1 
2 /*
3  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "runtime/mutex.hpp"
28 #include "runtime/orderAccess.inline.hpp"
29 #include "runtime/osThread.hpp"
30 #include "runtime/thread.inline.hpp"
31 #include "utilities/events.hpp"
32 #ifdef TARGET_OS_FAMILY_linux
33 # include "mutex_linux.inline.hpp"
34 #endif
35 #ifdef TARGET_OS_FAMILY_solaris
36 # include "mutex_solaris.inline.hpp"
37 #endif
38 #ifdef TARGET_OS_FAMILY_windows
39 # include "mutex_windows.inline.hpp"
40 #endif
41 #ifdef TARGET_OS_FAMILY_bsd
42 # include "mutex_bsd.inline.hpp"
43 #endif
44 
45 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
46 
47 // o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
48 //
49 // Native Monitor-Mutex locking - theory of operations
50 //
51 // * Native Monitors are completely unrelated to Java-level monitors,
52 //   although the "back-end" slow-path implementations share a common lineage.
53 //   See objectMonitor:: in synchronizer.cpp.
54 //   Native Monitors do *not* support nesting or recursion but otherwise
55 //   they're basically Hoare-flavor monitors.
56 //
57 // * A thread acquires ownership of a Monitor/Mutex by CASing the LockByte
58 //   in the _LockWord from zero to non-zero.  Note that the _Owner field
59 //   is advisory and is used only to verify that the thread calling unlock()
60 //   is indeed the last thread to have acquired the lock.
61 //
62 // * Contending threads "push" themselves onto the front of the contention
63 //   queue -- called the cxq -- with CAS and then spin/park.
64 //   The _LockWord contains the LockByte as well as the pointer to the head
65 //   of the cxq.  Colocating the LockByte with the cxq precludes certain races.
66 //
67 // * Using a separately addressable LockByte allows for CAS:MEMBAR or CAS:0
68 //   idioms.  We currently use MEMBAR in the uncontended unlock() path, as
69 //   MEMBAR often has less latency than CAS.  If warranted, we could switch to
70 //   a CAS:0 mode, using timers to close the resultant race, as is done
71 //   with Java Monitors in synchronizer.cpp.
72 //
73 //   See the following for a discussion of the relative cost of atomics (CAS)
74 //   MEMBAR, and ways to eliminate such instructions from the common-case paths:
75 //   -- http://blogs.sun.com/dave/entry/biased_locking_in_hotspot
76 //   -- http://blogs.sun.com/dave/resource/MustangSync.pdf
77 //   -- http://blogs.sun.com/dave/resource/synchronization-public2.pdf
78 //   -- synchronizer.cpp
79 //
80 // * Overall goals - desiderata
81 //   1. Minimize context switching
82 //   2. Minimize lock migration
83 //   3. Minimize CPI -- affinity and locality
84 //   4. Minimize the execution of high-latency instructions such as CAS or MEMBAR
85 //   5. Minimize outer lock hold times
86 //   6. Behave gracefully on a loaded system
87 //
88 // * Thread flow and list residency:
89 //
90 //   Contention queue --> EntryList --> OnDeck --> Owner --> !Owner
91 //   [..resident on monitor list..]
92 //   [...........contending..................]
93 //
94 //   -- The contention queue (cxq) contains recently-arrived threads (RATs).
95 //      Threads on the cxq eventually drain into the EntryList.
96 //   -- Invariant: a thread appears on at most one list -- cxq, EntryList
97 //      or WaitSet -- at any one time.
98 //   -- For a given monitor there can be at most one "OnDeck" thread at any
99 //      given time but if needbe this particular invariant could be relaxed.
100 //
101 // * The WaitSet and EntryList linked lists are composed of ParkEvents.
102 //   I use ParkEvent instead of threads as ParkEvents are immortal and
103 //   type-stable, meaning we can safely unpark() a possibly stale
104 //   list element in the unlock()-path.  (That's benign).
105 //
106 // * Succession policy - providing for progress:
107 //
108 //   As necessary, the unlock()ing thread identifies, unlinks, and unparks
109 //   an "heir presumptive" tentative successor thread from the EntryList.
110 //   This becomes the so-called "OnDeck" thread, of which there can be only
111 //   one at any given time for a given monitor.  The wakee will recontend
112 //   for ownership of monitor.
113 //
114 //   Succession is provided for by a policy of competitive handoff.
115 //   The exiting thread does _not_ grant or pass ownership to the
116 //   successor thread.  (This is also referred to as "handoff" succession").
117 //   Instead the exiting thread releases ownership and possibly wakes
118 //   a successor, so the successor can (re)compete for ownership of the lock.
119 //
120 //   Competitive handoff provides excellent overall throughput at the expense
121 //   of short-term fairness.  If fairness is a concern then one remedy might
122 //   be to add an AcquireCounter field to the monitor.  After a thread acquires
123 //   the lock it will decrement the AcquireCounter field.  When the count
124 //   reaches 0 the thread would reset the AcquireCounter variable, abdicate
125 //   the lock directly to some thread on the EntryList, and then move itself to the
126 //   tail of the EntryList.
127 //
128 //   But in practice most threads engage or otherwise participate in resource
129 //   bounded producer-consumer relationships, so lock domination is not usually
130 //   a practical concern.  Recall too, that in general it's easier to construct
131 //   a fair lock from a fast lock, but not vice-versa.
132 //
133 // * The cxq can have multiple concurrent "pushers" but only one concurrent
134 //   detaching thread.  This mechanism is immune from the ABA corruption.
135 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
136 //   We use OnDeck as a pseudo-lock to enforce the at-most-one detaching
137 //   thread constraint.
138 //
139 // * Taken together, the cxq and the EntryList constitute or form a
140 //   single logical queue of threads stalled trying to acquire the lock.
141 //   We use two distinct lists to reduce heat on the list ends.
142 //   Threads in lock() enqueue onto cxq while threads in unlock() will
143 //   dequeue from the EntryList.  (c.f. Michael Scott's "2Q" algorithm).
144 //   A key desideratum is to minimize queue & monitor metadata manipulation
145 //   that occurs while holding the "outer" monitor lock -- that is, we want to
146 //   minimize monitor lock holds times.
147 //
148 //   The EntryList is ordered by the prevailing queue discipline and
149 //   can be organized in any convenient fashion, such as a doubly-linked list or
150 //   a circular doubly-linked list.  If we need a priority queue then something akin
151 //   to Solaris' sleepq would work nicely.  Viz.,
152 //   -- http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
153 //   -- http://cvs.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/os/sleepq.c
154 //   Queue discipline is enforced at ::unlock() time, when the unlocking thread
155 //   drains the cxq into the EntryList, and orders or reorders the threads on the
156 //   EntryList accordingly.
157 //
158 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
159 //   somewhat similar to an elevator-scan.
160 //
161 // * OnDeck
162 //   --  For a given monitor there can be at most one OnDeck thread at any given
163 //       instant.  The OnDeck thread is contending for the lock, but has been
164 //       unlinked from the EntryList and cxq by some previous unlock() operations.
165 //       Once a thread has been designated the OnDeck thread it will remain so
166 //       until it manages to acquire the lock -- being OnDeck is a stable property.
167 //   --  Threads on the EntryList or cxq are _not allowed to attempt lock acquisition.
168 //   --  OnDeck also serves as an "inner lock" as follows.  Threads in unlock() will, after
169 //       having cleared the LockByte and dropped the outer lock,  attempt to "trylock"
170 //       OnDeck by CASing the field from null to non-null.  If successful, that thread
171 //       is then responsible for progress and succession and can use CAS to detach and
172 //       drain the cxq into the EntryList.  By convention, only this thread, the holder of
173 //       the OnDeck inner lock, can manipulate the EntryList or detach and drain the
174 //       RATs on the cxq into the EntryList.  This avoids ABA corruption on the cxq as
175 //       we allow multiple concurrent "push" operations but restrict detach concurrency
176 //       to at most one thread.  Having selected and detached a successor, the thread then
177 //       changes the OnDeck to refer to that successor, and then unparks the successor.
