1 /*
2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_OPTO_NODE_HPP
26 #define SHARE_VM_OPTO_NODE_HPP
27 
28 #include "libadt/port.hpp"
29 #include "libadt/vectset.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 
33 // Portions of code courtesy of Clifford Click
34 
35 // Optimization - Graph Style
36 
37 
38 class AbstractLockNode;
39 class AddNode;
40 class AddPNode;
41 class AliasInfo;
42 class AllocateArrayNode;
43 class AllocateNode;
44 class Block;
45 class BoolNode;
46 class BoxLockNode;
47 class CMoveNode;
48 class CallDynamicJavaNode;
49 class CallJavaNode;
50 class CallLeafNode;
51 class CallNode;
52 class CallRuntimeNode;
53 class CallStaticJavaNode;
54 class CatchNode;
55 class CatchProjNode;
56 class CheckCastPPNode;
57 class CastIINode;
58 class ClearArrayNode;
59 class CmpNode;
60 class CodeBuffer;
61 class ConstraintCastNode;
62 class ConNode;
63 class CountedLoopNode;
64 class CountedLoopEndNode;
65 class DecodeNarrowPtrNode;
66 class DecodeNNode;
67 class DecodeNKlassNode;
68 class EncodeNarrowPtrNode;
69 class EncodePNode;
70 class EncodePKlassNode;
71 class FastLockNode;
72 class FastUnlockNode;
73 class IfNode;
74 class IfFalseNode;
75 class IfTrueNode;
76 class InitializeNode;
77 class JVMState;
78 class JumpNode;
79 class JumpProjNode;
80 class LoadNode;
81 class LoadStoreNode;
82 class LockNode;
83 class LoopNode;
84 class MachBranchNode;
85 class MachCallDynamicJavaNode;
86 class MachCallJavaNode;
87 class MachCallLeafNode;
88 class MachCallNode;
89 class MachCallRuntimeNode;
90 class MachCallStaticJavaNode;
91 class MachConstantBaseNode;
92 class MachConstantNode;
93 class MachGotoNode;
94 class MachIfNode;
95 class MachNode;
96 class MachNullCheckNode;
97 class MachProjNode;
98 class MachReturnNode;
99 class MachSafePointNode;
100 class MachSpillCopyNode;
101 class MachTempNode;
102 class MachMergeNode;
103 class Matcher;
104 class MemBarNode;
105 class MemBarStoreStoreNode;
106 class MemNode;
107 class MergeMemNode;
108 class MulNode;
109 class MultiNode;
110 class MultiBranchNode;
111 class NeverBranchNode;
112 class Node;
113 class Node_Array;
114 class Node_List;
115 class Node_Stack;
116 class NullCheckNode;
117 class OopMap;
118 class ParmNode;
119 class PCTableNode;
120 class PhaseCCP;
121 class PhaseGVN;
122 class PhaseIterGVN;
123 class PhaseRegAlloc;
124 class PhaseTransform;
125 class PhaseValues;
126 class PhiNode;
127 class Pipeline;
128 class ProjNode;
129 class RegMask;
130 class RegionNode;
131 class RootNode;
132 class SafePointNode;
133 class SafePointScalarObjectNode;
134 class StartNode;
135 class State;
136 class StoreNode;
137 class SubNode;
138 class Type;
139 class TypeNode;
140 class UnlockNode;
141 class VectorNode;
142 class LoadVectorNode;
143 class StoreVectorNode;
144 class VectorSet;
145 typedef void (*NFunc)(Node&,void*);
146 extern "C" {
147   typedef int (*C_sort_func_t)(const void *, const void *);
148 }
149 
150 // The type of all node counts and indexes.
151 // It must hold at least 16 bits, but must also be fast to load and store.
152 // This type, if less than 32 bits, could limit the number of possible nodes.
153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
154 typedef unsigned int node_idx_t;
155 
156 
157 #ifndef OPTO_DU_ITERATOR_ASSERT
158 #ifdef ASSERT
159 #define OPTO_DU_ITERATOR_ASSERT 1
160 #else
161 #define OPTO_DU_ITERATOR_ASSERT 0
162 #endif
163 #endif //OPTO_DU_ITERATOR_ASSERT
164 
165 #if OPTO_DU_ITERATOR_ASSERT
166 class DUIterator;
167 class DUIterator_Fast;
168 class DUIterator_Last;
169 #else
170 typedef uint   DUIterator;
171 typedef Node** DUIterator_Fast;
172 typedef Node** DUIterator_Last;
173 #endif
174 
175 // Node Sentinel
176 #define NodeSentinel (Node*)-1
177 
178 // Unknown count frequency
179 #define COUNT_UNKNOWN (-1.0f)
180 
181 //------------------------------Node-------------------------------------------
182 // Nodes define actions in the program.  They create values, which have types.
183 // They are both vertices in a directed graph and program primitives.  Nodes
184 // are labeled; the label is the "opcode", the primitive function in the lambda
185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
187 // the Node's function.  These inputs also define a Type equation for the Node.
188 // Solving these Type equations amounts to doing dataflow analysis.
189 // Control and data are uniformly represented in the graph.  Finally, Nodes
190 // have a unique dense integer index which is used to index into side arrays
191 // whenever I have phase-specific information.
192 
193 class Node {
194   friend class VMStructs;
195 
196   // Lots of restrictions on cloning Nodes
197   Node(const Node&);            // not defined; linker error to use these
198   Node &operator=(const Node &rhs);
199 
200 public:
201   friend class Compile;
202   #if OPTO_DU_ITERATOR_ASSERT
203   friend class DUIterator_Common;
204   friend class DUIterator;
205   friend class DUIterator_Fast;
206   friend class DUIterator_Last;
207   #endif
208 
209   // Because Nodes come and go, I define an Arena of Node structures to pull
210   // from.  This should allow fast access to node creation & deletion.  This
211   // field is a local cache of a value defined in some "program fragment" for
212   // which these Nodes are just a part of.
213 
214   // New Operator that takes a Compile pointer, this will eventually
215   // be the "new" New operator.
operator new(size_t x,Compile * C)216   inline void* operator new( size_t x, Compile* C) throw() {
217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
218 #ifdef ASSERT
219     n->_in = (Node**)n; // magic cookie for assertion check
220 #endif
221     n->_out = (Node**)C;
222     return (void*)n;
223   }
224 
225   // Delete is a NOP
operator delete(void * ptr)226   void operator delete( void *ptr ) {}
227   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
228   void destruct();
229 
230   // Create a new Node.  Required is the number is of inputs required for
231   // semantic correctness.
232   Node( uint required );
233 
234   // Create a new Node with given input edges.
235   // This version requires use of the "edge-count" new.
236   // E.g.  new (C,3) FooNode( C, NULL, left, right );
237   Node( Node *n0 );
238   Node( Node *n0, Node *n1 );
239   Node( Node *n0, Node *n1, Node *n2 );
240   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
242   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
243   Node( Node *n0, Node *n1, Node *n2, Node *n3,
244             Node *n4, Node *n5, Node *n6 );
245 
246   // Clone an inherited Node given only the base Node type.
247   Node* clone() const;
248 
249   // Clone a Node, immediately supplying one or two new edges.
250   // The first and second arguments, if non-null, replace in(1) and in(2),
251   // respectively.
clone_with_data_edge(Node * in1,Node * in2=NULL) const252   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
253     Node* nn = clone();
254     if (in1 != NULL)  nn->set_req(1, in1);
255     if (in2 != NULL)  nn->set_req(2, in2);
256     return nn;
257   }
258 
259 private:
260   // Shared setup for the above constructors.
261   // Handles all interactions with Compile::current.
262   // Puts initial values in all Node fields except _idx.
263   // Returns the initial value for _idx, which cannot
264   // be initialized by assignment.
