.
work(uint worker_id)5171   void work(uint worker_id) {
5172     pre_work_verification();
5173 
5174     // Do first pass of code cache cleaning.
5175     _code_cache_task.work_first_pass(worker_id);
5176 
5177     // Let the threads mark that the first pass is done.
5178     _code_cache_task.barrier_mark(worker_id);
5179 
5180     // Clean the Strings and Symbols.
5181     _string_symbol_task.work(worker_id);
5182 
5183     // Wait for all workers to finish the first code cache cleaning pass.
5184     _code_cache_task.barrier_wait(worker_id);
5185 
5186     // Do the second code cache cleaning work, which realize on
5187     // the liveness information gathered during the first pass.
5188     _code_cache_task.work_second_pass(worker_id);
5189 
5190     // Clean all klasses that were not unloaded.
5191     _klass_cleaning_task.work();
5192 
5193     post_work_verification();
5194   }
5195 };
5196 
5197 
parallel_cleaning(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols,bool class_unloading_occurred)5198 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5199                                         bool process_strings,
5200                                         bool process_symbols,
5201                                         bool class_unloading_occurred) {
5202   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5203                     workers()->active_workers() : 1);
5204 
5205   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5206                                         n_workers, class_unloading_occurred);
5207   if (G1CollectedHeap::use_parallel_gc_threads()) {
5208     set_par_threads(n_workers);
5209     workers()->run_task(&g1_unlink_task);
5210     set_par_threads(0);
5211   } else {
5212     g1_unlink_task.work(0);
5213   }
5214 }
5215 
unlink_string_and_symbol_table(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols)5216 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5217                                                      bool process_strings, bool process_symbols) {
5218   {
5219     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5220                      _g1h->workers()->active_workers() : 1);
5221     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5222     if (G1CollectedHeap::use_parallel_gc_threads()) {
5223       set_par_threads(n_workers);
5224       workers()->run_task(&g1_unlink_task);
5225       set_par_threads(0);
5226     } else {
5227       g1_unlink_task.work(0);
5228     }
5229   }
5230 
5231   if (G1StringDedup::is_enabled()) {
5232     G1StringDedup::unlink(is_alive);
5233   }
5234 }
5235 
5236 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5237  private:
5238   DirtyCardQueueSet* _queue;
5239  public:
G1RedirtyLoggedCardsTask(DirtyCardQueueSet * queue)5240   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5241 
work(uint worker_id)5242   virtual void work(uint worker_id) {
5243     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5244     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5245 
5246     RedirtyLoggedCardTableEntryClosure cl;
5247     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5248       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5249     } else {
5250       _queue->apply_closure_to_all_completed_buffers(&cl);
5251     }
5252 
5253     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5254   }
5255 };
5256 
redirty_logged_cards()5257 void G1CollectedHeap::redirty_logged_cards() {
5258   double redirty_logged_cards_start = os::elapsedTime();
5259 
5260   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5261                    _g1h->workers()->active_workers() : 1);
5262 
5263   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5264   dirty_card_queue_set().reset_for_par_iteration();
5265   if (use_parallel_gc_threads()) {
5266     set_par_threads(n_workers);
5267     workers()->run_task(&redirty_task);
5268     set_par_threads(0);
5269   } else {
5270     redirty_task.work(0);
5271   }
5272 
5273   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5274   dcq.merge_bufferlists(&dirty_card_queue_set());
5275   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5276 
5277   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5278 }
5279 
5280 // Weak Reference Processing support
5281 
5282 // An always "is_alive" closure that is used to preserve referents.
5283 // If the object is non-null then it's alive.  Used in the preservation
5284 // of referent objects that are pointed to by reference objects
5285 // discovered by the CM ref processor.
5286 class G1AlwaysAliveClosure: public BoolObjectClosure {
5287   G1CollectedHeap* _g1;
5288 public:
G1AlwaysAliveClosure(G1CollectedHeap * g1)5289   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
do_object_b(oop p)5290   bool do_object_b(oop p) {
5291     if (p != NULL) {
5292       return true;
5293     }
5294     return false;
5295   }
5296 };
5297 
do_object_b(oop p)5298 bool G1STWIsAliveClosure::do_object_b(oop p) {
5299   // An object is reachable if it is outside the collection set,
5300   // or is inside and copied.
5301   return !_g1->obj_in_cs(p) || p->is_forwarded();
5302 }
5303 
5304 // Non Copying Keep Alive closure
5305 class G1KeepAliveClosure: public OopClosure {
5306   G1CollectedHeap* _g1;
5307 public:
G1KeepAliveClosure(G1CollectedHeap * g1)5308   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
do_oop(narrowOop * p)5309   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
do_oop(oop * p)5310   void do_oop(oop* p) {
5311     oop obj = *p;
5312     assert(obj != NULL, "the caller should have filtered out NULL values");
5313 
5314     const InCSetState cset_state = _g1->in_cset_state(obj);
5315     if (!cset_state.is_in_cset_or_humongous()) {
5316       return;
5317     }
5318     if (cset_state.is_in_cset()) {
5319       assert( obj->is_forwarded(), "invariant" );
5320       *p = obj->forwardee();
5321     } else {
5322       assert(!obj->is_forwarded(), "invariant" );
5323       assert(cset_state.is_humongous(),
5324              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5325       _g1->set_humongous_is_live(obj);
5326     }
5327   }
5328 };
5329 
5330 // Copying Keep Alive closure - can be called from both
5331 // serial and parallel code as long as different worker
5332 // threads utilize different G1ParScanThreadState instances
5333 // and different queues.
5334 
5335 class G1CopyingKeepAliveClosure: public OopClosure {
5336   G1CollectedHeap*         _g1h;
5337   OopClosure*              _copy_non_heap_obj_cl;
5338   G1ParScanThreadState*    _par_scan_state;
5339 
5340 public:
G1CopyingKeepAliveClosure(G1CollectedHeap * g1h,OopClosure * non_heap_obj_cl,G1ParScanThreadState * pss)5341   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5342                             OopClosure* non_heap_obj_cl,
5343                             G1ParScanThreadState* pss):
5344     _g1h(g1h),
5345     _copy_non_heap_obj_cl(non_heap_obj_cl),
5346     _par_scan_state(pss)
5347   {}
5348 
do_oop(narrowOop * p)5349   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)5350   virtual void do_oop(      oop* p) { do_oop_work(p); }
5351 
do_oop_work(T * p)5352   template <class T> void do_oop_work(T* p) {
5353     oop obj = oopDesc::load_decode_heap_oop(p);
5354 
5355     if (_g1h->is_in_cset_or_humongous(obj)) {
5356       // If the referent object has been forwarded (either copied
5357       // to a new location or to itself in the event of an
5358       // evacuation failure) then we need to update the reference
5359       // field and, if both reference and referent are in the G1
5360       // heap, update the RSet for the referent.
5361       //
5362       // If the referent has not been forwarded then we have to keep
5363       // it alive by policy. Therefore we have copy the referent.
5364       //
5365       // If the reference field is in the G1 heap then we can push
5366       // on the PSS queue. When the queue is drained (after each
5367       // phase of reference processing) the object and it's followers
5368       // will be copied, the reference field set to point to the
5369       // new location, and the RSet updated. Otherwise we need to
5370       // use the the non-heap or metadata closures directly to copy
5371       // the referent object and update the pointer, while avoiding
5372       // updating the RSet.
5373 
5374       if (_g1h->is_in_g1_reserved(p)) {
5375         _par_scan_state->push_on_queue(p);
5376       } else {
5377         assert(!Metaspace::contains((const void*)p),
5378                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5379         _copy_non_heap_obj_cl->do_oop(p);
5380       }
5381     }
5382   }
5383 };
5384 
5385 // Serial drain queue closure. Called as the 'complete_gc'
5386 // closure for each discovered list in some of the
5387 // reference processing phases.