178 //       That successor will eventually acquire the lock and clear OnDeck.  Beware
179 //       that the OnDeck usage as a lock is asymmetric.  A thread in unlock() transiently
180 //       "acquires" OnDeck, performs queue manipulations, passes OnDeck to some successor,
181 //       and then the successor eventually "drops" OnDeck.  Note that there's never
182 //       any sense of contention on the inner lock, however.  Threads never contend
183 //       or wait for the inner lock.
184 //   --  OnDeck provides for futile wakeup throttling a described in section 3.3 of
185 //       See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
186 //       In a sense, OnDeck subsumes the ObjectMonitor _Succ and ObjectWaiter
187 //       TState fields found in Java-level objectMonitors.  (See synchronizer.cpp).
188 //
189 // * Waiting threads reside on the WaitSet list -- wait() puts
190 //   the caller onto the WaitSet.  Notify() or notifyAll() simply
191 //   transfers threads from the WaitSet to either the EntryList or cxq.
192 //   Subsequent unlock() operations will eventually unpark the notifyee.
193 //   Unparking a notifee in notify() proper is inefficient - if we were to do so
194 //   it's likely the notifyee would simply impale itself on the lock held
195 //   by the notifier.
196 //
197 // * The mechanism is obstruction-free in that if the holder of the transient
198 //   OnDeck lock in unlock() is preempted or otherwise stalls, other threads
199 //   can still acquire and release the outer lock and continue to make progress.
200 //   At worst, waking of already blocked contending threads may be delayed,
201 //   but nothing worse.  (We only use "trylock" operations on the inner OnDeck
202 //   lock).
203 //
204 // * Note that thread-local storage must be initialized before a thread
205 //   uses Native monitors or mutexes.  The native monitor-mutex subsystem
206 //   depends on Thread::current().
207 //
208 // * The monitor synchronization subsystem avoids the use of native
209 //   synchronization primitives except for the narrow platform-specific
210 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
211 //   the semantics of park-unpark.  Put another way, this monitor implementation
212 //   depends only on atomic operations and park-unpark.  The monitor subsystem
213 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
214 //   underlying OS manages the READY<->RUN transitions.
215 //
216 // * The memory consistency model provide by lock()-unlock() is at least as
217 //   strong or stronger than the Java Memory model defined by JSR-133.
218 //   That is, we guarantee at least entry consistency, if not stronger.
219 //   See http://g.oswego.edu/dl/jmm/cookbook.html.
220 //
221 // * Thread:: currently contains a set of purpose-specific ParkEvents:
222 //   _MutexEvent, _ParkEvent, etc.  A better approach might be to do away with
223 //   the purpose-specific ParkEvents and instead implement a general per-thread
224 //   stack of available ParkEvents which we could provision on-demand.  The
225 //   stack acts as a local cache to avoid excessive calls to ParkEvent::Allocate()
226 //   and ::Release().  A thread would simply pop an element from the local stack before it
227 //   enqueued or park()ed.  When the contention was over the thread would
228 //   push the no-longer-needed ParkEvent back onto its stack.
229 //
230 // * A slightly reduced form of ILock() and IUnlock() have been partially
231 //   model-checked (Murphi) for safety and progress at T=1,2,3 and 4.
232 //   It'd be interesting to see if TLA/TLC could be useful as well.
233 //
234 // * Mutex-Monitor is a low-level "leaf" subsystem.  That is, the monitor
235 //   code should never call other code in the JVM that might itself need to
236 //   acquire monitors or mutexes.  That's true *except* in the case of the
237 //   ThreadBlockInVM state transition wrappers.  The ThreadBlockInVM DTOR handles
238 //   mutator reentry (ingress) by checking for a pending safepoint in which case it will
239 //   call SafepointSynchronize::block(), which in turn may call Safepoint_lock->lock(), etc.
240 //   In that particular case a call to lock() for a given Monitor can end up recursively
241 //   calling lock() on another monitor.   While distasteful, this is largely benign
242 //   as the calls come from jacket that wraps lock(), and not from deep within lock() itself.
243 //
244 //   It's unfortunate that native mutexes and thread state transitions were convolved.
245 //   They're really separate concerns and should have remained that way.  Melding
246 //   them together was facile -- a bit too facile.   The current implementation badly
247 //   conflates the two concerns.
248 //
249 // * TODO-FIXME:
250 //
251 //   -- Add DTRACE probes for contended acquire, contended acquired, contended unlock
252 //      We should also add DTRACE probes in the ParkEvent subsystem for
253 //      Park-entry, Park-exit, and Unpark.
254 //
255 //   -- We have an excess of mutex-like constructs in the JVM, namely:
256 //      1. objectMonitors for Java-level synchronization (synchronizer.cpp)
257 //      2. low-level muxAcquire and muxRelease
258 //      3. low-level spinAcquire and spinRelease
259 //      4. native Mutex:: and Monitor::
260 //      5. jvm_raw_lock() and _unlock()
261 //      6. JVMTI raw monitors -- distinct from (5) despite having a confusingly
262 //         similar name.
263 //
264 // o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
265 
266 
267 // CASPTR() uses the canonical argument order that dominates in the literature.
268 // Our internal cmpxchg_ptr() uses a bastardized ordering to accommodate Sun .il templates.
269 
270 #define CASPTR(a,c,s) intptr_t(Atomic::cmpxchg_ptr ((void *)(s),(void *)(a),(void *)(c)))
271 #define UNS(x) (uintptr_t(x))
272 #define TRACE(m) { static volatile int ctr = 0 ; int x = ++ctr ; if ((x & (x-1))==0) { ::printf ("%d:%s\n", x, #m); ::fflush(stdout); }}
273 
274 // Simplistic low-quality Marsaglia SHIFT-XOR RNG.
275 // Bijective except for the trailing mask operation.
276 // Useful for spin loops as the compiler can't optimize it away.
277 
MarsagliaXORV(jint x)278 static inline jint MarsagliaXORV (jint x) {
279   if (x == 0) x = 1|os::random() ;
280   x ^= x << 6;
281   x ^= ((unsigned)x) >> 21;
282   x ^= x << 7 ;
283   return x & 0x7FFFFFFF ;
284 }
285 
Stall(int its)286 static int Stall (int its) {
287   static volatile jint rv = 1 ;
288   volatile int OnFrame = 0 ;
289   jint v = rv ^ UNS(OnFrame) ;
290   while (--its >= 0) {
291     v = MarsagliaXORV (v) ;
292   }
293   // Make this impossible for the compiler to optimize away,
294   // but (mostly) avoid W coherency sharing on MP systems.
295   if (v == 0x12345) rv = v ;
296   return v ;
297 }
298 
TryLock()299 int Monitor::TryLock () {
300   intptr_t v = _LockWord.FullWord ;
301   for (;;) {
302     if ((v & _LBIT) != 0) return 0 ;
303     const intptr_t u = CASPTR (&_LockWord, v, v|_LBIT) ;
304     if (v == u) return 1 ;
305     v = u ;
306   }
307 }
308 
TryFast()309 int Monitor::TryFast () {
310   // Optimistic fast-path form ...
311   // Fast-path attempt for the common uncontended case.
312   // Avoid RTS->RTO $ coherence upgrade on typical SMP systems.
313   intptr_t v = CASPTR (&_LockWord, 0, _LBIT) ;  // agro ...
314   if (v == 0) return 1 ;
315 
316   for (;;) {
317     if ((v & _LBIT) != 0) return 0 ;
318     const intptr_t u = CASPTR (&_LockWord, v, v|_LBIT) ;
319     if (v == u) return 1 ;
320     v = u ;
321   }
322 }
323 
ILocked()324 int Monitor::ILocked () {
325   const intptr_t w = _LockWord.FullWord & 0xFF ;
326   assert (w == 0 || w == _LBIT, "invariant") ;
327   return w == _LBIT ;
328 }
329 
330 // Polite TATAS spinlock with exponential backoff - bounded spin.
331 // Ideally we'd use processor cycles, time or vtime to control
332 // the loop, but we currently use iterations.
333 // All the constants within were derived empirically but work over
334 // over the spectrum of J2SE reference platforms.
