1 /*
2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "memory/allocation.inline.hpp"
27 #include "memory/cardTableModRefBS.hpp"
28 #include "memory/cardTableRS.hpp"
29 #include "memory/sharedHeap.hpp"
30 #include "memory/space.hpp"
31 #include "memory/space.inline.hpp"
32 #include "memory/universe.hpp"
33 #include "runtime/java.hpp"
34 #include "runtime/mutexLocker.hpp"
35 #include "runtime/virtualspace.hpp"
36 #include "services/memTracker.hpp"
37 #include "utilities/macros.hpp"
38 #ifdef COMPILER1
39 #include "c1/c1_LIR.hpp"
40 #include "c1/c1_LIRGenerator.hpp"
41 #endif
42 
43 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
44 // enumerate ref fields that have been modified (since the last
45 // enumeration.)
46 
compute_byte_map_size()47 size_t CardTableModRefBS::compute_byte_map_size()
48 {
49   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
50                                         "unitialized, check declaration order");
51   assert(_page_size != 0, "unitialized, check declaration order");
52   const size_t granularity = os::vm_allocation_granularity();
53   return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
54 }
55 
CardTableModRefBS(MemRegion whole_heap,int max_covered_regions)56 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
57                                      int max_covered_regions):
58   ModRefBarrierSet(max_covered_regions),
59   _whole_heap(whole_heap),
60   _guard_index(0),
61   _guard_region(),
62   _last_valid_index(0),
63   _page_size(os::vm_page_size()),
64   _byte_map_size(0),
65   _covered(NULL),
66   _committed(NULL),
67   _cur_covered_regions(0),
68   _byte_map(NULL),
69   byte_map_base(NULL),
70   // LNC functionality
71   _lowest_non_clean(NULL),
72   _lowest_non_clean_chunk_size(NULL),
73   _lowest_non_clean_base_chunk_index(NULL),
74   _last_LNC_resizing_collection(NULL)
75 {
76   _kind = BarrierSet::CardTableModRef;
77 
78   assert((uintptr_t(_whole_heap.start())  & (card_size - 1))  == 0, "heap must start at card boundary");
79   assert((uintptr_t(_whole_heap.end()) & (card_size - 1))  == 0, "heap must end at card boundary");
80 
81   assert(card_size <= 512, "card_size must be less than 512"); // why?
82 
83   _covered   = new MemRegion[_max_covered_regions];
84   if (_covered == NULL) {
85     vm_exit_during_initialization("Could not allocate card table covered region set.");
86   }
87 }
88 
initialize()89 void CardTableModRefBS::initialize() {
90   _guard_index = cards_required(_whole_heap.word_size()) - 1;
91   _last_valid_index = _guard_index - 1;
92 
93   _byte_map_size = compute_byte_map_size();
94 
95   HeapWord* low_bound  = _whole_heap.start();
96   HeapWord* high_bound = _whole_heap.end();
97 
98   _cur_covered_regions = 0;
99   _committed = new MemRegion[_max_covered_regions];
100   if (_committed == NULL) {
101     vm_exit_during_initialization("Could not allocate card table committed region set.");
102   }
103 
104   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
105     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
106   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
107 
108   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
109 
110   os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
111                        _page_size, heap_rs.base(), heap_rs.size());
112   if (!heap_rs.is_reserved()) {
113     vm_exit_during_initialization("Could not reserve enough space for the "
114                                   "card marking array");
115   }
116 
117   // The assember store_check code will do an unsigned shift of the oop,
118   // then add it to byte_map_base, i.e.