5388 
5389 class G1STWDrainQueueClosure: public VoidClosure {
5390 protected:
5391   G1CollectedHeap* _g1h;
5392   G1ParScanThreadState* _par_scan_state;
5393 
par_scan_state()5394   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5395 
5396 public:
G1STWDrainQueueClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)5397   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5398     _g1h(g1h),
5399     _par_scan_state(pss)
5400   { }
5401 
do_void()5402   void do_void() {
5403     G1ParScanThreadState* const pss = par_scan_state();
5404     pss->trim_queue();
5405   }
5406 };
5407 
5408 // Parallel Reference Processing closures
5409 
5410 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5411 // processing during G1 evacuation pauses.
5412 
5413 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5414 private:
5415   G1CollectedHeap*   _g1h;
5416   RefToScanQueueSet* _queues;
5417   FlexibleWorkGang*  _workers;
5418   int                _active_workers;
5419 
5420 public:
G1STWRefProcTaskExecutor(G1CollectedHeap * g1h,FlexibleWorkGang * workers,RefToScanQueueSet * task_queues,int n_workers)5421   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5422                         FlexibleWorkGang* workers,
5423                         RefToScanQueueSet *task_queues,
5424                         int n_workers) :
5425     _g1h(g1h),
5426     _queues(task_queues),
5427     _workers(workers),
5428     _active_workers(n_workers)
5429   {
5430     assert(n_workers > 0, "shouldn't call this otherwise");
5431   }
5432 
5433   // Executes the given task using concurrent marking worker threads.
5434   virtual void execute(ProcessTask& task);
5435   virtual void execute(EnqueueTask& task);
5436 };
5437 
5438 // Gang task for possibly parallel reference processing
5439 
5440 class G1STWRefProcTaskProxy: public AbstractGangTask {
5441   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5442   ProcessTask&     _proc_task;
5443   G1CollectedHeap* _g1h;
5444   RefToScanQueueSet *_task_queues;
5445   ParallelTaskTerminator* _terminator;
5446 
5447 public:
G1STWRefProcTaskProxy(ProcessTask & proc_task,G1CollectedHeap * g1h,RefToScanQueueSet * task_queues,ParallelTaskTerminator * terminator)5448   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5449                      G1CollectedHeap* g1h,
5450                      RefToScanQueueSet *task_queues,
5451                      ParallelTaskTerminator* terminator) :
5452     AbstractGangTask("Process reference objects in parallel"),
5453     _proc_task(proc_task),
5454     _g1h(g1h),
5455     _task_queues(task_queues),
5456     _terminator(terminator)
5457   {}
5458 
work(uint worker_id)5459   virtual void work(uint worker_id) {
5460     // The reference processing task executed by a single worker.
5461     ResourceMark rm;
5462     HandleMark   hm;
5463 
5464     G1STWIsAliveClosure is_alive(_g1h);
5465 
5466     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5467     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5468 
5469     pss.set_evac_failure_closure(&evac_failure_cl);
5470 
5471     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5472 
5473     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5474 
5475     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5476 
5477     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5478       // We also need to mark copied objects.
5479       copy_non_heap_cl = &copy_mark_non_heap_cl;
5480     }
5481 
5482     // Keep alive closure.
5483     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5484 
5485     // Complete GC closure
5486     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5487 
5488     // Call the reference processing task's work routine.
5489     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5490 
5491     // Note we cannot assert that the refs array is empty here as not all
5492     // of the processing tasks (specifically phase2 - pp2_work) execute
5493     // the complete_gc closure (which ordinarily would drain the queue) so
5494     // the queue may not be empty.
5495   }
5496 };
5497 
5498 // Driver routine for parallel reference processing.
5499 // Creates an instance of the ref processing gang
5500 // task and has the worker threads execute it.
execute(ProcessTask & proc_task)5501 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5502   assert(_workers != NULL, "Need parallel worker threads.");
5503 
5504   ParallelTaskTerminator terminator(_active_workers, _queues);
5505   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5506 
5507   _g1h->set_par_threads(_active_workers);
5508   _workers->run_task(&proc_task_proxy);
5509   _g1h->set_par_threads(0);
5510 }
5511 
5512 // Gang task for parallel reference enqueueing.
5513 
5514 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5515   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5516   EnqueueTask& _enq_task;
5517 
5518 public:
G1STWRefEnqueueTaskProxy(EnqueueTask & enq_task)5519   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5520     AbstractGangTask("Enqueue reference objects in parallel"),
5521     _enq_task(enq_task)
5522   { }
5523 
work(uint worker_id)5524   virtual void work(uint worker_id) {
5525     _enq_task.work(worker_id);
5526   }
5527 };
5528 
5529 // Driver routine for parallel reference enqueueing.
5530 // Creates an instance of the ref enqueueing gang
5531 // task and has the worker threads execute it.
5532 
execute(EnqueueTask & enq_task)5533 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5534   assert(_workers != NULL, "Need parallel worker threads.");
5535 
5536   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5537 
5538   _g1h->set_par_threads(_active_workers);
5539   _workers->run_task(&enq_task_proxy);
5540   _g1h->set_par_threads(0);
5541 }
5542 
5543 // End of weak reference support closures
5544 
5545 // Abstract task used to preserve (i.e. copy) any referent objects
5546 // that are in the collection set and are pointed to by reference
5547 // objects discovered by the CM ref processor.
5548 
5549 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5550 protected:
5551   G1CollectedHeap* _g1h;
5552   RefToScanQueueSet      *_queues;
5553   ParallelTaskTerminator _terminator;
5554   uint _n_workers;
5555 
5556 public:
G1ParPreserveCMReferentsTask(G1CollectedHeap * g1h,int workers,RefToScanQueueSet * task_queues)5557   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5558     AbstractGangTask("ParPreserveCMReferents"),
5559     _g1h(g1h),
5560     _queues(task_queues),
5561     _terminator(workers, _queues),
5562     _n_workers(workers)
5563   { }
5564 
work(uint worker_id)5565   void work(uint worker_id) {
5566     ResourceMark rm;
5567     HandleMark   hm;
5568 
5569     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5570     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5571 
5572     pss.set_evac_failure_closure(&evac_failure_cl);
5573 
5574     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5575 
5576     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5577 
5578     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5579 
5580     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5581 
5582     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5583       // We also need to mark copied objects.
5584       copy_non_heap_cl = &copy_mark_non_heap_cl;
5585     }
5586 
5587     // Is alive closure
5588     G1AlwaysAliveClosure always_alive(_g1h);
5589 
5590     // Copying keep alive closure. Applied to referent objects that need
5591     // to be copied.
5592     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5593 
5594     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5595 
5596     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5597     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5598 
5599     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5600     // So this must be true - but assert just in case someone decides to
5601     // change the worker ids.
5602     assert(0 <= worker_id && worker_id < limit, "sanity");
5603     assert(!rp->discovery_is_atomic(), "check this code");
5604 
5605     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5606     for (uint idx = worker_id; idx < limit; idx += stride) {
5607       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5608 
5609       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5610       while (iter.has_next()) {
5611         // Since discovery is not atomic for the CM ref processor, we
5612         // can see some null referent objects.
5613         iter.load_ptrs(DEBUG_ONLY(true));
5614         oop ref = iter.obj();
5615 
5616         // This will filter nulls.
5617         if (iter.is_referent_alive()) {
5618           iter.make_referent_alive();
5619         }
5620         iter.move_to_next();
5621       }
5622     }
5623 
5624     // Drain the queue - which may cause stealing
5625     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5626     drain_queue.do_void();
5627     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5628     assert(pss.queue_is_empty(), "should be");
5629   }
5630 };
5631 
5632 // Weak Reference processing during an evacuation pause (part 1).
process_discovered_references(uint no_of_gc_workers)5633 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5634   double ref_proc_start = os::elapsedTime();
5635 
5636   ReferenceProcessor* rp = _ref_processor_stw;
5637   assert(rp->discovery_enabled(), "should have been enabled");
5638 
5639   // Any reference objects, in the collection set, that were 'discovered'
5640   // by the CM ref processor should have already been copied (either by
5641   // applying the external root copy closure to the discovered lists, or
5642   // by following an RSet entry).
