1 /*
2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/symbolTable.hpp"
27 #include "classfile/systemDictionary.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "code/codeCache.hpp"
30 #include "code/icBuffer.hpp"
31 #include "gc_implementation/shared/collectorCounters.hpp"
32 #include "gc_implementation/shared/gcTrace.hpp"
33 #include "gc_implementation/shared/gcTraceTime.hpp"
34 #include "gc_implementation/shared/vmGCOperations.hpp"
35 #include "gc_interface/collectedHeap.inline.hpp"
36 #include "memory/filemap.hpp"
37 #include "memory/gcLocker.inline.hpp"
38 #include "memory/genCollectedHeap.hpp"
39 #include "memory/genOopClosures.inline.hpp"
40 #include "memory/generation.inline.hpp"
41 #include "memory/generationSpec.hpp"
42 #include "memory/resourceArea.hpp"
43 #include "memory/sharedHeap.hpp"
44 #include "memory/space.hpp"
45 #include "oops/oop.inline.hpp"
46 #include "oops/oop.inline2.hpp"
47 #include "runtime/biasedLocking.hpp"
48 #include "runtime/fprofiler.hpp"
49 #include "runtime/handles.hpp"
50 #include "runtime/handles.inline.hpp"
51 #include "runtime/java.hpp"
52 #include "runtime/vmThread.hpp"
53 #include "services/management.hpp"
54 #include "services/memoryService.hpp"
55 #include "utilities/vmError.hpp"
56 #include "utilities/workgroup.hpp"
57 #include "utilities/macros.hpp"
58 #if INCLUDE_ALL_GCS
59 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
60 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
61 #endif // INCLUDE_ALL_GCS
62 #if INCLUDE_JFR
63 #include "jfr/jfr.hpp"
64 #endif // INCLUDE_JFR
65 
66 GenCollectedHeap* GenCollectedHeap::_gch;
67 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
68 
69 // The set of potentially parallel tasks in root scanning.
70 enum GCH_strong_roots_tasks {
71   GCH_PS_Universe_oops_do,
72   GCH_PS_JNIHandles_oops_do,
73   GCH_PS_ObjectSynchronizer_oops_do,
74   GCH_PS_FlatProfiler_oops_do,
75   GCH_PS_Management_oops_do,
76   GCH_PS_SystemDictionary_oops_do,
77   GCH_PS_ClassLoaderDataGraph_oops_do,
78   GCH_PS_jvmti_oops_do,
79   GCH_PS_CodeCache_oops_do,
80   GCH_PS_younger_gens,
81   // Leave this one last.
82   GCH_PS_NumElements
83 };
84 
GenCollectedHeap(GenCollectorPolicy * policy)85 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
86   SharedHeap(policy),
87   _gen_policy(policy),
88   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
89   _full_collections_completed(0)
90 {
91   assert(policy != NULL, "Sanity check");
92 }
93 
initialize()94 jint GenCollectedHeap::initialize() {
95   CollectedHeap::pre_initialize();
96 
97   int i;
98   _n_gens = gen_policy()->number_of_generations();
99 
100   // While there are no constraints in the GC code that HeapWordSize
101   // be any particular value, there are multiple other areas in the
102   // system which believe this to be true (e.g. oop->object_size in some
103   // cases incorrectly returns the size in wordSize units rather than
104   // HeapWordSize).
105   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
106 
107   // The heap must be at least as aligned as generations.
108   size_t gen_alignment = Generation::GenGrain;
109 
110   _gen_specs = gen_policy()->generations();
111 
112   // Make sure the sizes are all aligned.
113   for (i = 0; i < _n_gens; i++) {
114     _gen_specs[i]->align(gen_alignment);
115   }
116 
117   // Allocate space for the heap.
118 
119   char* heap_address;
120   size_t total_reserved = 0;
121   int n_covered_regions = 0;
122   ReservedSpace heap_rs;
123 
124   size_t heap_alignment = collector_policy()->heap_alignment();
125 
126   heap_address = allocate(heap_alignment, &total_reserved,
127                           &n_covered_regions, &heap_rs);
128 
129   if (!heap_rs.is_reserved()) {
130     vm_shutdown_during_initialization(
131       "Could not reserve enough space for object heap");
132     return JNI_ENOMEM;
133   }
134 
135   _reserved = MemRegion((HeapWord*)heap_rs.base(),
136                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
137 
138   // It is important to do this in a way such that concurrent readers can't
139   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
140   _reserved.set_word_size(0);
141   _reserved.set_start((HeapWord*)heap_rs.base());
142   size_t actual_heap_size = heap_rs.size();
143   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
144 
145   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
146   set_barrier_set(rem_set()->bs());
147 
148   _gch = this;
149 
150   for (i = 0; i < _n_gens; i++) {
151     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
152     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
153     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
154   }
155   clear_incremental_collection_failed();
156 
157 #if INCLUDE_ALL_GCS
158   // If we are running CMS, create the collector responsible
159   // for collecting the CMS generations.
160   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
161     bool success = create_cms_collector();
162     if (!success) return JNI_ENOMEM;
163   }
164 #endif // INCLUDE_ALL_GCS
165 
166   return JNI_OK;
167 }
168 
169 
allocate(size_t alignment,size_t * _total_reserved,int * _n_covered_regions,ReservedSpace * heap_rs)170 char* GenCollectedHeap::allocate(size_t alignment,
171                                  size_t* _total_reserved,
172                                  int* _n_covered_regions,
173                                  ReservedSpace* heap_rs){
174   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
175     "the maximum representable size";
176 
177   // Now figure out the total size.
178   size_t total_reserved = 0;
179   int n_covered_regions = 0;
180   const size_t pageSize = UseLargePages ?
181       os::large_page_size() : os::vm_page_size();
182 
183   assert(alignment % pageSize == 0, "Must be");
184 
185   for (int i = 0; i < _n_gens; i++) {
186     total_reserved += _gen_specs[i]->max_size();
187     if (total_reserved < _gen_specs[i]->max_size()) {
188       vm_exit_during_initialization(overflow_msg);
189     }
190     n_covered_regions += _gen_specs[i]->n_covered_regions();
191   }
192   assert(total_reserved % alignment == 0,
193          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
194                  SIZE_FORMAT, total_reserved, alignment));
195 
196   // Needed until the cardtable is fixed to have the right number
197   // of covered regions.
