1 /*
2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/oopMap.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "opto/addnode.hpp"
29 #include "opto/block.hpp"
30 #include "opto/callnode.hpp"
31 #include "opto/cfgnode.hpp"
32 #include "opto/chaitin.hpp"
33 #include "opto/coalesce.hpp"
34 #include "opto/connode.hpp"
35 #include "opto/indexSet.hpp"
36 #include "opto/machnode.hpp"
37 #include "opto/memnode.hpp"
38 #include "opto/opcodes.hpp"
39 
PhaseIFG(Arena * arena)40 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
41 }
42 
init(uint maxlrg)43 void PhaseIFG::init( uint maxlrg ) {
44   _maxlrg = maxlrg;
45   _yanked = new (_arena) VectorSet(_arena);
46   _is_square = false;
47   // Make uninitialized adjacency lists
48   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
49   // Also make empty live range structures
50   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
51   memset(_lrgs,0,sizeof(LRG)*maxlrg);
52   // Init all to empty
53   for( uint i = 0; i < maxlrg; i++ ) {
54     _adjs[i].initialize(maxlrg);
55     _lrgs[i].Set_All();
56   }
57 }
58 
59 // Add edge between vertices a & b.  These are sorted (triangular matrix),
60 // then the smaller number is inserted in the larger numbered array.
add_edge(uint a,uint b)61 int PhaseIFG::add_edge( uint a, uint b ) {
62   lrgs(a).invalid_degree();
63   lrgs(b).invalid_degree();
64   // Sort a and b, so that a is bigger
65   assert( !_is_square, "only on triangular" );
66   if( a < b ) { uint tmp = a; a = b; b = tmp; }
67   return _adjs[a].insert( b );
68 }
69 
70 // Add an edge between 'a' and everything in the vector.
add_vector(uint a,IndexSet * vec)71 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
72   // IFG is triangular, so do the inserts where 'a' < 'b'.
73   assert( !_is_square, "only on triangular" );
74   IndexSet *adjs_a = &_adjs[a];
75   if( !vec->count() ) return;
76 
77   IndexSetIterator elements(vec);
78   uint neighbor;
79   while ((neighbor = elements.next()) != 0) {
80     add_edge( a, neighbor );
81   }
82 }
83 
84 // Is there an edge between a and b?
test_edge(uint a,uint b) const85 int PhaseIFG::test_edge( uint a, uint b ) const {
86   // Sort a and b, so that a is larger
87   assert( !_is_square, "only on triangular" );
88   if( a < b ) { uint tmp = a; a = b; b = tmp; }
89   return _adjs[a].member(b);
90 }
91 
92 // Convert triangular matrix to square matrix
SquareUp()93 void PhaseIFG::SquareUp() {
94   assert( !_is_square, "only on triangular" );
95 
96   // Simple transpose
97   for( uint i = 0; i < _maxlrg; i++ ) {
98     IndexSetIterator elements(&_adjs[i]);
99     uint datum;
100     while ((datum = elements.next()) != 0) {
101       _adjs[datum].insert( i );
102     }
103   }
104   _is_square = true;
105 }
106 
107 // Compute effective degree in bulk
Compute_Effective_Degree()108 void PhaseIFG::Compute_Effective_Degree() {
109   assert( _is_square, "only on square" );
110 
111   for( uint i = 0; i < _maxlrg; i++ )
112     lrgs(i).set_degree(effective_degree(i));
113 }
114 
test_edge_sq(uint a,uint b) const115 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
116   assert( _is_square, "only on square" );
117   // Swap, so that 'a' has the lesser count.  Then binary search is on
118   // the smaller of a's list and b's list.
119   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
120   //return _adjs[a].unordered_member(b);
121   return _adjs[a].member(b);
122 }
123 
124 // Union edges of B into A
Union(uint a,uint b)125 void PhaseIFG::Union( uint a, uint b ) {
126   assert( _is_square, "only on square" );
127   IndexSet *A = &_adjs[a];
128   IndexSetIterator b_elements(&_adjs[b]);
129   uint datum;
130   while ((datum = b_elements.next()) != 0) {
131     if(A->insert(datum)) {
132       _adjs[datum].insert(a);
133       lrgs(a).invalid_degree();
134       lrgs(datum).invalid_degree();
135     }
136   }
137 }
138 
139 // Yank a Node and all connected edges from the IFG.  Return a
140 // list of neighbors (edges) yanked.
remove_node(uint a)141 IndexSet *PhaseIFG::remove_node( uint a ) {
142   assert( _is_square, "only on square" );
143   assert( !_yanked->test(a), "" );
144   _yanked->set(a);
145 
146   // I remove the LRG from all neighbors.
