1 /*
2  * Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP
26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP
27 
28 #include "gc_implementation/shared/hSpaceCounters.hpp"
29 
30 class G1CollectedHeap;
31 
32 // Class for monitoring logical spaces in G1. It provides data for
33 // both G1's jstat counters as well as G1's memory pools.
34 //
35 // G1 splits the heap into heap regions and each heap region belongs
36 // to one of the following categories:
37 //
38 // * eden      : regions that have been allocated since the last GC
39 // * survivors : regions with objects that survived the last few GCs
40 // * old       : long-lived non-humongous regions
41 // * humongous : humongous regions
42 // * free      : free regions
43 //
44 // The combination of eden and survivor regions form the equivalent of
45 // the young generation in the other GCs. The combination of old and
46 // humongous regions form the equivalent of the old generation in the
47 // other GCs. Free regions do not have a good equivalent in the other
48 // GCs given that they can be allocated as any of the other region types.
49 //
50 // The monitoring tools expect the heap to contain a number of
51 // generations (young, old, perm) and each generation to contain a
52 // number of spaces (young: eden, survivors, old). Given that G1 does
53 // not maintain those spaces physically (e.g., the set of
54 // non-contiguous eden regions can be considered as a "logical"
55 // space), we'll provide the illusion that those generations and
56 // spaces exist. In reality, each generation and space refers to a set
57 // of heap regions that are potentially non-contiguous.
58 //
59 // This class provides interfaces to access the min, current, and max
60 // capacity and current occupancy for each of G1's logical spaces and
61 // generations we expose to the monitoring tools. Also provided are
62 // counters for G1 concurrent collections and stop-the-world full heap
63 // collections.
64 //
65 // Below is a description of how the various sizes are calculated.
66 //
67 // * Current Capacity
68 //
69 //    - heap_capacity = current heap capacity (e.g., current committed size)
70 //    - young_gen_capacity = current max young gen target capacity
71 //          (i.e., young gen target capacity + max allowed expansion capacity)
72 //    - survivor_capacity = current survivor region capacity
73 //    - eden_capacity = young_gen_capacity - survivor_capacity
74 //    - old_capacity = heap_capacity - young_gen_capacity
75 //
76 //    What we do in the above is to distribute the free regions among
77 //    eden_capacity and old_capacity.
78 //
79 // * Occupancy
80 //
81 //    - young_gen_used = current young region capacity
82 //    - survivor_used = survivor_capacity
83 //    - eden_used = young_gen_used - survivor_used
84 //    - old_used = overall_used - young_gen_used
85 //
86 //    Unfortunately, we currently only keep track of the number of
87 //    currently allocated young and survivor regions + the overall used
88 //    bytes in the heap, so the above can be a little inaccurate.
89 //
90 // * Min Capacity
91 //
92 //    We set this to 0 for all spaces.
93 //
94 // * Max Capacity
95 //
96 //    For jstat, we set the max capacity of all spaces to heap_capacity,
97 //    given that we don't always have a reasonable upper bound on how big
98 //    each space can grow. For the memory pools, we make the max
99 //    capacity undefined with the exception of the old memory pool for
100 //    which we make the max capacity same as the max heap capacity.
101 //
102 // If we had more accurate occupancy / capacity information per
103 // region set the above calculations would be greatly simplified and
104 // be made more accurate.
105 //
106 // We update all the above synchronously and we store the results in
107 // fields so that we just read said fields when needed. A subtle point
108 // is that all the above sizes need to be recalculated when the old
109 // gen changes capacity (after a GC or after a humongous allocation)
110 // but only the eden occupancy changes when a new eden region is
111 // allocated. So, in the latter case we have minimal recalcuation to
112 // do which is important as we want to keep the eden region allocation
113 // path as low-overhead as possible.
114 
115 class G1MonitoringSupport : public CHeapObj<mtGC> {
116   friend class VMStructs;
117 
118   G1CollectedHeap* _g1h;
119 
120   // jstat performance counters
121   //  incremental collections both young and mixed
122   CollectorCounters*   _incremental_collection_counters;
123   //  full stop-the-world collections
124   CollectorCounters*   _full_collection_counters;
125   //  young collection set counters.  The _eden_counters,
126   // _from_counters, and _to_counters are associated with
127   // this "generational" counter.
128   GenerationCounters*  _young_collection_counters;
129   //  old collection set counters. The _old_space_counters
130   // below are associated with this "generational" counter.
131   GenerationCounters*  _old_collection_counters;
132   // Counters for the capacity and used for
133   //   the whole heap
134   HSpaceCounters*      _old_space_counters;
135   //   the young collection
136   HSpaceCounters*      _eden_counters;
137   //   the survivor collection (only one, _to_counters, is actively used)
138   HSpaceCounters*      _from_counters;
139   HSpaceCounters*      _to_counters;
140 
141   // When it's appropriate to recalculate the various sizes (at the
142   // end of a GC, when a new eden region is allocated, etc.) we store
143   // them here so that we can easily report them when needed and not
144   // have to recalculate them every time.