335 // On Niagara-class systems the back-off is unnecessary but
336 // is relatively harmless.  (At worst it'll slightly retard
337 // acquisition times).  The back-off is critical for older SMP systems
338 // where constant fetching of the LockWord would otherwise impair
339 // scalability.
340 //
341 // Clamp spinning at approximately 1/2 of a context-switch round-trip.
342 // See synchronizer.cpp for details and rationale.
343 
TrySpin(Thread * const Self)344 int Monitor::TrySpin (Thread * const Self) {
345   if (TryLock())    return 1 ;
346   if (!os::is_MP()) return 0 ;
347 
348   int Probes  = 0 ;
349   int Delay   = 0 ;
350   int Steps   = 0 ;
351   int SpinMax = NativeMonitorSpinLimit ;
352   int flgs    = NativeMonitorFlags ;
353   for (;;) {
354     intptr_t v = _LockWord.FullWord;
355     if ((v & _LBIT) == 0) {
356       if (CASPTR (&_LockWord, v, v|_LBIT) == v) {
357         return 1 ;
358       }
359       continue ;
360     }
361 
362     if ((flgs & 8) == 0) {
363       SpinPause () ;
364     }
365 
366     // Periodically increase Delay -- variable Delay form
367     // conceptually: delay *= 1 + 1/Exponent
368     ++ Probes;
369     if (Probes > SpinMax) return 0 ;
370 
371     if ((Probes & 0x7) == 0) {
372       Delay = ((Delay << 1)|1) & 0x7FF ;
373       // CONSIDER: Delay += 1 + (Delay/4); Delay &= 0x7FF ;
374     }
375 
376     if (flgs & 2) continue ;
377 
378     // Consider checking _owner's schedctl state, if OFFPROC abort spin.
379     // If the owner is OFFPROC then it's unlike that the lock will be dropped
380     // in a timely fashion, which suggests that spinning would not be fruitful
381     // or profitable.
382 
383     // Stall for "Delay" time units - iterations in the current implementation.
384     // Avoid generating coherency traffic while stalled.
385     // Possible ways to delay:
386     //   PAUSE, SLEEP, MEMBAR #sync, MEMBAR #halt,
387     //   wr %g0,%asi, gethrtime, rdstick, rdtick, rdtsc, etc. ...
388     // Note that on Niagara-class systems we want to minimize STs in the
389     // spin loop.  N1 and brethren write-around the L1$ over the xbar into the L2$.
390     // Furthermore, they don't have a W$ like traditional SPARC processors.
391     // We currently use a Marsaglia Shift-Xor RNG loop.
392     Steps += Delay ;
393     if (Self != NULL) {
394       jint rv = Self->rng[0] ;
395       for (int k = Delay ; --k >= 0; ) {
396         rv = MarsagliaXORV (rv) ;
397         if ((flgs & 4) == 0 && SafepointSynchronize::do_call_back()) return 0 ;
398       }
399       Self->rng[0] = rv ;
400     } else {
401       Stall (Delay) ;
402     }
403   }
404 }
405 
ParkCommon(ParkEvent * ev,jlong timo)406 static int ParkCommon (ParkEvent * ev, jlong timo) {
407   // Diagnostic support - periodically unwedge blocked threads
408   intx nmt = NativeMonitorTimeout ;
409   if (nmt > 0 && (nmt < timo || timo <= 0)) {
410      timo = nmt ;
411   }
412   int err = OS_OK ;
413   if (0 == timo) {
414     ev->park() ;
415   } else {
416     err = ev->park(timo) ;
417   }
418   return err ;
419 }
420 
AcquireOrPush(ParkEvent * ESelf)421 inline int Monitor::AcquireOrPush (ParkEvent * ESelf) {
422   intptr_t v = _LockWord.FullWord ;
423   for (;;) {
424     if ((v & _LBIT) == 0) {
425       const intptr_t u = CASPTR (&_LockWord, v, v|_LBIT) ;
426       if (u == v) return 1 ;        // indicate acquired
427       v = u ;
428     } else {
429       // Anticipate success ...
430       ESelf->ListNext = (ParkEvent *) (v & ~_LBIT) ;
431       const intptr_t u = CASPTR (&_LockWord, v, intptr_t(ESelf)|_LBIT) ;
432       if (u == v) return 0 ;        // indicate pushed onto cxq
433       v = u ;
434     }
435     // Interference - LockWord change - just retry
436   }
437 }
438 
439 // ILock and IWait are the lowest level primitive internal blocking
440 // synchronization functions.  The callers of IWait and ILock must have
441 // performed any needed state transitions beforehand.
442 // IWait and ILock may directly call park() without any concern for thread state.
443 // Note that ILock and IWait do *not* access _owner.
444 // _owner is a higher-level logical concept.
445 
ILock(Thread * Self)446 void Monitor::ILock (Thread * Self) {
447   assert (_OnDeck != Self->_MutexEvent, "invariant") ;
448 
449   if (TryFast()) {
450  Exeunt:
451     assert (ILocked(), "invariant") ;
452     return ;
453   }
454 
455   ParkEvent * const ESelf = Self->_MutexEvent ;
456   assert (_OnDeck != ESelf, "invariant") ;
457 
458   // As an optimization, spinners could conditionally try to set ONDECK to _LBIT
459   // Synchronizer.cpp uses a similar optimization.
460   if (TrySpin (Self)) goto Exeunt ;
461 
462   // Slow-path - the lock is contended.
463   // Either Enqueue Self on cxq or acquire the outer lock.
464   // LockWord encoding = (cxq,LOCKBYTE)
465   ESelf->reset() ;
466   OrderAccess::fence() ;
467 
468   // Optional optimization ... try barging on the inner lock
469   if ((NativeMonitorFlags & 32) && CASPTR (&_OnDeck, NULL, UNS(Self)) == 0) {
470     goto OnDeck_LOOP ;
471   }
472 
473   if (AcquireOrPush (ESelf)) goto Exeunt ;
474 
475   // At any given time there is at most one ondeck thread.
476   // ondeck implies not resident on cxq and not resident on EntryList
477   // Only the OnDeck thread can try to acquire -- contended for -- the lock.
478   // CONSIDER: use Self->OnDeck instead of m->OnDeck.
479   // Deschedule Self so that others may run.
480   while (_OnDeck != ESelf) {
481     ParkCommon (ESelf, 0) ;
482   }
483 
484   // Self is now in the ONDECK position and will remain so until it
485   // manages to acquire the lock.
486  OnDeck_LOOP:
487   for (;;) {
488     assert (_OnDeck == ESelf, "invariant") ;
489     if (TrySpin (Self)) break ;
490     // CONSIDER: if ESelf->TryPark() && TryLock() break ...
491     // It's probably wise to spin only if we *actually* blocked
492     // CONSIDER: check the lockbyte, if it remains set then
493     // preemptively drain the cxq into the EntryList.
494     // The best place and time to perform queue operations -- lock metadata --
495     // is _before having acquired the outer lock, while waiting for the lock to drop.
496     ParkCommon (ESelf, 0) ;
497   }
498 
499   assert (_OnDeck == ESelf, "invariant") ;
500   _OnDeck = NULL ;
501 
502   // Note that we current drop the inner lock (clear OnDeck) in the slow-path
503   // epilog immediately after having acquired the outer lock.
504   // But instead we could consider the following optimizations:
505   // A. Shift or defer dropping the inner lock until the subsequent IUnlock() operation.
506   //    This might avoid potential reacquisition of the inner lock in IUlock().
507   // B. While still holding the inner lock, attempt to opportunistically select
508   //    and unlink the next ONDECK thread from the EntryList.
509   //    If successful, set ONDECK to refer to that thread, otherwise clear ONDECK.
510   //    It's critical that the select-and-unlink operation run in constant-time as
511   //    it executes when holding the outer lock and may artificially increase the
512   //    effective length of the critical section.
513   // Note that (A) and (B) are tantamount to succession by direct handoff for
514   // the inner lock.