119   //
120   //   _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
121   _byte_map = (jbyte*) heap_rs.base();
122   byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
123   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
124   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
125 
126   jbyte* guard_card = &_byte_map[_guard_index];
127   uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
128   _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
129   os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
130                             !ExecMem, "card table last card");
131   *guard_card = last_card;
132 
133   _lowest_non_clean =
134     NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
135   _lowest_non_clean_chunk_size =
136     NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
137   _lowest_non_clean_base_chunk_index =
138     NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
139   _last_LNC_resizing_collection =
140     NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
141   if (_lowest_non_clean == NULL
142       || _lowest_non_clean_chunk_size == NULL
143       || _lowest_non_clean_base_chunk_index == NULL
144       || _last_LNC_resizing_collection == NULL)
145     vm_exit_during_initialization("couldn't allocate an LNC array.");
146   for (int i = 0; i < _max_covered_regions; i++) {
147     _lowest_non_clean[i] = NULL;
148     _lowest_non_clean_chunk_size[i] = 0;
149     _last_LNC_resizing_collection[i] = -1;
150   }
151 
152   if (TraceCardTableModRefBS) {
153     gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
154     gclog_or_tty->print_cr("  "
155                   "  &_byte_map[0]: " INTPTR_FORMAT
156                   "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
157                   p2i(&_byte_map[0]),
158                   p2i(&_byte_map[_last_valid_index]));
159     gclog_or_tty->print_cr("  "
160                   "  byte_map_base: " INTPTR_FORMAT,
161                   p2i(byte_map_base));
162   }
163 }
164 
~CardTableModRefBS()165 CardTableModRefBS::~CardTableModRefBS() {
166   if (_covered) {
167     delete[] _covered;
168     _covered = NULL;
169   }
170   if (_committed) {
171     delete[] _committed;
172     _committed = NULL;
173   }
174   if (_lowest_non_clean) {
175     FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
176     _lowest_non_clean = NULL;
177   }
178   if (_lowest_non_clean_chunk_size) {
179     FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
180     _lowest_non_clean_chunk_size = NULL;
181   }
182   if (_lowest_non_clean_base_chunk_index) {
183     FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
184     _lowest_non_clean_base_chunk_index = NULL;
185   }
186   if (_last_LNC_resizing_collection) {
187     FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
188     _last_LNC_resizing_collection = NULL;
189   }
190 }
191 
find_covering_region_by_base(HeapWord * base)192 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
193   int i;
194   for (i = 0; i < _cur_covered_regions; i++) {
195     if (_covered[i].start() == base) return i;
196     if (_covered[i].start() > base) break;
197   }
198   // If we didn't find it, create a new one.
199   assert(_cur_covered_regions < _max_covered_regions,
200          "too many covered regions");
201   // Move the ones above up, to maintain sorted order.
202   for (int j = _cur_covered_regions; j > i; j--) {
203     _covered[j] = _covered[j-1];
204     _committed[j] = _committed[j-1];
205   }
206   int res = i;
207   _cur_covered_regions++;
208   _covered[res].set_start(base);
209   _covered[res].set_word_size(0);
210   jbyte* ct_start = byte_for(base);
211   uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
212   _committed[res].set_start((HeapWord*)ct_start_aligned);
213   _committed[res].set_word_size(0);
214   return res;
215 }
216 
find_covering_region_containing(HeapWord * addr)217 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
218   for (int i = 0; i < _cur_covered_regions; i++) {
219     if (_covered[i].contains(addr)) {
220       return i;
221     }
222   }
223   assert(0, "address outside of heap?");
224   return -1;
225 }
226 
largest_prev_committed_end(int ind) const227 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
228   HeapWord* max_end = NULL;
229   for (int j = 0; j < ind; j++) {
230     HeapWord* this_end = _committed[j].end();
231     if (this_end > max_end) max_end = this_end;
232   }
233   return max_end;
234 }
235 
committed_unique_to_self(int self,MemRegion mr) const236 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
237                                                       MemRegion mr) const {
238   MemRegion result = mr;
239   for (int r = 0; r < _cur_covered_regions; r += 1) {
240     if (r != self) {
241       result = result.minus(_committed[r]);
242     }
243   }
244   // Never include the guard page.
245   result = result.minus(_guard_region);
246   return result;
247 }
248 
resize_covered_region(MemRegion new_region)249 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
250   // We don't change the start of a region, only the end.
251   assert(_whole_heap.contains(new_region),
252            "attempt to cover area not in reserved area");
253   debug_only(verify_guard();)
254   // collided is true if the expansion would push into another committed region
255   debug_only(bool collided = false;)
256   int const ind = find_covering_region_by_base(new_region.start());
257   MemRegion const old_region = _covered[ind];
258   assert(old_region.start() == new_region.start(), "just checking");
259   if (new_region.word_size() != old_region.word_size()) {
260     // Commit new or uncommit old pages, if necessary.
261     MemRegion cur_committed = _committed[ind];
262     // Extend the end of this _commited region
263     // to cover the end of any lower _committed regions.
264     // This forms overlapping regions, but never interior regions.
265     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
266     if (max_prev_end > cur_committed.end()) {
267       cur_committed.set_end(max_prev_end);
268     }
269     // Align the end up to a page size (starts are already aligned).
