1 /*
2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "gc_implementation/shared/liveRange.hpp"
29 #include "gc_implementation/shared/markSweep.hpp"
30 #include "gc_implementation/shared/spaceDecorator.hpp"
31 #include "gc_interface/collectedHeap.inline.hpp"
32 #include "memory/blockOffsetTable.inline.hpp"
33 #include "memory/defNewGeneration.hpp"
34 #include "memory/genCollectedHeap.hpp"
35 #include "memory/space.hpp"
36 #include "memory/space.inline.hpp"
37 #include "memory/universe.inline.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "oops/oop.inline2.hpp"
40 #include "runtime/java.hpp"
41 #include "runtime/prefetch.inline.hpp"
42 #include "runtime/orderAccess.inline.hpp"
43 #include "runtime/safepoint.hpp"
44 #include "utilities/copy.hpp"
45 #include "utilities/globalDefinitions.hpp"
46 #include "utilities/macros.hpp"
47 
48 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
49 
get_actual_top(HeapWord * top,HeapWord * top_obj)50 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
51                                                 HeapWord* top_obj) {
52   if (top_obj != NULL) {
53     if (_sp->block_is_obj(top_obj)) {
54       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
55         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
56           // An arrayOop is starting on the dirty card - since we do exact
57           // store checks for objArrays we are done.
58         } else {
59           // Otherwise, it is possible that the object starting on the dirty
60           // card spans the entire card, and that the store happened on a
61           // later card.  Figure out where the object ends.
62           // Use the block_size() method of the space over which
63           // the iteration is being done.  That space (e.g. CMS) may have
64           // specific requirements on object sizes which will
65           // be reflected in the block_size() method.
66           top = top_obj + oop(top_obj)->size();
67         }
68       }
69     } else {
70       top = top_obj;
71     }
72   } else {
73     assert(top == _sp->end(), "only case where top_obj == NULL");
74   }
75   return top;
76 }
77 
walk_mem_region(MemRegion mr,HeapWord * bottom,HeapWord * top)78 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
79                                             HeapWord* bottom,
80                                             HeapWord* top) {
81   // 1. Blocks may or may not be objects.
82   // 2. Even when a block_is_obj(), it may not entirely
83   //    occupy the block if the block quantum is larger than
84   //    the object size.
85   // We can and should try to optimize by calling the non-MemRegion
86   // version of oop_iterate() for all but the extremal objects
87   // (for which we need to call the MemRegion version of
88   // oop_iterate()) To be done post-beta XXX
89   for (; bottom < top; bottom += _sp->block_size(bottom)) {
90     // As in the case of contiguous space above, we'd like to
91     // just use the value returned by oop_iterate to increment the
92     // current pointer; unfortunately, that won't work in CMS because
93     // we'd need an interface change (it seems) to have the space
94     // "adjust the object size" (for instance pad it up to its
95     // block alignment or minimum block size restrictions. XXX
96     if (_sp->block_is_obj(bottom) &&
97         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
98       oop(bottom)->oop_iterate(_cl, mr);
99     }
100   }
101 }
102 
103 // We get called with "mr" representing the dirty region
104 // that we want to process. Because of imprecise marking,
105 // we may need to extend the incoming "mr" to the right,
106 // and scan more. However, because we may already have
107 // scanned some of that extended region, we may need to
108 // trim its right-end back some so we do not scan what
109 // we (or another worker thread) may already have scanned
110 // or planning to scan.
do_MemRegion(MemRegion mr)111 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
112 
113   // Some collectors need to do special things whenever their dirty
114   // cards are processed. For instance, CMS must remember mutator updates
115   // (i.e. dirty cards) so as to re-scan mutated objects.
116   // Such work can be piggy-backed here on dirty card scanning, so as to make
117   // it slightly more efficient than doing a complete non-detructive pre-scan
118   // of the card table.