147   IndexSetIterator elements(&_adjs[a]);
148   LRG &lrg_a = lrgs(a);
149   uint datum;
150   while ((datum = elements.next()) != 0) {
151     _adjs[datum].remove(a);
152     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
153   }
154   return neighbors(a);
155 }
156 
157 // Re-insert a yanked Node.
re_insert(uint a)158 void PhaseIFG::re_insert( uint a ) {
159   assert( _is_square, "only on square" );
160   assert( _yanked->test(a), "" );
161   (*_yanked) >>= a;
162 
163   IndexSetIterator elements(&_adjs[a]);
164   uint datum;
165   while ((datum = elements.next()) != 0) {
166     _adjs[datum].insert(a);
167     lrgs(datum).invalid_degree();
168   }
169 }
170 
171 // Compute the degree between 2 live ranges.  If both live ranges are
172 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
173 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
174 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
175 // this is so.
compute_degree(LRG & l) const176 int LRG::compute_degree( LRG &l ) const {
177   int tmp;
178   int num_regs = _num_regs;
179   int nregs = l.num_regs();
180   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
181     ? (num_regs * nregs)                // then use product
182     : MAX2(num_regs,nregs);             // else use max
183   return tmp;
184 }
185 
186 // Compute effective degree for this live range.  If both live ranges are
187 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
189 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
190 // this is so.
effective_degree(uint lidx) const191 int PhaseIFG::effective_degree( uint lidx ) const {
192   int eff = 0;
193   int num_regs = lrgs(lidx).num_regs();
194   int fat_proj = lrgs(lidx)._fat_proj;
195   IndexSet *s = neighbors(lidx);
196   IndexSetIterator elements(s);
197   uint nidx;
198   while((nidx = elements.next()) != 0) {
199     LRG &lrgn = lrgs(nidx);
200     int nregs = lrgn.num_regs();
201     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
202       ? (num_regs * nregs)              // then use product
203       : MAX2(num_regs,nregs);           // else use max
204   }
205   return eff;
206 }
207 
208 
209 #ifndef PRODUCT
dump() const210 void PhaseIFG::dump() const {
211   tty->print_cr("-- Interference Graph --%s--",
212                 _is_square ? "square" : "triangular" );
213   if( _is_square ) {
214     for( uint i = 0; i < _maxlrg; i++ ) {
215       tty->print( (*_yanked)[i] ? "XX " : "  ");
216       tty->print("L%d: { ",i);
217       IndexSetIterator elements(&_adjs[i]);
218       uint datum;
219       while ((datum = elements.next()) != 0) {
220         tty->print("L%d ", datum);
221       }
222       tty->print_cr("}");
223 
224     }
225     return;
226   }
227 
228   // Triangular
229   for( uint i = 0; i < _maxlrg; i++ ) {
230     uint j;
231     tty->print( (*_yanked)[i] ? "XX " : "  ");
232     tty->print("L%d: { ",i);
233     for( j = _maxlrg; j > i; j-- )
234       if( test_edge(j - 1,i) ) {
235         tty->print("L%d ",j - 1);
236       }
237     tty->print("| ");
238     IndexSetIterator elements(&_adjs[i]);
239     uint datum;
240     while ((datum = elements.next()) != 0) {
241       tty->print("L%d ", datum);
242     }
243     tty->print("}\n");
244   }
245   tty->print("\n");
246 }
247 
stats() const248 void PhaseIFG::stats() const {
249   ResourceMark rm;
250   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
251   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
252   uint i;
253   for( i = 0; i < _maxlrg; i++ ) {
254     h_cnt[neighbor_cnt(i)]++;
255   }
256   tty->print_cr("--Histogram of counts--");
257   for( i = 0; i < _maxlrg*2; i++ )
258     if( h_cnt[i] )
259       tty->print("%d/%d ",i,h_cnt[i]);
260   tty->cr();
261 }
262 
verify(const PhaseChaitin * pc) const263 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
264   // IFG is square, sorted and no need for Find
265   for( uint i = 0; i < _maxlrg; i++ ) {
266     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
267     IndexSet *set = &_adjs[i];
268     IndexSetIterator elements(set);
269     uint idx;
270     uint last = 0;
271     while ((idx = elements.next()) != 0) {
272       assert(idx != i, "Must have empty diagonal");
273       assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
274       assert(_adjs[idx].member(i), "IFG not square");
275       assert(!(*_yanked)[idx], "No yanked neighbors");
276       assert(last < idx, "not sorted increasing");
277       last = idx;
278     }
279     assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
280   }
281 }
282 #endif
283 
284 // Interfere this register with everything currently live.  Use the RegMasks
285 // to trim the set of possible interferences. Return a count of register-only
286 // interferences as an estimate of register pressure.