5643   //
5644   // But some of the referents, that are in the collection set, that these
5645   // reference objects point to may not have been copied: the STW ref
5646   // processor would have seen that the reference object had already
5647   // been 'discovered' and would have skipped discovering the reference,
5648   // but would not have treated the reference object as a regular oop.
5649   // As a result the copy closure would not have been applied to the
5650   // referent object.
5651   //
5652   // We need to explicitly copy these referent objects - the references
5653   // will be processed at the end of remarking.
5654   //
5655   // We also need to do this copying before we process the reference
5656   // objects discovered by the STW ref processor in case one of these
5657   // referents points to another object which is also referenced by an
5658   // object discovered by the STW ref processor.
5659 
5660   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5661            no_of_gc_workers == workers()->active_workers(),
5662            "Need to reset active GC workers");
5663 
5664   set_par_threads(no_of_gc_workers);
5665   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5666                                                  no_of_gc_workers,
5667                                                  _task_queues);
5668 
5669   if (G1CollectedHeap::use_parallel_gc_threads()) {
5670     workers()->run_task(&keep_cm_referents);
5671   } else {
5672     keep_cm_referents.work(0);
5673   }
5674 
5675   set_par_threads(0);
5676 
5677   // Closure to test whether a referent is alive.
5678   G1STWIsAliveClosure is_alive(this);
5679 
5680   // Even when parallel reference processing is enabled, the processing
5681   // of JNI refs is serial and performed serially by the current thread
5682   // rather than by a worker. The following PSS will be used for processing
5683   // JNI refs.
5684 
5685   // Use only a single queue for this PSS.
5686   G1ParScanThreadState            pss(this, 0, NULL);
5687 
5688   // We do not embed a reference processor in the copying/scanning
5689   // closures while we're actually processing the discovered
5690   // reference objects.
5691   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5692 
5693   pss.set_evac_failure_closure(&evac_failure_cl);
5694 
5695   assert(pss.queue_is_empty(), "pre-condition");
5696 
5697   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5698 
5699   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5700 
5701   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5702 
5703   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5704     // We also need to mark copied objects.
5705     copy_non_heap_cl = &copy_mark_non_heap_cl;
5706   }
5707 
5708   // Keep alive closure.
5709   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5710 
5711   // Serial Complete GC closure
5712   G1STWDrainQueueClosure drain_queue(this, &pss);
5713 
5714   // Setup the soft refs policy...
5715   rp->setup_policy(false);
5716 
5717   ReferenceProcessorStats stats;
5718   if (!rp->processing_is_mt()) {
5719     // Serial reference processing...
5720     stats = rp->process_discovered_references(&is_alive,
5721                                               &keep_alive,
5722                                               &drain_queue,
5723                                               NULL,
5724                                               _gc_timer_stw,
5725                                               _gc_tracer_stw->gc_id());
5726   } else {
5727     // Parallel reference processing
5728     assert(rp->num_q() == no_of_gc_workers, "sanity");
5729     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5730 
5731     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5732     stats = rp->process_discovered_references(&is_alive,
5733                                               &keep_alive,
5734                                               &drain_queue,
5735                                               &par_task_executor,
5736                                               _gc_timer_stw,
5737                                               _gc_tracer_stw->gc_id());
5738   }
5739 
5740   _gc_tracer_stw->report_gc_reference_stats(stats);
5741 
5742   // We have completed copying any necessary live referent objects.
5743   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5744 
5745   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5746   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5747 }
5748 
5749 // Weak Reference processing during an evacuation pause (part 2).
enqueue_discovered_references(uint no_of_gc_workers)5750 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5751   double ref_enq_start = os::elapsedTime();
5752 
5753   ReferenceProcessor* rp = _ref_processor_stw;
5754   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5755 
5756   // Now enqueue any remaining on the discovered lists on to
5757   // the pending list.
5758   if (!rp->processing_is_mt()) {
5759     // Serial reference processing...
5760     rp->enqueue_discovered_references();
5761   } else {
5762     // Parallel reference enqueueing
5763 
5764     assert(no_of_gc_workers == workers()->active_workers(),
5765            "Need to reset active workers");
5766     assert(rp->num_q() == no_of_gc_workers, "sanity");
5767     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5768 
5769     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5770     rp->enqueue_discovered_references(&par_task_executor);
5771   }
5772 
5773   rp->verify_no_references_recorded();
5774   assert(!rp->discovery_enabled(), "should have been disabled");
5775 
5776   // FIXME
5777   // CM's reference processing also cleans up the string and symbol tables.
5778   // Should we do that here also? We could, but it is a serial operation
5779   // and could significantly increase the pause time.
5780 
5781   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5782   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5783 }
5784 
evacuate_collection_set(EvacuationInfo & evacuation_info)5785 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5786   _expand_heap_after_alloc_failure = true;
5787   _evacuation_failed = false;
5788 
5789   // Should G1EvacuationFailureALot be in effect for this GC?
5790   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5791 
5792   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5793 
5794   // Disable the hot card cache.
5795   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5796   hot_card_cache->reset_hot_cache_claimed_index();
5797   hot_card_cache->set_use_cache(false);
5798 
5799   const uint n_workers = workers()->active_workers();
5800     assert(UseDynamicNumberOfGCThreads ||
5801            n_workers == workers()->total_workers(),
5802            "If not dynamic should be using all the  workers");
5803     set_par_threads(n_workers);
5804 
5805   init_for_evac_failure(NULL);
5806 
5807   rem_set()->prepare_for_younger_refs_iterate(true);
5808 
5809   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5810   double start_par_time_sec = os::elapsedTime();
5811   double end_par_time_sec;
5812 
5813   {
5814     G1RootProcessor root_processor(this);
5815     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5816     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5817     if (g1_policy()->during_initial_mark_pause()) {
5818       ClassLoaderDataGraph::clear_claimed_marks();
5819     }
5820 
5821     if (G1CollectedHeap::use_parallel_gc_threads()) {
5822       // The individual threads will set their evac-failure closures.
5823       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5824       // These tasks use ShareHeap::_process_strong_tasks
5825       assert(UseDynamicNumberOfGCThreads ||
5826              workers()->active_workers() == workers()->total_workers(),
5827              "If not dynamic should be using all the  workers");
5828       workers()->run_task(&g1_par_task);
5829     } else {
5830       g1_par_task.set_for_termination(n_workers);
5831       g1_par_task.work(0);
5832     }
5833     end_par_time_sec = os::elapsedTime();
5834 
5835     // Closing the inner scope will execute the destructor
5836     // for the G1RootProcessor object. We record the current
5837     // elapsed time before closing the scope so that time
5838     // taken for the destructor is NOT included in the
5839     // reported parallel time.
5840   }
5841 
5842   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5843 
5844   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5845   phase_times->record_par_time(par_time_ms);
5846 
5847   double code_root_fixup_time_ms =
5848         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5849   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5850 
5851   set_par_threads(0);
5852 
5853   // Process any discovered reference objects - we have
5854   // to do this _before_ we retire the GC alloc regions
5855   // as we may have to copy some 'reachable' referent
5856   // objects (and their reachable sub-graphs) that were
5857   // not copied during the pause.
5858   process_discovered_references(n_workers);
5859 
5860   if (G1StringDedup::is_enabled()) {
5861     double fixup_start = os::elapsedTime();
5862 
5863     G1STWIsAliveClosure is_alive(this);
5864     G1KeepAliveClosure keep_alive(this);
5865     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5866 
5867     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5868     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5869   }
5870 
5871   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5872   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5873 
5874   // Reset and re-enable the hot card cache.
5875   // Note the counts for the cards in the regions in the
5876   // collection set are reset when the collection set is freed.