198   n_covered_regions += 2;
199 
200   *_total_reserved = total_reserved;
201   *_n_covered_regions = n_covered_regions;
202 
203   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
204   return heap_rs->base();
205 }
206 
207 
post_initialize()208 void GenCollectedHeap::post_initialize() {
209   SharedHeap::post_initialize();
210   TwoGenerationCollectorPolicy *policy =
211     (TwoGenerationCollectorPolicy *)collector_policy();
212   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
213   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
214   assert(def_new_gen->kind() == Generation::DefNew ||
215          def_new_gen->kind() == Generation::ParNew ||
216          def_new_gen->kind() == Generation::ASParNew,
217          "Wrong generation kind");
218 
219   Generation* old_gen = get_gen(1);
220   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
221          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
222          old_gen->kind() == Generation::MarkSweepCompact,
223     "Wrong generation kind");
224 
225   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
226                                  old_gen->capacity(),
227                                  def_new_gen->from()->capacity());
228   policy->initialize_gc_policy_counters();
229 }
230 
ref_processing_init()231 void GenCollectedHeap::ref_processing_init() {
232   SharedHeap::ref_processing_init();
233   for (int i = 0; i < _n_gens; i++) {
234     _gens[i]->ref_processor_init();
235   }
236 }
237 
capacity() const238 size_t GenCollectedHeap::capacity() const {
239   size_t res = 0;
240   for (int i = 0; i < _n_gens; i++) {
241     res += _gens[i]->capacity();
242   }
243   return res;
244 }
245 
used() const246 size_t GenCollectedHeap::used() const {
247   size_t res = 0;
248   for (int i = 0; i < _n_gens; i++) {
249     res += _gens[i]->used();
250   }
251   return res;
252 }
253 
254 // Save the "used_region" for generations level and lower.
save_used_regions(int level)255 void GenCollectedHeap::save_used_regions(int level) {
256   assert(level < _n_gens, "Illegal level parameter");
257   for (int i = level; i >= 0; i--) {
258     _gens[i]->save_used_region();
259   }
260 }
261 
max_capacity() const262 size_t GenCollectedHeap::max_capacity() const {
263   size_t res = 0;
264   for (int i = 0; i < _n_gens; i++) {
265     res += _gens[i]->max_capacity();
266   }
267   return res;
268 }
269 
270 // Update the _full_collections_completed counter
271 // at the end of a stop-world full GC.
update_full_collections_completed()272 unsigned int GenCollectedHeap::update_full_collections_completed() {
273   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
274   assert(_full_collections_completed <= _total_full_collections,
275          "Can't complete more collections than were started");
276   _full_collections_completed = _total_full_collections;
277   ml.notify_all();
278   return _full_collections_completed;
279 }
280 
281 // Update the _full_collections_completed counter, as appropriate,
282 // at the end of a concurrent GC cycle. Note the conditional update
283 // below to allow this method to be called by a concurrent collector
284 // without synchronizing in any manner with the VM thread (which
285 // may already have initiated a STW full collection "concurrently").
update_full_collections_completed(unsigned int count)286 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
287   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
288   assert((_full_collections_completed <= _total_full_collections) &&
289          (count <= _total_full_collections),
290          "Can't complete more collections than were started");
291   if (count > _full_collections_completed) {
292     _full_collections_completed = count;
293     ml.notify_all();
294   }
295   return _full_collections_completed;
296 }
297 
298 
299 #ifndef PRODUCT
300 // Override of memory state checking method in CollectedHeap:
301 // Some collectors (CMS for example) can't have badHeapWordVal written
302 // in the first two words of an object. (For instance , in the case of
303 // CMS these words hold state used to synchronize between certain
304 // (concurrent) GC steps and direct allocating mutators.)
305 // The skip_header_HeapWords() method below, allows us to skip
306 // over the requisite number of HeapWord's. Note that (for
307 // generational collectors) this means that those many words are
308 // skipped in each object, irrespective of the generation in which
309 // that object lives. The resultant loss of precision seems to be
310 // harmless and the pain of avoiding that imprecision appears somewhat
311 // higher than we are prepared to pay for such rudimentary debugging
312 // support.
check_for_non_bad_heap_word_value(HeapWord * addr,size_t size)313 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
314                                                          size_t size) {
315   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
316     // We are asked to check a size in HeapWords,
317     // but the memory is mangled in juint words.
318     juint* start = (juint*) (addr + skip_header_HeapWords());
319     juint* end   = (juint*) (addr + size);
320     for (juint* slot = start; slot < end; slot += 1) {
321       assert(*slot == badHeapWordVal,
322              "Found non badHeapWordValue in pre-allocation check");
323     }
324   }
325 }
326 #endif
327 
attempt_allocation(size_t size,bool is_tlab,bool first_only)328 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
329                                                bool is_tlab,
330                                                bool first_only) {
331   HeapWord* res;
332   for (int i = 0; i < _n_gens; i++) {
333     if (_gens[i]->should_allocate(size, is_tlab)) {
334       res = _gens[i]->allocate(size, is_tlab);
335       if (res != NULL) return res;
336       else if (first_only) break;
337     }
338   }
339   // Otherwise...