interfere_with_live(uint r,IndexSet * liveout)287 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
288   uint retval = 0;
289   // Interfere with everything live.
290   const RegMask &rm = lrgs(r).mask();
291   // Check for interference by checking overlap of regmasks.
292   // Only interfere if acceptable register masks overlap.
293   IndexSetIterator elements(liveout);
294   uint l;
295   while( (l = elements.next()) != 0 )
296     if( rm.overlap( lrgs(l).mask() ) )
297       _ifg->add_edge( r, l );
298 }
299 
300 // Actually build the interference graph.  Uses virtual registers only, no
301 // physical register masks.  This allows me to be very aggressive when
302 // coalescing copies.  Some of this aggressiveness will have to be undone
303 // later, but I'd rather get all the copies I can now (since unremoved copies
304 // at this point can end up in bad places).  Copies I re-insert later I have
305 // more opportunity to insert them in low-frequency locations.
build_ifg_virtual()306 void PhaseChaitin::build_ifg_virtual( ) {
307 
308   // For all blocks (in any order) do...
309   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
310     Block* block = _cfg.get_block(i);
311     IndexSet* liveout = _live->live(block);
312 
313     // The IFG is built by a single reverse pass over each basic block.
314     // Starting with the known live-out set, we remove things that get
315     // defined and add things that become live (essentially executing one
316     // pass of a standard LIVE analysis). Just before a Node defines a value
317     // (and removes it from the live-ness set) that value is certainly live.
318     // The defined value interferes with everything currently live.  The
319     // value is then removed from the live-ness set and it's inputs are
320     // added to the live-ness set.
321     for (uint j = block->end_idx() + 1; j > 1; j--) {
322       Node* n = block->get_node(j - 1);
323 
324       // Get value being defined
325       uint r = _lrg_map.live_range_id(n);
326 
327       // Some special values do not allocate
328       if (r) {
329 
330         // Remove from live-out set
331         liveout->remove(r);
332 
333         // Copies do not define a new value and so do not interfere.
334         // Remove the copies source from the liveout set before interfering.
335         uint idx = n->is_Copy();
336         if (idx) {
337           liveout->remove(_lrg_map.live_range_id(n->in(idx)));
338         }
339 
340         // Interfere with everything live
341         interfere_with_live(r, liveout);
342       }
343 
344       // Make all inputs live
345       if (!n->is_Phi()) {      // Phi function uses come from prior block
346         for(uint k = 1; k < n->req(); k++) {
347           liveout->insert(_lrg_map.live_range_id(n->in(k)));
348         }
349       }
350 
351       // 2-address instructions always have the defined value live
352       // on entry to the instruction, even though it is being defined
353       // by the instruction.  We pretend a virtual copy sits just prior
354       // to the instruction and kills the src-def'd register.
355       // In other words, for 2-address instructions the defined value
356       // interferes with all inputs.
357       uint idx;
358       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
359         const MachNode *mach = n->as_Mach();
360         // Sometimes my 2-address ADDs are commuted in a bad way.
361         // We generally want the USE-DEF register to refer to the
362         // loop-varying quantity, to avoid a copy.
363         uint op = mach->ideal_Opcode();
364         // Check that mach->num_opnds() == 3 to ensure instruction is
365         // not subsuming constants, effectively excludes addI_cin_imm
366         // Can NOT swap for instructions like addI_cin_imm since it
367         // is adding zero to yhi + carry and the second ideal-input
368         // points to the result of adding low-halves.