270     jbyte* const new_end = byte_after(new_region.last());
271     HeapWord* new_end_aligned =
272       (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
273     assert(new_end_aligned >= (HeapWord*) new_end,
274            "align up, but less");
275     // Check the other regions (excludes "ind") to ensure that
276     // the new_end_aligned does not intrude onto the committed
277     // space of another region.
278     int ri = 0;
279     for (ri = 0; ri < _cur_covered_regions; ri++) {
280       if (ri != ind) {
281         if (_committed[ri].contains(new_end_aligned)) {
282           // The prior check included in the assert
283           // (new_end_aligned >= _committed[ri].start())
284           // is redundant with the "contains" test.
285           // Any region containing the new end
286           // should start at or beyond the region found (ind)
287           // for the new end (committed regions are not expected to
288           // be proper subsets of other committed regions).
289           assert(_committed[ri].start() >= _committed[ind].start(),
290                  "New end of committed region is inconsistent");
291           new_end_aligned = _committed[ri].start();
292           // new_end_aligned can be equal to the start of its
293           // committed region (i.e., of "ind") if a second
294           // region following "ind" also start at the same location
295           // as "ind".
296           assert(new_end_aligned >= _committed[ind].start(),
297             "New end of committed region is before start");
298           debug_only(collided = true;)
299           // Should only collide with 1 region
300           break;
301         }
302       }
303     }
304 #ifdef ASSERT
305     for (++ri; ri < _cur_covered_regions; ri++) {
306       assert(!_committed[ri].contains(new_end_aligned),
307         "New end of committed region is in a second committed region");
308     }
309 #endif
310     // The guard page is always committed and should not be committed over.
311     // "guarded" is used for assertion checking below and recalls the fact
312     // that the would-be end of the new committed region would have
313     // penetrated the guard page.
314     HeapWord* new_end_for_commit = new_end_aligned;
315 
316     DEBUG_ONLY(bool guarded = false;)
317     if (new_end_for_commit > _guard_region.start()) {
318       new_end_for_commit = _guard_region.start();
319       DEBUG_ONLY(guarded = true;)
320     }
321 
322     if (new_end_for_commit > cur_committed.end()) {
323       // Must commit new pages.
324       MemRegion const new_committed =
325         MemRegion(cur_committed.end(), new_end_for_commit);
326 
327       assert(!new_committed.is_empty(), "Region should not be empty here");
328       os::commit_memory_or_exit((char*)new_committed.start(),
329                                 new_committed.byte_size(), _page_size,
330                                 !ExecMem, "card table expansion");
331     // Use new_end_aligned (as opposed to new_end_for_commit) because
332     // the cur_committed region may include the guard region.
333     } else if (new_end_aligned < cur_committed.end()) {
334       // Must uncommit pages.
335       MemRegion const uncommit_region =
336         committed_unique_to_self(ind, MemRegion(new_end_aligned,
337                                                 cur_committed.end()));
338       if (!uncommit_region.is_empty()) {
339         // It is not safe to uncommit cards if the boundary between
340         // the generations is moving.  A shrink can uncommit cards
341         // owned by generation A but being used by generation B.
342         if (!UseAdaptiveGCBoundary) {
343           if (!os::uncommit_memory((char*)uncommit_region.start(),
344                                    uncommit_region.byte_size())) {
345             assert(false, "Card table contraction failed");
346             // The call failed so don't change the end of the
347             // committed region.  This is better than taking the
348             // VM down.
349             new_end_aligned = _committed[ind].end();
350           }
351         } else {
352           new_end_aligned = _committed[ind].end();
353         }
354       }
355     }
356     // In any case, we can reset the end of the current committed entry.
357     _committed[ind].set_end(new_end_aligned);
358 
359 #ifdef ASSERT
360     // Check that the last card in the new region is committed according
361     // to the tables.
362     bool covered = false;
363     for (int cr = 0; cr < _cur_covered_regions; cr++) {
364       if (_committed[cr].contains(new_end - 1)) {
365         covered = true;
366         break;
367       }
368     }
369     assert(covered, "Card for end of new region not committed");
370 #endif
371 
372     // The default of 0 is not necessarily clean cards.
373     jbyte* entry;
374     if (old_region.last() < _whole_heap.start()) {
375       entry = byte_for(_whole_heap.start());
376     } else {
377       entry = byte_after(old_region.last());
378     }
379     assert(index_for(new_region.last()) <  _guard_index,
380       "The guard card will be overwritten");
381     // This line commented out cleans the newly expanded region and
382     // not the aligned up expanded region.