5877   hot_card_cache->reset_hot_cache();
5878   hot_card_cache->set_use_cache(true);
5879 
5880   purge_code_root_memory();
5881 
5882   if (g1_policy()->during_initial_mark_pause()) {
5883     // Reset the claim values set during marking the strong code roots
5884     reset_heap_region_claim_values();
5885   }
5886 
5887   finalize_for_evac_failure();
5888 
5889   if (evacuation_failed()) {
5890     remove_self_forwarding_pointers();
5891 
5892     // Reset the G1EvacuationFailureALot counters and flags
5893     // Note: the values are reset only when an actual
5894     // evacuation failure occurs.
5895     NOT_PRODUCT(reset_evacuation_should_fail();)
5896   }
5897 
5898   // Enqueue any remaining references remaining on the STW
5899   // reference processor's discovered lists. We need to do
5900   // this after the card table is cleaned (and verified) as
5901   // the act of enqueueing entries on to the pending list
5902   // will log these updates (and dirty their associated
5903   // cards). We need these updates logged to update any
5904   // RSets.
5905   enqueue_discovered_references(n_workers);
5906 
5907   redirty_logged_cards();
5908   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5909 }
5910 
free_region(HeapRegion * hr,FreeRegionList * free_list,bool par,bool locked)5911 void G1CollectedHeap::free_region(HeapRegion* hr,
5912                                   FreeRegionList* free_list,
5913                                   bool par,
5914                                   bool locked) {
5915   assert(!hr->is_free(), "the region should not be free");
5916   assert(!hr->is_empty(), "the region should not be empty");
5917   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5918   assert(free_list != NULL, "pre-condition");
5919 
5920   if (G1VerifyBitmaps) {
5921     MemRegion mr(hr->bottom(), hr->end());
5922     concurrent_mark()->clearRangePrevBitmap(mr);
5923   }
5924 
5925   // Clear the card counts for this region.
5926   // Note: we only need to do this if the region is not young
5927   // (since we don't refine cards in young regions).
5928   if (!hr->is_young()) {
5929     _cg1r->hot_card_cache()->reset_card_counts(hr);
5930   }
5931   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5932   free_list->add_ordered(hr);
5933 }
5934 
free_humongous_region(HeapRegion * hr,FreeRegionList * free_list,bool par)5935 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5936                                      FreeRegionList* free_list,
5937                                      bool par) {
5938   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5939   assert(free_list != NULL, "pre-condition");
5940 
5941   size_t hr_capacity = hr->capacity();
5942   // We need to read this before we make the region non-humongous,
5943   // otherwise the information will be gone.
5944   uint last_index = hr->last_hc_index();
5945   hr->clear_humongous();
5946   free_region(hr, free_list, par);
5947 
5948   uint i = hr->hrm_index() + 1;
5949   while (i < last_index) {
5950     HeapRegion* curr_hr = region_at(i);
5951     assert(curr_hr->continuesHumongous(), "invariant");
5952     curr_hr->clear_humongous();
5953     free_region(curr_hr, free_list, par);
5954     i += 1;
5955   }
5956 }
5957 
remove_from_old_sets(const HeapRegionSetCount & old_regions_removed,const HeapRegionSetCount & humongous_regions_removed)5958 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5959                                        const HeapRegionSetCount& humongous_regions_removed) {
5960   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5961     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5962     _old_set.bulk_remove(old_regions_removed);
5963     _humongous_set.bulk_remove(humongous_regions_removed);
5964   }
5965 
5966 }
5967 
prepend_to_freelist(FreeRegionList * list)5968 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5969   assert(list != NULL, "list can't be null");
5970   if (!list->is_empty()) {
5971     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5972     _hrm.insert_list_into_free_list(list);
5973   }
5974 }
5975 
decrement_summary_bytes(size_t bytes)5976 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5977   _allocator->decrease_used(bytes);
5978 }
5979 
5980 class G1ParCleanupCTTask : public AbstractGangTask {
5981   G1SATBCardTableModRefBS* _ct_bs;
5982   G1CollectedHeap* _g1h;
5983   HeapRegion* volatile _su_head;
5984 public:
G1ParCleanupCTTask(G1SATBCardTableModRefBS * ct_bs,G1CollectedHeap * g1h)5985   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5986                      G1CollectedHeap* g1h) :
5987     AbstractGangTask("G1 Par Cleanup CT Task"),
5988     _ct_bs(ct_bs), _g1h(g1h) { }
5989 
work(uint worker_id)5990   void work(uint worker_id) {
5991     HeapRegion* r;
5992     while (r = _g1h->pop_dirty_cards_region()) {
5993       clear_cards(r);
5994     }
5995   }
5996 
clear_cards(HeapRegion * r)5997   void clear_cards(HeapRegion* r) {
5998     // Cards of the survivors should have already been dirtied.
5999     if (!r->is_survivor()) {
6000       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6001     }
6002   }
6003 };
6004 
6005 #ifndef PRODUCT
6006 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6007   G1CollectedHeap* _g1h;
6008   G1SATBCardTableModRefBS* _ct_bs;
6009 public:
G1VerifyCardTableCleanup(G1CollectedHeap * g1h,G1SATBCardTableModRefBS * ct_bs)6010   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6011     : _g1h(g1h), _ct_bs(ct_bs) { }
doHeapRegion(HeapRegion * r)6012   virtual bool doHeapRegion(HeapRegion* r) {
6013     if (r->is_survivor()) {
6014       _g1h->verify_dirty_region(r);
6015     } else {
6016       _g1h->verify_not_dirty_region(r);
6017     }
6018     return false;
6019   }
6020 };
6021 
verify_not_dirty_region(HeapRegion * hr)6022 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6023   // All of the region should be clean.
6024   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6025   MemRegion mr(hr->bottom(), hr->end());
6026   ct_bs->verify_not_dirty_region(mr);
6027 }
6028 
verify_dirty_region(HeapRegion * hr)6029 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6030   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6031   // dirty allocated blocks as they allocate them. The thread that
6032   // retires each region and replaces it with a new one will do a
6033   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6034   // not dirty that area (one less thing to have to do while holding
6035   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6036   // is dirty.
6037   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6038   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6039   if (hr->is_young()) {
6040     ct_bs->verify_g1_young_region(mr);
6041   } else {
6042     ct_bs->verify_dirty_region(mr);
6043   }
6044 }
6045 
verify_dirty_young_list(HeapRegion * head)6046 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6047   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6048   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6049     verify_dirty_region(hr);
6050   }
6051 }
6052 
verify_dirty_young_regions()6053 void G1CollectedHeap::verify_dirty_young_regions() {
6054   verify_dirty_young_list(_young_list->first_region());
6055 }
6056 
verify_no_bits_over_tams(const char * bitmap_name,CMBitMapRO * bitmap,HeapWord * tams,HeapWord * end)6057 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6058                                                HeapWord* tams, HeapWord* end) {
6059   guarantee(tams <= end,
6060             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
6061   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6062   if (result < end) {
6063     gclog_or_tty->cr();
6064     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
6065                            bitmap_name, p2i(result));
6066     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
6067                            bitmap_name, p2i(tams), p2i(end));
6068     return false;
6069   }
6070   return true;
6071 }
6072 
verify_bitmaps(const char * caller,HeapRegion * hr)6073 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6074   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6075   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6076 
6077   HeapWord* bottom = hr->bottom();
6078   HeapWord* ptams  = hr->prev_top_at_mark_start();
6079   HeapWord* ntams  = hr->next_top_at_mark_start();
6080   HeapWord* end    = hr->end();
6081 
6082   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6083 
6084   bool res_n = true;
6085   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6086   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6087   // if we happen to be in that state.
