1 /*
2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.lang.ref.WeakReference;
29 import java.lang.ref.ReferenceQueue;
30 import java.util.concurrent.ThreadLocalRandom;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.Consumer;
34 
35 
36 /**
37  * Hash table based implementation of the <tt>Map</tt> interface, with
38  * <em>weak keys</em>.
39  * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
40  * its key is no longer in ordinary use.  More precisely, the presence of a
41  * mapping for a given key will not prevent the key from being discarded by the
42  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
43  * When a key has been discarded its entry is effectively removed from the map,
44  * so this class behaves somewhat differently from other <tt>Map</tt>
45  * implementations.
46  *
47  * <p> Both null values and the null key are supported. This class has
48  * performance characteristics similar to those of the <tt>HashMap</tt>
49  * class, and has the same efficiency parameters of <em>initial capacity</em>
50  * and <em>load factor</em>.
51  *
52  * <p> Like most collection classes, this class is not synchronized.
53  * A synchronized <tt>WeakHashMap</tt> may be constructed using the
54  * {@link Collections#synchronizedMap Collections.synchronizedMap}
55  * method.
56  *
57  * <p> This class is intended primarily for use with key objects whose
58  * <tt>equals</tt> methods test for object identity using the
59  * <tt>==</tt> operator.  Once such a key is discarded it can never be
60  * recreated, so it is impossible to do a lookup of that key in a
61  * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
62  * has been removed.  This class will work perfectly well with key objects
63  * whose <tt>equals</tt> methods are not based upon object identity, such
64  * as <tt>String</tt> instances.  With such recreatable key objects,
65  * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
66  * keys have been discarded may prove to be confusing.
67  *
68  * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
69  * the actions of the garbage collector, so several familiar (though not
70  * required) <tt>Map</tt> invariants do not hold for this class.  Because
71  * the garbage collector may discard keys at any time, a
72  * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
73  * removing entries.  In particular, even if you synchronize on a
74  * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
75  * is possible for the <tt>size</tt> method to return smaller values over
76  * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
77  * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
78  * <tt>true</tt> and later <tt>false</tt> for a given key, for the
79  * <tt>get</tt> method to return a value for a given key but later return
80  * <tt>null</tt>, for the <tt>put</tt> method to return
81  * <tt>null</tt> and the <tt>remove</tt> method to return
82  * <tt>false</tt> for a key that previously appeared to be in the map, and
83  * for successive examinations of the key set, the value collection, and
84  * the entry set to yield successively smaller numbers of elements.
85  *
86  * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
87  * the referent of a weak reference.  Therefore a key will automatically be
88  * removed only after the weak references to it, both inside and outside of the
89  * map, have been cleared by the garbage collector.
90  *
91  * <p> <strong>Implementation note:</strong> The value objects in a
92  * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
93  * should be taken to ensure that value objects do not strongly refer to their
94  * own keys, either directly or indirectly, since that will prevent the keys
95  * from being discarded.  Note that a value object may refer indirectly to its
96  * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
97  * strongly refer to some other key object whose associated value object, in
98  * turn, strongly refers to the key of the first value object.  If the values
99  * in the map do not rely on the map holding strong references to them, one way
100  * to deal with this is to wrap values themselves within
101  * <tt>WeakReferences</tt> before
102  * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
103  * and then unwrapping upon each <tt>get</tt>.
104  *
105  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
106  * returned by all of this class's "collection view methods" are
107  * <i>fail-fast</i>: if the map is structurally modified at any time after the
108  * iterator is created, in any way except through the iterator's own
109  * <tt>remove</tt> method, the iterator will throw a {@link
110  * ConcurrentModificationException}.  Thus, in the face of concurrent
111  * modification, the iterator fails quickly and cleanly, rather than risking
112  * arbitrary, non-deterministic behavior at an undetermined time in the future.
113  *
114  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
115  * as it is, generally speaking, impossible to make any hard guarantees in the
116  * presence of unsynchronized concurrent modification.  Fail-fast iterators
117  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
118  * Therefore, it would be wrong to write a program that depended on this
119  * exception for its correctness:  <i>the fail-fast behavior of iterators
120  * should be used only to detect bugs.</i>
121  *
122  * <p>This class is a member of the
123  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
124  * Java Collections Framework</a>.