383     // jbyte* const end = byte_after(new_region.last());
384     jbyte* const end = (jbyte*) new_end_for_commit;
385     assert((end >= byte_after(new_region.last())) || collided || guarded,
386       "Expect to be beyond new region unless impacting another region");
387     // do nothing if we resized downward.
388 #ifdef ASSERT
389     for (int ri = 0; ri < _cur_covered_regions; ri++) {
390       if (ri != ind) {
391         // The end of the new committed region should not
392         // be in any existing region unless it matches
393         // the start of the next region.
394         assert(!_committed[ri].contains(end) ||
395                (_committed[ri].start() == (HeapWord*) end),
396                "Overlapping committed regions");
397       }
398     }
399 #endif
400     if (entry < end) {
401       memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
402     }
403   }
404   // In any case, the covered size changes.
405   _covered[ind].set_word_size(new_region.word_size());
406   if (TraceCardTableModRefBS) {
407     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
408     gclog_or_tty->print_cr("  "
409                   "  _covered[%d].start(): " INTPTR_FORMAT
410                   "  _covered[%d].last(): " INTPTR_FORMAT,
411                   ind, p2i(_covered[ind].start()),
412                   ind, p2i(_covered[ind].last()));
413     gclog_or_tty->print_cr("  "
414                   "  _committed[%d].start(): " INTPTR_FORMAT
415                   "  _committed[%d].last(): " INTPTR_FORMAT,
416                   ind, p2i(_committed[ind].start()),
417                   ind, p2i(_committed[ind].last()));
418     gclog_or_tty->print_cr("  "
419                   "  byte_for(start): " INTPTR_FORMAT
420                   "  byte_for(last): " INTPTR_FORMAT,
421                   p2i(byte_for(_covered[ind].start())),
422                   p2i(byte_for(_covered[ind].last())));
423     gclog_or_tty->print_cr("  "
424                   "  addr_for(start): " INTPTR_FORMAT
425                   "  addr_for(last): " INTPTR_FORMAT,
426                   p2i(addr_for((jbyte*) _committed[ind].start())),
427                   p2i(addr_for((jbyte*) _committed[ind].last())));
428   }
429   // Touch the last card of the covered region to show that it
430   // is committed (or SEGV).
431   debug_only((void) (*byte_for(_covered[ind].last()));)
432   debug_only(verify_guard();)
433 }
434 
435 // Note that these versions are precise!  The scanning code has to handle the
436 // fact that the write barrier may be either precise or imprecise.
437 
write_ref_field_work(void * field,oop newVal,bool release)438 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
439   inline_write_ref_field(field, newVal, release);
440 }
441 
442 
non_clean_card_iterate_possibly_parallel(Space * sp,MemRegion mr,OopsInGenClosure * cl,CardTableRS * ct)443 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
444                                                                  MemRegion mr,
445                                                                  OopsInGenClosure* cl,
446                                                                  CardTableRS* ct) {
447   if (!mr.is_empty()) {
448     // Caller (process_roots()) claims that all GC threads
449     // execute this call.  With UseDynamicNumberOfGCThreads now all
450     // active GC threads execute this call.  The number of active GC
451     // threads needs to be passed to par_non_clean_card_iterate_work()
452     // to get proper partitioning and termination.
453     //
454     // This is an example of where n_par_threads() is used instead
455     // of workers()->active_workers().  n_par_threads can be set to 0 to
456     // turn off parallelism.  For example when this code is called as
457     // part of verification and SharedHeap::process_roots() is being
458     // used, then n_par_threads() may have been set to 0.  active_workers
459     // is not overloaded with the meaning that it is a switch to disable
460     // parallelism and so keeps the meaning of the number of
461     // active gc workers.  If parallelism has not been shut off by
462     // setting n_par_threads to 0, then n_par_threads should be
463     // equal to active_workers.  When a different mechanism for shutting
464     // off parallelism is used, then active_workers can be used in
465     // place of n_par_threads.
466     //  This is an example of a path where n_par_threads is
467     // set to 0 to turn off parallism.