6088   if (mark_in_progress() || !_cmThread->in_progress()) {
6089     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6090   }
6091   if (!res_p || !res_n) {
6092     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
6093                            HR_FORMAT_PARAMS(hr));
6094     gclog_or_tty->print_cr("#### Caller: %s", caller);
6095     return false;
6096   }
6097   return true;
6098 }
6099 
check_bitmaps(const char * caller,HeapRegion * hr)6100 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6101   if (!G1VerifyBitmaps) return;
6102 
6103   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6104 }
6105 
6106 class G1VerifyBitmapClosure : public HeapRegionClosure {
6107 private:
6108   const char* _caller;
6109   G1CollectedHeap* _g1h;
6110   bool _failures;
6111 
6112 public:
G1VerifyBitmapClosure(const char * caller,G1CollectedHeap * g1h)6113   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6114     _caller(caller), _g1h(g1h), _failures(false) { }
6115 
failures()6116   bool failures() { return _failures; }
6117 
doHeapRegion(HeapRegion * hr)6118   virtual bool doHeapRegion(HeapRegion* hr) {
6119     if (hr->continuesHumongous()) return false;
6120 
6121     bool result = _g1h->verify_bitmaps(_caller, hr);
6122     if (!result) {
6123       _failures = true;
6124     }
6125     return false;
6126   }
6127 };
6128 
check_bitmaps(const char * caller)6129 void G1CollectedHeap::check_bitmaps(const char* caller) {
6130   if (!G1VerifyBitmaps) return;
6131 
6132   G1VerifyBitmapClosure cl(caller, this);
6133   heap_region_iterate(&cl);
6134   guarantee(!cl.failures(), "bitmap verification");
6135 }
6136 
6137 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
6138  private:
6139   bool _failures;
6140  public:
G1CheckCSetFastTableClosure()6141   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
6142 
doHeapRegion(HeapRegion * hr)6143   virtual bool doHeapRegion(HeapRegion* hr) {
6144     uint i = hr->hrm_index();
6145     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
6146     if (hr->isHumongous()) {
6147       if (hr->in_collection_set()) {
6148         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
6149         _failures = true;
6150         return true;
6151       }
6152       if (cset_state.is_in_cset()) {
6153         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
6154         _failures = true;
6155         return true;
6156       }
6157       if (hr->continuesHumongous() && cset_state.is_humongous()) {
6158         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
6159         _failures = true;
6160         return true;
6161       }
6162     } else {
6163       if (cset_state.is_humongous()) {
6164         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
6165         _failures = true;
6166         return true;
6167       }
6168       if (hr->in_collection_set() != cset_state.is_in_cset()) {
6169         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
6170                                hr->in_collection_set(), cset_state.value(), i);
6171        _failures = true;
6172        return true;
6173       }
6174       if (cset_state.is_in_cset()) {
6175         if (hr->is_young() != (cset_state.is_young())) {
6176           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6177                                  hr->is_young(), cset_state.value(), i);
6178           _failures = true;
6179           return true;
6180         }
6181         if (hr->is_old() != (cset_state.is_old())) {
6182           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6183                                  hr->is_old(), cset_state.value(), i);
6184           _failures = true;
6185           return true;
6186         }
6187       }
6188     }
6189     return false;
6190   }
6191 
failures() const6192   bool failures() const { return _failures; }
6193 };
6194 
check_cset_fast_test()6195 bool G1CollectedHeap::check_cset_fast_test() {
6196   G1CheckCSetFastTableClosure cl;
6197   _hrm.iterate(&cl);
6198   return !cl.failures();
6199 }
6200 #endif // PRODUCT
6201 
cleanUpCardTable()6202 void G1CollectedHeap::cleanUpCardTable() {
6203   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6204   double start = os::elapsedTime();
6205 
6206   {
6207     // Iterate over the dirty cards region list.
6208     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6209 
6210     if (G1CollectedHeap::use_parallel_gc_threads()) {
6211       set_par_threads();
6212       workers()->run_task(&cleanup_task);
6213       set_par_threads(0);
6214     } else {
6215       while (_dirty_cards_region_list) {
6216         HeapRegion* r = _dirty_cards_region_list;
6217         cleanup_task.clear_cards(r);
6218         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6219         if (_dirty_cards_region_list == r) {
6220           // The last region.
6221           _dirty_cards_region_list = NULL;
6222         }
6223         r->set_next_dirty_cards_region(NULL);
6224       }
6225     }
6226 #ifndef PRODUCT
6227     if (G1VerifyCTCleanup || VerifyAfterGC) {
6228       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6229       heap_region_iterate(&cleanup_verifier);
6230     }
6231 #endif
6232   }
6233 
6234   double elapsed = os::elapsedTime() - start;
6235   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6236 }
6237 
free_collection_set(HeapRegion * cs_head,EvacuationInfo & evacuation_info)6238 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6239   size_t pre_used = 0;
6240   FreeRegionList local_free_list("Local List for CSet Freeing");
6241 
6242   double young_time_ms     = 0.0;
6243   double non_young_time_ms = 0.0;
6244 
6245   // Since the collection set is a superset of the the young list,
6246   // all we need to do to clear the young list is clear its
6247   // head and length, and unlink any young regions in the code below
6248   _young_list->clear();
6249 
6250   G1CollectorPolicy* policy = g1_policy();
6251 
6252   double start_sec = os::elapsedTime();
6253   bool non_young = true;
6254 
6255   HeapRegion* cur = cs_head;
6256   int age_bound = -1;
6257   size_t rs_lengths = 0;
6258 
6259   while (cur != NULL) {
6260     assert(!is_on_master_free_list(cur), "sanity");
6261     if (non_young) {
6262       if (cur->is_young()) {
6263         double end_sec = os::elapsedTime();
6264         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6265         non_young_time_ms += elapsed_ms;
6266 
6267         start_sec = os::elapsedTime();
6268         non_young = false;
6269       }
6270     } else {
6271       if (!cur->is_young()) {
6272         double end_sec = os::elapsedTime();
6273         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6274         young_time_ms += elapsed_ms;
6275 
6276         start_sec = os::elapsedTime();
6277         non_young = true;
6278       }
6279     }
6280 
6281     rs_lengths += cur->rem_set()->occupied_locked();
6282 
6283     HeapRegion* next = cur->next_in_collection_set();
6284     assert(cur->in_collection_set(), "bad CS");
6285     cur->set_next_in_collection_set(NULL);
6286     cur->set_in_collection_set(false);
6287 
6288     if (cur->is_young()) {
6289       int index = cur->young_index_in_cset();
6290       assert(index != -1, "invariant");
6291       assert((uint) index < policy->young_cset_region_length(), "invariant");
6292       size_t words_survived = _surviving_young_words[index];
6293       cur->record_surv_words_in_group(words_survived);
6294 
6295       // At this point the we have 'popped' cur from the collection set
6296       // (linked via next_in_collection_set()) but it is still in the
6297       // young list (linked via next_young_region()). Clear the
6298       // _next_young_region field.
6299       cur->set_next_young_region(NULL);
6300     } else {
6301       int index = cur->young_index_in_cset();
6302       assert(index == -1, "invariant");
6303     }
6304 
6305     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6306             (!cur->is_young() && cur->young_index_in_cset() == -1),
6307             "invariant" );
6308 
6309     if (!cur->evacuation_failed()) {
6310       MemRegion used_mr = cur->used_region();
6311 
6312       // And the region is empty.
6313       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6314       pre_used += cur->used();
6315       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6316     } else {
6317       cur->uninstall_surv_rate_group();
6318       if (cur->is_young()) {
6319         cur->set_young_index_in_cset(-1);
6320       }
6321       cur->set_evacuation_failed(false);
6322       // The region is now considered to be old.