119   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
120   if (pCl != NULL) {
121     pCl->do_MemRegion(mr);
122   }
123 
124   HeapWord* bottom = mr.start();
125   HeapWord* last = mr.last();
126   HeapWord* top = mr.end();
127   HeapWord* bottom_obj;
128   HeapWord* top_obj;
129 
130   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
131          _precision == CardTableModRefBS::Precise,
132          "Only ones we deal with for now.");
133 
134   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
135          _cl->idempotent() || _last_bottom == NULL ||
136          top <= _last_bottom,
137          "Not decreasing");
138   NOT_PRODUCT(_last_bottom = mr.start());
139 
140   bottom_obj = _sp->block_start(bottom);
141   top_obj    = _sp->block_start(last);
142 
143   assert(bottom_obj <= bottom, "just checking");
144   assert(top_obj    <= top,    "just checking");
145 
146   // Given what we think is the top of the memory region and
147   // the start of the object at the top, get the actual
148   // value of the top.
149   top = get_actual_top(top, top_obj);
150 
151   // If the previous call did some part of this region, don't redo.
152   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
153       _min_done != NULL &&
154       _min_done < top) {
155     top = _min_done;
156   }
157 
158   // Top may have been reset, and in fact may be below bottom,
159   // e.g. the dirty card region is entirely in a now free object
160   // -- something that could happen with a concurrent sweeper.
161   bottom = MIN2(bottom, top);
162   MemRegion extended_mr = MemRegion(bottom, top);
163   assert(bottom <= top &&
164          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
165           _min_done == NULL ||
166           top <= _min_done),
167          "overlap!");
168 
169   // Walk the region if it is not empty; otherwise there is nothing to do.
170   if (!extended_mr.is_empty()) {
171     walk_mem_region(extended_mr, bottom_obj, top);
172   }
173 
174   // An idempotent closure might be applied in any order, so we don't
175   // record a _min_done for it.
176   if (!_cl->idempotent()) {
177     _min_done = bottom;
178   } else {
179     assert(_min_done == _last_explicit_min_done,
180            "Don't update _min_done for idempotent cl");
181   }
182 }
183 
new_dcto_cl(ExtendedOopClosure * cl,CardTableModRefBS::PrecisionStyle precision,HeapWord * boundary)184 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
185                                           CardTableModRefBS::PrecisionStyle precision,
186                                           HeapWord* boundary) {
187   return new DirtyCardToOopClosure(this, cl, precision, boundary);
188 }
189 
get_actual_top(HeapWord * top,HeapWord * top_obj)190 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
191                                                HeapWord* top_obj) {
192   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
193     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
194       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
195         // An arrayOop is starting on the dirty card - since we do exact
196         // store checks for objArrays we are done.
197       } else {
198         // Otherwise, it is possible that the object starting on the dirty
199         // card spans the entire card, and that the store happened on a
200         // later card.  Figure out where the object ends.
201         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
202           "Block size and object size mismatch");
203         top = top_obj + oop(top_obj)->size();
204       }
205     }
206   } else {
207     top = (_sp->toContiguousSpace())->top();
208   }
209   return top;
210 }
211 
walk_mem_region(MemRegion mr,HeapWord * bottom,HeapWord * top)212 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
213                                       HeapWord* bottom,
214                                       HeapWord* top) {
215   // Note that this assumption won't hold if we have a concurrent
216   // collector in this space, which may have freed up objects after
217   // they were dirtied and before the stop-the-world GC that is
218   // examining cards here.
219   assert(bottom < top, "ought to be at least one obj on a dirty card.");
220 
221   if (_boundary != NULL) {
222     // We have a boundary outside of which we don't want to look
223     // at objects, so create a filtering closure around the
224     // oop closure before walking the region.
225     FilteringClosure filter(_boundary, _cl);
226     walk_mem_region_with_cl(mr, bottom, top, &filter);
227   } else {
228     // No boundary, simply walk the heap with the oop closure.
229     walk_mem_region_with_cl(mr, bottom, top, _cl);
230   }
231 
232 }
233 
234 // We must replicate this so that the static type of "FilteringClosure"
235 // (see above) is apparent at the oop_iterate calls.
236 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
237 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
238                                                    HeapWord* bottom,    \
239                                                    HeapWord* top,       \
240                                                    ClosureType* cl) {   \
241   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
242   if (bottom < top) {                                                   \
243     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
244     while (next_obj < top) {                                            \
245       /* Bottom lies entirely below top, so we can call the */          \
246       /* non-memRegion version of oop_iterate below. */                 \
247       oop(bottom)->oop_iterate(cl);                                     \
248       bottom = next_obj;                                                \
249       next_obj = bottom + oop(bottom)->size();                          \
250     }                                                                   \
251     /* Last object. */                                                  \
252     oop(bottom)->oop_iterate(cl, mr);                                   \
253   }                                                                     \
254 }
255 
256 // (There are only two of these, rather than N, because the split is due
257 // only to the introduction of the FilteringClosure, a local part of the
258 // impl of this abstraction.)