369         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
370         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
371             n->in(1)->bottom_type()->base() == Type::Int &&
372             // See if the ADD is involved in a tight data loop the wrong way
373             n->in(2)->is_Phi() &&
374             n->in(2)->in(2) == n ) {
375           Node *tmp = n->in(1);
376           n->set_req( 1, n->in(2) );
377           n->set_req( 2, tmp );
378         }
379         // Defined value interferes with all inputs
380         uint lidx = _lrg_map.live_range_id(n->in(idx));
381         for (uint k = 1; k < n->req(); k++) {
382           uint kidx = _lrg_map.live_range_id(n->in(k));
383           if (kidx != lidx) {
384             _ifg->add_edge(r, kidx);
385           }
386         }
387       }
388     } // End of forall instructions in block
389   } // End of forall blocks
390 }
391 
count_int_pressure(IndexSet * liveout)392 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
393   IndexSetIterator elements(liveout);
394   uint lidx;
395   uint cnt = 0;
396   while ((lidx = elements.next()) != 0) {
397     if( lrgs(lidx).mask().is_UP() &&
398         lrgs(lidx).mask_size() &&
399         !lrgs(lidx)._is_float &&
400         !lrgs(lidx)._is_vector &&
401         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
402       cnt += lrgs(lidx).reg_pressure();
403   }
404   return cnt;
405 }
406 
count_float_pressure(IndexSet * liveout)407 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
408   IndexSetIterator elements(liveout);
409   uint lidx;
410   uint cnt = 0;
411   while ((lidx = elements.next()) != 0) {
412     if( lrgs(lidx).mask().is_UP() &&
413         lrgs(lidx).mask_size() &&
414         (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
415       cnt += lrgs(lidx).reg_pressure();
416   }
417   return cnt;
418 }
419 
420 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
lower_pressure(LRG * lrg,uint where,Block * b,uint * pressure,uint * hrp_index)421 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
422   if (lrg->mask().is_UP() && lrg->mask_size()) {
423     if (lrg->_is_float || lrg->_is_vector) {
424       pressure[1] -= lrg->reg_pressure();
425       if( pressure[1] == (uint)FLOATPRESSURE ) {
426         hrp_index[1] = where;
427         if( pressure[1] > b->_freg_pressure )
428           b->_freg_pressure = pressure[1]+1;
429       }
430     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
431       pressure[0] -= lrg->reg_pressure();
432       if( pressure[0] == (uint)INTPRESSURE   ) {
433         hrp_index[0] = where;
434         if( pressure[0] > b->_reg_pressure )
435           b->_reg_pressure = pressure[0]+1;
436       }
437     }
438   }
439 }
440 
441 // Build the interference graph using physical registers when available.
442 // That is, if 2 live ranges are simultaneously alive but in their acceptable
443 // register sets do not overlap, then they do not interfere.
build_ifg_physical(ResourceArea * a)444 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
445   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
446 
447   uint must_spill = 0;
448 
449   // For all blocks (in any order) do...
450   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
451     Block* block = _cfg.get_block(i);
452     // Clone (rather than smash in place) the liveout info, so it is alive
453     // for the "collect_gc_info" phase later.
454     IndexSet liveout(_live->live(block));
455     uint last_inst = block->end_idx();
456     // Compute first nonphi node index
457     uint first_inst;
458     for (first_inst = 1; first_inst < last_inst; first_inst++) {
459       if (!block->get_node(first_inst)->is_Phi()) {
460         break;
461       }
462     }
463 
464     // Spills could be inserted before CreateEx node which should be
465     // first instruction in block after Phis. Move CreateEx up.
466     for (uint insidx = first_inst; insidx < last_inst; insidx++) {
467       Node *ex = block->get_node(insidx);
468       if (ex->is_SpillCopy()) {
469         continue;
470       }
471       if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
472         // If the CreateEx isn't above all the MachSpillCopies
473         // then move it to the top.