265   inline int Init(int req, Compile* C);
266 
267 //----------------- input edge handling
268 protected:
269   friend class PhaseCFG;        // Access to address of _in array elements
270   Node **_in;                   // Array of use-def references to Nodes
271   Node **_out;                  // Array of def-use references to Nodes
272 
273   // Input edges are split into two categories.  Required edges are required
274   // for semantic correctness; order is important and NULLs are allowed.
275   // Precedence edges are used to help determine execution order and are
276   // added, e.g., for scheduling purposes.  They are unordered and not
277   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
278   // are required, from _cnt to _max-1 are precedence edges.
279   node_idx_t _cnt;              // Total number of required Node inputs.
280 
281   node_idx_t _max;              // Actual length of input array.
282 
283   // Output edges are an unordered list of def-use edges which exactly
284   // correspond to required input edges which point from other nodes
285   // to this one.  Thus the count of the output edges is the number of
286   // users of this node.
287   node_idx_t _outcnt;           // Total number of Node outputs.
288 
289   node_idx_t _outmax;           // Actual length of output array.
290 
291   // Grow the actual input array to the next larger power-of-2 bigger than len.
292   void grow( uint len );
293   // Grow the output array to the next larger power-of-2 bigger than len.
294   void out_grow( uint len );
295 
296  public:
297   // Each Node is assigned a unique small/dense number.  This number is used
298   // to index into auxiliary arrays of data and bit vectors.
299   // The field _idx is declared constant to defend against inadvertent assignments,
300   // since it is used by clients as a naked field. However, the field's value can be
301   // changed using the set_idx() method.
302   //
303   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
304   // Therefore, it updates the value of the _idx field. The parse-time _idx is
305   // preserved in _parse_idx.
306   const node_idx_t _idx;
DEBUG_ONLY(const node_idx_t _parse_idx;)307   DEBUG_ONLY(const node_idx_t _parse_idx;)
308 
309   // Get the (read-only) number of input edges
310   uint req() const { return _cnt; }
len() const311   uint len() const { return _max; }
312   // Get the (read-only) number of output edges
outcnt() const313   uint outcnt() const { return _outcnt; }
314 
315 #if OPTO_DU_ITERATOR_ASSERT
316   // Iterate over the out-edges of this node.  Deletions are illegal.
317   inline DUIterator outs() const;
318   // Use this when the out array might have changed to suppress asserts.
319   inline DUIterator& refresh_out_pos(DUIterator& i) const;
320   // Does the node have an out at this position?  (Used for iteration.)
321   inline bool has_out(DUIterator& i) const;
322   inline Node*    out(DUIterator& i) const;
323   // Iterate over the out-edges of this node.  All changes are illegal.
324   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
325   inline Node*    fast_out(DUIterator_Fast& i) const;
326   // Iterate over the out-edges of this node, deleting one at a time.
327   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
328   inline Node*    last_out(DUIterator_Last& i) const;
329   // The inline bodies of all these methods are after the iterator definitions.
330 #else
331   // Iterate over the out-edges of this node.  Deletions are illegal.
332   // This iteration uses integral indexes, to decouple from array reallocations.
outs() const333   DUIterator outs() const  { return 0; }
334   // Use this when the out array might have changed to suppress asserts.
refresh_out_pos(DUIterator i) const335   DUIterator refresh_out_pos(DUIterator i) const { return i; }
336 
337   // Reference to the i'th output Node.  Error if out of bounds.
out(DUIterator i) const338   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
339   // Does the node have an out at this position?  (Used for iteration.)
has_out(DUIterator i) const340   bool has_out(DUIterator i) const { return i < _outcnt; }
341 
342   // Iterate over the out-edges of this node.  All changes are illegal.
343   // This iteration uses a pointer internal to the out array.
fast_outs(DUIterator_Fast & max) const344   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
345     Node** out = _out;
346     // Assign a limit pointer to the reference argument:
347     max = out + (ptrdiff_t)_outcnt;
348     // Return the base pointer:
349     return out;
350   }
fast_out(DUIterator_Fast i) const351   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
352   // Iterate over the out-edges of this node, deleting one at a time.
353   // This iteration uses a pointer internal to the out array.
last_outs(DUIterator_Last & min) const354   DUIterator_Last last_outs(DUIterator_Last& min) const {
355     Node** out = _out;
356     // Assign a limit pointer to the reference argument:
357     min = out;
358     // Return the pointer to the start of the iteration:
359     return out + (ptrdiff_t)_outcnt - 1;
360   }
last_out(DUIterator_Last i) const361   Node*    last_out(DUIterator_Last i) const  { return *i; }
362 #endif
363 
364   // Reference to the i'th input Node.  Error if out of bounds.
in(uint i) const365   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
366   // Reference to the i'th input Node.  NULL if out of bounds.
lookup(uint i) const367   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
368   // Reference to the i'th output Node.  Error if out of bounds.
369   // Use this accessor sparingly.  We are going trying to use iterators instead.
raw_out(uint i) const370   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
371   // Return the unique out edge.
unique_out() const372   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
373   // Delete out edge at position 'i' by moving last out edge to position 'i'
raw_del_out(uint i)374   void  raw_del_out(uint i) {
375     assert(i < _outcnt,"oob");
376     assert(_outcnt > 0,"oob");
377     #if OPTO_DU_ITERATOR_ASSERT
378     // Record that a change happened here.
379     debug_only(_last_del = _out[i]; ++_del_tick);
380     #endif
381     _out[i] = _out[--_outcnt];
382     // Smash the old edge so it can't be used accidentally.
383     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
384   }
385 
386 #ifdef ASSERT
387   bool is_dead() const;
388 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
389 #endif
390   // Check whether node has become unreachable
391   bool is_unreachable(PhaseIterGVN &igvn) const;
392 
393   // Set a required input edge, also updates corresponding output edge
394   void add_req( Node *n ); // Append a NEW required input
add_req(Node * n0,Node * n1)395   void add_req( Node *n0, Node *n1 ) {
396     add_req(n0); add_req(n1); }
add_req(Node * n0,Node * n1,Node * n2)397   void add_req( Node *n0, Node *n1, Node *n2 ) {
398     add_req(n0); add_req(n1); add_req(n2); }
399   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
400   void del_req( uint idx ); // Delete required edge & compact
401   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
402   void ins_req( uint i, Node *n ); // Insert a NEW required input
set_req(uint i,Node * n)403   void set_req( uint i, Node *n ) {
404     assert( is_not_dead(n), "can not use dead node");
405     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
406     assert( !VerifyHashTableKeys || _hash_lock == 0,
407             "remove node from hash table before modifying it");
408     Node** p = &_in[i];    // cache this._in, across the del_out call
409     if (*p != NULL)  (*p)->del_out((Node *)this);
410     (*p) = n;
411     if (n != NULL)      n->add_out((Node *)this);
412   }
413   // Light version of set_req() to init inputs after node creation.
init_req(uint i,Node * n)414   void init_req( uint i, Node *n ) {
415     assert( i == 0 && this == n ||
416             is_not_dead(n), "can not use dead node");
417     assert( i < _cnt, "oob");
418     assert( !VerifyHashTableKeys || _hash_lock == 0,
419             "remove node from hash table before modifying it");
420     assert( _in[i] == NULL, "sanity");
421     _in[i] = n;
422     if (n != NULL)      n->add_out((Node *)this);
423   }
424   // Find first occurrence of n among my edges:
425   int find_edge(Node* n);
find_prec_edge(Node * n)426   int find_prec_edge(Node* n) {
427     for (uint i = req(); i < len(); i++) {
428       if (_in[i] == n) return i;
429       if (_in[i] == NULL) {
430         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
431         break;
432       }
433     }
434     return -1;
435   }
436   int replace_edge(Node* old, Node* neww);
437   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
438   // NULL out all inputs to eliminate incoming Def-Use edges.