259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)260 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
261 
262 DirtyCardToOopClosure*
263 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
264                              CardTableModRefBS::PrecisionStyle precision,
265                              HeapWord* boundary) {
266   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
267 }
268 
initialize(MemRegion mr,bool clear_space,bool mangle_space)269 void Space::initialize(MemRegion mr,
270                        bool clear_space,
271                        bool mangle_space) {
272   HeapWord* bottom = mr.start();
273   HeapWord* end    = mr.end();
274   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
275          "invalid space boundaries");
276   set_bottom(bottom);
277   set_end(end);
278   if (clear_space) clear(mangle_space);
279 }
280 
clear(bool mangle_space)281 void Space::clear(bool mangle_space) {
282   if (ZapUnusedHeapArea && mangle_space) {
283     mangle_unused_area();
284   }
285 }
286 
ContiguousSpace()287 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
288     _concurrent_iteration_safe_limit(NULL) {
289   _mangler = new GenSpaceMangler(this);
290 }
291 
~ContiguousSpace()292 ContiguousSpace::~ContiguousSpace() {
293   delete _mangler;
294 }
295 
initialize(MemRegion mr,bool clear_space,bool mangle_space)296 void ContiguousSpace::initialize(MemRegion mr,
297                                  bool clear_space,
298                                  bool mangle_space)
299 {
300   CompactibleSpace::initialize(mr, clear_space, mangle_space);
301   set_concurrent_iteration_safe_limit(top());
302 }
303 
clear(bool mangle_space)304 void ContiguousSpace::clear(bool mangle_space) {
305   set_top(bottom());
306   set_saved_mark();
307   CompactibleSpace::clear(mangle_space);
308 }
309 
is_free_block(const HeapWord * p) const310 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
311   return p >= _top;
312 }
313 
clear(bool mangle_space)314 void OffsetTableContigSpace::clear(bool mangle_space) {
315   ContiguousSpace::clear(mangle_space);
316   _offsets.initialize_threshold();
317 }
318 
set_bottom(HeapWord * new_bottom)319 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
320   Space::set_bottom(new_bottom);
321   _offsets.set_bottom(new_bottom);
322 }
323 
set_end(HeapWord * new_end)324 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
325   // Space should not advertize an increase in size
326   // until after the underlying offest table has been enlarged.
327   _offsets.resize(pointer_delta(new_end, bottom()));
328   Space::set_end(new_end);
329 }
330 
331 #ifndef PRODUCT
332 
set_top_for_allocations(HeapWord * v)333 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
334   mangler()->set_top_for_allocations(v);
335 }
set_top_for_allocations()336 void ContiguousSpace::set_top_for_allocations() {
337   mangler()->set_top_for_allocations(top());
338 }
check_mangled_unused_area(HeapWord * limit)339 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
340   mangler()->check_mangled_unused_area(limit);
341 }
342 
check_mangled_unused_area_complete()343 void ContiguousSpace::check_mangled_unused_area_complete() {
344   mangler()->check_mangled_unused_area_complete();
345 }
346 
347 // Mangled only the unused space that has not previously
348 // been mangled and that has not been allocated since being
349 // mangled.
mangle_unused_area()350 void ContiguousSpace::mangle_unused_area() {
351   mangler()->mangle_unused_area();
352 }
mangle_unused_area_complete()353 void ContiguousSpace::mangle_unused_area_complete() {
354   mangler()->mangle_unused_area_complete();
355 }
mangle_region(MemRegion mr)356 void ContiguousSpace::mangle_region(MemRegion mr) {
357   // Although this method uses SpaceMangler::mangle_region() which
358   // is not specific to a space, the when the ContiguousSpace version
359   // is called, it is always with regard to a space and this
360   // bounds checking is appropriate.