515   goto Exeunt ;
516 }
517 
IUnlock(bool RelaxAssert)518 void Monitor::IUnlock (bool RelaxAssert) {
519   assert (ILocked(), "invariant") ;
520   // Conceptually we need a MEMBAR #storestore|#loadstore barrier or fence immediately
521   // before the store that releases the lock.  Crucially, all the stores and loads in the
522   // critical section must be globally visible before the store of 0 into the lock-word
523   // that releases the lock becomes globally visible.  That is, memory accesses in the
524   // critical section should not be allowed to bypass or overtake the following ST that
525   // releases the lock.  As such, to prevent accesses within the critical section
526   // from "leaking" out, we need a release fence between the critical section and the
527   // store that releases the lock.  In practice that release barrier is elided on
528   // platforms with strong memory models such as TSO.
529   //
530   // Note that the OrderAccess::storeload() fence that appears after unlock store
531   // provides for progress conditions and succession and is _not related to exclusion
532   // safety or lock release consistency.
533   OrderAccess::release_store(&_LockWord.Bytes[_LSBINDEX], 0); // drop outer lock
534 
535   OrderAccess::storeload ();
536   ParkEvent * const w = _OnDeck ;
537   assert (RelaxAssert || w != Thread::current()->_MutexEvent, "invariant") ;
538   if (w != NULL) {
539     // Either we have a valid ondeck thread or ondeck is transiently "locked"
540     // by some exiting thread as it arranges for succession.  The LSBit of
541     // OnDeck allows us to discriminate two cases.  If the latter, the
542     // responsibility for progress and succession lies with that other thread.
543     // For good performance, we also depend on the fact that redundant unpark()
544     // operations are cheap.  That is, repeated Unpark()ing of the ONDECK thread
545     // is inexpensive.  This approach provides implicit futile wakeup throttling.
546     // Note that the referent "w" might be stale with respect to the lock.
547     // In that case the following unpark() is harmless and the worst that'll happen
548     // is a spurious return from a park() operation.  Critically, if "w" _is stale,
549     // then progress is known to have occurred as that means the thread associated
550     // with "w" acquired the lock.  In that case this thread need take no further
551     // action to guarantee progress.
552     if ((UNS(w) & _LBIT) == 0) w->unpark() ;
553     return ;
554   }
555 
556   intptr_t cxq = _LockWord.FullWord ;
557   if (((cxq & ~_LBIT)|UNS(_EntryList)) == 0) {
558     return ;      // normal fast-path exit - cxq and EntryList both empty
559   }
560   if (cxq & _LBIT) {
561     // Optional optimization ...
562     // Some other thread acquired the lock in the window since this
563     // thread released it.  Succession is now that thread's responsibility.
564     return ;
565   }
566 
567  Succession:
568   // Slow-path exit - this thread must ensure succession and progress.
569   // OnDeck serves as lock to protect cxq and EntryList.
570   // Only the holder of OnDeck can manipulate EntryList or detach the RATs from cxq.
571   // Avoid ABA - allow multiple concurrent producers (enqueue via push-CAS)
572   // but only one concurrent consumer (detacher of RATs).
573   // Consider protecting this critical section with schedctl on Solaris.
574   // Unlike a normal lock, however, the exiting thread "locks" OnDeck,
575   // picks a successor and marks that thread as OnDeck.  That successor
576   // thread will then clear OnDeck once it eventually acquires the outer lock.
577   if (CASPTR (&_OnDeck, NULL, _LBIT) != UNS(NULL)) {
578     return ;
579   }
580 
581   ParkEvent * List = _EntryList ;
582   if (List != NULL) {
583     // Transfer the head of the EntryList to the OnDeck position.
584     // Once OnDeck, a thread stays OnDeck until it acquires the lock.
585     // For a given lock there is at most OnDeck thread at any one instant.
586    WakeOne:
587     assert (List == _EntryList, "invariant") ;
588     ParkEvent * const w = List ;
589     assert (RelaxAssert || w != Thread::current()->_MutexEvent, "invariant") ;
590     _EntryList = w->ListNext ;
591     // as a diagnostic measure consider setting w->_ListNext = BAD
592     assert (UNS(_OnDeck) == _LBIT, "invariant") ;
593     _OnDeck = w ;           // pass OnDeck to w.
594                             // w will clear OnDeck once it acquires the outer lock
595 
596     // Another optional optimization ...
597     // For heavily contended locks it's not uncommon that some other
598     // thread acquired the lock while this thread was arranging succession.
599     // Try to defer the unpark() operation - Delegate the responsibility
600     // for unpark()ing the OnDeck thread to the current or subsequent owners
601     // That is, the new owner is responsible for unparking the OnDeck thread.
602     OrderAccess::storeload() ;
603     cxq = _LockWord.FullWord ;
604     if (cxq & _LBIT) return ;
605 
606     w->unpark() ;
607     return ;
608   }
609 
610   cxq = _LockWord.FullWord ;
611   if ((cxq & ~_LBIT) != 0) {
612     // The EntryList is empty but the cxq is populated.
613     // drain RATs from cxq into EntryList
614     // Detach RATs segment with CAS and then merge into EntryList
615     for (;;) {
616       // optional optimization - if locked, the owner is responsible for succession
617       if (cxq & _LBIT) goto Punt ;
618       const intptr_t vfy = CASPTR (&_LockWord, cxq, cxq & _LBIT) ;
619       if (vfy == cxq) break ;
620       cxq = vfy ;
621       // Interference - LockWord changed - Just retry
622       // We can see concurrent interference from contending threads
623       // pushing themselves onto the cxq or from lock-unlock operations.
624       // From the perspective of this thread, EntryList is stable and
625       // the cxq is prepend-only -- the head is volatile but the interior
626       // of the cxq is stable.  In theory if we encounter interference from threads
627       // pushing onto cxq we could simply break off the original cxq suffix and
628       // move that segment to the EntryList, avoiding a 2nd or multiple CAS attempts
629       // on the high-traffic LockWord variable.   For instance lets say the cxq is "ABCD"
630       // when we first fetch cxq above.  Between the fetch -- where we observed "A"
631       // -- and CAS -- where we attempt to CAS null over A -- "PQR" arrive,
632       // yielding cxq = "PQRABCD".  In this case we could simply set A.ListNext
633       // null, leaving cxq = "PQRA" and transfer the "BCD" segment to the EntryList.
634       // Note too, that it's safe for this thread to traverse the cxq
635       // without taking any special concurrency precautions.
636     }
637 
638     // We don't currently reorder the cxq segment as we move it onto
639     // the EntryList, but it might make sense to reverse the order
640     // or perhaps sort by thread priority.  See the comments in
641     // synchronizer.cpp objectMonitor::exit().
642     assert (_EntryList == NULL, "invariant") ;
643     _EntryList = List = (ParkEvent *)(cxq & ~_LBIT) ;
644     assert (List != NULL, "invariant") ;
645     goto WakeOne ;
646   }
647 
648   // cxq|EntryList is empty.
649   // w == NULL implies that cxq|EntryList == NULL in the past.
650   // Possible race - rare inopportune interleaving.
651   // A thread could have added itself to cxq since this thread previously checked.
652   // Detect and recover by refetching cxq.
653  Punt:
654   assert (UNS(_OnDeck) == _LBIT, "invariant") ;
655   _OnDeck = NULL ;            // Release inner lock.
656   OrderAccess::storeload();   // Dekker duality - pivot point
657 
658   // Resample LockWord/cxq to recover from possible race.
659   // For instance, while this thread T1 held OnDeck, some other thread T2 might
660   // acquire the outer lock.  Another thread T3 might try to acquire the outer
661   // lock, but encounter contention and enqueue itself on cxq.  T2 then drops the
662   // outer lock, but skips succession as this thread T1 still holds OnDeck.
663   // T1 is and remains responsible for ensuring succession of T3.
664   //
665   // Note that we don't need to recheck EntryList, just cxq.
666   // If threads moved onto EntryList since we dropped OnDeck
667   // that implies some other thread forced succession.
668   cxq = _LockWord.FullWord ;
669   if ((cxq & ~_LBIT) != 0 && (cxq & _LBIT) == 0) {
670     goto Succession ;         // potential race -- re-run succession
671   }
672   return ;
673 }
674 
notify()675 bool Monitor::notify() {
676   assert (_owner == Thread::current(), "invariant") ;
677   assert (ILocked(), "invariant") ;
678   if (_WaitSet == NULL) return true ;
679   NotifyCount ++ ;
680 
681   // Transfer one thread from the WaitSet to the EntryList or cxq.