468     //  [7] CardTableModRefBS::non_clean_card_iterate()
469     //  [8] CardTableRS::younger_refs_in_space_iterate()
470     //  [9] Generation::younger_refs_in_space_iterate()
471     //  [10] OneContigSpaceCardGeneration::younger_refs_iterate()
472     //  [11] CompactingPermGenGen::younger_refs_iterate()
473     //  [12] CardTableRS::younger_refs_iterate()
474     //  [13] SharedHeap::process_strong_roots()
475     //  [14] G1CollectedHeap::verify()
476     //  [15] Universe::verify()
477     //  [16] G1CollectedHeap::do_collection_pause_at_safepoint()
478     //
479     int n_threads =  SharedHeap::heap()->n_par_threads();
480     bool is_par = n_threads > 0;
481     if (is_par) {
482 #if INCLUDE_ALL_GCS
483       assert(SharedHeap::heap()->n_par_threads() ==
484              SharedHeap::heap()->workers()->active_workers(), "Mismatch");
485       non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
486 #else  // INCLUDE_ALL_GCS
487       fatal("Parallel gc not supported here.");
488 #endif // INCLUDE_ALL_GCS
489     } else {
490       // We do not call the non_clean_card_iterate_serial() version below because
491       // we want to clear the cards (which non_clean_card_iterate_serial() does not
492       // do for us): clear_cl here does the work of finding contiguous dirty ranges
493       // of cards to process and clear.
494 
495       DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
496                                                        cl->gen_boundary());
497       ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
498 
499       clear_cl.do_MemRegion(mr);
500     }
501   }
502 }
503 
504 // The iterator itself is not MT-aware, but
505 // MT-aware callers and closures can use this to
506 // accomplish dirty card iteration in parallel. The
507 // iterator itself does not clear the dirty cards, or
508 // change their values in any manner.
non_clean_card_iterate_serial(MemRegion mr,MemRegionClosure * cl)509 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
510                                                       MemRegionClosure* cl) {
511   bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
512   assert(!is_par ||
513           (SharedHeap::heap()->n_par_threads() ==
514           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
515   for (int i = 0; i < _cur_covered_regions; i++) {
516     MemRegion mri = mr.intersection(_covered[i]);
517     if (mri.word_size() > 0) {
518       jbyte* cur_entry = byte_for(mri.last());
519       jbyte* limit = byte_for(mri.start());
520       while (cur_entry >= limit) {
521         jbyte* next_entry = cur_entry - 1;
522         if (*cur_entry != clean_card) {
523           size_t non_clean_cards = 1;
524           // Should the next card be included in this range of dirty cards.
525           while (next_entry >= limit && *next_entry != clean_card) {
526             non_clean_cards++;
527             cur_entry = next_entry;
528             next_entry--;
529           }
530           // The memory region may not be on a card boundary.  So that
531           // objects beyond the end of the region are not processed, make
532           // cur_cards precise with regard to the end of the memory region.
533           MemRegion cur_cards(addr_for(cur_entry),
534                               non_clean_cards * card_size_in_words);
535           MemRegion dirty_region = cur_cards.intersection(mri);
536           cl->do_MemRegion(dirty_region);
537         }
538         cur_entry = next_entry;
539       }
540     }
541   }
542 }
543 
dirty_MemRegion(MemRegion mr)544 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
545   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
546   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
547   jbyte* cur  = byte_for(mr.start());
548   jbyte* last = byte_after(mr.last());
549   while (cur < last) {
550     *cur = dirty_card;
551     cur++;
552   }
553 }
554 
invalidate(MemRegion mr,bool whole_heap)555 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
556   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
557   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
558   for (int i = 0; i < _cur_covered_regions; i++) {
559     MemRegion mri = mr.intersection(_covered[i]);
560     if (!mri.is_empty()) dirty_MemRegion(mri);
561   }
562 }
563 
clear_MemRegion(MemRegion mr)564 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
565   // Be conservative: only clean cards entirely contained within the
566   // region.
567   jbyte* cur;
568   if (mr.start() == _whole_heap.start()) {
569     cur = byte_for(mr.start());
570   } else {
571     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
572     cur = byte_after(mr.start() - 1);
573   }
574   jbyte* last = byte_after(mr.last());
575   memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
576 }
577 
clear(MemRegion mr)578 void CardTableModRefBS::clear(MemRegion mr) {
579   for (int i = 0; i < _cur_covered_regions; i++) {
580     MemRegion mri = mr.intersection(_covered[i]);
581     if (!mri.is_empty()) clear_MemRegion(mri);
582   }
583 }
584 
dirty(MemRegion mr)585 void CardTableModRefBS::dirty(MemRegion mr) {
586   jbyte* first = byte_for(mr.start());
587   jbyte* last  = byte_after(mr.last());
588   memset(first, dirty_card, last-first);
589 }
590 
591 // Unlike several other card table methods, dirty_card_iterate()
592 // iterates over dirty cards ranges in increasing address order.