361   MemRegion space_mr(bottom(), end());
362   assert(space_mr.contains(mr), "Mangling outside space");
363   SpaceMangler::mangle_region(mr);
364 }
365 #endif  // NOT_PRODUCT
366 
initialize(MemRegion mr,bool clear_space,bool mangle_space)367 void CompactibleSpace::initialize(MemRegion mr,
368                                   bool clear_space,
369                                   bool mangle_space) {
370   Space::initialize(mr, clear_space, mangle_space);
371   set_compaction_top(bottom());
372   _next_compaction_space = NULL;
373 }
374 
clear(bool mangle_space)375 void CompactibleSpace::clear(bool mangle_space) {
376   Space::clear(mangle_space);
377   _compaction_top = bottom();
378 }
379 
forward(oop q,size_t size,CompactPoint * cp,HeapWord * compact_top)380 HeapWord* CompactibleSpace::forward(oop q, size_t size,
381                                     CompactPoint* cp, HeapWord* compact_top) {
382   // q is alive
383   // First check if we should switch compaction space
384   assert(this == cp->space, "'this' should be current compaction space.");
385   size_t compaction_max_size = pointer_delta(end(), compact_top);
386   while (size > compaction_max_size) {
387     // switch to next compaction space
388     cp->space->set_compaction_top(compact_top);
389     cp->space = cp->space->next_compaction_space();
390     if (cp->space == NULL) {
391       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
392       assert(cp->gen != NULL, "compaction must succeed");
393       cp->space = cp->gen->first_compaction_space();
394       assert(cp->space != NULL, "generation must have a first compaction space");
395     }
396     compact_top = cp->space->bottom();
397     cp->space->set_compaction_top(compact_top);
398     cp->threshold = cp->space->initialize_threshold();
399     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
400   }
401 
402   // store the forwarding pointer into the mark word
403   if ((HeapWord*)q != compact_top) {
404     q->forward_to(oop(compact_top));
405     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
406   } else {
407     // if the object isn't moving we can just set the mark to the default
408     // mark and handle it specially later on.
409     q->init_mark();
410     assert(q->forwardee() == NULL, "should be forwarded to NULL");
411   }
412 
413   compact_top += size;
414 
415   // we need to update the offset table so that the beginnings of objects can be
416   // found during scavenge.  Note that we are updating the offset table based on
417   // where the object will be once the compaction phase finishes.
418   if (compact_top > cp->threshold)
419     cp->threshold =
420       cp->space->cross_threshold(compact_top - size, compact_top);
421   return compact_top;
422 }
423 
424 
insert_deadspace(size_t & allowed_deadspace_words,HeapWord * q,size_t deadlength)425 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
426                                         HeapWord* q, size_t deadlength) {
427   if (allowed_deadspace_words >= deadlength) {
428     allowed_deadspace_words -= deadlength;
429     CollectedHeap::fill_with_object(q, deadlength);
430     oop(q)->set_mark(oop(q)->mark()->set_marked());
431     assert((int) deadlength == oop(q)->size(), "bad filler object size");
432     // Recall that we required "q == compaction_top".
433     return true;
434   } else {
435     allowed_deadspace_words = 0;
436     return false;
437   }
438 }
439 
440 #define block_is_always_obj(q) true
441 #define obj_size(q) oop(q)->size()
442 #define adjust_obj_size(s) s
443 
prepare_for_compaction(CompactPoint * cp)444 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
445   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
446 }
447 
448 // Faster object search.
prepare_for_compaction(CompactPoint * cp)449 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
450   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
451 }
452 
adjust_pointers()453 void Space::adjust_pointers() {
454   // adjust all the interior pointers to point at the new locations of objects
455   // Used by MarkSweep::mark_sweep_phase3()
456 
457   // First check to see if there is any work to be done.
458   if (used() == 0) {
459     return;  // Nothing to do.
460   }
461 
462   // Otherwise...
463   HeapWord* q = bottom();
464   HeapWord* t = end();
465 
466   debug_only(HeapWord* prev_q = NULL);
467   while (q < t) {
468     if (oop(q)->is_gc_marked()) {
469       // q is alive
470 
471       // point all the oops to the new location
472       size_t size = oop(q)->adjust_pointers();
473 
474       debug_only(prev_q = q);
475 
476       q += size;
477     } else {
478       // q is not a live object.  But we're not in a compactible space,
479       // So we don't have live ranges.