125  *
126  * @param <K> the type of keys maintained by this map
127  * @param <V> the type of mapped values
128  *
129  * @author      Doug Lea
130  * @author      Josh Bloch
131  * @author      Mark Reinhold
132  * @since       1.2
133  * @see         java.util.HashMap
134  * @see         java.lang.ref.WeakReference
135  */
136 public class WeakHashMap<K,V>
137     extends AbstractMap<K,V>
138     implements Map<K,V> {
139 
140     /**
141      * The default initial capacity -- MUST be a power of two.
142      */
143     private static final int DEFAULT_INITIAL_CAPACITY = 16;
144 
145     /**
146      * The maximum capacity, used if a higher value is implicitly specified
147      * by either of the constructors with arguments.
148      * MUST be a power of two <= 1<<30.
149      */
150     private static final int MAXIMUM_CAPACITY = 1 << 30;
151 
152     /**
153      * The load factor used when none specified in constructor.
154      */
155     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
156 
157     /**
158      * The table, resized as necessary. Length MUST Always be a power of two.
159      */
160     Entry<K,V>[] table;
161 
162     /**
163      * The number of key-value mappings contained in this weak hash map.
164      */
165     private int size;
166 
167     /**
168      * The next size value at which to resize (capacity * load factor).
169      */
170     private int threshold;
171 
172     /**
173      * The load factor for the hash table.
174      */
175     private final float loadFactor;
176 
177     /**
178      * Reference queue for cleared WeakEntries
179      */
180     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
181 
182     /**
183      * The number of times this WeakHashMap has been structurally modified.
184      * Structural modifications are those that change the number of
185      * mappings in the map or otherwise modify its internal structure
186      * (e.g., rehash).  This field is used to make iterators on
187      * Collection-views of the map fail-fast.
188      *
189      * @see ConcurrentModificationException
190      */
191     int modCount;
192 
193     @SuppressWarnings("unchecked")
newTable(int n)194     private Entry<K,V>[] newTable(int n) {
195         return (Entry<K,V>[]) new Entry<?,?>[n];
196     }
197 
198     /**
199      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
200      * capacity and the given load factor.
201      *
202      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
203      * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
204      * @throws IllegalArgumentException if the initial capacity is negative,
205      *         or if the load factor is nonpositive.
206      */
WeakHashMap(int initialCapacity, float loadFactor)207     public WeakHashMap(int initialCapacity, float loadFactor) {
208         if (initialCapacity < 0)
209             throw new IllegalArgumentException("Illegal Initial Capacity: "+
210                                                initialCapacity);
211         if (initialCapacity > MAXIMUM_CAPACITY)
212             initialCapacity = MAXIMUM_CAPACITY;
213 
214         if (loadFactor <= 0 || Float.isNaN(loadFactor))
215             throw new IllegalArgumentException("Illegal Load factor: "+
216                                                loadFactor);
217         int capacity = 1;
218         while (capacity < initialCapacity)
219             capacity <<= 1;
220         table = newTable(capacity);
221         this.loadFactor = loadFactor;
222         threshold = (int)(capacity * loadFactor);
223     }
224 
225     /**
226      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
227      * capacity and the default load factor (0.75).
228      *
229      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
230      * @throws IllegalArgumentException if the initial capacity is negative
231      */
WeakHashMap(int initialCapacity)232     public WeakHashMap(int initialCapacity) {
233         this(initialCapacity, DEFAULT_LOAD_FACTOR);
234     }
235 
236     /**
237      * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
238      * capacity (16) and load factor (0.75).
239      */
WeakHashMap()240     public WeakHashMap() {
241         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
242     }
243 
244     /**
245      * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
246      * specified map.  The <tt>WeakHashMap</tt> is created with the default
247      * load factor (0.75) and an initial capacity sufficient to hold the
248      * mappings in the specified map.
249      *
250      * @param   m the map whose mappings are to be placed in this map
251      * @throws  NullPointerException if the specified map is null
252      * @since   1.3
253      */
WeakHashMap(Map<? extends K, ? extends V> m)254     public WeakHashMap(Map<? extends K, ? extends V> m) {
255         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
256                 DEFAULT_INITIAL_CAPACITY),
257              DEFAULT_LOAD_FACTOR);
258         putAll(m);
259     }
260 
261     // internal utilities
262 
263     /**
264      * Value representing null keys inside tables.