682   // Currently we just unlink the head of the WaitSet and prepend to the cxq.
683   // And of course we could just unlink it and unpark it, too, but
684   // in that case it'd likely impale itself on the reentry.
685   Thread::muxAcquire (_WaitLock, "notify:WaitLock") ;
686   ParkEvent * nfy = _WaitSet ;
687   if (nfy != NULL) {                  // DCL idiom
688     _WaitSet = nfy->ListNext ;
689     assert (nfy->Notified == 0, "invariant") ;
690     // push nfy onto the cxq
691     for (;;) {
692       const intptr_t v = _LockWord.FullWord ;
693       assert ((v & 0xFF) == _LBIT, "invariant") ;
694       nfy->ListNext = (ParkEvent *)(v & ~_LBIT);
695       if (CASPTR (&_LockWord, v, UNS(nfy)|_LBIT) == v) break;
696       // interference - _LockWord changed -- just retry
697     }
698     // Note that setting Notified before pushing nfy onto the cxq is
699     // also legal and safe, but the safety properties are much more
700     // subtle, so for the sake of code stewardship ...
701     OrderAccess::fence() ;
702     nfy->Notified = 1;
703   }
704   Thread::muxRelease (_WaitLock) ;
705   if (nfy != NULL && (NativeMonitorFlags & 16)) {
706     // Experimental code ... light up the wakee in the hope that this thread (the owner)
707     // will drop the lock just about the time the wakee comes ONPROC.
708     nfy->unpark() ;
709   }
710   assert (ILocked(), "invariant") ;
711   return true ;
712 }
713 
714 // Currently notifyAll() transfers the waiters one-at-a-time from the waitset
715 // to the cxq.  This could be done more efficiently with a single bulk en-mass transfer,
716 // but in practice notifyAll() for large #s of threads is rare and not time-critical.
717 // Beware too, that we invert the order of the waiters.  Lets say that the
718 // waitset is "ABCD" and the cxq is "XYZ".  After a notifyAll() the waitset
719 // will be empty and the cxq will be "DCBAXYZ".  This is benign, of course.
720 
notify_all()721 bool Monitor::notify_all() {
722   assert (_owner == Thread::current(), "invariant") ;
723   assert (ILocked(), "invariant") ;
724   while (_WaitSet != NULL) notify() ;
725   return true ;
726 }
727 
IWait(Thread * Self,jlong timo)728 int Monitor::IWait (Thread * Self, jlong timo) {
729   assert (ILocked(), "invariant") ;
730 
731   // Phases:
732   // 1. Enqueue Self on WaitSet - currently prepend
733   // 2. unlock - drop the outer lock
734   // 3. wait for either notification or timeout
735   // 4. lock - reentry - reacquire the outer lock
736 
737   ParkEvent * const ESelf = Self->_MutexEvent ;
738   ESelf->Notified = 0 ;
739   ESelf->reset() ;
740   OrderAccess::fence() ;
741 
742   // Add Self to WaitSet
743   // Ideally only the holder of the outer lock would manipulate the WaitSet -
744   // That is, the outer lock would implicitly protect the WaitSet.
745   // But if a thread in wait() encounters a timeout it will need to dequeue itself
746   // from the WaitSet _before it becomes the owner of the lock.  We need to dequeue
747   // as the ParkEvent -- which serves as a proxy for the thread -- can't reside
748   // on both the WaitSet and the EntryList|cxq at the same time..  That is, a thread
749   // on the WaitSet can't be allowed to compete for the lock until it has managed to
750   // unlink its ParkEvent from WaitSet.  Thus the need for WaitLock.
751   // Contention on the WaitLock is minimal.
752   //
753   // Another viable approach would be add another ParkEvent, "WaitEvent" to the
754   // thread class.  The WaitSet would be composed of WaitEvents.  Only the
755   // owner of the outer lock would manipulate the WaitSet.  A thread in wait()
756   // could then compete for the outer lock, and then, if necessary, unlink itself
757   // from the WaitSet only after having acquired the outer lock.  More precisely,
758   // there would be no WaitLock.  A thread in in wait() would enqueue its WaitEvent
759   // on the WaitSet; release the outer lock; wait for either notification or timeout;
760   // reacquire the inner lock; and then, if needed, unlink itself from the WaitSet.
761   //
762   // Alternatively, a 2nd set of list link fields in the ParkEvent might suffice.
763   // One set would be for the WaitSet and one for the EntryList.
764   // We could also deconstruct the ParkEvent into a "pure" event and add a
765   // new immortal/TSM "ListElement" class that referred to ParkEvents.
766   // In that case we could have one ListElement on the WaitSet and another
767   // on the EntryList, with both referring to the same pure Event.
768 
769   Thread::muxAcquire (_WaitLock, "wait:WaitLock:Add") ;
770   ESelf->ListNext = _WaitSet ;
771   _WaitSet = ESelf ;
772   Thread::muxRelease (_WaitLock) ;
773 
774   // Release the outer lock
775   // We call IUnlock (RelaxAssert=true) as a thread T1 might
776   // enqueue itself on the WaitSet, call IUnlock(), drop the lock,
777   // and then stall before it can attempt to wake a successor.
778   // Some other thread T2 acquires the lock, and calls notify(), moving
779   // T1 from the WaitSet to the cxq.  T2 then drops the lock.  T1 resumes,
780   // and then finds *itself* on the cxq.  During the course of a normal
781   // IUnlock() call a thread should _never find itself on the EntryList
782   // or cxq, but in the case of wait() it's possible.
783   // See synchronizer.cpp objectMonitor::wait().
784   IUnlock (true) ;
785 
786   // Wait for either notification or timeout
787   // Beware that in some circumstances we might propagate
788   // spurious wakeups back to the caller.
789 
790   for (;;) {
791     if (ESelf->Notified) break ;
792     int err = ParkCommon (ESelf, timo) ;
793     if (err == OS_TIMEOUT || (NativeMonitorFlags & 1)) break ;
794   }
795 
796   // Prepare for reentry - if necessary, remove ESelf from WaitSet
797   // ESelf can be:
798   // 1. Still on the WaitSet.  This can happen if we exited the loop by timeout.
799   // 2. On the cxq or EntryList
800   // 3. Not resident on cxq, EntryList or WaitSet, but in the OnDeck position.
801 
802   OrderAccess::fence() ;
803   int WasOnWaitSet = 0 ;
804   if (ESelf->Notified == 0) {
805     Thread::muxAcquire (_WaitLock, "wait:WaitLock:remove") ;
806     if (ESelf->Notified == 0) {     // DCL idiom
807       assert (_OnDeck != ESelf, "invariant") ;   // can't be both OnDeck and on WaitSet
808       // ESelf is resident on the WaitSet -- unlink it.
809       // A doubly-linked list would be better here so we can unlink in constant-time.
810       // We have to unlink before we potentially recontend as ESelf might otherwise
811       // end up on the cxq|EntryList -- it can't be on two lists at once.
812       ParkEvent * p = _WaitSet ;
813       ParkEvent * q = NULL ;            // classic q chases p
814       while (p != NULL && p != ESelf) {
815         q = p ;
816         p = p->ListNext ;
817       }
818       assert (p == ESelf, "invariant") ;
819       if (p == _WaitSet) {      // found at head
820         assert (q == NULL, "invariant") ;
821         _WaitSet = p->ListNext ;
822       } else {                  // found in interior
823         assert (q->ListNext == p, "invariant") ;
824         q->ListNext = p->ListNext ;
825       }
826       WasOnWaitSet = 1 ;        // We were *not* notified but instead encountered timeout
827     }
828     Thread::muxRelease (_WaitLock) ;
829   }
830 
831   // Reentry phase - reacquire the lock
832   if (WasOnWaitSet) {
833     // ESelf was previously on the WaitSet but we just unlinked it above
834     // because of a timeout.  ESelf is not resident on any list and is not OnDeck
835     assert (_OnDeck != ESelf, "invariant") ;
836     ILock (Self) ;
837   } else {
838     // A prior notify() operation moved ESelf from the WaitSet to the cxq.