480       debug_only(prev_q = q);
481       q += block_size(q);
482       assert(q > prev_q, "we should be moving forward through memory");
483     }
484   }
485   assert(q == t, "just checking");
486 }
487 
adjust_pointers()488 void CompactibleSpace::adjust_pointers() {
489   // Check first is there is any work to do.
490   if (used() == 0) {
491     return;   // Nothing to do.
492   }
493 
494   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
495 }
496 
compact()497 void CompactibleSpace::compact() {
498   SCAN_AND_COMPACT(obj_size);
499 }
500 
print_short() const501 void Space::print_short() const { print_short_on(tty); }
502 
print_short_on(outputStream * st) const503 void Space::print_short_on(outputStream* st) const {
504   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
505               (int) ((double) used() * 100 / capacity()));
506 }
507 
print() const508 void Space::print() const { print_on(tty); }
509 
print_on(outputStream * st) const510 void Space::print_on(outputStream* st) const {
511   print_short_on(st);
512   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
513                 bottom(), end());
514 }
515 
print_on(outputStream * st) const516 void ContiguousSpace::print_on(outputStream* st) const {
517   print_short_on(st);
518   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
519                 bottom(), top(), end());
520 }
521 
print_on(outputStream * st) const522 void OffsetTableContigSpace::print_on(outputStream* st) const {
523   print_short_on(st);
524   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
525                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
526               bottom(), top(), _offsets.threshold(), end());
527 }
528 
verify() const529 void ContiguousSpace::verify() const {
530   HeapWord* p = bottom();
531   HeapWord* t = top();
532   HeapWord* prev_p = NULL;
533   while (p < t) {
534     oop(p)->verify();
535     prev_p = p;
536     p += oop(p)->size();
537   }
538   guarantee(p == top(), "end of last object must match end of space");
539   if (top() != end()) {
540     guarantee(top() == block_start_const(end()-1) &&
541               top() == block_start_const(top()),
542               "top should be start of unallocated block, if it exists");
543   }
544 }
545 
oop_iterate(ExtendedOopClosure * blk)546 void Space::oop_iterate(ExtendedOopClosure* blk) {
547   ObjectToOopClosure blk2(blk);
548   object_iterate(&blk2);
549 }
550 
obj_is_alive(const HeapWord * p) const551 bool Space::obj_is_alive(const HeapWord* p) const {
552   assert (block_is_obj(p), "The address should point to an object");
553   return true;
554 }
555 
556 #if INCLUDE_ALL_GCS
557 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
558                                                                             \
559   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
560     HeapWord* obj_addr = mr.start();                                        \
561     HeapWord* t = mr.end();                                                 \
562     while (obj_addr < t) {                                                  \
563       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
564       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
565     }                                                                       \
566   }
567 
ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)568   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
569 
570 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
571 #endif // INCLUDE_ALL_GCS
572 
573 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
574   if (is_empty()) return;
575   HeapWord* obj_addr = bottom();
576   HeapWord* t = top();
577   // Could call objects iterate, but this is easier.
578   while (obj_addr < t) {
579     obj_addr += oop(obj_addr)->oop_iterate(blk);
580   }
581 }
582 
object_iterate(ObjectClosure * blk)583 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
584   if (is_empty()) return;
585   WaterMark bm = bottom_mark();
586   object_iterate_from(bm, blk);
587 }
588 
589 // For a continguous space object_iterate() and safe_object_iterate()
590 // are the same.
safe_object_iterate(ObjectClosure * blk)591 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
592   object_iterate(blk);
593 }
594 
object_iterate_from(WaterMark mark,ObjectClosure * blk)595 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
596   assert(mark.space() == this, "Mark does not match space");
597   HeapWord* p = mark.point();
598   while (p < top()) {
599     blk->do_object(oop(p));
600     p += oop(p)->size();
601   }
602 }
603 
604 HeapWord*
object_iterate_careful(ObjectClosureCareful * blk)605 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
606   HeapWord * limit = concurrent_iteration_safe_limit();
607   assert(limit <= top(), "sanity check");
608   for (HeapWord* p = bottom(); p < limit;) {
609     size_t size = blk->do_object_careful(oop(p));
610     if (size == 0) {
611       return p;  // failed at p
612     } else {
613       p += size;
614     }
615   }
616   return NULL; // all done
617 }
618 
619 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
620                                                                           \
621 void ContiguousSpace::                                                    \
622 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
623   HeapWord* t;                                                            \
624   HeapWord* p = saved_mark_word();                                        \
625   assert(p != NULL, "expected saved mark");                               \
626                                                                           \
627   const intx interval = PrefetchScanIntervalInBytes;                      \
628   do {                                                                    \
629     t = top();                                                            \
630     while (p < t) {                                                       \
631       Prefetch::write(p, interval);                                       \
632       debug_only(HeapWord* prev = p);                                     \
633       oop m = oop(p);                                                     \
634       p += m->oop_iterate(blk);                                           \
635     }                                                                     \
636   } while (t < top());                                                    \
637                                                                           \
638   set_saved_mark_word(p);                                                 \
639 }
640 
ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)641 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
642 
643 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
644 
645 // Very general, slow implementation.