340   return NULL;
341 }
342 
mem_allocate(size_t size,bool * gc_overhead_limit_was_exceeded)343 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
344                                          bool* gc_overhead_limit_was_exceeded) {
345   return collector_policy()->mem_allocate_work(size,
346                                                false /* is_tlab */,
347                                                gc_overhead_limit_was_exceeded);
348 }
349 
must_clear_all_soft_refs()350 bool GenCollectedHeap::must_clear_all_soft_refs() {
351   return _gc_cause == GCCause::_last_ditch_collection;
352 }
353 
should_do_concurrent_full_gc(GCCause::Cause cause)354 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
355   return UseConcMarkSweepGC &&
356          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
357           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
358 }
359 
do_collection(bool full,bool clear_all_soft_refs,size_t size,bool is_tlab,int max_level)360 void GenCollectedHeap::do_collection(bool  full,
361                                      bool   clear_all_soft_refs,
362                                      size_t size,
363                                      bool   is_tlab,
364                                      int    max_level) {
365   bool prepared_for_verification = false;
366   ResourceMark rm;
367   DEBUG_ONLY(Thread* my_thread = Thread::current();)
368 
369   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
370   assert(my_thread->is_VM_thread() ||
371          my_thread->is_ConcurrentGC_thread(),
372          "incorrect thread type capability");
373   assert(Heap_lock->is_locked(),
374          "the requesting thread should have the Heap_lock");
375   guarantee(!is_gc_active(), "collection is not reentrant");
376   assert(max_level < n_gens(), "sanity check");
377 
378   if (GC_locker::check_active_before_gc()) {
379     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
380   }
381 
382   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
383                           collector_policy()->should_clear_all_soft_refs();
384 
385   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
386 
387   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
388 
389   print_heap_before_gc();
390 
391   {
392     FlagSetting fl(_is_gc_active, true);
393 
394     bool complete = full && (max_level == (n_gens()-1));
395     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
396     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
397     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
398     // so we can assume here that the next GC id is what we want.
399     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
400 
401     gc_prologue(complete);
402     increment_total_collections(complete);
403 
404     size_t gch_prev_used = used();
405 
406     int starting_level = 0;
407     if (full) {
408       // Search for the oldest generation which will collect all younger
409       // generations, and start collection loop there.
410       for (int i = max_level; i >= 0; i--) {
411         if (_gens[i]->full_collects_younger_generations()) {
412           starting_level = i;
413           break;
414         }
415       }
416     }
417 
418     bool must_restore_marks_for_biased_locking = false;
419 
420     int max_level_collected = starting_level;
421     for (int i = starting_level; i <= max_level; i++) {
422       if (_gens[i]->should_collect(full, size, is_tlab)) {
423         if (i == n_gens() - 1) {  // a major collection is to happen
424           if (!complete) {
425             // The full_collections increment was missed above.
426             increment_total_full_collections();
427           }
428           pre_full_gc_dump(NULL);    // do any pre full gc dumps
429         }
430         // Timer for individual generations. Last argument is false: no CR
431         // FIXME: We should try to start the timing earlier to cover more of the GC pause
432         // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
433         // so we can assume here that the next GC id is what we want.
434         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
435         TraceCollectorStats tcs(_gens[i]->counters());
436         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
437 
438         size_t prev_used = _gens[i]->used();
439         _gens[i]->stat_record()->invocations++;
440         _gens[i]->stat_record()->accumulated_time.start();
441 
442         // Must be done anew before each collection because
443         // a previous collection will do mangling and will
444         // change top of some spaces.
445         record_gen_tops_before_GC();
446 
447         if (PrintGC && Verbose) {
448           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
449                      i,
450                      _gens[i]->stat_record()->invocations,
451                      size*HeapWordSize);
452         }
453 
454         if (VerifyBeforeGC && i >= VerifyGCLevel &&
455             total_collections() >= VerifyGCStartAt) {
456           HandleMark hm;  // Discard invalid handles created during verification
457           if (!prepared_for_verification) {
458             prepare_for_verify();
459             prepared_for_verification = true;
460           }
461           Universe::verify(" VerifyBeforeGC:");
462         }
463         COMPILER2_PRESENT(DerivedPointerTable::clear());
464 
465         if (!must_restore_marks_for_biased_locking &&
466             _gens[i]->performs_in_place_marking()) {
467           // We perform this mark word preservation work lazily
468           // because it's only at this point that we know whether we
469           // absolutely have to do it; we want to avoid doing it for
470           // scavenge-only collections where it's unnecessary
471           must_restore_marks_for_biased_locking = true;
472           BiasedLocking::preserve_marks();
473         }
474 
475         // Do collection work
476         {
477           // Note on ref discovery: For what appear to be historical reasons,
478           // GCH enables and disabled (by enqueing) refs discovery.
479           // In the future this should be moved into the generation's
480           // collect method so that ref discovery and enqueueing concerns
481           // are local to a generation. The collect method could return
482           // an appropriate indication in the case that notification on
483           // the ref lock was needed. This will make the treatment of
484           // weak refs more uniform (and indeed remove such concerns
485           // from GCH). XXX
486 
487           HandleMark hm;  // Discard invalid handles created during gc
488           save_marks();   // save marks for all gens
489           // We want to discover references, but not process them yet.
490           // This mode is disabled in process_discovered_references if the
491           // generation does some collection work, or in
492           // enqueue_discovered_references if the generation returns
493           // without doing any work.
494           ReferenceProcessor* rp = _gens[i]->ref_processor();
495           // If the discovery of ("weak") refs in this generation is
496           // atomic wrt other collectors in this configuration, we
497           // are guaranteed to have empty discovered ref lists.
498           if (rp->discovery_is_atomic()) {
499             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
500             rp->setup_policy(do_clear_all_soft_refs);
501           } else {
502             // collect() below will enable discovery as appropriate
503           }
504           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
505           if (!rp->enqueuing_is_done()) {
506             rp->enqueue_discovered_references();
507           } else {
508             rp->set_enqueuing_is_done(false);
509           }
510           rp->verify_no_references_recorded();
511         }
512         max_level_collected = i;
513 
514         // Determine if allocation request was met.
515         if (size > 0) {
516           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
517             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
518               size = 0;
519             }
520           }
521         }
522 
523         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
524 
525         _gens[i]->stat_record()->accumulated_time.stop();
526 
527         update_gc_stats(i, full);
528 
529         if (VerifyAfterGC && i >= VerifyGCLevel &&
530             total_collections() >= VerifyGCStartAt) {
531           HandleMark hm;  // Discard invalid handles created during verification
532           Universe::verify(" VerifyAfterGC:");
533         }
534 
535         if (PrintGCDetails) {
536           gclog_or_tty->print(":");
537           _gens[i]->print_heap_change(prev_used);
538         }
539       }
540     }
541 
542     // Update "complete" boolean wrt what actually transpired --
543     // for instance, a promotion failure could have led to
544     // a whole heap collection.