439   // Return the number of edges between 'n' and 'this'
440   int  disconnect_inputs(Node *n, Compile *c);
441 
442   // Quickly, return true if and only if I am Compile::current()->top().
is_top() const443   bool is_top() const {
444     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
445     return (_out == NULL);
446   }
447   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
448   void setup_is_top();
449 
450   // Strip away casting.  (It is depth-limited.)
451   Node* uncast() const;
452   // Return whether two Nodes are equivalent, after stripping casting.
eqv_uncast(const Node * n) const453   bool eqv_uncast(const Node* n) const {
454     return (this->uncast() == n->uncast());
455   }
456 
457   // Find out of current node that matches opcode.
458   Node* find_out_with(int opcode);
459 
460 private:
461   static Node* uncast_helper(const Node* n);
462 
463   // Add an output edge to the end of the list
add_out(Node * n)464   void add_out( Node *n ) {
465     if (is_top())  return;
466     if( _outcnt == _outmax ) out_grow(_outcnt);
467     _out[_outcnt++] = n;
468   }
469   // Delete an output edge
del_out(Node * n)470   void del_out( Node *n ) {
471     if (is_top())  return;
472     Node** outp = &_out[_outcnt];
473     // Find and remove n
474     do {
475       assert(outp > _out, "Missing Def-Use edge");
476     } while (*--outp != n);
477     *outp = _out[--_outcnt];
478     // Smash the old edge so it can't be used accidentally.
479     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
480     // Record that a change happened here.
481     #if OPTO_DU_ITERATOR_ASSERT
482     debug_only(_last_del = n; ++_del_tick);
483     #endif
484   }
485   // Close gap after removing edge.
close_prec_gap_at(uint gap)486   void close_prec_gap_at(uint gap) {
487     assert(_cnt <= gap && gap < _max, "no valid prec edge");
488     uint i = gap;
489     Node *last = NULL;
490     for (; i < _max-1; ++i) {
491       Node *next = _in[i+1];
492       if (next == NULL) break;
493       last = next;
494     }
495     _in[gap] = last; // Move last slot to empty one.
496     _in[i] = NULL;   // NULL out last slot.
497   }
498 
499 public:
500   // Globally replace this node by a given new node, updating all uses.
501   void replace_by(Node* new_node);
502   // Globally replace this node by a given new node, updating all uses
503   // and cutting input edges of old node.
subsume_by(Node * new_node,Compile * c)504   void subsume_by(Node* new_node, Compile* c) {
505     replace_by(new_node);
506     disconnect_inputs(NULL, c);
507   }
508   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
509   // Find the one non-null required input.  RegionNode only
510   Node *nonnull_req() const;
511   // Add or remove precedence edges
512   void add_prec( Node *n );
513   void rm_prec( uint i );
514 
515   // Note: prec(i) will not necessarily point to n if edge already exists.
set_prec(uint i,Node * n)516   void set_prec( uint i, Node *n ) {
517     assert(i < _max, err_msg("oob: i=%d, _max=%d", i, _max));
518     assert(is_not_dead(n), "can not use dead node");
519     assert(i >= _cnt, "not a precedence edge");
520     // Avoid spec violation: duplicated prec edge.
521     if (_in[i] == n) return;
522     if (n == NULL || find_prec_edge(n) != -1) {
523       rm_prec(i);
524       return;
525     }
526     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
527     _in[i] = n;
528     if (n != NULL) n->add_out((Node *)this);
529   }
530 
531   // Set this node's index, used by cisc_version to replace current node
set_idx(uint new_idx)532   void set_idx(uint new_idx) {
533     const node_idx_t* ref = &_idx;
534     *(node_idx_t*)ref = new_idx;
535   }
536   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
swap_edges(uint i1,uint i2)537   void swap_edges(uint i1, uint i2) {
538     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
539     // Def-Use info is unchanged
540     Node* n1 = in(i1);
541     Node* n2 = in(i2);
542     _in[i1] = n2;
543     _in[i2] = n1;
544     // If this node is in the hash table, make sure it doesn't need a rehash.
545     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
546   }
547 
548   // Iterators over input Nodes for a Node X are written as:
549   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
550   // NOTE: Required edges can contain embedded NULL pointers.
551 
552 //----------------- Other Node Properties
553 
554   // Generate class id for some ideal nodes to avoid virtual query
555   // methods is_<Node>().
556   // Class id is the set of bits corresponded to the node class and all its
557   // super classes so that queries for super classes are also valid.
558   // Subclasses of the same super class have different assigned bit
559   // (the third parameter in the macro DEFINE_CLASS_ID).
560   // Classes with deeper hierarchy are declared first.
561   // Classes with the same hierarchy depth are sorted by usage frequency.
562   //
563   // The query method masks the bits to cut off bits of subclasses
564   // and then compare the result with the class id
565   // (see the macro DEFINE_CLASS_QUERY below).
566   //
567   //  Class_MachCall=30, ClassMask_MachCall=31
568   // 12               8               4               0
569   //  0   0   0   0   0   0   0   0   1   1   1   1   0
570   //                                  |   |   |   |
571   //                                  |   |   |   Bit_Mach=2
572   //                                  |   |   Bit_MachReturn=4
573   //                                  |   Bit_MachSafePoint=8
574   //                                  Bit_MachCall=16
575   //
576   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
577   // 12               8               4               0
578   //  0   0   0   0   0   0   0   1   1   1   0   0   0
579   //                              |   |   |
580   //                              |   |   Bit_Region=8
581   //                              |   Bit_Loop=16
582   //                              Bit_CountedLoop=32
583 
584   #define DEFINE_CLASS_ID(cl, supcl, subn) \
585   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
586   Class_##cl = Class_##supcl + Bit_##cl , \
587   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
588 
589   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
590   // so that it's values fits into 16 bits.
591   enum NodeClasses {
592     Bit_Node   = 0x0000,
593     Class_Node = 0x0000,
594     ClassMask_Node = 0xFFFF,
595 
596     DEFINE_CLASS_ID(Multi, Node, 0)
597       DEFINE_CLASS_ID(SafePoint, Multi, 0)
598         DEFINE_CLASS_ID(Call,      SafePoint, 0)
599           DEFINE_CLASS_ID(CallJava,         Call, 0)
600             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
601             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
602           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
603             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
604           DEFINE_CLASS_ID(Allocate,         Call, 2)
605             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
606           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
607             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
608             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
609       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
610         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
611           DEFINE_CLASS_ID(Catch,       PCTable, 0)
612           DEFINE_CLASS_ID(Jump,        PCTable, 1)
613         DEFINE_CLASS_ID(If,          MultiBranch, 1)
614           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
615         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
616       DEFINE_CLASS_ID(Start,       Multi, 2)
617       DEFINE_CLASS_ID(MemBar,      Multi, 3)
618         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
619         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
620 
621     DEFINE_CLASS_ID(Mach,  Node, 1)
622       DEFINE_CLASS_ID(MachReturn, Mach, 0)
623         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
624           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
625             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
626               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
627               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
628             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
629               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
630       DEFINE_CLASS_ID(MachBranch, Mach, 1)
631         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
632         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
633         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
634       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
635       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
636       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
637       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
638       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
639 
640     DEFINE_CLASS_ID(Type,  Node, 2)
641       DEFINE_CLASS_ID(Phi,   Type, 0)
642       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
643         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
644       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
645       DEFINE_CLASS_ID(CMove, Type, 3)
646       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
647       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
648         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
649         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
650       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
651         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
652         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
653 
654     DEFINE_CLASS_ID(Proj,  Node, 3)
655       DEFINE_CLASS_ID(CatchProj, Proj, 0)
656       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
657       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
658       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
659       DEFINE_CLASS_ID(Parm,      Proj, 4)
660       DEFINE_CLASS_ID(MachProj,  Proj, 5)
661 
662     DEFINE_CLASS_ID(Mem,   Node, 4)
663       DEFINE_CLASS_ID(Load,  Mem, 0)
664         DEFINE_CLASS_ID(LoadVector,  Load, 0)
665       DEFINE_CLASS_ID(Store, Mem, 1)
666         DEFINE_CLASS_ID(StoreVector, Store, 0)
667       DEFINE_CLASS_ID(LoadStore, Mem, 2)
668 
669     DEFINE_CLASS_ID(Region, Node, 5)
670       DEFINE_CLASS_ID(Loop, Region, 0)
671         DEFINE_CLASS_ID(Root,        Loop, 0)
672         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
673 
674     DEFINE_CLASS_ID(Sub,   Node, 6)
675       DEFINE_CLASS_ID(Cmp,   Sub, 0)
676         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
677         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
678 
679     DEFINE_CLASS_ID(MergeMem, Node, 7)
680     DEFINE_CLASS_ID(Bool,     Node, 8)
681     DEFINE_CLASS_ID(AddP,     Node, 9)
682     DEFINE_CLASS_ID(BoxLock,  Node, 10)
683     DEFINE_CLASS_ID(Add,      Node, 11)
684     DEFINE_CLASS_ID(Mul,      Node, 12)
685     DEFINE_CLASS_ID(Vector,   Node, 13)
686     DEFINE_CLASS_ID(ClearArray, Node, 14)
687 
688     _max_classes  = ClassMask_ClearArray
689   };
690   #undef DEFINE_CLASS_ID
691 
692   // Flags are sorted by usage frequency.