6323       cur->set_old();
6324       _old_set.add(cur);
6325       evacuation_info.increment_collectionset_used_after(cur->used());
6326     }
6327     cur = next;
6328   }
6329 
6330   evacuation_info.set_regions_freed(local_free_list.length());
6331   policy->record_max_rs_lengths(rs_lengths);
6332   policy->cset_regions_freed();
6333 
6334   double end_sec = os::elapsedTime();
6335   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6336 
6337   if (non_young) {
6338     non_young_time_ms += elapsed_ms;
6339   } else {
6340     young_time_ms += elapsed_ms;
6341   }
6342 
6343   prepend_to_freelist(&local_free_list);
6344   decrement_summary_bytes(pre_used);
6345   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6346   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6347 }
6348 
6349 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6350  private:
6351   FreeRegionList* _free_region_list;
6352   HeapRegionSet* _proxy_set;
6353   HeapRegionSetCount _humongous_regions_removed;
6354   size_t _freed_bytes;
6355  public:
6356 
G1FreeHumongousRegionClosure(FreeRegionList * free_region_list)6357   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6358     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6359   }
6360 
doHeapRegion(HeapRegion * r)6361   virtual bool doHeapRegion(HeapRegion* r) {
6362     if (!r->startsHumongous()) {
6363       return false;
6364     }
6365 
6366     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6367 
6368     oop obj = (oop)r->bottom();
6369     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6370 
6371     // The following checks whether the humongous object is live are sufficient.
6372     // The main additional check (in addition to having a reference from the roots
6373     // or the young gen) is whether the humongous object has a remembered set entry.
6374     //
6375     // A humongous object cannot be live if there is no remembered set for it
6376     // because:
6377     // - there can be no references from within humongous starts regions referencing
6378     // the object because we never allocate other objects into them.
6379     // (I.e. there are no intra-region references that may be missed by the
6380     // remembered set)
6381     // - as soon there is a remembered set entry to the humongous starts region
6382     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6383     // until the end of a concurrent mark.
6384     //
6385     // It is not required to check whether the object has been found dead by marking
6386     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6387     // all objects allocated during that time are considered live.
6388     // SATB marking is even more conservative than the remembered set.
6389     // So if at this point in the collection there is no remembered set entry,
6390     // nobody has a reference to it.
6391     // At the start of collection we flush all refinement logs, and remembered sets
6392     // are completely up-to-date wrt to references to the humongous object.
6393     //
6394     // Other implementation considerations:
6395     // - never consider object arrays at this time because they would pose
6396     // considerable effort for cleaning up the the remembered sets. This is
6397     // required because stale remembered sets might reference locations that
6398     // are currently allocated into.
6399     uint region_idx = r->hrm_index();
6400     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6401         !r->rem_set()->is_empty()) {
6402 
6403       if (G1TraceEagerReclaimHumongousObjects) {
6404         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6405                                region_idx,
6406                                (size_t)obj->size()*HeapWordSize,
6407                                p2i(r->bottom()),
6408                                r->region_num(),
6409                                r->rem_set()->occupied(),
6410                                r->rem_set()->strong_code_roots_list_length(),
6411                                next_bitmap->isMarked(r->bottom()),
6412                                g1h->is_humongous_reclaim_candidate(region_idx),
6413                                obj->is_typeArray()
6414                               );
6415       }
6416 
6417       return false;
6418     }
6419 
6420     guarantee(obj->is_typeArray(),
6421               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6422                       PTR_FORMAT " is not.",
6423                       p2i(r->bottom())));
6424 
6425     if (G1TraceEagerReclaimHumongousObjects) {
6426       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6427                              region_idx,
6428                              (size_t)obj->size()*HeapWordSize,
6429                              p2i(r->bottom()),
6430                              r->region_num(),
6431                              r->rem_set()->occupied(),
6432                              r->rem_set()->strong_code_roots_list_length(),
6433                              next_bitmap->isMarked(r->bottom()),
6434                              g1h->is_humongous_reclaim_candidate(region_idx),
6435                              obj->is_typeArray()
6436                             );
6437     }
6438     // Need to clear mark bit of the humongous object if already set.
6439     if (next_bitmap->isMarked(r->bottom())) {
6440       next_bitmap->clear(r->bottom());
6441     }
6442     _freed_bytes += r->used();
6443     r->set_containing_set(NULL);
6444     _humongous_regions_removed.increment(1u, r->capacity());
6445     g1h->free_humongous_region(r, _free_region_list, false);
6446 
6447     return false;
6448   }
6449 
humongous_free_count()6450   HeapRegionSetCount& humongous_free_count() {
6451     return _humongous_regions_removed;
6452   }
6453 
bytes_freed() const6454   size_t bytes_freed() const {
6455     return _freed_bytes;
6456   }
6457 
humongous_reclaimed() const6458   size_t humongous_reclaimed() const {
6459     return _humongous_regions_removed.length();
6460   }
6461 };
6462 
eagerly_reclaim_humongous_regions()6463 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6464   assert_at_safepoint(true);
6465 
6466   if (!G1EagerReclaimHumongousObjects ||
6467       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6468     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6469     return;
6470   }
6471 
6472   double start_time = os::elapsedTime();
6473 
6474   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6475 
6476   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6477   heap_region_iterate(&cl);
6478 
6479   HeapRegionSetCount empty_set;
6480   remove_from_old_sets(empty_set, cl.humongous_free_count());
6481 
6482   G1HRPrinter* hr_printer = _g1h->hr_printer();
6483   if (hr_printer->is_active()) {
6484     FreeRegionListIterator iter(&local_cleanup_list);
6485     while (iter.more_available()) {
6486       HeapRegion* hr = iter.get_next();
6487       hr_printer->cleanup(hr);
6488     }
6489   }
6490 
6491   prepend_to_freelist(&local_cleanup_list);
6492   decrement_summary_bytes(cl.bytes_freed());
6493 
6494   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6495                                                                     cl.humongous_reclaimed());
6496 }
6497 
6498 // This routine is similar to the above but does not record
6499 // any policy statistics or update free lists; we are abandoning
6500 // the current incremental collection set in preparation of a
6501 // full collection. After the full GC we will start to build up
6502 // the incremental collection set again.
6503 // This is only called when we're doing a full collection
6504 // and is immediately followed by the tearing down of the young list.
6505 
abandon_collection_set(HeapRegion * cs_head)6506 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6507   HeapRegion* cur = cs_head;
6508 
6509   while (cur != NULL) {
6510     HeapRegion* next = cur->next_in_collection_set();
6511     assert(cur->in_collection_set(), "bad CS");
6512     cur->set_next_in_collection_set(NULL);
6513     cur->set_in_collection_set(false);
6514     cur->set_young_index_in_cset(-1);
6515     cur = next;
6516   }
6517 }
6518 
set_free_regions_coming()6519 void G1CollectedHeap::set_free_regions_coming() {
6520   if (G1ConcRegionFreeingVerbose) {
6521     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6522                            "setting free regions coming");
6523   }
6524 
6525   assert(!free_regions_coming(), "pre-condition");
6526   _free_regions_coming = true;
6527 }
6528 
reset_free_regions_coming()6529 void G1CollectedHeap::reset_free_regions_coming() {
6530   assert(free_regions_coming(), "pre-condition");
6531 
6532   {
6533     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6534     _free_regions_coming = false;
6535     SecondaryFreeList_lock->notify_all();
6536   }
6537 
6538   if (G1ConcRegionFreeingVerbose) {
6539     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6540                            "reset free regions coming");
6541   }
6542 }
6543 
wait_while_free_regions_coming()6544 void G1CollectedHeap::wait_while_free_regions_coming() {
6545   // Most of the time we won't have to wait, so let's do a quick test
6546   // first before we take the lock.