545     complete = complete || (max_level_collected == n_gens() - 1);
546 
547     if (complete) { // We did a "major" collection
548       // FIXME: See comment at pre_full_gc_dump call
549       post_full_gc_dump(NULL);   // do any post full gc dumps
550     }
551 
552     if (PrintGCDetails) {
553       print_heap_change(gch_prev_used);
554 
555       // Print metaspace info for full GC with PrintGCDetails flag.
556       if (complete) {
557         MetaspaceAux::print_metaspace_change(metadata_prev_used);
558       }
559     }
560 
561     for (int j = max_level_collected; j >= 0; j -= 1) {
562       // Adjust generation sizes.
563       _gens[j]->compute_new_size();
564     }
565 
566     if (complete) {
567       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
568       ClassLoaderDataGraph::purge();
569       MetaspaceAux::verify_metrics();
570       // Resize the metaspace capacity after full collections
571       MetaspaceGC::compute_new_size();
572       update_full_collections_completed();
573     }
574 
575     // Track memory usage and detect low memory after GC finishes
576     MemoryService::track_memory_usage();
577 
578     gc_epilogue(complete);
579 
580     if (must_restore_marks_for_biased_locking) {
581       BiasedLocking::restore_marks();
582     }
583   }
584 
585   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
586   AdaptiveSizePolicyOutput(sp, total_collections());
587 
588   print_heap_after_gc();
589 
590 #ifdef TRACESPINNING
591   ParallelTaskTerminator::print_termination_counts();
592 #endif
593 }
594 
satisfy_failed_allocation(size_t size,bool is_tlab)595 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
596   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
597 }
598 
set_par_threads(uint t)599 void GenCollectedHeap::set_par_threads(uint t) {
600   SharedHeap::set_par_threads(t);
601   set_n_termination(t);
602 }
603 
set_n_termination(uint t)604 void GenCollectedHeap::set_n_termination(uint t) {
605   _process_strong_tasks->set_n_threads(t);
606 }
607 
608 #ifdef ASSERT
609 class AssertNonScavengableClosure: public OopClosure {
610 public:
do_oop(oop * p)611   virtual void do_oop(oop* p) {
612     assert(!Universe::heap()->is_in_partial_collection(*p),
613       "Referent should not be scavengable.");  }
do_oop(narrowOop * p)614   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
615 };
616 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
617 #endif
618 
process_roots(bool activate_scope,ScanningOption so,OopClosure * strong_roots,OopClosure * weak_roots,CLDClosure * strong_cld_closure,CLDClosure * weak_cld_closure,CodeBlobToOopClosure * code_roots)619 void GenCollectedHeap::process_roots(bool activate_scope,
620                                      ScanningOption so,
621                                      OopClosure* strong_roots,
622                                      OopClosure* weak_roots,
623                                      CLDClosure* strong_cld_closure,
624                                      CLDClosure* weak_cld_closure,
625                                      CodeBlobToOopClosure* code_roots) {
626   StrongRootsScope srs(this, activate_scope);
627 
628   // General roots.
629   assert(_strong_roots_parity != 0, "must have called prologue code");
630   assert(code_roots != NULL, "code root closure should always be set");
631   // _n_termination for _process_strong_tasks should be set up stream
632   // in a method not running in a GC worker.  Otherwise the GC worker
633   // could be trying to change the termination condition while the task
634   // is executing in another GC worker.
635 
636   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
637     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
638   }
639 
640   // Some CLDs contained in the thread frames should be considered strong.
641   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
642   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
643   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
644   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
645 
646   Threads::possibly_parallel_oops_do(strong_roots, roots_from_clds_p, roots_from_code_p);
647 
648   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
649     Universe::oops_do(strong_roots);
650   }
651   // Global (strong) JNI handles
652   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
653     JNIHandles::oops_do(strong_roots);
654   }
655 
656   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
657     ObjectSynchronizer::oops_do(strong_roots);
658   }
659   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
660     FlatProfiler::oops_do(strong_roots);
661   }
662   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
663     Management::oops_do(strong_roots);
664   }
665   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
666     JvmtiExport::oops_do(strong_roots);
667   }
668 
669   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
670     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
671   }
672 
673   // All threads execute the following. A specific chunk of buckets
674   // from the StringTable are the individual tasks.
675   if (weak_roots != NULL) {
676     if (CollectedHeap::use_parallel_gc_threads()) {
677       StringTable::possibly_parallel_oops_do(weak_roots);
678     } else {
679       StringTable::oops_do(weak_roots);
680     }
681   }
682 
683   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
684     if (so & SO_ScavengeCodeCache) {
685       assert(code_roots != NULL, "must supply closure for code cache");
686 
687       // We only visit parts of the CodeCache when scavenging.
688       CodeCache::scavenge_root_nmethods_do(code_roots);
689     }
690     if (so & SO_AllCodeCache) {
691       assert(code_roots != NULL, "must supply closure for code cache");
692 
693       // CMSCollector uses this to do intermediate-strength collections.
694       // We scan the entire code cache, since CodeCache::do_unloading is not called.
695       CodeCache::blobs_do(code_roots);
696     }
697     // Verify that the code cache contents are not subject to
698     // movement by a scavenging collection.