693   enum NodeFlags {
694     Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
695     Flag_rematerialize               = Flag_is_Copy << 1,
696     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
697     Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
698     Flag_is_Con                      = Flag_is_macro << 1,
699     Flag_is_cisc_alternate           = Flag_is_Con << 1,
700     Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
701     Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
702     Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
703     Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
704     Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
705     Flag_is_expensive                = Flag_has_call << 1,
706     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
707   };
708 
709 private:
710   jushort _class_id;
711   jushort _flags;
712 
713 protected:
714   // These methods should be called from constructors only.
init_class_id(jushort c)715   void init_class_id(jushort c) {
716     assert(c <= _max_classes, "invalid node class");
717     _class_id = c; // cast out const
718   }
init_flags(jushort fl)719   void init_flags(jushort fl) {
720     assert(fl <= _max_flags, "invalid node flag");
721     _flags |= fl;
722   }
clear_flag(jushort fl)723   void clear_flag(jushort fl) {
724     assert(fl <= _max_flags, "invalid node flag");
725     _flags &= ~fl;
726   }
727 
728 public:
class_id() const729   const jushort class_id() const { return _class_id; }
730 
flags() const731   const jushort flags() const { return _flags; }
732 
733   // Return a dense integer opcode number
734   virtual int Opcode() const;
735 
736   // Virtual inherited Node size
737   virtual uint size_of() const;
738 
739   // Other interesting Node properties
740   #define DEFINE_CLASS_QUERY(type)                           \
741   bool is_##type() const {                                   \
742     return ((_class_id & ClassMask_##type) == Class_##type); \
743   }                                                          \
744   type##Node *as_##type() const {                            \
745     assert(is_##type(), "invalid node class");               \
746     return (type##Node*)this;                                \
747   }                                                          \
748   type##Node* isa_##type() const {                           \
749     return (is_##type()) ? as_##type() : NULL;               \
750   }
751 
752   DEFINE_CLASS_QUERY(AbstractLock)
DEFINE_CLASS_QUERY(Add)753   DEFINE_CLASS_QUERY(Add)
754   DEFINE_CLASS_QUERY(AddP)
755   DEFINE_CLASS_QUERY(Allocate)
756   DEFINE_CLASS_QUERY(AllocateArray)
757   DEFINE_CLASS_QUERY(Bool)
758   DEFINE_CLASS_QUERY(BoxLock)
759   DEFINE_CLASS_QUERY(Call)
760   DEFINE_CLASS_QUERY(CallDynamicJava)
761   DEFINE_CLASS_QUERY(CallJava)
762   DEFINE_CLASS_QUERY(CallLeaf)
763   DEFINE_CLASS_QUERY(CallRuntime)
764   DEFINE_CLASS_QUERY(CallStaticJava)
765   DEFINE_CLASS_QUERY(Catch)
766   DEFINE_CLASS_QUERY(CatchProj)
767   DEFINE_CLASS_QUERY(CheckCastPP)
768   DEFINE_CLASS_QUERY(CastII)
769   DEFINE_CLASS_QUERY(ConstraintCast)
770   DEFINE_CLASS_QUERY(ClearArray)
771   DEFINE_CLASS_QUERY(CMove)
772   DEFINE_CLASS_QUERY(Cmp)
773   DEFINE_CLASS_QUERY(CountedLoop)
774   DEFINE_CLASS_QUERY(CountedLoopEnd)
775   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
776   DEFINE_CLASS_QUERY(DecodeN)
777   DEFINE_CLASS_QUERY(DecodeNKlass)
778   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
779   DEFINE_CLASS_QUERY(EncodeP)
780   DEFINE_CLASS_QUERY(EncodePKlass)
781   DEFINE_CLASS_QUERY(FastLock)
782   DEFINE_CLASS_QUERY(FastUnlock)
783   DEFINE_CLASS_QUERY(If)
784   DEFINE_CLASS_QUERY(IfFalse)
785   DEFINE_CLASS_QUERY(IfTrue)
786   DEFINE_CLASS_QUERY(Initialize)
787   DEFINE_CLASS_QUERY(Jump)
788   DEFINE_CLASS_QUERY(JumpProj)
789   DEFINE_CLASS_QUERY(Load)
790   DEFINE_CLASS_QUERY(LoadStore)
791   DEFINE_CLASS_QUERY(Lock)
792   DEFINE_CLASS_QUERY(Loop)
793   DEFINE_CLASS_QUERY(Mach)
794   DEFINE_CLASS_QUERY(MachBranch)
795   DEFINE_CLASS_QUERY(MachCall)
796   DEFINE_CLASS_QUERY(MachCallDynamicJava)
797   DEFINE_CLASS_QUERY(MachCallJava)
798   DEFINE_CLASS_QUERY(MachCallLeaf)
799   DEFINE_CLASS_QUERY(MachCallRuntime)
800   DEFINE_CLASS_QUERY(MachCallStaticJava)
801   DEFINE_CLASS_QUERY(MachConstantBase)
802   DEFINE_CLASS_QUERY(MachConstant)
803   DEFINE_CLASS_QUERY(MachGoto)
804   DEFINE_CLASS_QUERY(MachIf)
805   DEFINE_CLASS_QUERY(MachNullCheck)
806   DEFINE_CLASS_QUERY(MachProj)
807   DEFINE_CLASS_QUERY(MachReturn)
808   DEFINE_CLASS_QUERY(MachSafePoint)
809   DEFINE_CLASS_QUERY(MachSpillCopy)
810   DEFINE_CLASS_QUERY(MachTemp)
811   DEFINE_CLASS_QUERY(MachMerge)
812   DEFINE_CLASS_QUERY(Mem)
813   DEFINE_CLASS_QUERY(MemBar)
814   DEFINE_CLASS_QUERY(MemBarStoreStore)
815   DEFINE_CLASS_QUERY(MergeMem)
816   DEFINE_CLASS_QUERY(Mul)
817   DEFINE_CLASS_QUERY(Multi)
818   DEFINE_CLASS_QUERY(MultiBranch)
819   DEFINE_CLASS_QUERY(Parm)
820   DEFINE_CLASS_QUERY(PCTable)
821   DEFINE_CLASS_QUERY(Phi)
822   DEFINE_CLASS_QUERY(Proj)
823   DEFINE_CLASS_QUERY(Region)
824   DEFINE_CLASS_QUERY(Root)
825   DEFINE_CLASS_QUERY(SafePoint)
826   DEFINE_CLASS_QUERY(SafePointScalarObject)
827   DEFINE_CLASS_QUERY(Start)
828   DEFINE_CLASS_QUERY(Store)
829   DEFINE_CLASS_QUERY(Sub)
830   DEFINE_CLASS_QUERY(Type)
831   DEFINE_CLASS_QUERY(Vector)
832   DEFINE_CLASS_QUERY(LoadVector)
833   DEFINE_CLASS_QUERY(StoreVector)
834   DEFINE_CLASS_QUERY(Unlock)
835 
836   #undef DEFINE_CLASS_QUERY
837 
838   // duplicate of is_MachSpillCopy()
839   bool is_SpillCopy () const {
840     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
841   }
842 
is_Con() const843   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
844   // The data node which is safe to leave in dead loop during IGVN optimization.