dirty_card_iterate(MemRegion mr,MemRegionClosure * cl)593 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
594                                            MemRegionClosure* cl) {
595   for (int i = 0; i < _cur_covered_regions; i++) {
596     MemRegion mri = mr.intersection(_covered[i]);
597     if (!mri.is_empty()) {
598       jbyte *cur_entry, *next_entry, *limit;
599       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
600            cur_entry <= limit;
601            cur_entry  = next_entry) {
602         next_entry = cur_entry + 1;
603         if (*cur_entry == dirty_card) {
604           size_t dirty_cards;
605           // Accumulate maximal dirty card range, starting at cur_entry
606           for (dirty_cards = 1;
607                next_entry <= limit && *next_entry == dirty_card;
608                dirty_cards++, next_entry++);
609           MemRegion cur_cards(addr_for(cur_entry),
610                               dirty_cards*card_size_in_words);
611           cl->do_MemRegion(cur_cards);
612         }
613       }
614     }
615   }
616 }
617 
dirty_card_range_after_reset(MemRegion mr,bool reset,int reset_val)618 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
619                                                           bool reset,
620                                                           int reset_val) {
621   for (int i = 0; i < _cur_covered_regions; i++) {
622     MemRegion mri = mr.intersection(_covered[i]);
623     if (!mri.is_empty()) {
624       jbyte* cur_entry, *next_entry, *limit;
625       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
626            cur_entry <= limit;
627            cur_entry  = next_entry) {
628         next_entry = cur_entry + 1;
629         if (*cur_entry == dirty_card) {
630           size_t dirty_cards;
631           // Accumulate maximal dirty card range, starting at cur_entry
632           for (dirty_cards = 1;
633                next_entry <= limit && *next_entry == dirty_card;
634                dirty_cards++, next_entry++);
635           MemRegion cur_cards(addr_for(cur_entry),
636                               dirty_cards*card_size_in_words);
637           if (reset) {
638             for (size_t i = 0; i < dirty_cards; i++) {
639               cur_entry[i] = reset_val;
640             }
641           }
642           return cur_cards;
643         }
644       }
645     }
646   }
647   return MemRegion(mr.end(), mr.end());
648 }
649 
ct_max_alignment_constraint()650 uintx CardTableModRefBS::ct_max_alignment_constraint() {
651   return card_size * os::vm_page_size();
652 }
653 
verify_guard()654 void CardTableModRefBS::verify_guard() {
655   // For product build verification
656   guarantee(_byte_map[_guard_index] == last_card,
657             "card table guard has been modified");
658 }
659 
verify()660 void CardTableModRefBS::verify() {
661   verify_guard();
662 }
663 
664 #ifndef PRODUCT
verify_region(MemRegion mr,jbyte val,bool val_equals)665 void CardTableModRefBS::verify_region(MemRegion mr,
666                                       jbyte val, bool val_equals) {
667   jbyte* start    = byte_for(mr.start());
668   jbyte* end      = byte_for(mr.last());
669   bool failures = false;
670   for (jbyte* curr = start; curr <= end; ++curr) {
671     jbyte curr_val = *curr;
672     bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
673     if (failed) {
674       if (!failures) {
675         tty->cr();
676         tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
677         tty->print_cr("==   %sexpecting value: %d",
678                       (val_equals) ? "" : "not ", val);
679         failures = true;
680       }
681       tty->print_cr("==   card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], "
682                     "val: %d", p2i(curr), p2i(addr_for(curr)),
683                     p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
684                     (int) curr_val);
685     }
686   }
687   guarantee(!failures, "there should not have been any failures");
688 }
689 
verify_not_dirty_region(MemRegion mr)690 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
691   verify_region(mr, dirty_card, false /* val_equals */);
692 }
693 
verify_dirty_region(MemRegion mr)694 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
695   verify_region(mr, dirty_card, true /* val_equals */);
696 }
697 #endif
698 
print_on(outputStream * st) const699 void CardTableModRefBS::print_on(outputStream* st) const {
700   st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
701                p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
702 }
703 
card_will_be_scanned(jbyte cv)704 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
705   return
706     CardTableModRefBS::card_will_be_scanned(cv) ||
707     _rs->is_prev_nonclean_card_val(cv);
708 };
709 
card_may_have_been_dirty(jbyte cv)710 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
711   return
712     cv != clean_card &&
713     (CardTableModRefBS::card_may_have_been_dirty(cv) ||
714      CardTableRS::youngergen_may_have_been_dirty(cv));
715 };
716