699     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
700     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
701   }
702 
703 }
704 
gen_process_roots(int level,bool younger_gens_as_roots,bool activate_scope,ScanningOption so,bool only_strong_roots,OopsInGenClosure * not_older_gens,OopsInGenClosure * older_gens,CLDClosure * cld_closure)705 void GenCollectedHeap::gen_process_roots(int level,
706                                          bool younger_gens_as_roots,
707                                          bool activate_scope,
708                                          ScanningOption so,
709                                          bool only_strong_roots,
710                                          OopsInGenClosure* not_older_gens,
711                                          OopsInGenClosure* older_gens,
712                                          CLDClosure* cld_closure) {
713   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
714 
715   bool is_moving_collection = false;
716   if (level == 0 || is_adjust_phase) {
717     // young collections are always moving
718     is_moving_collection = true;
719   }
720 
721   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
722   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
723   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
724 
725   process_roots(activate_scope, so,
726                 not_older_gens, weak_roots,
727                 cld_closure, weak_cld_closure,
728                 &mark_code_closure);
729 
730   if (younger_gens_as_roots) {
731     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
732       for (int i = 0; i < level; i++) {
733         not_older_gens->set_generation(_gens[i]);
734         _gens[i]->oop_iterate(not_older_gens);
735       }
736       not_older_gens->reset_generation();
737     }
738   }
739   // When collection is parallel, all threads get to cooperate to do
740   // older-gen scanning.
741   for (int i = level+1; i < _n_gens; i++) {
742     older_gens->set_generation(_gens[i]);
743     rem_set()->younger_refs_iterate(_gens[i], older_gens);
744     older_gens->reset_generation();
745   }
746 
747   _process_strong_tasks->all_tasks_completed();
748 }
749 
750 
gen_process_weak_roots(OopClosure * root_closure)751 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
752   JNIHandles::weak_oops_do(root_closure);
753   JFR_ONLY(Jfr::weak_oops_do(root_closure));
754   for (int i = 0; i < _n_gens; i++) {
755     _gens[i]->ref_processor()->weak_oops_do(root_closure);
756   }
757 }
758 
759 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
760 void GenCollectedHeap::                                                 \
761 oop_since_save_marks_iterate(int level,                                 \
762                              OopClosureType* cur,                       \
763                              OopClosureType* older) {                   \
764   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
765   for (int i = level+1; i < n_gens(); i++) {                            \
766     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
767   }                                                                     \
768 }
769 
ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)770 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
771 
772 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
773 
774 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
775   for (int i = level; i < _n_gens; i++) {
776     if (!_gens[i]->no_allocs_since_save_marks()) return false;
777   }
778   return true;
779 }
780 
supports_inline_contig_alloc() const781 bool GenCollectedHeap::supports_inline_contig_alloc() const {
782   return _gens[0]->supports_inline_contig_alloc();
783 }
784 
top_addr() const785 HeapWord** GenCollectedHeap::top_addr() const {
786   return _gens[0]->top_addr();
787 }
788 
end_addr() const789 HeapWord** GenCollectedHeap::end_addr() const {
790   return _gens[0]->end_addr();
791 }
792 
793 // public collection interfaces
794 
collect(GCCause::Cause cause)795 void GenCollectedHeap::collect(GCCause::Cause cause) {
796   if (should_do_concurrent_full_gc(cause)) {
797 #if INCLUDE_ALL_GCS
798     // mostly concurrent full collection
799     collect_mostly_concurrent(cause);
800 #else  // INCLUDE_ALL_GCS
801     ShouldNotReachHere();
802 #endif // INCLUDE_ALL_GCS
803   } else if ((cause == GCCause::_wb_young_gc) ||
804              (cause == GCCause::_gc_locker)) {
805     // minor collection for WhiteBox or GCLocker.
806     // _gc_locker collections upgraded by GCLockerInvokesConcurrent
807     // are handled above and never discarded.
808     collect(cause, 0);
809   } else {
810 #ifdef ASSERT
811   if (cause == GCCause::_scavenge_alot) {
812     // minor collection only
813     collect(cause, 0);
814   } else {
815     // Stop-the-world full collection
816     collect(cause, n_gens() - 1);
817   }
818 #else
819     // Stop-the-world full collection
820     collect(cause, n_gens() - 1);
821 #endif
822   }
823 }
824 
collect(GCCause::Cause cause,int max_level)825 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
826   // The caller doesn't have the Heap_lock
827   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
828   MutexLocker ml(Heap_lock);
829   collect_locked(cause, max_level);
830 }
831 
collect_locked(GCCause::Cause cause)832 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
833   // The caller has the Heap_lock
834   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
835   collect_locked(cause, n_gens() - 1);
836 }
837 
838 // this is the private collection interface
839 // The Heap_lock is expected to be held on entry.
840 
collect_locked(GCCause::Cause cause,int max_level)841 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
842   // Read the GC count while holding the Heap_lock
843   unsigned int gc_count_before      = total_collections();
844   unsigned int full_gc_count_before = total_full_collections();
845 
846   if (GC_locker::should_discard(cause, gc_count_before)) {
847     return;
848   }
849 
850   {
851     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
852     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
853                          cause, max_level);
854     VMThread::execute(&op);
855   }
856 }
857 
858 #if INCLUDE_ALL_GCS
create_cms_collector()859 bool GenCollectedHeap::create_cms_collector() {
860 
861   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
862          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
863          "Unexpected generation kinds");
864   // Skip two header words in the block content verification
865   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
866   CMSCollector* collector = new CMSCollector(
867     (ConcurrentMarkSweepGeneration*)_gens[1],
868     _rem_set->as_CardTableRS(),
869     (ConcurrentMarkSweepPolicy*) collector_policy());
870 
871   if (collector == NULL || !collector->completed_initialization()) {
872     if (collector) {
873       delete collector;  // Be nice in embedded situation
874     }
875     vm_shutdown_during_initialization("Could not create CMS collector");
876     return false;
877   }
878   return true;  // success
879 }
880 
collect_mostly_concurrent(GCCause::Cause cause)881 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
882   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
883 
884   MutexLocker ml(Heap_lock);
885   // Read the GC counts while holding the Heap_lock
886   unsigned int full_gc_count_before = total_full_collections();
887   unsigned int gc_count_before      = total_collections();
888   {
889     MutexUnlocker mu(Heap_lock);
890     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
891     VMThread::execute(&op);
892   }
893 }
894 #endif // INCLUDE_ALL_GCS
895 
do_full_collection(bool clear_all_soft_refs)896 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
897    do_full_collection(clear_all_soft_refs, _n_gens - 1);
898 }
899 
do_full_collection(bool clear_all_soft_refs,int max_level)900 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
901                                           int max_level) {
902 
903   do_collection(true                 /* full */,
904                 clear_all_soft_refs  /* clear_all_soft_refs */,
905                 0                    /* size */,
906                 false                /* is_tlab */,
907                 max_level            /* max_level */);
908   // Hack XXX FIX ME !!!