is_dead_loop_safe() const845   bool is_dead_loop_safe() const {
846     return is_Phi() || (is_Proj() && in(0) == NULL) ||
847            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
848             (!is_Proj() || !in(0)->is_Allocate()));
849   }
850 
851   // is_Copy() returns copied edge index (0 or 1)
is_Copy() const852   uint is_Copy() const { return (_flags & Flag_is_Copy); }
853 
is_CFG() const854   virtual bool is_CFG() const { return false; }
855 
856   // If this node is control-dependent on a test, can it be
857   // rerouted to a dominating equivalent test?  This is usually
858   // true of non-CFG nodes, but can be false for operations which
859   // depend for their correct sequencing on more than one test.
860   // (In that case, hoisting to a dominating test may silently
861   // skip some other important test.)
depends_only_on_test() const862   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
863 
864   // When building basic blocks, I need to have a notion of block beginning
865   // Nodes, next block selector Nodes (block enders), and next block
866   // projections.  These calls need to work on their machine equivalents.  The
867   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
is_block_start() const868   bool is_block_start() const {
869     if ( is_Region() )
870       return this == (const Node*)in(0);
871     else
872       return is_Start();
873   }
874 
875   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
876   // Goto and Return.  This call also returns the block ending Node.
877   virtual const Node *is_block_proj() const;
878 
879   // The node is a "macro" node which needs to be expanded before matching
is_macro() const880   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
881   // The node is expensive: the best control is set during loop opts
is_expensive() const882   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
883 
884 //----------------- Optimization
885 
886   // Get the worst-case Type output for this Node.
887   virtual const class Type *bottom_type() const;
888 
889   // If we find a better type for a node, try to record it permanently.
890   // Return true if this node actually changed.
891   // Be sure to do the hash_delete game in the "rehash" variant.
892   void raise_bottom_type(const Type* new_type);
893 
894   // Get the address type with which this node uses and/or defs memory,
895   // or NULL if none.  The address type is conservatively wide.
896   // Returns non-null for calls, membars, loads, stores, etc.
897   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
adr_type() const898   virtual const class TypePtr *adr_type() const { return NULL; }
899 
900   // Return an existing node which computes the same function as this node.
901   // The optimistic combined algorithm requires this to return a Node which
902   // is a small number of steps away (e.g., one of my inputs).
903   virtual Node *Identity( PhaseTransform *phase );
904 
905   // Return the set of values this Node can take on at runtime.
906   virtual const Type *Value( PhaseTransform *phase ) const;
907 
908   // Return a node which is more "ideal" than the current node.
909   // The invariants on this call are subtle.  If in doubt, read the
910   // treatise in node.cpp above the default implemention AND TEST WITH
911   // +VerifyIterativeGVN!
912   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
913 
914   // Some nodes have specific Ideal subgraph transformations only if they are
915   // unique users of specific nodes. Such nodes should be put on IGVN worklist
916   // for the transformations to happen.
917   bool has_special_unique_user() const;
918 
919   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
920   Node* find_exact_control(Node* ctrl);
921 
922   // Check if 'this' node dominates or equal to 'sub'.
923   bool dominates(Node* sub, Node_List &nlist);
924 
925 protected:
926   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
927 public:
928 
929   // Idealize graph, using DU info.  Done after constant propagation
930   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
931 
932   // See if there is valid pipeline info
933   static  const Pipeline *pipeline_class();
934   virtual const Pipeline *pipeline() const;
935 
936   // Compute the latency from the def to this instruction of the ith input node
937   uint latency(uint i);
938 
939   // Hash & compare functions, for pessimistic value numbering
940 
941   // If the hash function returns the special sentinel value NO_HASH,
942   // the node is guaranteed never to compare equal to any other node.
943   // If we accidentally generate a hash with value NO_HASH the node
944   // won't go into the table and we'll lose a little optimization.
945   enum { NO_HASH = 0 };
946   virtual uint hash() const;
947   virtual uint cmp( const Node &n ) const;
948 
949   // Operation appears to be iteratively computed (such as an induction variable)
950   // It is possible for this operation to return false for a loop-varying
951   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
952   bool is_iteratively_computed();
953 
954   // Determine if a node is Counted loop induction variable.
955   // The method is defined in loopnode.cpp.
956   const Node* is_loop_iv() const;
957 
958   // Return a node with opcode "opc" and same inputs as "this" if one can
959   // be found; Otherwise return NULL;
960   Node* find_similar(int opc);
961 
962   // Return the unique control out if only one. Null if none or more than one.
963   Node* unique_ctrl_out();
964 
965 //----------------- Code Generation
966 
967   // Ideal register class for Matching.  Zero means unmatched instruction
968   // (these are cloned instead of converted to machine nodes).
969   virtual uint ideal_reg() const;
970 
971   static const uint NotAMachineReg;   // must be > max. machine register
972 
973   // Do we Match on this edge index or not?  Generally false for Control
974   // and true for everything else.  Weird for calls & returns.
975   virtual uint match_edge(uint idx) const;
976 
977   // Register class output is returned in
978   virtual const RegMask &out_RegMask() const;
979   // Register class input is expected in
980   virtual const RegMask &in_RegMask(uint) const;
981   // Should we clone rather than spill this instruction?
982   bool rematerialize() const;
983 
984   // Return JVM State Object if this Node carries debug info, or NULL otherwise
985   virtual JVMState* jvms() const;
986 
987   // Print as assembly
988   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
989   // Emit bytes starting at parameter 'ptr'
990   // Bump 'ptr' by the number of output bytes
991   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
992   // Size of instruction in bytes
993   virtual uint size(PhaseRegAlloc *ra_) const;
994 
995   // Convenience function to extract an integer constant from a node.
996   // If it is not an integer constant (either Con, CastII, or Mach),
997   // return value_if_unknown.
find_int_con(jint value_if_unknown) const998   jint find_int_con(jint value_if_unknown) const {
999     const TypeInt* t = find_int_type();
1000     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1001   }
1002   // Return the constant, knowing it is an integer constant already
get_int() const1003   jint get_int() const {
1004     const TypeInt* t = find_int_type();
1005     guarantee(t != NULL, "must be con");
1006     return t->get_con();
1007   }
1008   // Here's where the work is done.  Can produce non-constant int types too.