646 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
647   assert(MemRegion(bottom(), end()).contains(p),
648          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
649                   p, bottom(), end()));
650   if (p >= top()) {
651     return top();
652   } else {
653     HeapWord* last = bottom();
654     HeapWord* cur = last;
655     while (cur <= p) {
656       last = cur;
657       cur += oop(cur)->size();
658     }
659     assert(oop(last)->is_oop(),
660            err_msg(PTR_FORMAT " should be an object start", last));
661     return last;
662   }
663 }
664 
block_size(const HeapWord * p) const665 size_t ContiguousSpace::block_size(const HeapWord* p) const {
666   assert(MemRegion(bottom(), end()).contains(p),
667          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
668                   p, bottom(), end()));
669   HeapWord* current_top = top();
670   assert(p <= current_top,
671          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
672                   p, current_top));
673   assert(p == current_top || oop(p)->is_oop(),
674          err_msg("p (" PTR_FORMAT ") is not a block start - "
675                  "current_top: " PTR_FORMAT ", is_oop: %s",
676                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
677   if (p < current_top) {
678     return oop(p)->size();
679   } else {
680     assert(p == current_top, "just checking");
681     return pointer_delta(end(), (HeapWord*) p);
682   }
683 }
684 
685 // This version requires locking.
allocate_impl(size_t size,HeapWord * const end_value)686 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
687                                                 HeapWord* const end_value) {
688   assert(Heap_lock->owned_by_self() ||
689          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
690          "not locked");
691   HeapWord* obj = top();
692   if (pointer_delta(end_value, obj) >= size) {
693     HeapWord* new_top = obj + size;
694     set_top(new_top);
695     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
696     return obj;
697   } else {
698     return NULL;
699   }
700 }
701 
702 // This version is lock-free.
par_allocate_impl(size_t size,HeapWord * const end_value)703 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
704                                                     HeapWord* const end_value) {
705   do {
706     HeapWord* obj = top();
707     if (pointer_delta(end_value, obj) >= size) {
708       HeapWord* new_top = obj + size;
709       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
710       // result can be one of two:
711       //  the old top value: the exchange succeeded
712       //  otherwise: the new value of the top is returned.
713       if (result == obj) {
714         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
715         return obj;
716       }
717     } else {
718       return NULL;
719     }
720   } while (true);
721 }
722 
allocate_aligned(size_t size)723 HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
724   assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
725   HeapWord* end_value = end();
726 
727   HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
728   if (obj == NULL) {
729     return NULL;
730   }
731 
732   if (pointer_delta(end_value, obj) >= size) {
733     HeapWord* new_top = obj + size;
734     set_top(new_top);
735     assert(is_ptr_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
736       "checking alignment");
737     return obj;
738   } else {
739     set_top(obj);
740     return NULL;
741   }
742 }
743 
744 // Requires locking.
allocate(size_t size)745 HeapWord* ContiguousSpace::allocate(size_t size) {
746   return allocate_impl(size, end());
747 }
748 
749 // Lock-free.