909   // A scavenge may not have been attempted, or may have
910   // been attempted and failed, because the old gen was too full
911   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
912     if (PrintGCDetails) {
913       gclog_or_tty->print_cr("GC locker: Trying a full collection "
914                              "because scavenge failed");
915     }
916     // This time allow the old gen to be collected as well
917     do_collection(true                 /* full */,
918                   clear_all_soft_refs  /* clear_all_soft_refs */,
919                   0                    /* size */,
920                   false                /* is_tlab */,
921                   n_gens() - 1         /* max_level */);
922   }
923 }
924 
is_in_young(oop p)925 bool GenCollectedHeap::is_in_young(oop p) {
926   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
927   assert(result == _gens[0]->is_in_reserved(p),
928          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
929   return result;
930 }
931 
932 // Returns "TRUE" iff "p" points into the committed areas of the heap.
is_in(const void * p) const933 bool GenCollectedHeap::is_in(const void* p) const {
934   #ifndef ASSERT
935   guarantee(VerifyBeforeGC      ||
936             VerifyDuringGC      ||
937             VerifyBeforeExit    ||
938             VerifyDuringStartup ||
939             PrintAssembly       ||
940             tty->count() != 0   ||   // already printing
941             VerifyAfterGC       ||
942     VMError::fatal_error_in_progress(), "too expensive");
943 
944   #endif
945   // This might be sped up with a cache of the last generation that
946   // answered yes.
947   for (int i = 0; i < _n_gens; i++) {
948     if (_gens[i]->is_in(p)) return true;
949   }
950   // Otherwise...
951   return false;
952 }
953 
954 #ifdef ASSERT
955 // Don't implement this by using is_in_young().  This method is used
956 // in some cases to check that is_in_young() is correct.
is_in_partial_collection(const void * p)957 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
958   assert(is_in_reserved(p) || p == NULL,
959     "Does not work if address is non-null and outside of the heap");
960   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
961 }
962 #endif
963 
oop_iterate(ExtendedOopClosure * cl)964 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
965   for (int i = 0; i < _n_gens; i++) {
966     _gens[i]->oop_iterate(cl);
967   }
968 }
969 
object_iterate(ObjectClosure * cl)970 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
971   for (int i = 0; i < _n_gens; i++) {
972     _gens[i]->object_iterate(cl);
973   }
974 }
975 
safe_object_iterate(ObjectClosure * cl)976 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
977   for (int i = 0; i < _n_gens; i++) {
978     _gens[i]->safe_object_iterate(cl);
979   }
980 }
981 
space_containing(const void * addr) const982 Space* GenCollectedHeap::space_containing(const void* addr) const {
983   for (int i = 0; i < _n_gens; i++) {
984     Space* res = _gens[i]->space_containing(addr);
985     if (res != NULL) return res;
986   }
987   // Otherwise...
988   assert(false, "Could not find containing space");
989   return NULL;
990 }
991 
992 
block_start(const void * addr) const993 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
994   assert(is_in_reserved(addr), "block_start of address outside of heap");
995   for (int i = 0; i < _n_gens; i++) {
996     if (_gens[i]->is_in_reserved(addr)) {
997       assert(_gens[i]->is_in(addr),
998              "addr should be in allocated part of generation");
999       return _gens[i]->block_start(addr);
1000     }
1001   }
1002   assert(false, "Some generation should contain the address");
1003   return NULL;
1004 }
1005 
block_size(const HeapWord * addr) const1006 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1007   assert(is_in_reserved(addr), "block_size of address outside of heap");
1008   for (int i = 0; i < _n_gens; i++) {
1009     if (_gens[i]->is_in_reserved(addr)) {
1010       assert(_gens[i]->is_in(addr),
1011              "addr should be in allocated part of generation");
1012       return _gens[i]->block_size(addr);
1013     }
1014   }
1015   assert(false, "Some generation should contain the address");
1016   return 0;
1017 }
1018 
block_is_obj(const HeapWord * addr) const1019 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1020   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1021   assert(block_start(addr) == addr, "addr must be a block start");
1022   for (int i = 0; i < _n_gens; i++) {
1023     if (_gens[i]->is_in_reserved(addr)) {
1024       return _gens[i]->block_is_obj(addr);
1025     }
1026   }
1027   assert(false, "Some generation should contain the address");
1028   return false;
1029 }
1030 
supports_tlab_allocation() const1031 bool GenCollectedHeap::supports_tlab_allocation() const {
1032   for (int i = 0; i < _n_gens; i += 1) {
1033     if (_gens[i]->supports_tlab_allocation()) {
1034       return true;
1035     }
1036   }
1037   return false;
1038 }
1039 
tlab_capacity(Thread * thr) const1040 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1041   size_t result = 0;
1042   for (int i = 0; i < _n_gens; i += 1) {
1043     if (_gens[i]->supports_tlab_allocation()) {
1044       result += _gens[i]->tlab_capacity();
1045     }
1046   }
1047   return result;
1048 }
1049 
tlab_used(Thread * thr) const1050 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1051   size_t result = 0;
1052   for (int i = 0; i < _n_gens; i += 1) {
1053     if (_gens[i]->supports_tlab_allocation()) {
1054       result += _gens[i]->tlab_used();
1055     }
1056   }
1057   return result;
1058 }
1059 
unsafe_max_tlab_alloc(Thread * thr) const1060 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1061   size_t result = 0;
1062   for (int i = 0; i < _n_gens; i += 1) {
1063     if (_gens[i]->supports_tlab_allocation()) {
1064       result += _gens[i]->unsafe_max_tlab_alloc();
1065     }
1066   }
1067   return result;
1068 }
1069 
allocate_new_tlab(size_t size)1070 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1071   bool gc_overhead_limit_was_exceeded;
1072   return collector_policy()->mem_allocate_work(size /* size */,
1073                                                true /* is_tlab */,
1074                                                &gc_overhead_limit_was_exceeded);
1075 }
1076 
1077 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1078 // from the list headed by "*prev_ptr".
removeSmallestScratch(ScratchBlock ** prev_ptr)1079 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1080   bool first = true;
1081   size_t min_size = 0;   // "first" makes this conceptually infinite.