839     // ESelf is now on the cxq, EntryList or at the OnDeck position.
840     // The following fragment is extracted from Monitor::ILock()
841     for (;;) {
842       if (_OnDeck == ESelf && TrySpin(Self)) break ;
843       ParkCommon (ESelf, 0) ;
844     }
845     assert (_OnDeck == ESelf, "invariant") ;
846     _OnDeck = NULL ;
847   }
848 
849   assert (ILocked(), "invariant") ;
850   return WasOnWaitSet != 0 ;        // return true IFF timeout
851 }
852 
853 
854 // ON THE VMTHREAD SNEAKING PAST HELD LOCKS:
855 // In particular, there are certain types of global lock that may be held
856 // by a Java thread while it is blocked at a safepoint but before it has
857 // written the _owner field. These locks may be sneakily acquired by the
858 // VM thread during a safepoint to avoid deadlocks. Alternatively, one should
859 // identify all such locks, and ensure that Java threads never block at
860 // safepoints while holding them (_no_safepoint_check_flag). While it
861 // seems as though this could increase the time to reach a safepoint
862 // (or at least increase the mean, if not the variance), the latter
863 // approach might make for a cleaner, more maintainable JVM design.
864 //
865 // Sneaking is vile and reprehensible and should be excised at the 1st
866 // opportunity.  It's possible that the need for sneaking could be obviated
867 // as follows.  Currently, a thread might (a) while TBIVM, call pthread_mutex_lock
868 // or ILock() thus acquiring the "physical" lock underlying Monitor/Mutex.
869 // (b) stall at the TBIVM exit point as a safepoint is in effect.  Critically,
870 // it'll stall at the TBIVM reentry state transition after having acquired the
871 // underlying lock, but before having set _owner and having entered the actual
872 // critical section.  The lock-sneaking facility leverages that fact and allowed the
873 // VM thread to logically acquire locks that had already be physically locked by mutators
874 // but where mutators were known blocked by the reentry thread state transition.
875 //
876 // If we were to modify the Monitor-Mutex so that TBIVM state transitions tightly
877 // wrapped calls to park(), then we could likely do away with sneaking.  We'd
878 // decouple lock acquisition and parking.  The critical invariant  to eliminating
879 // sneaking is to ensure that we never "physically" acquire the lock while TBIVM.
880 // An easy way to accomplish this is to wrap the park calls in a narrow TBIVM jacket.
881 // One difficulty with this approach is that the TBIVM wrapper could recurse and
882 // call lock() deep from within a lock() call, while the MutexEvent was already enqueued.
883 // Using a stack (N=2 at minimum) of ParkEvents would take care of that problem.
884 //
885 // But of course the proper ultimate approach is to avoid schemes that require explicit
886 // sneaking or dependence on any any clever invariants or subtle implementation properties
887 // of Mutex-Monitor and instead directly address the underlying design flaw.
888 
lock(Thread * Self)889 void Monitor::lock (Thread * Self) {
890 #ifdef CHECK_UNHANDLED_OOPS
891   // Clear unhandled oops so we get a crash right away.  Only clear for non-vm
892   // or GC threads.
893   if (Self->is_Java_thread()) {
894     Self->clear_unhandled_oops();
895   }
896 #endif // CHECK_UNHANDLED_OOPS
897 
898   debug_only(check_prelock_state(Self));
899   assert (_owner != Self              , "invariant") ;
900   assert (_OnDeck != Self->_MutexEvent, "invariant") ;
901 
902   if (TryFast()) {
903  Exeunt:
904     assert (ILocked(), "invariant") ;
905     assert (owner() == NULL, "invariant");
906     set_owner (Self);
907     return ;
908   }
909 
910   // The lock is contended ...
911 
912   bool can_sneak = Self->is_VM_thread() && SafepointSynchronize::is_at_safepoint();
913   if (can_sneak && _owner == NULL) {
914     // a java thread has locked the lock but has not entered the
915     // critical region -- let's just pretend we've locked the lock
916     // and go on.  we note this with _snuck so we can also
917     // pretend to unlock when the time comes.
918     _snuck = true;
919     goto Exeunt ;
920   }
921 
922   // Try a brief spin to avoid passing thru thread state transition ...
923   if (TrySpin (Self)) goto Exeunt ;
924 
925   check_block_state(Self);
926   if (Self->is_Java_thread()) {
927     // Horribile dictu - we suffer through a state transition
928     assert(rank() > Mutex::special, "Potential deadlock with special or lesser rank mutex");
929     ThreadBlockInVM tbivm ((JavaThread *) Self) ;
930     ILock (Self) ;
931   } else {
932     // Mirabile dictu
933     ILock (Self) ;
934   }
935   goto Exeunt ;
936 }
937 
lock()938 void Monitor::lock() {
939   this->lock(Thread::current());
940 }
941 
942 // Lock without safepoint check - a degenerate variant of lock().
943 // Should ONLY be used by safepoint code and other code
944 // that is guaranteed not to block while running inside the VM. If this is called with
945 // thread state set to be in VM, the safepoint synchronization code will deadlock!
946 
lock_without_safepoint_check(Thread * Self)947 void Monitor::lock_without_safepoint_check (Thread * Self) {
948   assert (_owner != Self, "invariant") ;
949   ILock (Self) ;
950   assert (_owner == NULL, "invariant");
951   set_owner (Self);
952 }
953 
lock_without_safepoint_check()954 void Monitor::lock_without_safepoint_check () {
955   lock_without_safepoint_check (Thread::current()) ;
956 }
957 
958 
959 // Returns true if thread succeceed [sic] in grabbing the lock, otherwise false.
960 
try_lock()961 bool Monitor::try_lock() {
962   Thread * const Self = Thread::current();
963   debug_only(check_prelock_state(Self));
964   // assert(!thread->is_inside_signal_handler(), "don't lock inside signal handler");
965 
966   // Special case, where all Java threads are stopped.
967   // The lock may have been acquired but _owner is not yet set.
968   // In that case the VM thread can safely grab the lock.
969   // It strikes me this should appear _after the TryLock() fails, below.
970   bool can_sneak = Self->is_VM_thread() && SafepointSynchronize::is_at_safepoint();
971   if (can_sneak && _owner == NULL) {
972     set_owner(Self); // Do not need to be atomic, since we are at a safepoint
973     _snuck = true;
974     return true;
975   }
976 
977   if (TryLock()) {
978     // We got the lock
979     assert (_owner == NULL, "invariant");
980     set_owner (Self);
981     return true;
982   }
983   return false;
984 }
985 
unlock()986 void Monitor::unlock() {
987   assert (_owner  == Thread::current(), "invariant") ;
988   assert (_OnDeck != Thread::current()->_MutexEvent , "invariant") ;
989   set_owner (NULL) ;
990   if (_snuck) {
991     assert(SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread(), "sneak");
992     _snuck = false;
993     return ;
994   }
995   IUnlock (false) ;
996 }
997 
998 // Yet another degenerate version of Monitor::lock() or lock_without_safepoint_check()
999 // jvm_raw_lock() and _unlock() can be called by non-Java threads via JVM_RawMonitorEnter.
1000 //
1001 // There's no expectation that JVM_RawMonitors will interoperate properly with the native
1002 // Mutex-Monitor constructs.  We happen to implement JVM_RawMonitors in terms of
1003 // native Mutex-Monitors simply as a matter of convenience.  A simple abstraction layer
1004 // over a pthread_mutex_t would work equally as well, but require more platform-specific
1005 // code -- a "PlatformMutex".  Alternatively, a simply layer over muxAcquire-muxRelease
1006 // would work too.
1007 //
1008 // Since the caller might be a foreign thread, we don't necessarily have a Thread.MutexEvent
1009 // instance available.  Instead, we transiently allocate a ParkEvent on-demand if
1010 // we encounter contention.  That ParkEvent remains associated with the thread
1011 // until it manages to acquire the lock, at which time we return the ParkEvent
1012 // to the global ParkEvent free list.  This is correct and suffices for our purposes.