474         block->remove_node(insidx);
475         block->insert_node(ex, first_inst);
476       }
477       // Stop once a CreateEx or any other node is found
478       break;
479     }
480 
481     // Reset block's register pressure values for each ifg construction
482     uint pressure[2], hrp_index[2];
483     pressure[0] = pressure[1] = 0;
484     hrp_index[0] = hrp_index[1] = last_inst+1;
485     block->_reg_pressure = block->_freg_pressure = 0;
486     // Liveout things are presumed live for the whole block.  We accumulate
487     // 'area' accordingly.  If they get killed in the block, we'll subtract
488     // the unused part of the block from the area.
489     int inst_count = last_inst - first_inst;
490     double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
491     assert(!(cost < 0.0), "negative spill cost" );
492     IndexSetIterator elements(&liveout);
493     uint lidx;
494     while ((lidx = elements.next()) != 0) {
495       LRG &lrg = lrgs(lidx);
496       lrg._area += cost;
497       // Compute initial register pressure
498       if (lrg.mask().is_UP() && lrg.mask_size()) {
499         if (lrg._is_float || lrg._is_vector) {   // Count float pressure
500           pressure[1] += lrg.reg_pressure();
501           if (pressure[1] > block->_freg_pressure) {
502             block->_freg_pressure = pressure[1];
503           }
504           // Count int pressure, but do not count the SP, flags
505         } else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
506           pressure[0] += lrg.reg_pressure();
507           if (pressure[0] > block->_reg_pressure) {
508             block->_reg_pressure = pressure[0];
509           }
510         }
511       }
512     }
513     assert( pressure[0] == count_int_pressure  (&liveout), "" );
514     assert( pressure[1] == count_float_pressure(&liveout), "" );
515 
516     // The IFG is built by a single reverse pass over each basic block.
517     // Starting with the known live-out set, we remove things that get
518     // defined and add things that become live (essentially executing one
519     // pass of a standard LIVE analysis).  Just before a Node defines a value
520     // (and removes it from the live-ness set) that value is certainly live.
521     // The defined value interferes with everything currently live.  The
522     // value is then removed from the live-ness set and it's inputs are added
523     // to the live-ness set.
524     uint j;
525     for (j = last_inst + 1; j > 1; j--) {
526       Node* n = block->get_node(j - 1);
527 
528       // Get value being defined
529       uint r = _lrg_map.live_range_id(n);
530 
531       // Some special values do not allocate
532       if(r) {
533         // A DEF normally costs block frequency; rematerialized values are
534         // removed from the DEF sight, so LOWER costs here.
535         lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
536 
537         // If it is not live, then this instruction is dead.  Probably caused
538         // by spilling and rematerialization.  Who cares why, yank this baby.
539         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
540           Node *def = n->in(0);
541           if( !n->is_Proj() ||
542               // Could also be a flags-projection of a dead ADD or such.
543               (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
544             bool remove = true;
545             if (n->is_MachProj()) {
546               // Don't remove KILL projections if their "defining" nodes have
547               // memory effects (have SCMemProj projection node) -
548               // they are not dead even when their result is not used.
549               // For example, compareAndSwapL (and other CAS) and EncodeISOArray nodes.
550               // The method add_input_to_liveout() keeps such nodes alive (put them on liveout list)
551               // when it sees SCMemProj node in a block. Unfortunately SCMemProj node could be placed
552               // in block in such order that KILL MachProj nodes are processed first.
553               uint cnt = def->outcnt();
554               for (uint i = 0; i < cnt; i++) {
555                 Node* proj = def->raw_out(i);
556                 if (proj->Opcode() == Op_SCMemProj) {
557                   remove = false;
558                   break;
559                 }
560               }
561             }
562             if (remove) {
563               block->remove_node(j - 1);
564               if (lrgs(r)._def == n) {
565                 lrgs(r)._def = 0;
566               }
567               n->disconnect_inputs(NULL, C);
568               _cfg.unmap_node_from_block(n);
569               n->replace_by(C->top());
570               // Since yanking a Node from block, high pressure moves up one
571               hrp_index[0]--;
572               hrp_index[1]--;
573               continue;
574             }
575           }
576 
577           // Fat-projections kill many registers which cannot be used to
578           // hold live ranges.