1082   ScratchBlock **smallest_ptr, *smallest;
1083   ScratchBlock  *cur = *prev_ptr;
1084   while (cur) {
1085     assert(*prev_ptr == cur, "just checking");
1086     if (first || cur->num_words < min_size) {
1087       smallest_ptr = prev_ptr;
1088       smallest     = cur;
1089       min_size     = smallest->num_words;
1090       first        = false;
1091     }
1092     prev_ptr = &cur->next;
1093     cur     =  cur->next;
1094   }
1095   smallest      = *smallest_ptr;
1096   *smallest_ptr = smallest->next;
1097   return smallest;
1098 }
1099 
1100 // Sort the scratch block list headed by res into decreasing size order,
1101 // and set "res" to the result.
sort_scratch_list(ScratchBlock * & list)1102 static void sort_scratch_list(ScratchBlock*& list) {
1103   ScratchBlock* sorted = NULL;
1104   ScratchBlock* unsorted = list;
1105   while (unsorted) {
1106     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1107     smallest->next  = sorted;
1108     sorted          = smallest;
1109   }
1110   list = sorted;
1111 }
1112 
gather_scratch(Generation * requestor,size_t max_alloc_words)1113 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1114                                                size_t max_alloc_words) {
1115   ScratchBlock* res = NULL;
1116   for (int i = 0; i < _n_gens; i++) {
1117     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1118   }
1119   sort_scratch_list(res);
1120   return res;
1121 }
1122 
release_scratch()1123 void GenCollectedHeap::release_scratch() {
1124   for (int i = 0; i < _n_gens; i++) {
1125     _gens[i]->reset_scratch();
1126   }
1127 }
1128 
1129 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
do_generation(Generation * gen)1130   void do_generation(Generation* gen) {
1131     gen->prepare_for_verify();
1132   }
1133 };
1134 
prepare_for_verify()1135 void GenCollectedHeap::prepare_for_verify() {
1136   ensure_parsability(false);        // no need to retire TLABs
1137   GenPrepareForVerifyClosure blk;
1138   generation_iterate(&blk, false);
1139 }
1140 
1141 
generation_iterate(GenClosure * cl,bool old_to_young)1142 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1143                                           bool old_to_young) {
1144   if (old_to_young) {
1145     for (int i = _n_gens-1; i >= 0; i--) {
1146       cl->do_generation(_gens[i]);
1147     }
1148   } else {
1149     for (int i = 0; i < _n_gens; i++) {
1150       cl->do_generation(_gens[i]);
1151     }
1152   }
1153 }
1154 
space_iterate(SpaceClosure * cl)1155 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1156   for (int i = 0; i < _n_gens; i++) {
1157     _gens[i]->space_iterate(cl, true);
1158   }
1159 }
1160 
is_maximal_no_gc() const1161 bool GenCollectedHeap::is_maximal_no_gc() const {
1162   for (int i = 0; i < _n_gens; i++) {
1163     if (!_gens[i]->is_maximal_no_gc()) {
1164       return false;
1165     }
1166   }
1167   return true;
1168 }
1169 
save_marks()1170 void GenCollectedHeap::save_marks() {
1171   for (int i = 0; i < _n_gens; i++) {
1172     _gens[i]->save_marks();
1173   }
1174 }
1175 
heap()1176 GenCollectedHeap* GenCollectedHeap::heap() {
1177   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1178   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1179   return _gch;
1180 }
1181 
1182 
prepare_for_compaction()1183 void GenCollectedHeap::prepare_for_compaction() {
1184   guarantee(_n_gens == 2, "Wrong number of generations");
1185   Generation* old_gen = _gens[1];
1186   // Start by compacting into same gen.