265      */
266     private static final Object NULL_KEY = new Object();
267 
268     /**
269      * Use NULL_KEY for key if it is null.
270      */
maskNull(Object key)271     private static Object maskNull(Object key) {
272         return (key == null) ? NULL_KEY : key;
273     }
274 
275     /**
276      * Returns internal representation of null key back to caller as null.
277      */
unmaskNull(Object key)278     static Object unmaskNull(Object key) {
279         return (key == NULL_KEY) ? null : key;
280     }
281 
282     /**
283      * Checks for equality of non-null reference x and possibly-null y.  By
284      * default uses Object.equals.
285      */
eq(Object x, Object y)286     private static boolean eq(Object x, Object y) {
287         return x == y || x.equals(y);
288     }
289 
290     /**
291      * Retrieve object hash code and applies a supplemental hash function to the
292      * result hash, which defends against poor quality hash functions.  This is
293      * critical because HashMap uses power-of-two length hash tables, that
294      * otherwise encounter collisions for hashCodes that do not differ
295      * in lower bits.
296      */
hash(Object k)297     final int hash(Object k) {
298         int h = k.hashCode();
299 
300         // This function ensures that hashCodes that differ only by
301         // constant multiples at each bit position have a bounded
302         // number of collisions (approximately 8 at default load factor).
303         h ^= (h >>> 20) ^ (h >>> 12);
304         return h ^ (h >>> 7) ^ (h >>> 4);
305     }
306 
307     /**
308      * Returns index for hash code h.
309      */
indexFor(int h, int length)310     private static int indexFor(int h, int length) {
311         return h & (length-1);
312     }
313 
314     /**
315      * Expunges stale entries from the table.
316      */
expungeStaleEntries()317     private void expungeStaleEntries() {
318         for (Object x; (x = queue.poll()) != null; ) {
319             synchronized (queue) {
320                 @SuppressWarnings("unchecked")
321                     Entry<K,V> e = (Entry<K,V>) x;
322                 int i = indexFor(e.hash, table.length);
323 
324                 Entry<K,V> prev = table[i];
325                 Entry<K,V> p = prev;
326                 while (p != null) {
327                     Entry<K,V> next = p.next;
328                     if (p == e) {
329                         if (prev == e)
330                             table[i] = next;
331                         else
332                             prev.next = next;
333                         // Must not null out e.next;
334                         // stale entries may be in use by a HashIterator
335                         e.value = null; // Help GC
336                         size--;
337                         break;
338                     }
339                     prev = p;
340                     p = next;
341                 }
342             }
343         }
344     }
345 
346     /**
347      * Returns the table after first expunging stale entries.
348      */
getTable()349     private Entry<K,V>[] getTable() {
350         expungeStaleEntries();
351         return table;
352     }
353 
354     /**
355      * Returns the number of key-value mappings in this map.
356      * This result is a snapshot, and may not reflect unprocessed
357      * entries that will be removed before next attempted access
358      * because they are no longer referenced.
359      */
size()360     public int size() {
361         if (size == 0)
362             return 0;
363         expungeStaleEntries();
364         return size;
365     }
366 
367     /**
368      * Returns <tt>true</tt> if this map contains no key-value mappings.
369      * This result is a snapshot, and may not reflect unprocessed
370      * entries that will be removed before next attempted access
371      * because they are no longer referenced.
372      */
isEmpty()373     public boolean isEmpty() {
374         return size() == 0;
375     }
376 
377     /**
378      * Returns the value to which the specified key is mapped,
379      * or {@code null} if this map contains no mapping for the key.
380      *
381      * <p>More formally, if this map contains a mapping from a key
382      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
383      * key.equals(k))}, then this method returns {@code v}; otherwise
384      * it returns {@code null}.  (There can be at most one such mapping.)
385      *
386      * <p>A return value of {@code null} does not <i>necessarily</i>
387      * indicate that the map contains no mapping for the key; it's also
388      * possible that the map explicitly maps the key to {@code null}.
389      * The {@link #containsKey containsKey} operation may be used to
390      * distinguish these two cases.