6547   if (!free_regions_coming()) {
6548     return;
6549   }
6550 
6551   if (G1ConcRegionFreeingVerbose) {
6552     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6553                            "waiting for free regions");
6554   }
6555 
6556   {
6557     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6558     while (free_regions_coming()) {
6559       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6560     }
6561   }
6562 
6563   if (G1ConcRegionFreeingVerbose) {
6564     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6565                            "done waiting for free regions");
6566   }
6567 }
6568 
set_region_short_lived_locked(HeapRegion * hr)6569 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6570   assert(heap_lock_held_for_gc(),
6571               "the heap lock should already be held by or for this thread");
6572   _young_list->push_region(hr);
6573 }
6574 
6575 class NoYoungRegionsClosure: public HeapRegionClosure {
6576 private:
6577   bool _success;
6578 public:
NoYoungRegionsClosure()6579   NoYoungRegionsClosure() : _success(true) { }
doHeapRegion(HeapRegion * r)6580   bool doHeapRegion(HeapRegion* r) {
6581     if (r->is_young()) {
6582       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6583                              p2i(r->bottom()), p2i(r->end()));
6584       _success = false;
6585     }
6586     return false;
6587   }
success()6588   bool success() { return _success; }
6589 };
6590 
check_young_list_empty(bool check_heap,bool check_sample)6591 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6592   bool ret = _young_list->check_list_empty(check_sample);
6593 
6594   if (check_heap) {
6595     NoYoungRegionsClosure closure;
6596     heap_region_iterate(&closure);
6597     ret = ret && closure.success();
6598   }
6599 
6600   return ret;
6601 }
6602 
6603 class TearDownRegionSetsClosure : public HeapRegionClosure {
6604 private:
6605   HeapRegionSet *_old_set;
6606 
6607 public:
TearDownRegionSetsClosure(HeapRegionSet * old_set)6608   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6609 
doHeapRegion(HeapRegion * r)6610   bool doHeapRegion(HeapRegion* r) {
6611     if (r->is_old()) {
6612       _old_set->remove(r);
6613     } else {
6614       // We ignore free regions, we'll empty the free list afterwards.
6615       // We ignore young regions, we'll empty the young list afterwards.
6616       // We ignore humongous regions, we're not tearing down the
6617       // humongous regions set.
6618       assert(r->is_free() || r->is_young() || r->isHumongous(),
6619              "it cannot be another type");
6620     }
6621     return false;
6622   }
6623 
~TearDownRegionSetsClosure()6624   ~TearDownRegionSetsClosure() {
6625     assert(_old_set->is_empty(), "post-condition");
6626   }
6627 };
6628 
tear_down_region_sets(bool free_list_only)6629 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6630   assert_at_safepoint(true /* should_be_vm_thread */);
6631 
6632   if (!free_list_only) {
6633     TearDownRegionSetsClosure cl(&_old_set);
6634     heap_region_iterate(&cl);
6635 
6636     // Note that emptying the _young_list is postponed and instead done as
6637     // the first step when rebuilding the regions sets again. The reason for
6638     // this is that during a full GC string deduplication needs to know if
6639     // a collected region was young or old when the full GC was initiated.
6640   }
6641   _hrm.remove_all_free_regions();
6642 }
6643 
6644 class RebuildRegionSetsClosure : public HeapRegionClosure {
6645 private:
6646   bool            _free_list_only;
6647   HeapRegionSet*   _old_set;
6648   HeapRegionManager*   _hrm;
6649   size_t          _total_used;
6650 
6651 public:
RebuildRegionSetsClosure(bool free_list_only,HeapRegionSet * old_set,HeapRegionManager * hrm)6652   RebuildRegionSetsClosure(bool free_list_only,
6653                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6654     _free_list_only(free_list_only),
6655     _old_set(old_set), _hrm(hrm), _total_used(0) {
6656     assert(_hrm->num_free_regions() == 0, "pre-condition");
6657     if (!free_list_only) {
6658       assert(_old_set->is_empty(), "pre-condition");
6659     }
6660   }
6661 
doHeapRegion(HeapRegion * r)6662   bool doHeapRegion(HeapRegion* r) {
6663     if (r->continuesHumongous()) {
6664       return false;
6665     }
6666 
6667     if (r->is_empty()) {
6668       // Add free regions to the free list
6669       r->set_free();
6670       r->set_allocation_context(AllocationContext::system());
6671       _hrm->insert_into_free_list(r);
6672     } else if (!_free_list_only) {
6673       assert(!r->is_young(), "we should not come across young regions");
6674 
6675       if (r->isHumongous()) {
6676         // We ignore humongous regions, we left the humongous set unchanged
6677       } else {
6678         // Objects that were compacted would have ended up on regions
6679         // that were previously old or free.
6680         assert(r->is_free() || r->is_old(), "invariant");
6681         // We now consider them old, so register as such.
6682         r->set_old();
6683         _old_set->add(r);
6684       }
6685       _total_used += r->used();
6686     }
6687 
6688     return false;
6689   }
6690 
total_used()6691   size_t total_used() {
6692     return _total_used;
6693   }
6694 };
6695 
rebuild_region_sets(bool free_list_only)6696 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6697   assert_at_safepoint(true /* should_be_vm_thread */);
6698 
6699   if (!free_list_only) {
6700     _young_list->empty_list();
6701   }
6702 
6703   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6704   heap_region_iterate(&cl);
6705 
6706   if (!free_list_only) {
6707     _allocator->set_used(cl.total_used());
6708   }
6709   assert(_allocator->used_unlocked() == recalculate_used(),
6710          err_msg("inconsistent _allocator->used_unlocked(), "
6711                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6712                  _allocator->used_unlocked(), recalculate_used()));
6713 }
6714 
set_refine_cte_cl_concurrency(bool concurrent)6715 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6716   _refine_cte_cl->set_concurrent(concurrent);
6717 }
6718 
is_in_closed_subset(const void * p) const6719 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6720   HeapRegion* hr = heap_region_containing(p);
6721   return hr->is_in(p);
6722 }
6723 
6724 // Methods for the mutator alloc region
6725 
new_mutator_alloc_region(size_t word_size,bool force)6726 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6727                                                       bool force) {
6728   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6729   assert(!force || g1_policy()->can_expand_young_list(),
6730          "if force is true we should be able to expand the young list");
6731   bool young_list_full = g1_policy()->is_young_list_full();
6732   if (force || !young_list_full) {
6733     HeapRegion* new_alloc_region = new_region(word_size,
6734                                               false /* is_old */,
6735                                               false /* do_expand */);
6736     if (new_alloc_region != NULL) {
6737       set_region_short_lived_locked(new_alloc_region);
6738       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6739       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6740       return new_alloc_region;
6741     }
6742   }
6743   return NULL;
6744 }
6745 
retire_mutator_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes)6746 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6747                                                   size_t allocated_bytes) {
6748   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6749   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6750 
6751   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6752   _allocator->increase_used(allocated_bytes);
6753   _hr_printer.retire(alloc_region);
6754   // We update the eden sizes here, when the region is retired,
6755   // instead of when it's allocated, since this is the point that its
6756   // used space has been recored in _summary_bytes_used.
6757   g1mm()->update_eden_size();
6758 }
6759 
set_par_threads()6760 void G1CollectedHeap::set_par_threads() {
6761   // Don't change the number of workers.  Use the value previously set
6762   // in the workgroup.
6763   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6764   uint n_workers = workers()->active_workers();
6765   assert(UseDynamicNumberOfGCThreads ||
6766            n_workers == workers()->total_workers(),
6767       "Otherwise should be using the total number of workers");
6768   if (n_workers == 0) {
6769     assert(false, "Should have been set in prior evacuation pause.");
6770     n_workers = ParallelGCThreads;
6771     workers()->set_active_workers(n_workers);
6772   }
6773   set_par_threads(n_workers);
6774 }
6775 
6776 // Methods for the GC alloc regions
6777 
new_gc_alloc_region(size_t word_size,uint count,InCSetState dest)6778 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6779                                                  uint count,
6780                                                  InCSetState dest) {
6781   assert(FreeList_lock->owned_by_self(), "pre-condition");
6782 
6783   if (count < g1_policy()->max_regions(dest)) {
6784     const bool is_survivor = (dest.is_young());
6785     HeapRegion* new_alloc_region = new_region(word_size,
6786                                               !is_survivor,
6787                                               true /* do_expand */);
6788     if (new_alloc_region != NULL) {
6789       // We really only need to do this for old regions given that we
6790       // should never scan survivors. But it doesn't hurt to do it
6791       // for survivors too.