1009   const TypeInt* find_int_type() const;
1010 
1011   // Same thing for long (and intptr_t, via type.hpp):
get_long() const1012   jlong get_long() const {
1013     const TypeLong* t = find_long_type();
1014     guarantee(t != NULL, "must be con");
1015     return t->get_con();
1016   }
find_long_con(jint value_if_unknown) const1017   jlong find_long_con(jint value_if_unknown) const {
1018     const TypeLong* t = find_long_type();
1019     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1020   }
1021   const TypeLong* find_long_type() const;
1022 
1023   const TypePtr* get_ptr_type() const;
1024 
1025   // These guys are called by code generated by ADLC:
1026   intptr_t get_ptr() const;
1027   intptr_t get_narrowcon() const;
1028   jdouble getd() const;
1029   jfloat getf() const;
1030 
1031   // Nodes which are pinned into basic blocks
pinned() const1032   virtual bool pinned() const { return false; }
1033 
1034   // Nodes which use memory without consuming it, hence need antidependences
1035   // More specifically, needs_anti_dependence_check returns true iff the node
1036   // (a) does a load, and (b) does not perform a store (except perhaps to a
1037   // stack slot or some other unaliased location).
1038   bool needs_anti_dependence_check() const;
1039 
1040   // Return which operand this instruction may cisc-spill. In other words,
1041   // return operand position that can convert from reg to memory access
cisc_operand() const1042   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
is_cisc_alternate() const1043   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1044 
1045 //----------------- Graph walking
1046 public:
1047   // Walk and apply member functions recursively.
1048   // Supplied (this) pointer is root.
1049   void walk(NFunc pre, NFunc post, void *env);
1050   static void nop(Node &, void*); // Dummy empty function
1051   static void packregion( Node &n, void* );
1052 private:
1053   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1054 
1055 //----------------- Printing, etc
1056 public:
1057 #ifndef PRODUCT
1058   Node* find(int idx) const;         // Search the graph for the given idx.
1059   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
dump() const1060   void dump() const { dump("\n"); }  // Print this node.
1061   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
1062   void dump(int depth) const;        // Print this node, recursively to depth d
1063   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1064   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
1065   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
1066   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
dump_spec(outputStream * st) const1067   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1068   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1069   void verify() const;               // Check Def-Use info for my subgraph
1070   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1071 
1072   // This call defines a class-unique string used to identify class instances
1073   virtual const char *Name() const;
1074 
1075   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1076   // RegMask Print Functions
dump_in_regmask(int idx)1077   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
dump_out_regmask()1078   void dump_out_regmask() { out_RegMask().dump(); }
in_dump()1079   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
fast_dump() const1080   void fast_dump() const {
1081     tty->print("%4d: %-17s", _idx, Name());
1082     for (uint i = 0; i < len(); i++)
1083       if (in(i))
1084         tty->print(" %4d", in(i)->_idx);
1085       else
1086         tty->print(" NULL");
1087     tty->print("\n");
1088   }
1089 #endif
1090 #ifdef ASSERT
1091   void verify_construction();
1092   bool verify_jvms(const JVMState* jvms) const;
1093   int  _debug_idx;                     // Unique value assigned to every node.
debug_idx() const1094   int   debug_idx() const              { return _debug_idx; }
set_debug_idx(int debug_idx)1095   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1096 
1097   Node* _debug_orig;                   // Original version of this, if any.
debug_orig() const1098   Node*  debug_orig() const            { return _debug_orig; }
1099   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1100 
1101   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
enter_hash_lock()1102   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
exit_hash_lock()1103   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1104 
1105   static void init_NodeProperty();
1106 
1107   #if OPTO_DU_ITERATOR_ASSERT
1108   const Node* _last_del;               // The last deleted node.
1109   uint        _del_tick;               // Bumped when a deletion happens..
1110   #endif
1111 #endif
1112 };
1113 
1114 //-----------------------------------------------------------------------------
1115 // Iterators over DU info, and associated Node functions.
1116 
1117 #if OPTO_DU_ITERATOR_ASSERT
1118 
1119 // Common code for assertion checking on DU iterators.
1120 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1121 #ifdef ASSERT
1122  protected:
1123   bool         _vdui;               // cached value of VerifyDUIterators
1124   const Node*  _node;               // the node containing the _out array
1125   uint         _outcnt;             // cached node->_outcnt
1126   uint         _del_tick;           // cached node->_del_tick
1127   Node*        _last;               // last value produced by the iterator
1128 
1129   void sample(const Node* node);    // used by c'tor to set up for verifies
1130   void verify(const Node* node, bool at_end_ok = false);
1131   void verify_resync();
1132   void reset(const DUIterator_Common& that);
1133 
1134 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1135   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1136 #else
1137   #define I_VDUI_ONLY(i,x) { }
1138 #endif //ASSERT
1139 };
1140 
1141 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1142 
1143 // Default DU iterator.  Allows appends onto the out array.
1144 // Allows deletion from the out array only at the current point.
1145 // Usage:
1146 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1147 //    Node* y = x->out(i);
1148 //    ...
1149 //  }
1150 // Compiles in product mode to a unsigned integer index, which indexes
1151 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1152 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1153 // before continuing the loop.  You must delete only the last-produced
1154 // edge.  You must delete only a single copy of the last-produced edge,
1155 // or else you must delete all copies at once (the first time the edge
1156 // is produced by the iterator).
1157 class DUIterator : public DUIterator_Common {
1158   friend class Node;
1159 
1160   // This is the index which provides the product-mode behavior.
1161   // Whatever the product-mode version of the system does to the
1162   // DUI index is done to this index.  All other fields in
1163   // this class are used only for assertion checking.
1164   uint         _idx;
1165 
1166   #ifdef ASSERT
1167   uint         _refresh_tick;    // Records the refresh activity.
1168 
1169   void sample(const Node* node); // Initialize _refresh_tick etc.
1170   void verify(const Node* node, bool at_end_ok = false);
1171   void verify_increment();       // Verify an increment operation.
1172   void verify_resync();          // Verify that we can back up over a deletion.
1173   void verify_finish();          // Verify that the loop terminated properly.
1174   void refresh();                // Resample verification info.
1175   void reset(const DUIterator& that);  // Resample after assignment.
1176   #endif
1177 
DUIterator(const Node * node,int dummy_to_avoid_conversion)1178   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1179     { _idx = 0;                         debug_only(sample(node)); }
1180 
1181  public:
1182   // initialize to garbage; clear _vdui to disable asserts
DUIterator()1183   DUIterator()
1184     { /*initialize to garbage*/         debug_only(_vdui = false); }
1185 
operator ++(int dummy_to_specify_postfix_op)1186   void operator++(int dummy_to_specify_postfix_op)
1187     { _idx++;                           VDUI_ONLY(verify_increment()); }
1188 
operator --()1189   void operator--()
1190     { VDUI_ONLY(verify_resync());       --_idx; }
1191 
~DUIterator()1192   ~DUIterator()
1193     { VDUI_ONLY(verify_finish()); }
1194 
operator =(const DUIterator & that)1195   void operator=(const DUIterator& that)
1196     { _idx = that._idx;                 debug_only(reset(that)); }
1197 };
1198 
outs() const1199 DUIterator Node::outs() const
1200   { return DUIterator(this, 0); }
refresh_out_pos(DUIterator & i) const1201 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1202   { I_VDUI_ONLY(i, i.refresh());        return i; }
has_out(DUIterator & i) const1203 bool Node::has_out(DUIterator& i) const
1204   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
out(DUIterator & i) const1205 Node*    Node::out(DUIterator& i) const
1206   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1207 
1208 
1209 // Faster DU iterator.  Disallows insertions into the out array.
1210 // Allows deletion from the out array only at the current point.
1211 // Usage:
1212 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1213 //    Node* y = x->fast_out(i);
1214 //    ...
1215 //  }
1216 // Compiles in product mode to raw Node** pointer arithmetic, with
1217 // no reloading of pointers from the original node x.  If you delete,
1218 // you must perform "--i; --imax" just before continuing the loop.
1219 // If you delete multiple copies of the same edge, you must decrement
1220 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1221 class DUIterator_Fast : public DUIterator_Common {
1222   friend class Node;
1223   friend class DUIterator_Last;
1224 
1225   // This is the pointer which provides the product-mode behavior.