579           if (lrgs(r)._fat_proj) {
580             // Count the int-only registers
581             RegMask itmp = lrgs(r).mask();
582             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
583             int iregs = itmp.Size();
584             if (pressure[0]+iregs > block->_reg_pressure) {
585               block->_reg_pressure = pressure[0] + iregs;
586             }
587             if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
588               hrp_index[0] = j - 1;
589             }
590             // Count the float-only registers
591             RegMask ftmp = lrgs(r).mask();
592             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
593             int fregs = ftmp.Size();
594             if (pressure[1] + fregs > block->_freg_pressure) {
595               block->_freg_pressure = pressure[1] + fregs;
596             }
597             if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
598               hrp_index[1] = j - 1;
599             }
600           }
601 
602         } else {                // Else it is live
603           // A DEF also ends 'area' partway through the block.
604           lrgs(r)._area -= cost;
605           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
606 
607           // Insure high score for immediate-use spill copies so they get a color
608           if( n->is_SpillCopy()
609               && lrgs(r).is_singledef()        // MultiDef live range can still split
610               && n->outcnt() == 1              // and use must be in this block
611               && _cfg.get_block_for_node(n->unique_out()) == block) {
612             // All single-use MachSpillCopy(s) that immediately precede their
613             // use must color early.  If a longer live range steals their
614             // color, the spill copy will split and may push another spill copy
615             // further away resulting in an infinite spill-split-retry cycle.
616             // Assigning a zero area results in a high score() and a good
617             // location in the simplify list.
618             //
619 
620             Node *single_use = n->unique_out();
621             assert(block->find_node(single_use) >= j, "Use must be later in block");
622             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
623 
624             // Find first non SpillCopy 'm' that follows the current instruction
625             // (j - 1) is index for current instruction 'n'
626             Node *m = n;
627             for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
628               m = block->get_node(i);
629             }
630             if (m == single_use) {
631               lrgs(r)._area = 0.0;
632             }
633           }
634 
635           // Remove from live-out set
636           if( liveout.remove(r) ) {
637             // Adjust register pressure.
638             // Capture last hi-to-lo pressure transition
639             lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
640             assert( pressure[0] == count_int_pressure  (&liveout), "" );
641             assert( pressure[1] == count_float_pressure(&liveout), "" );
642           }
643 
644           // Copies do not define a new value and so do not interfere.
645           // Remove the copies source from the liveout set before interfering.
646           uint idx = n->is_Copy();
647           if (idx) {
648             uint x = _lrg_map.live_range_id(n->in(idx));
649             if (liveout.remove(x)) {
650               lrgs(x)._area -= cost;
651               // Adjust register pressure.
652               lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
653               assert( pressure[0] == count_int_pressure  (&liveout), "" );
654               assert( pressure[1] == count_float_pressure(&liveout), "" );
655             }
656           }
657         } // End of if live or not
658 
659         // Interfere with everything live.  If the defined value must
660         // go in a particular register, just remove that register from
661         // all conflicting parties and avoid the interference.
662 
663         // Make exclusions for rematerializable defs.  Since rematerializable
664         // DEFs are not bound but the live range is, some uses must be bound.
665         // If we spill live range 'r', it can rematerialize at each use site
666         // according to its bindings.
667         const RegMask &rmask = lrgs(r).mask();
668         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
669           // Check for common case
670           int r_size = lrgs(r).num_regs();
671           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
672           // Smear odd bits
673           IndexSetIterator elements(&liveout);
674           uint l;
675           while ((l = elements.next()) != 0) {
676             LRG &lrg = lrgs(l);
677             // If 'l' must spill already, do not further hack his bits.
678             // He'll get some interferences and be forced to spill later.
679             if( lrg._must_spill ) continue;
680             // Remove bound register(s) from 'l's choices
681             RegMask old = lrg.mask();
682             uint old_size = lrg.mask_size();
683             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
684             // longer interferes with 'r'.  If 'l' requires aligned
685             // adjacent pairs, subtract out bit pairs.
686             assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
687             if (lrg.num_regs() > 1 && !lrg._fat_proj) {
688               RegMask r2mask = rmask;
689               // Leave only aligned set of bits.
690               r2mask.smear_to_sets(lrg.num_regs());
691               // It includes vector case.
692               lrg.SUBTRACT( r2mask );
693               lrg.compute_set_mask_size();
694             } else if( r_size != 1 ) { // fat proj
695               lrg.SUBTRACT( rmask );
696               lrg.compute_set_mask_size();
697             } else {            // Common case: size 1 bound removal
698               if( lrg.mask().Member(r_reg) ) {
699                 lrg.Remove(r_reg);
700                 lrg.set_mask_size(lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
701               }
702             }
703             // If 'l' goes completely dry, it must spill.