6792       new_alloc_region->record_timestamp();
6793       if (is_survivor) {
6794         new_alloc_region->set_survivor();
6795         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6796         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6797       } else {
6798         new_alloc_region->set_old();
6799         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6800         check_bitmaps("Old Region Allocation", new_alloc_region);
6801       }
6802       bool during_im = g1_policy()->during_initial_mark_pause();
6803       new_alloc_region->note_start_of_copying(during_im);
6804       return new_alloc_region;
6805     }
6806   }
6807   return NULL;
6808 }
6809 
retire_gc_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes,InCSetState dest)6810 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6811                                              size_t allocated_bytes,
6812                                              InCSetState dest) {
6813   bool during_im = g1_policy()->during_initial_mark_pause();
6814   alloc_region->note_end_of_copying(during_im);
6815   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6816   if (dest.is_young()) {
6817     young_list()->add_survivor_region(alloc_region);
6818   } else {
6819     _old_set.add(alloc_region);
6820   }
6821   _hr_printer.retire(alloc_region);
6822 }
6823 
6824 // Heap region set verification
6825 
6826 class VerifyRegionListsClosure : public HeapRegionClosure {
6827 private:
6828   HeapRegionSet*   _old_set;
6829   HeapRegionSet*   _humongous_set;
6830   HeapRegionManager*   _hrm;
6831 
6832 public:
6833   HeapRegionSetCount _old_count;
6834   HeapRegionSetCount _humongous_count;
6835   HeapRegionSetCount _free_count;
6836 
VerifyRegionListsClosure(HeapRegionSet * old_set,HeapRegionSet * humongous_set,HeapRegionManager * hrm)6837   VerifyRegionListsClosure(HeapRegionSet* old_set,
6838                            HeapRegionSet* humongous_set,
6839                            HeapRegionManager* hrm) :
6840     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6841     _old_count(), _humongous_count(), _free_count(){ }
6842 
doHeapRegion(HeapRegion * hr)6843   bool doHeapRegion(HeapRegion* hr) {
6844     if (hr->continuesHumongous()) {
6845       return false;
6846     }
6847 
6848     if (hr->is_young()) {
6849       // TODO
6850     } else if (hr->startsHumongous()) {
6851       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6852       _humongous_count.increment(1u, hr->capacity());
6853     } else if (hr->is_empty()) {
6854       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6855       _free_count.increment(1u, hr->capacity());
6856     } else if (hr->is_old()) {
6857       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6858       _old_count.increment(1u, hr->capacity());
6859     } else {
6860       ShouldNotReachHere();
6861     }
6862     return false;
6863   }
6864 
verify_counts(HeapRegionSet * old_set,HeapRegionSet * humongous_set,HeapRegionManager * free_list)6865   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6866     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6867     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6868         old_set->total_capacity_bytes(), _old_count.capacity()));
6869 
6870     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6871     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6872         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6873 
6874     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6875     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6876         free_list->total_capacity_bytes(), _free_count.capacity()));
6877   }
6878 };
6879 
verify_region_sets()6880 void G1CollectedHeap::verify_region_sets() {
6881   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6882 
6883   // First, check the explicit lists.
6884   _hrm.verify();
6885   {
6886     // Given that a concurrent operation might be adding regions to
6887     // the secondary free list we have to take the lock before
6888     // verifying it.
6889     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6890     _secondary_free_list.verify_list();
6891   }
6892 
6893   // If a concurrent region freeing operation is in progress it will
6894   // be difficult to correctly attributed any free regions we come
6895   // across to the correct free list given that they might belong to
6896   // one of several (free_list, secondary_free_list, any local lists,
6897   // etc.). So, if that's the case we will skip the rest of the
6898   // verification operation. Alternatively, waiting for the concurrent
6899   // operation to complete will have a non-trivial effect on the GC's
6900   // operation (no concurrent operation will last longer than the
6901   // interval between two calls to verification) and it might hide
6902   // any issues that we would like to catch during testing.
6903   if (free_regions_coming()) {
6904     return;
6905   }
6906 
6907   // Make sure we append the secondary_free_list on the free_list so
6908   // that all free regions we will come across can be safely
6909   // attributed to the free_list.
6910   append_secondary_free_list_if_not_empty_with_lock();
6911 
6912   // Finally, make sure that the region accounting in the lists is
6913   // consistent with what we see in the heap.
6914 
6915   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6916   heap_region_iterate(&cl);
6917   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6918 }
6919 
6920 // Optimized nmethod scanning
6921 
6922 class RegisterNMethodOopClosure: public OopClosure {
6923   G1CollectedHeap* _g1h;
6924   nmethod* _nm;
6925 
do_oop_work(T * p)6926   template <class T> void do_oop_work(T* p) {
6927     T heap_oop = oopDesc::load_heap_oop(p);
6928     if (!oopDesc::is_null(heap_oop)) {
6929       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6930       HeapRegion* hr = _g1h->heap_region_containing(obj);
6931       assert(!hr->continuesHumongous(),
6932              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6933                      " starting at " HR_FORMAT,
6934                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6935 
6936       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6937       hr->add_strong_code_root_locked(_nm);
6938     }
6939   }
6940 
6941 public:
RegisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)6942   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6943     _g1h(g1h), _nm(nm) {}
6944 
do_oop(oop * p)6945   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)6946   void do_oop(narrowOop* p) { do_oop_work(p); }
6947 };
6948 
6949 class UnregisterNMethodOopClosure: public OopClosure {
6950   G1CollectedHeap* _g1h;
6951   nmethod* _nm;
6952 
do_oop_work(T * p)6953   template <class T> void do_oop_work(T* p) {
6954     T heap_oop = oopDesc::load_heap_oop(p);
6955     if (!oopDesc::is_null(heap_oop)) {
6956       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6957       HeapRegion* hr = _g1h->heap_region_containing(obj);
6958       assert(!hr->continuesHumongous(),
6959              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6960                      " starting at " HR_FORMAT,
6961                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6962 
6963       hr->remove_strong_code_root(_nm);
6964     }
6965   }
6966 
6967 public:
UnregisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)6968   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6969     _g1h(g1h), _nm(nm) {}
6970 
do_oop(oop * p)6971   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)6972   void do_oop(narrowOop* p) { do_oop_work(p); }
6973 };
6974 
register_nmethod(nmethod * nm)6975 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6976   CollectedHeap::register_nmethod(nm);
6977 
6978   guarantee(nm != NULL, "sanity");
6979   RegisterNMethodOopClosure reg_cl(this, nm);
6980   nm->oops_do(&reg_cl);
6981 }
6982 
unregister_nmethod(nmethod * nm)6983 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6984   CollectedHeap::unregister_nmethod(nm);
6985 
6986   guarantee(nm != NULL, "sanity");
6987   UnregisterNMethodOopClosure reg_cl(this, nm);
6988   nm->oops_do(&reg_cl, true);
6989 }
6990 
purge_code_root_memory()6991 void G1CollectedHeap::purge_code_root_memory() {
6992   double purge_start = os::elapsedTime();
6993   G1CodeRootSet::purge();
6994   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6995   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6996 }
6997 
6998 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6999   G1CollectedHeap* _g1h;
7000 
7001 public:
RebuildStrongCodeRootClosure(G1CollectedHeap * g1h)7002   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7003     _g1h(g1h) {}
7004 
do_code_blob(CodeBlob * cb)7005   void do_code_blob(CodeBlob* cb) {
7006     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7007     if (nm == NULL) {
7008       return;
7009     }
7010 
7011     if (ScavengeRootsInCode) {
7012       _g1h->register_nmethod(nm);
7013     }
7014   }
7015 };
7016 
rebuild_strong_code_roots()7017 void G1CollectedHeap::rebuild_strong_code_roots() {
7018   RebuildStrongCodeRootClosure blob_cl(this);
7019   CodeCache::blobs_do(&blob_cl);
7020 }
7021