1226   // Whatever the product-mode version of the system does to the
1227   // DUI pointer is done to this pointer.  All other fields in
1228   // this class are used only for assertion checking.
1229   Node**       _outp;
1230 
1231   #ifdef ASSERT
1232   void verify(const Node* node, bool at_end_ok = false);
1233   void verify_limit();
1234   void verify_resync();
1235   void verify_relimit(uint n);
1236   void reset(const DUIterator_Fast& that);
1237   #endif
1238 
1239   // Note:  offset must be signed, since -1 is sometimes passed
DUIterator_Fast(const Node * node,ptrdiff_t offset)1240   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1241     { _outp = node->_out + offset;      debug_only(sample(node)); }
1242 
1243  public:
1244   // initialize to garbage; clear _vdui to disable asserts
DUIterator_Fast()1245   DUIterator_Fast()
1246     { /*initialize to garbage*/         debug_only(_vdui = false); }
1247 
operator ++(int dummy_to_specify_postfix_op)1248   void operator++(int dummy_to_specify_postfix_op)
1249     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1250 
operator --()1251   void operator--()
1252     { VDUI_ONLY(verify_resync());       --_outp; }
1253 
operator -=(uint n)1254   void operator-=(uint n)   // applied to the limit only
1255     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1256 
operator <(DUIterator_Fast & limit)1257   bool operator<(DUIterator_Fast& limit) {
1258     I_VDUI_ONLY(*this, this->verify(_node, true));
1259     I_VDUI_ONLY(limit, limit.verify_limit());
1260     return _outp < limit._outp;
1261   }
1262 
operator =(const DUIterator_Fast & that)1263   void operator=(const DUIterator_Fast& that)
1264     { _outp = that._outp;               debug_only(reset(that)); }
1265 };
1266 
fast_outs(DUIterator_Fast & imax) const1267 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1268   // Assign a limit pointer to the reference argument:
1269   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1270   // Return the base pointer:
1271   return DUIterator_Fast(this, 0);
1272 }
fast_out(DUIterator_Fast & i) const1273 Node* Node::fast_out(DUIterator_Fast& i) const {
1274   I_VDUI_ONLY(i, i.verify(this));
1275   return debug_only(i._last=) *i._outp;
1276 }
1277 
1278 
1279 // Faster DU iterator.  Requires each successive edge to be removed.
1280 // Does not allow insertion of any edges.
1281 // Usage:
1282 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1283 //    Node* y = x->last_out(i);
1284 //    ...
1285 //  }
1286 // Compiles in product mode to raw Node** pointer arithmetic, with
1287 // no reloading of pointers from the original node x.
1288 class DUIterator_Last : private DUIterator_Fast {
1289   friend class Node;
1290 
1291   #ifdef ASSERT
1292   void verify(const Node* node, bool at_end_ok = false);
1293   void verify_limit();
1294   void verify_step(uint num_edges);
1295   #endif
1296 
1297   // Note:  offset must be signed, since -1 is sometimes passed
DUIterator_Last(const Node * node,ptrdiff_t offset)1298   DUIterator_Last(const Node* node, ptrdiff_t offset)
1299     : DUIterator_Fast(node, offset) { }
1300 
operator ++(int dummy_to_specify_postfix_op)1301   void operator++(int dummy_to_specify_postfix_op) {} // do not use
operator <(int)1302   void operator<(int)                              {} // do not use
1303 
1304  public:
DUIterator_Last()1305   DUIterator_Last() { }
1306   // initialize to garbage
1307 
operator --()1308   void operator--()
1309     { _outp--;              VDUI_ONLY(verify_step(1));  }
1310 
operator -=(uint n)1311   void operator-=(uint n)
1312     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1313 
operator >=(DUIterator_Last & limit)1314   bool operator>=(DUIterator_Last& limit) {
1315     I_VDUI_ONLY(*this, this->verify(_node, true));
1316     I_VDUI_ONLY(limit, limit.verify_limit());
1317     return _outp >= limit._outp;
1318   }
1319 
operator =(const DUIterator_Last & that)1320   void operator=(const DUIterator_Last& that)
1321     { DUIterator_Fast::operator=(that); }
1322 };
1323 
last_outs(DUIterator_Last & imin) const1324 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1325   // Assign a limit pointer to the reference argument:
1326   imin = DUIterator_Last(this, 0);
1327   // Return the initial pointer:
1328   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1329 }
last_out(DUIterator_Last & i) const1330 Node* Node::last_out(DUIterator_Last& i) const {
1331   I_VDUI_ONLY(i, i.verify(this));
1332   return debug_only(i._last=) *i._outp;
1333 }
1334 
1335 #endif //OPTO_DU_ITERATOR_ASSERT
1336 
1337 #undef I_VDUI_ONLY
1338 #undef VDUI_ONLY
1339 
1340 // An Iterator that truly follows the iterator pattern.  Doesn't
1341 // support deletion but could be made to.
1342 //
1343 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1344 //     Node* m = i.get();
1345 //
1346 class SimpleDUIterator : public StackObj {
1347  private:
1348   Node* node;
1349   DUIterator_Fast i;
1350   DUIterator_Fast imax;
1351  public:
SimpleDUIterator(Node * n)1352   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
has_next()1353   bool has_next() { return i < imax; }
next()1354   void next() { i++; }
get()1355   Node* get() { return node->fast_out(i); }
1356 };
1357 
1358 
1359 //-----------------------------------------------------------------------------
1360 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1361 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
1362 // Note that the constructor just zeros things, and since I use Arena
1363 // allocation I do not need a destructor to reclaim storage.
1364 class Node_Array : public ResourceObj {
1365   friend class VMStructs;
1366 protected:
1367   Arena *_a;                    // Arena to allocate in
1368   uint   _max;
1369   Node **_nodes;
1370   void   grow( uint i );        // Grow array node to fit
1371 public:
Node_Array(Arena * a)1372   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1373     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1374     for( int i = 0; i < OptoNodeListSize; i++ ) {
1375       _nodes[i] = NULL;
1376     }
1377   }
1378 
Node_Array(Node_Array * na)1379   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
operator [](uint i) const1380   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1381   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
at(uint i) const1382   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
adr()1383   Node **adr() { return _nodes; }
1384   // Extend the mapping: index i maps to Node *n.
map(uint i,Node * n)1385   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1386   void insert( uint i, Node *n );
1387   void remove( uint i );        // Remove, preserving order
1388   void sort( C_sort_func_t func);
1389   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1390   void clear();                 // Set all entries to NULL, keep storage
Size() const1391   uint Size() const { return _max; }
1392   void dump() const;
1393 };
1394 
1395 class Node_List : public Node_Array {
1396   friend class VMStructs;
1397   uint _cnt;
1398 public:
Node_List()1399   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
Node_List(Arena * a)1400   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
contains(const Node * n) const1401   bool contains(const Node* n) const {
1402     for (uint e = 0; e < size(); e++) {
1403       if (at(e) == n) return true;
1404     }
1405     return false;
1406   }
insert(uint i,Node * n)1407   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
remove(uint i)1408   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
push(Node * b)1409   void push( Node *b ) { map(_cnt++,b); }
1410   void yank( Node *n );         // Find and remove
pop()1411   Node *pop() { return _nodes[--_cnt]; }
rpop()1412   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
clear()1413   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
size() const1414   uint size() const { return _cnt; }
1415   void dump() const;
1416   void dump_simple() const;
1417 };
1418 
1419 //------------------------------Unique_Node_List-------------------------------
1420 class Unique_Node_List : public Node_List {
1421   friend class VMStructs;
1422   VectorSet _in_worklist;
1423   uint _clock_index;            // Index in list where to pop from next
1424 public:
Unique_Node_List()1425   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
Unique_Node_List(Arena * a)1426   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1427 
1428   void remove( Node *n );
member(Node * n)1429   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
member_set()1430   VectorSet &member_set(){ return _in_worklist; }
1431 
push(Node * b)1432   void push( Node *b ) {
1433     if( !_in_worklist.test_set(b->_idx) )
1434       Node_List::push(b);
1435   }
pop()1436   Node *pop() {
1437     if( _clock_index >= size() ) _clock_index = 0;
1438     Node *b = at(_clock_index);
1439     map( _clock_index, Node_List::pop());
1440     if (size() != 0) _clock_index++; // Always start from 0
1441     _in_worklist >>= b->_idx;
1442     return b;
1443   }
remove(uint i)1444   Node *remove( uint i ) {
1445     Node *b = Node_List::at(i);
1446     _in_worklist >>= b->_idx;
1447     map(i,Node_List::pop());
1448     return b;
1449   }
yank(Node * n)1450   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
clear()1451   void  clear() {
1452     _in_worklist.Clear();        // Discards storage but grows automatically
1453     Node_List::clear();
1454     _clock_index = 0;
1455   }
1456 
1457   // Used after parsing to remove useless nodes before Iterative GVN
1458   void remove_useless_nodes(VectorSet &useful);
1459 
1460 #ifndef PRODUCT
print_set() const1461   void print_set() const { _in_worklist.print(); }
1462 #endif
1463 };
1464 
1465 // Inline definition of Compile::record_for_igvn must be deferred to this point.