704             if( lrg.not_free() ) {
705               // Give 'l' some kind of reasonable mask, so he picks up
706               // interferences (and will spill later).
707               lrg.set_mask( old );
708               lrg.set_mask_size(old_size);
709               must_spill++;
710               lrg._must_spill = 1;
711               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
712             }
713           }
714         } // End of if bound
715 
716         // Now interference with everything that is live and has
717         // compatible register sets.
718         interfere_with_live(r,&liveout);
719 
720       } // End of if normal register-allocated value
721 
722       // Area remaining in the block
723       inst_count--;
724       cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
725 
726       // Make all inputs live
727       if( !n->is_Phi() ) {      // Phi function uses come from prior block
728         JVMState* jvms = n->jvms();
729         uint debug_start = jvms ? jvms->debug_start() : 999999;
730         // Start loop at 1 (skip control edge) for most Nodes.
731         // SCMemProj's might be the sole use of a StoreLConditional.
732         // While StoreLConditionals set memory (the SCMemProj use)
733         // they also def flags; if that flag def is unused the
734         // allocator sees a flag-setting instruction with no use of
735         // the flags and assumes it's dead.  This keeps the (useless)
736         // flag-setting behavior alive while also keeping the (useful)
737         // memory update effect.
738         for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
739           Node *def = n->in(k);
740           uint x = _lrg_map.live_range_id(def);
741           if (!x) {
742             continue;
743           }
744           LRG &lrg = lrgs(x);
745           // No use-side cost for spilling debug info
746           if (k < debug_start) {
747             // A USE costs twice block frequency (once for the Load, once
748             // for a Load-delay).  Rematerialized uses only cost once.
749             lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
750           }
751           // It is live now
752           if (liveout.insert(x)) {
753             // Newly live things assumed live from here to top of block
754             lrg._area += cost;
755             // Adjust register pressure
756             if (lrg.mask().is_UP() && lrg.mask_size()) {
757               if (lrg._is_float || lrg._is_vector) {
758                 pressure[1] += lrg.reg_pressure();
759                 if (pressure[1] > block->_freg_pressure)  {
760                   block->_freg_pressure = pressure[1];
761                 }
762               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
763                 pressure[0] += lrg.reg_pressure();
764                 if (pressure[0] > block->_reg_pressure) {
765                   block->_reg_pressure = pressure[0];
766                 }
767               }
768             }
769             assert( pressure[0] == count_int_pressure  (&liveout), "" );
770             assert( pressure[1] == count_float_pressure(&liveout), "" );
771           }
772           assert(!(lrg._area < 0.0), "negative spill area" );
773         }
774       }
775     } // End of reverse pass over all instructions in block
776 
777     // If we run off the top of the block with high pressure and
778     // never see a hi-to-low pressure transition, just record that
779     // the whole block is high pressure.
780     if (pressure[0] > (uint)INTPRESSURE) {
781       hrp_index[0] = 0;
782       if (pressure[0] > block->_reg_pressure) {
783         block->_reg_pressure = pressure[0];
784       }
785     }
786     if (pressure[1] > (uint)FLOATPRESSURE) {
787       hrp_index[1] = 0;
788       if (pressure[1] > block->_freg_pressure) {
789         block->_freg_pressure = pressure[1];
790       }
791     }
792 
793     // Compute high pressure indice; avoid landing in the middle of projnodes
794     j = hrp_index[0];
795     if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
796       Node* cur = block->get_node(j);
797       while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
798         j--;
799         cur = block->get_node(j);
800       }
801     }
802     block->_ihrp_index = j;
803     j = hrp_index[1];
804     if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
805       Node* cur = block->get_node(j);
806       while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
807         j--;
808         cur = block->get_node(j);
809       }
810     }
811     block->_fhrp_index = j;
812 
813 #ifndef PRODUCT
814     // Gather Register Pressure Statistics
815     if( PrintOptoStatistics ) {
816       if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
817         _high_pressure++;
818       } else {
819         _low_pressure++;
820       }
821     }
822 #endif
823   } // End of for all blocks
824 
825   return must_spill;
826 }
827