par_allocate(size_t size)750 HeapWord* ContiguousSpace::par_allocate(size_t size) {
751   return par_allocate_impl(size, end());
752 }
753 
allocate_temporary_filler(int factor)754 void ContiguousSpace::allocate_temporary_filler(int factor) {
755   // allocate temporary type array decreasing free size with factor 'factor'
756   assert(factor >= 0, "just checking");
757   size_t size = pointer_delta(end(), top());
758 
759   // if space is full, return
760   if (size == 0) return;
761 
762   if (factor > 0) {
763     size -= size/factor;
764   }
765   size = align_object_size(size);
766 
767   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
768   if (size >= (size_t)align_object_size(array_header_size)) {
769     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
770     // allocate uninitialized int array
771     typeArrayOop t = (typeArrayOop) allocate(size);
772     assert(t != NULL, "allocation should succeed");
773     t->set_mark(markOopDesc::prototype());
774     t->set_klass(Universe::intArrayKlassObj());
775     t->set_length((int)length);
776   } else {
777     assert(size == CollectedHeap::min_fill_size(),
778            "size for smallest fake object doesn't match");
779     instanceOop obj = (instanceOop) allocate(size);
780     obj->set_mark(markOopDesc::prototype());
781     obj->set_klass_gap(0);
782     obj->set_klass(SystemDictionary::Object_klass());
783   }
784 }
785 
clear(bool mangle_space)786 void EdenSpace::clear(bool mangle_space) {
787   ContiguousSpace::clear(mangle_space);
788   set_soft_end(end());
789 }
790 
791 // Requires locking.
allocate(size_t size)792 HeapWord* EdenSpace::allocate(size_t size) {
793   return allocate_impl(size, soft_end());
794 }
795 
796 // Lock-free.
par_allocate(size_t size)797 HeapWord* EdenSpace::par_allocate(size_t size) {
798   return par_allocate_impl(size, soft_end());
799 }
800 
par_allocate(size_t size)801 HeapWord* ConcEdenSpace::par_allocate(size_t size)
802 {
803   do {
804     // The invariant is top() should be read before end() because
805     // top() can't be greater than end(), so if an update of _soft_end
806     // occurs between 'end_val = end();' and 'top_val = top();' top()
807     // also can grow up to the new end() and the condition
808     // 'top_val > end_val' is true. To ensure the loading order
809     // OrderAccess::loadload() is required after top() read.
810     HeapWord* obj = top();
811     OrderAccess::loadload();
812     if (pointer_delta(*soft_end_addr(), obj) >= size) {
813       HeapWord* new_top = obj + size;
814       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
815       // result can be one of two:
816       //  the old top value: the exchange succeeded
817       //  otherwise: the new value of the top is returned.
818       if (result == obj) {
819         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
820         return obj;
821       }
822     } else {
823       return NULL;
824     }
825   } while (true);
826 }
827 
828 
initialize_threshold()829 HeapWord* OffsetTableContigSpace::initialize_threshold() {
830   return _offsets.initialize_threshold();
831 }
832 
cross_threshold(HeapWord * start,HeapWord * end)833 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
834   _offsets.alloc_block(start, end);
835   return _offsets.threshold();
836 }
837 
OffsetTableContigSpace(BlockOffsetSharedArray * sharedOffsetArray,MemRegion mr)838 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
839                                                MemRegion mr) :
840   _offsets(sharedOffsetArray, mr),
841   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
842 {
843   _offsets.set_contig_space(this);
844   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
845 }
846 
847 #define OBJ_SAMPLE_INTERVAL 0
848 #define BLOCK_SAMPLE_INTERVAL 100
849 
verify() const850 void OffsetTableContigSpace::verify() const {
851   HeapWord* p = bottom();
852   HeapWord* prev_p = NULL;
853   int objs = 0;
854   int blocks = 0;
855 
856   if (VerifyObjectStartArray) {
857     _offsets.verify();
858   }
859 
860   while (p < top()) {
861     size_t size = oop(p)->size();
862     // For a sampling of objects in the space, find it using the
863     // block offset table.
864     if (blocks == BLOCK_SAMPLE_INTERVAL) {
865       guarantee(p == block_start_const(p + (size/2)),
866                 "check offset computation");
867       blocks = 0;
868     } else {
869       blocks++;
870     }
871 
872     if (objs == OBJ_SAMPLE_INTERVAL) {
873       oop(p)->verify();
874       objs = 0;
875     } else {
876       objs++;
877     }
878     prev_p = p;
879     p += size;
880   }
881   guarantee(p == top(), "end of last object must match end of space");
882 }
883 
884 
allowed_dead_ratio() const885 size_t TenuredSpace::allowed_dead_ratio() const {
886   return MarkSweepDeadRatio;
887 }
888