1013 //
1014 // Beware that the original jvm_raw_unlock() had a "_snuck" test but that
1015 // jvm_raw_lock() didn't have the corresponding test.  I suspect that's an
1016 // oversight, but I've replicated the original suspect logic in the new code ...
1017 
jvm_raw_lock()1018 void Monitor::jvm_raw_lock() {
1019   assert(rank() == native, "invariant");
1020 
1021   if (TryLock()) {
1022  Exeunt:
1023     assert (ILocked(), "invariant") ;
1024     assert (_owner == NULL, "invariant");
1025     // This can potentially be called by non-java Threads. Thus, the ThreadLocalStorage
1026     // might return NULL. Don't call set_owner since it will break on an NULL owner
1027     // Consider installing a non-null "ANON" distinguished value instead of just NULL.
1028     _owner = ThreadLocalStorage::thread();
1029     return ;
1030   }
1031 
1032   if (TrySpin(NULL)) goto Exeunt ;
1033 
1034   // slow-path - apparent contention
1035   // Allocate a ParkEvent for transient use.
1036   // The ParkEvent remains associated with this thread until
1037   // the time the thread manages to acquire the lock.
1038   ParkEvent * const ESelf = ParkEvent::Allocate(NULL) ;
1039   ESelf->reset() ;
1040   OrderAccess::storeload() ;
1041 
1042   // Either Enqueue Self on cxq or acquire the outer lock.
1043   if (AcquireOrPush (ESelf)) {
1044     ParkEvent::Release (ESelf) ;      // surrender the ParkEvent
1045     goto Exeunt ;
1046   }
1047 
1048   // At any given time there is at most one ondeck thread.
1049   // ondeck implies not resident on cxq and not resident on EntryList
1050   // Only the OnDeck thread can try to acquire -- contended for -- the lock.
1051   // CONSIDER: use Self->OnDeck instead of m->OnDeck.
1052   for (;;) {
1053     if (_OnDeck == ESelf && TrySpin(NULL)) break ;
1054     ParkCommon (ESelf, 0) ;
1055   }
1056 
1057   assert (_OnDeck == ESelf, "invariant") ;
1058   _OnDeck = NULL ;
1059   ParkEvent::Release (ESelf) ;      // surrender the ParkEvent
1060   goto Exeunt ;
1061 }
1062 
jvm_raw_unlock()1063 void Monitor::jvm_raw_unlock() {
1064   // Nearly the same as Monitor::unlock() ...
1065   // directly set _owner instead of using set_owner(null)
1066   _owner = NULL ;
1067   if (_snuck) {         // ???
1068     assert(SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread(), "sneak");
1069     _snuck = false;
1070     return ;
1071   }
1072   IUnlock(false) ;
1073 }
1074 
wait(bool no_safepoint_check,long timeout,bool as_suspend_equivalent)1075 bool Monitor::wait(bool no_safepoint_check, long timeout, bool as_suspend_equivalent) {
1076   Thread * const Self = Thread::current() ;
1077   assert (_owner == Self, "invariant") ;
1078   assert (ILocked(), "invariant") ;
1079 
1080   // as_suspend_equivalent logically implies !no_safepoint_check
1081   guarantee (!as_suspend_equivalent || !no_safepoint_check, "invariant") ;
1082   // !no_safepoint_check logically implies java_thread
1083   guarantee (no_safepoint_check || Self->is_Java_thread(), "invariant") ;
1084 
1085   #ifdef ASSERT
1086     Monitor * least = get_least_ranked_lock_besides_this(Self->owned_locks());
1087     assert(least != this, "Specification of get_least_... call above");
1088     if (least != NULL && least->rank() <= special) {
1089       tty->print("Attempting to wait on monitor %s/%d while holding"
1090                  " lock %s/%d -- possible deadlock",
1091                  name(), rank(), least->name(), least->rank());
1092       assert(false, "Shouldn't block(wait) while holding a lock of rank special");
1093     }
1094   #endif // ASSERT
1095 
1096   int wait_status ;
1097   // conceptually set the owner to NULL in anticipation of
1098   // abdicating the lock in wait
1099   set_owner(NULL);
1100   if (no_safepoint_check) {
1101     wait_status = IWait (Self, timeout) ;
1102   } else {
1103     assert (Self->is_Java_thread(), "invariant") ;
1104     JavaThread *jt = (JavaThread *)Self;
1105 
1106     // Enter safepoint region - ornate and Rococo ...
1107     ThreadBlockInVM tbivm(jt);
1108     OSThreadWaitState osts(Self->osthread(), false /* not Object.wait() */);
1109 
1110     if (as_suspend_equivalent) {
1111       jt->set_suspend_equivalent();
1112       // cleared by handle_special_suspend_equivalent_condition() or
1113       // java_suspend_self()
1114     }
1115 
1116     wait_status = IWait (Self, timeout) ;
1117 
1118     // were we externally suspended while we were waiting?
1119     if (as_suspend_equivalent && jt->handle_special_suspend_equivalent_condition()) {
1120       // Our event wait has finished and we own the lock, but
1121       // while we were waiting another thread suspended us. We don't
1122       // want to hold the lock while suspended because that
1123       // would surprise the thread that suspended us.
1124       assert (ILocked(), "invariant") ;
1125       IUnlock (true) ;
1126       jt->java_suspend_self();
1127       ILock (Self) ;
1128       assert (ILocked(), "invariant") ;
1129     }
1130   }
1131 
1132   // Conceptually reestablish ownership of the lock.
1133   // The "real" lock -- the LockByte -- was reacquired by IWait().
1134   assert (ILocked(), "invariant") ;
1135   assert (_owner == NULL, "invariant") ;
1136   set_owner (Self) ;
1137   return wait_status != 0 ;          // return true IFF timeout
1138 }
1139 
~Monitor()1140 Monitor::~Monitor() {
1141   assert ((UNS(_owner)|UNS(_LockWord.FullWord)|UNS(_EntryList)|UNS(_WaitSet)|UNS(_OnDeck)) == 0, "") ;
1142 }
1143 
ClearMonitor(Monitor * m,const char * name)1144 void Monitor::ClearMonitor (Monitor * m, const char *name) {
1145   m->_owner             = NULL ;
1146   m->_snuck             = false ;
1147   if (name == NULL) {
1148     strcpy(m->_name, "UNKNOWN") ;
1149   } else {
1150     strncpy(m->_name, name, MONITOR_NAME_LEN - 1);
1151     m->_name[MONITOR_NAME_LEN - 1] = '\0';
1152   }
1153   m->_LockWord.FullWord = 0 ;
1154   m->_EntryList         = NULL ;
1155   m->_OnDeck            = NULL ;
1156   m->_WaitSet           = NULL ;
1157   m->_WaitLock[0]       = 0 ;
1158 }
1159 
Monitor()1160 Monitor::Monitor() { ClearMonitor(this); }
1161 
Monitor(int Rank,const char * name,bool allow_vm_block)1162 Monitor::Monitor (int Rank, const char * name, bool allow_vm_block) {
1163   ClearMonitor (this, name) ;
1164 #ifdef ASSERT
1165   _allow_vm_block  = allow_vm_block;
1166   _rank            = Rank ;
1167 #endif
1168 }
1169 
~Mutex()1170 Mutex::~Mutex() {
1171   assert ((UNS(_owner)|UNS(_LockWord.FullWord)|UNS(_EntryList)|UNS(_WaitSet)|UNS(_OnDeck)) == 0, "") ;
1172 }
1173 
Mutex(int Rank,const char * name,bool allow_vm_block)1174 Mutex::Mutex (int Rank, const char * name, bool allow_vm_block) {
1175   ClearMonitor ((Monitor *) this, name) ;
1176 #ifdef ASSERT
1177  _allow_vm_block   = allow_vm_block;
1178  _rank             = Rank ;
1179 #endif
1180 }
1181 
owned_by_self() const1182 bool Monitor::owned_by_self() const {
1183   bool ret = _owner == Thread::current();
1184   assert (!ret || _LockWord.Bytes[_LSBINDEX] != 0, "invariant") ;
1185   return ret;
1186 }
1187 
print_on_error(outputStream * st) const1188 void Monitor::print_on_error(outputStream* st) const {
1189   st->print("[" PTR_FORMAT, this);
1190   st->print("] %s", _name);
1191   st->print(" - owner thread: " PTR_FORMAT, _owner);
1192 }
1193 
1194 
1195 
1196 
1197 // ----------------------------------------------------------------------------------
1198 // Non-product code
1199 
1200 #ifndef PRODUCT
print_on(outputStream * st) const1201 void Monitor::print_on(outputStream* st) const {