1187   CompactPoint cp(old_gen);
1188   old_gen->prepare_for_compaction(&cp);
1189   Generation* young_gen = _gens[0];
1190   young_gen->prepare_for_compaction(&cp);
1191 }
1192 
gc_stats(int level) const1193 GCStats* GenCollectedHeap::gc_stats(int level) const {
1194   return _gens[level]->gc_stats();
1195 }
1196 
verify(bool silent,VerifyOption option)1197 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1198   for (int i = _n_gens-1; i >= 0; i--) {
1199     Generation* g = _gens[i];
1200     if (!silent) {
1201       gclog_or_tty->print("%s", g->name());
1202       gclog_or_tty->print(" ");
1203     }
1204     g->verify();
1205   }
1206   if (!silent) {
1207     gclog_or_tty->print("remset ");
1208   }
1209   rem_set()->verify();
1210 }
1211 
print_on(outputStream * st) const1212 void GenCollectedHeap::print_on(outputStream* st) const {
1213   for (int i = 0; i < _n_gens; i++) {
1214     _gens[i]->print_on(st);
1215   }
1216   MetaspaceAux::print_on(st);
1217 }
1218 
gc_threads_do(ThreadClosure * tc) const1219 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1220   if (workers() != NULL) {
1221     workers()->threads_do(tc);
1222   }
1223 #if INCLUDE_ALL_GCS
1224   if (UseConcMarkSweepGC) {
1225     ConcurrentMarkSweepThread::threads_do(tc);
1226   }
1227 #endif // INCLUDE_ALL_GCS
1228 }
1229 
print_gc_threads_on(outputStream * st) const1230 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1231 #if INCLUDE_ALL_GCS
1232   if (UseParNewGC) {
1233     workers()->print_worker_threads_on(st);
1234   }
1235   if (UseConcMarkSweepGC) {
1236     ConcurrentMarkSweepThread::print_all_on(st);
1237   }
1238 #endif // INCLUDE_ALL_GCS
1239 }
1240 
print_on_error(outputStream * st) const1241 void GenCollectedHeap::print_on_error(outputStream* st) const {
1242   this->CollectedHeap::print_on_error(st);
1243 
1244 #if INCLUDE_ALL_GCS
1245   if (UseConcMarkSweepGC) {
1246     st->cr();
1247     CMSCollector::print_on_error(st);
1248   }
1249 #endif // INCLUDE_ALL_GCS
1250 }
1251 
print_tracing_info() const1252 void GenCollectedHeap::print_tracing_info() const {
1253   if (TraceGen0Time) {
1254     get_gen(0)->print_summary_info();
1255   }
1256   if (TraceGen1Time) {
1257     get_gen(1)->print_summary_info();
1258   }
1259 }
1260 
print_heap_change(size_t prev_used) const1261 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1262   if (PrintGCDetails && Verbose) {
1263     gclog_or_tty->print(" "  SIZE_FORMAT
1264                         "->" SIZE_FORMAT
1265                         "("  SIZE_FORMAT ")",
1266                         prev_used, used(), capacity());
1267   } else {
1268     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1269                         "->" SIZE_FORMAT "K"
1270                         "("  SIZE_FORMAT "K)",
1271                         prev_used / K, used() / K, capacity() / K);
1272   }
1273 }
1274 
1275 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1276  private:
1277   bool _full;
1278  public:
do_generation(Generation * gen)1279   void do_generation(Generation* gen) {
1280     gen->gc_prologue(_full);
1281   }
GenGCPrologueClosure(bool full)1282   GenGCPrologueClosure(bool full) : _full(full) {};
1283 };
1284 
gc_prologue(bool full)1285 void GenCollectedHeap::gc_prologue(bool full) {
1286   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1287 
1288   always_do_update_barrier = false;
1289   // Fill TLAB's and such
1290   CollectedHeap::accumulate_statistics_all_tlabs();
1291   ensure_parsability(true);   // retire TLABs
1292 
1293   // Walk generations
1294   GenGCPrologueClosure blk(full);
1295   generation_iterate(&blk, false);  // not old-to-young.
1296 };
1297 
1298 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1299  private:
1300   bool _full;
1301  public:
do_generation(Generation * gen)1302   void do_generation(Generation* gen) {
1303     gen->gc_epilogue(_full);
1304   }
GenGCEpilogueClosure(bool full)1305   GenGCEpilogueClosure(bool full) : _full(full) {};
1306 };
1307 
gc_epilogue(bool full)1308 void GenCollectedHeap::gc_epilogue(bool full) {
1309 #ifdef COMPILER2
1310   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1311   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1312   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1313 #endif /* COMPILER2 */
1314 
1315   resize_all_tlabs();
1316 
1317   GenGCEpilogueClosure blk(full);
1318   generation_iterate(&blk, false);  // not old-to-young.
1319 
1320   if (!CleanChunkPoolAsync) {
1321     Chunk::clean_chunk_pool();
1322   }
1323 
1324   MetaspaceCounters::update_performance_counters();
1325   CompressedClassSpaceCounters::update_performance_counters();
1326 
1327   always_do_update_barrier = UseConcMarkSweepGC;
1328 };
1329 
1330 #ifndef PRODUCT
1331 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1332  private:
1333  public:
do_generation(Generation * gen)1334   void do_generation(Generation* gen) {
1335     gen->record_spaces_top();
1336   }
1337 };
1338 
record_gen_tops_before_GC()1339 void GenCollectedHeap::record_gen_tops_before_GC() {
1340   if (ZapUnusedHeapArea) {
1341     GenGCSaveTopsBeforeGCClosure blk;
1342     generation_iterate(&blk, false);  // not old-to-young.
1343   }
1344 }
1345 #endif  // not PRODUCT
1346 
1347 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1348  public:
do_generation(Generation * gen)1349   void do_generation(Generation* gen) {
1350     gen->ensure_parsability();
1351   }
1352 };
1353 
ensure_parsability(bool retire_tlabs)1354 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1355   CollectedHeap::ensure_parsability(retire_tlabs);
1356   GenEnsureParsabilityClosure ep_cl;
1357   generation_iterate(&ep_cl, false);
1358 }
1359 
handle_failed_promotion(Generation * old_gen,oop obj,size_t obj_size)1360 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1361                                               oop obj,
1362                                               size_t obj_size) {
1363   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1364   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1365   HeapWord* result = NULL;
1366 
1367   result = old_gen->expand_and_allocate(obj_size, false);
1368 
1369   if (result != NULL) {
1370     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1371   }
1372   return oop(result);
1373 }
1374 
1375 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1376   jlong _time;   // in ms
1377   jlong _now;    // in ms
1378 
1379  public:
GenTimeOfLastGCClosure(jlong now)1380   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1381 
time()1382   jlong time() { return _time; }
1383 
do_generation(Generation * gen)1384   void do_generation(Generation* gen) {
1385     _time = MIN2(_time, gen->time_of_last_gc(_now));
1386   }
1387 };
1388 
millis_since_last_gc()1389 jlong GenCollectedHeap::millis_since_last_gc() {
1390   // We need a monotonically non-deccreasing time in ms but
1391   // os::javaTimeMillis() does not guarantee monotonicity.
1392   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1393   GenTimeOfLastGCClosure tolgc_cl(now);
1394   // iterate over generations getting the oldest
1395   // time that a generation was collected
1396   generation_iterate(&tolgc_cl, false);
1397 
1398   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1399   // provided the underlying platform provides such a time source
1400   // (and it is bug free). So we still have to guard against getting
1401   // back a time later than 'now'.
1402   jlong retVal = now - tolgc_cl.time();
1403   if (retVal < 0) {
1404     NOT_PRODUCT(warning("time warp: " INT64_FORMAT, (int64_t) retVal);)
1405     return 0;
1406   }
1407   return retVal;
1408 }
1409