145 
146   size_t _overall_reserved;
147   size_t _overall_committed;
148   size_t _overall_used;
149 
150   uint   _young_region_num;
151   size_t _young_gen_committed;
152   size_t _eden_committed;
153   size_t _eden_used;
154   size_t _survivor_committed;
155   size_t _survivor_used;
156 
157   size_t _old_committed;
158   size_t _old_used;
159 
g1h()160   G1CollectedHeap* g1h() { return _g1h; }
161 
162   // It returns x - y if x > y, 0 otherwise.
163   // As described in the comment above, some of the inputs to the
164   // calculations we have to do are obtained concurrently and hence
165   // may be inconsistent with each other. So, this provides a
166   // defensive way of performing the subtraction and avoids the value
167   // going negative (which would mean a very large result, given that
168   // the parameter are size_t).
subtract_up_to_zero(size_t x,size_t y)169   static size_t subtract_up_to_zero(size_t x, size_t y) {
170     if (x > y) {
171       return x - y;
172     } else {
173       return 0;
174     }
175   }
176 
177   // Recalculate all the sizes.
178   void recalculate_sizes();
179   // Recalculate only what's necessary when a new eden region is allocated.
180   void recalculate_eden_size();
181 
182  public:
183   G1MonitoringSupport(G1CollectedHeap* g1h);
184 
185   // Unfortunately, the jstat tool assumes that no space has 0
186   // capacity. In our case, given that each space is logical, it's
187   // possible that no regions will be allocated to it, hence to have 0
188   // capacity (e.g., if there are no survivor regions, the survivor
189   // space has 0 capacity). The way we deal with this is to always pad
190   // each capacity value we report to jstat by a very small amount to
191   // make sure that it's never zero. Given that we sometimes have to
192   // report a capacity of a generation that contains several spaces
193   // (e.g., young gen includes one eden, two survivor spaces), the
194   // mult parameter is provided in order to adding the appropriate
195   // padding multiple times so that the capacities add up correctly.
pad_capacity(size_t size_bytes,size_t mult=1)196   static size_t pad_capacity(size_t size_bytes, size_t mult = 1) {
197     return size_bytes + MinObjAlignmentInBytes * mult;
198   }
199 
200   // Recalculate all the sizes from scratch and update all the jstat
201   // counters accordingly.
202   void update_sizes();
203   // Recalculate only what's necessary when a new eden region is
204   // allocated and update any jstat counters that need to be updated.
205   void update_eden_size();
206 
incremental_collection_counters()207   CollectorCounters* incremental_collection_counters() {
208     return _incremental_collection_counters;
209   }
full_collection_counters()210   CollectorCounters* full_collection_counters() {
211     return _full_collection_counters;
212   }
young_collection_counters()213   GenerationCounters* young_collection_counters() {
214     return _young_collection_counters;
215   }
old_collection_counters()216   GenerationCounters* old_collection_counters() {
217     return _old_collection_counters;
218   }
old_space_counters()219   HSpaceCounters*      old_space_counters() { return _old_space_counters; }
eden_counters()220   HSpaceCounters*      eden_counters() { return _eden_counters; }
from_counters()221   HSpaceCounters*      from_counters() { return _from_counters; }
to_counters()222   HSpaceCounters*      to_counters() { return _to_counters; }
223 
224   // Monitoring support used by
225   //   MemoryService
226   //   jstat counters
227   //   Tracing
228 
overall_reserved()229   size_t overall_reserved()           { return _overall_reserved;     }
overall_committed()230   size_t overall_committed()          { return _overall_committed;    }
overall_used()231   size_t overall_used()               { return _overall_used;         }
232 
young_gen_committed()233   size_t young_gen_committed()        { return _young_gen_committed;  }
young_gen_max()234   size_t young_gen_max()              { return overall_reserved();    }
eden_space_committed()235   size_t eden_space_committed()       { return _eden_committed;       }
eden_space_used()236   size_t eden_space_used()            { return _eden_used;            }
survivor_space_committed()237   size_t survivor_space_committed()   { return _survivor_committed;   }
survivor_space_used()238   size_t survivor_space_used()        { return _survivor_used;        }
239 
old_gen_committed()240   size_t old_gen_committed()          { return old_space_committed(); }
old_gen_max()241   size_t old_gen_max()                { return overall_reserved();    }
old_space_committed()242   size_t old_space_committed()        { return _old_committed;        }
old_space_used()243   size_t old_space_used()             { return _old_used;             }
244 };
245 
246 class G1GenerationCounters: public GenerationCounters {
247 protected:
248   G1MonitoringSupport* _g1mm;
249 
250 public:
251   G1GenerationCounters(G1MonitoringSupport* g1mm,
252                        const char* name, int ordinal, int spaces,
253                        size_t min_capacity, size_t max_capacity,
254                        size_t curr_capacity);
255 };
256 
257 class G1YoungGenerationCounters: public G1GenerationCounters {
258 public:
259   G1YoungGenerationCounters(G1MonitoringSupport* g1mm, const char* name);
260   virtual void update_all();
261 };
262 
263 class G1OldGenerationCounters: public G1GenerationCounters {
264 public:
265   G1OldGenerationCounters(G1MonitoringSupport* g1mm, const char* name);
266   virtual void update_all();
267 };
268 
269 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1MONITORINGSUPPORT_HPP
270