1202   st->print_cr("Mutex: [0x%lx/0x%lx] %s - owner: 0x%lx", this, _LockWord.FullWord, _name, _owner);
1203 }
1204 #endif
1205 
1206 #ifndef PRODUCT
1207 #ifdef ASSERT
get_least_ranked_lock(Monitor * locks)1208 Monitor * Monitor::get_least_ranked_lock(Monitor * locks) {
1209   Monitor *res, *tmp;
1210   for (res = tmp = locks; tmp != NULL; tmp = tmp->next()) {
1211     if (tmp->rank() < res->rank()) {
1212       res = tmp;
1213     }
1214   }
1215   if (!SafepointSynchronize::is_at_safepoint()) {
1216     // In this case, we expect the held locks to be
1217     // in increasing rank order (modulo any native ranks)
1218     for (tmp = locks; tmp != NULL; tmp = tmp->next()) {
1219       if (tmp->next() != NULL) {
1220         assert(tmp->rank() == Mutex::native ||
1221                tmp->rank() <= tmp->next()->rank(), "mutex rank anomaly?");
1222       }
1223     }
1224   }
1225   return res;
1226 }
1227 
get_least_ranked_lock_besides_this(Monitor * locks)1228 Monitor* Monitor::get_least_ranked_lock_besides_this(Monitor* locks) {
1229   Monitor *res, *tmp;
1230   for (res = NULL, tmp = locks; tmp != NULL; tmp = tmp->next()) {
1231     if (tmp != this && (res == NULL || tmp->rank() < res->rank())) {
1232       res = tmp;
1233     }
1234   }
1235   if (!SafepointSynchronize::is_at_safepoint()) {
1236     // In this case, we expect the held locks to be
1237     // in increasing rank order (modulo any native ranks)
1238     for (tmp = locks; tmp != NULL; tmp = tmp->next()) {
1239       if (tmp->next() != NULL) {
1240         assert(tmp->rank() == Mutex::native ||
1241                tmp->rank() <= tmp->next()->rank(), "mutex rank anomaly?");
1242       }
1243     }
1244   }
1245   return res;
1246 }
1247 
1248 
contains(Monitor * locks,Monitor * lock)1249 bool Monitor::contains(Monitor* locks, Monitor * lock) {
1250   for (; locks != NULL; locks = locks->next()) {
1251     if (locks == lock)
1252       return true;
1253   }
1254   return false;
1255 }
1256 #endif
1257 
1258 // Called immediately after lock acquisition or release as a diagnostic
1259 // to track the lock-set of the thread and test for rank violations that
1260 // might indicate exposure to deadlock.
1261 // Rather like an EventListener for _owner (:>).
1262 
set_owner_implementation(Thread * new_owner)1263 void Monitor::set_owner_implementation(Thread *new_owner) {
1264   // This function is solely responsible for maintaining
1265   // and checking the invariant that threads and locks
1266   // are in a 1/N relation, with some some locks unowned.
1267   // It uses the Mutex::_owner, Mutex::_next, and
1268   // Thread::_owned_locks fields, and no other function
1269   // changes those fields.
1270   // It is illegal to set the mutex from one non-NULL
1271   // owner to another--it must be owned by NULL as an
1272   // intermediate state.
1273 
1274   if (new_owner != NULL) {
1275     // the thread is acquiring this lock
1276 
1277     assert(new_owner == Thread::current(), "Should I be doing this?");
1278     assert(_owner == NULL, "setting the owner thread of an already owned mutex");
1279     _owner = new_owner; // set the owner
1280 
1281     // link "this" into the owned locks list
1282 
1283     #ifdef ASSERT  // Thread::_owned_locks is under the same ifdef
1284       Monitor* locks = get_least_ranked_lock(new_owner->owned_locks());
1285                     // Mutex::set_owner_implementation is a friend of Thread
1286 
1287       assert(this->rank() >= 0, "bad lock rank");
1288 
1289       // Deadlock avoidance rules require us to acquire Mutexes only in
1290       // a global total order. For example m1 is the lowest ranked mutex
1291       // that the thread holds and m2 is the mutex the thread is trying
1292       // to acquire, then  deadlock avoidance rules require that the rank
1293       // of m2 be less  than the rank of m1.
1294       // The rank Mutex::native  is an exception in that it is not subject
1295       // to the verification rules.
1296       // Here are some further notes relating to mutex acquisition anomalies:
1297       // . under Solaris, the interrupt lock gets acquired when doing
1298       //   profiling, so any lock could be held.
1299       // . it is also ok to acquire Safepoint_lock at the very end while we
1300       //   already hold Terminator_lock - may happen because of periodic safepoints
1301       if (this->rank() != Mutex::native &&
1302           this->rank() != Mutex::suspend_resume &&
1303           locks != NULL && locks->rank() <= this->rank() &&
1304           !SafepointSynchronize::is_at_safepoint() &&
1305           this != Interrupt_lock && this != ProfileVM_lock &&
1306           !(this == Safepoint_lock && contains(locks, Terminator_lock) &&
1307             SafepointSynchronize::is_synchronizing())) {
1308         new_owner->print_owned_locks();
1309         fatal(err_msg("acquiring lock %s/%d out of order with lock %s/%d -- "
1310                       "possible deadlock", this->name(), this->rank(),
1311                       locks->name(), locks->rank()));
1312       }
1313 
1314       this->_next = new_owner->_owned_locks;
1315       new_owner->_owned_locks = this;
1316     #endif
1317 
1318   } else {
1319     // the thread is releasing this lock
1320 
1321     Thread* old_owner = _owner;
1322     debug_only(_last_owner = old_owner);
1323 
1324     assert(old_owner != NULL, "removing the owner thread of an unowned mutex");
1325     assert(old_owner == Thread::current(), "removing the owner thread of an unowned mutex");
1326 
1327     _owner = NULL; // set the owner
1328 
1329     #ifdef ASSERT
1330       Monitor *locks = old_owner->owned_locks();
1331 
1332       // remove "this" from the owned locks list
1333 
1334       Monitor *prev = NULL;
1335       bool found = false;
1336       for (; locks != NULL; prev = locks, locks = locks->next()) {
1337         if (locks == this) {
1338           found = true;
1339           break;
1340         }
1341       }
1342       assert(found, "Removing a lock not owned");
1343       if (prev == NULL) {
1344         old_owner->_owned_locks = _next;
1345       } else {
1346         prev->_next = _next;
1347       }
1348       _next = NULL;
1349     #endif
1350   }
1351 }
1352 
1353 
1354 // Factored out common sanity checks for locking mutex'es. Used by lock() and try_lock()
check_prelock_state(Thread * thread)1355 void Monitor::check_prelock_state(Thread *thread) {
1356   assert((!thread->is_Java_thread() || ((JavaThread *)thread)->thread_state() == _thread_in_vm)
1357          || rank() == Mutex::special, "wrong thread state for using locks");
1358   if (StrictSafepointChecks) {
1359     if (thread->is_VM_thread() && !allow_vm_block()) {
1360       fatal(err_msg("VM thread using lock %s (not allowed to block on)",
1361                     name()));
1362     }
1363     debug_only(if (rank() != Mutex::special) \
1364       thread->check_for_valid_safepoint_state(false);)
1365   }
1366   assert(!os::ThreadCrashProtection::is_crash_protected(thread),
1367          "locking not allowed when crash protection is set");
1368 }
1369 
check_block_state(Thread * thread)1370 void Monitor::check_block_state(Thread *thread) {
1371   if (!_allow_vm_block && thread->is_VM_thread()) {
1372     warning("VM thread blocked on lock");
1373     print();
1374     BREAKPOINT;
1375   }
1376   assert(_owner != thread, "deadlock: blocking on monitor owned by current thread");
1377 }
1378 
1379 #endif // PRODUCT
1380