record_for_igvn(Node * n)1466 inline void Compile::record_for_igvn(Node* n) {
1467   _for_igvn->push(n);
1468 }
1469 
1470 //------------------------------Node_Stack-------------------------------------
1471 class Node_Stack {
1472   friend class VMStructs;
1473 protected:
1474   struct INode {
1475     Node *node; // Processed node
1476     uint  indx; // Index of next node's child
1477   };
1478   INode *_inode_top; // tos, stack grows up
1479   INode *_inode_max; // End of _inodes == _inodes + _max
1480   INode *_inodes;    // Array storage for the stack
1481   Arena *_a;         // Arena to allocate in
1482   void grow();
1483 public:
Node_Stack(int size)1484   Node_Stack(int size) {
1485     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1486     _a = Thread::current()->resource_area();
1487     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1488     _inode_max = _inodes + max;
1489     _inode_top = _inodes - 1; // stack is empty
1490   }
1491 
Node_Stack(Arena * a,int size)1492   Node_Stack(Arena *a, int size) : _a(a) {
1493     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1494     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1495     _inode_max = _inodes + max;
1496     _inode_top = _inodes - 1; // stack is empty
1497   }
1498 
pop()1499   void pop() {
1500     assert(_inode_top >= _inodes, "node stack underflow");
1501     --_inode_top;
1502   }
push(Node * n,uint i)1503   void push(Node *n, uint i) {
1504     ++_inode_top;
1505     if (_inode_top >= _inode_max) grow();
1506     INode *top = _inode_top; // optimization
1507     top->node = n;
1508     top->indx = i;
1509   }
node() const1510   Node *node() const {
1511     return _inode_top->node;
1512   }
node_at(uint i) const1513   Node* node_at(uint i) const {
1514     assert(_inodes + i <= _inode_top, "in range");
1515     return _inodes[i].node;
1516   }
index() const1517   uint index() const {
1518     return _inode_top->indx;
1519   }
index_at(uint i) const1520   uint index_at(uint i) const {
1521     assert(_inodes + i <= _inode_top, "in range");
1522     return _inodes[i].indx;
1523   }
set_node(Node * n)1524   void set_node(Node *n) {
1525     _inode_top->node = n;
1526   }
set_index(uint i)1527   void set_index(uint i) {
1528     _inode_top->indx = i;
1529   }
size_max() const1530   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
size() const1531   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
is_nonempty() const1532   bool is_nonempty() const { return (_inode_top >= _inodes); }
is_empty() const1533   bool is_empty() const { return (_inode_top < _inodes); }
clear()1534   void clear() { _inode_top = _inodes - 1; } // retain storage
1535 
1536   // Node_Stack is used to map nodes.
1537   Node* find(uint idx) const;
1538 };
1539 
1540 
1541 //-----------------------------Node_Notes--------------------------------------
1542 // Debugging or profiling annotations loosely and sparsely associated
1543 // with some nodes.  See Compile::node_notes_at for the accessor.
1544 class Node_Notes VALUE_OBJ_CLASS_SPEC {
1545   friend class VMStructs;
1546   JVMState* _jvms;
1547 
1548 public:
Node_Notes(JVMState * jvms=NULL)1549   Node_Notes(JVMState* jvms = NULL) {
1550     _jvms = jvms;
1551   }
1552 
jvms()1553   JVMState* jvms()            { return _jvms; }
set_jvms(JVMState * x)1554   void  set_jvms(JVMState* x) {        _jvms = x; }
1555 
1556   // True if there is nothing here.
is_clear()1557   bool is_clear() {
1558     return (_jvms == NULL);
1559   }
1560 
1561   // Make there be nothing here.
clear()1562   void clear() {
1563     _jvms = NULL;
1564   }
1565 
1566   // Make a new, clean node notes.
make(Compile * C)1567   static Node_Notes* make(Compile* C) {
1568     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1569     nn->clear();
1570     return nn;
1571   }
1572 
clone(Compile * C)1573   Node_Notes* clone(Compile* C) {
1574     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1575     (*nn) = (*this);
1576     return nn;
1577   }
1578 
1579   // Absorb any information from source.
update_from(Node_Notes * source)1580   bool update_from(Node_Notes* source) {
1581     bool changed = false;
1582     if (source != NULL) {
1583       if (source->jvms() != NULL) {
1584         set_jvms(source->jvms());
1585         changed = true;
1586       }
1587     }
1588     return changed;
1589   }
1590 };
1591 
1592 // Inlined accessors for Compile::node_nodes that require the preceding class:
1593 inline Node_Notes*
locate_node_notes(GrowableArray<Node_Notes * > * arr,int idx,bool can_grow)1594 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1595                            int idx, bool can_grow) {
1596   assert(idx >= 0, "oob");
1597   int block_idx = (idx >> _log2_node_notes_block_size);
1598   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1599   if (grow_by >= 0) {
1600     if (!can_grow)  return NULL;
1601     grow_node_notes(arr, grow_by + 1);
1602   }
1603   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1604   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1605 }
1606 
1607 inline bool
set_node_notes_at(int idx,Node_Notes * value)1608 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1609   if (value == NULL || value->is_clear())
1610     return false;  // nothing to write => write nothing
1611   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1612   assert(loc != NULL, "");
1613   return loc->update_from(value);
1614 }
1615 
1616 
1617 //------------------------------TypeNode---------------------------------------
1618 // Node with a Type constant.
1619 class TypeNode : public Node {
1620 protected:
1621   virtual uint hash() const;    // Check the type
1622   virtual uint cmp( const Node &n ) const;
1623   virtual uint size_of() const; // Size is bigger
1624   const Type* const _type;
1625 public:
set_type(const Type * t)1626   void set_type(const Type* t) {
1627     assert(t != NULL, "sanity");
1628     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1629     *(const Type**)&_type = t;   // cast away const-ness
1630     // If this node is in the hash table, make sure it doesn't need a rehash.
1631     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1632   }
type() const1633   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
TypeNode(const Type * t,uint required)1634   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1635     init_class_id(Class_Type);
1636   }
1637   virtual const Type *Value( PhaseTransform *phase ) const;
1638   virtual const Type *bottom_type() const;
1639   virtual       uint  ideal_reg() const;
1640 #ifndef PRODUCT
1641   virtual void dump_spec(outputStream *st) const;
1642 #endif
1643 };
1644 
1645 #endif // SHARE_VM_OPTO_NODE_HPP
1646