391      *
392      * @see #put(Object, Object)
393      */
get(Object key)394     public V get(Object key) {
395         Object k = maskNull(key);
396         int h = hash(k);
397         Entry<K,V>[] tab = getTable();
398         int index = indexFor(h, tab.length);
399         Entry<K,V> e = tab[index];
400         while (e != null) {
401             if (e.hash == h && eq(k, e.get()))
402                 return e.value;
403             e = e.next;
404         }
405         return null;
406     }
407 
408     /**
409      * Returns <tt>true</tt> if this map contains a mapping for the
410      * specified key.
411      *
412      * @param  key   The key whose presence in this map is to be tested
413      * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
414      *         <tt>false</tt> otherwise
415      */
containsKey(Object key)416     public boolean containsKey(Object key) {
417         return getEntry(key) != null;
418     }
419 
420     /**
421      * Returns the entry associated with the specified key in this map.
422      * Returns null if the map contains no mapping for this key.
423      */
getEntry(Object key)424     Entry<K,V> getEntry(Object key) {
425         Object k = maskNull(key);
426         int h = hash(k);
427         Entry<K,V>[] tab = getTable();
428         int index = indexFor(h, tab.length);
429         Entry<K,V> e = tab[index];
430         while (e != null && !(e.hash == h && eq(k, e.get())))
431             e = e.next;
432         return e;
433     }
434 
435     /**
436      * Associates the specified value with the specified key in this map.
437      * If the map previously contained a mapping for this key, the old
438      * value is replaced.
439      *
440      * @param key key with which the specified value is to be associated.
441      * @param value value to be associated with the specified key.
442      * @return the previous value associated with <tt>key</tt>, or
443      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
444      *         (A <tt>null</tt> return can also indicate that the map
445      *         previously associated <tt>null</tt> with <tt>key</tt>.)
446      */
put(K key, V value)447     public V put(K key, V value) {
448         Object k = maskNull(key);
449         int h = hash(k);
450         Entry<K,V>[] tab = getTable();
451         int i = indexFor(h, tab.length);
452 
453         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
454             if (h == e.hash && eq(k, e.get())) {
455                 V oldValue = e.value;
456                 if (value != oldValue)
457                     e.value = value;
458                 return oldValue;
459             }
460         }
461 
462         modCount++;
463         Entry<K,V> e = tab[i];
464         tab[i] = new Entry<>(k, value, queue, h, e);
465         if (++size >= threshold)
466             resize(tab.length * 2);
467         return null;
468     }
469 
470     /**
471      * Rehashes the contents of this map into a new array with a
472      * larger capacity.  This method is called automatically when the
473      * number of keys in this map reaches its threshold.
474      *
475      * If current capacity is MAXIMUM_CAPACITY, this method does not
476      * resize the map, but sets threshold to Integer.MAX_VALUE.
477      * This has the effect of preventing future calls.
478      *
479      * @param newCapacity the new capacity, MUST be a power of two;
480      *        must be greater than current capacity unless current
481      *        capacity is MAXIMUM_CAPACITY (in which case value
482      *        is irrelevant).
483      */
resize(int newCapacity)484     void resize(int newCapacity) {
485         Entry<K,V>[] oldTable = getTable();
486         int oldCapacity = oldTable.length;
487         if (oldCapacity == MAXIMUM_CAPACITY) {
488             threshold = Integer.MAX_VALUE;
489             return;
490         }
491 
492         Entry<K,V>[] newTable = newTable(newCapacity);
493         transfer(oldTable, newTable);
494         table = newTable;
495 
496         /*
497          * If ignoring null elements and processing ref queue caused massive
498          * shrinkage, then restore old table.  This should be rare, but avoids
499          * unbounded expansion of garbage-filled tables.
500          */
501         if (size >= threshold / 2) {
502             threshold = (int)(newCapacity * loadFactor);
503         } else {
504             expungeStaleEntries();
505             transfer(newTable, oldTable);
506             table = oldTable;
507         }
508     }
509 
510     /** Transfers all entries from src to dest tables */
transfer(Entry<K,V>[] src, Entry<K,V>[] dest)511     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
512         for (int j = 0; j < src.length; ++j) {
513             Entry<K,V> e = src[j];
514             src[j] = null;
515             while (e != null) {
516                 Entry<K,V> next = e.next;
517                 Object key = e.get();
518                 if (key == null) {
519                     e.next = null;  // Help GC
520                     e.value = null; //  "   "
521                     size--;
522                 } else {
523                     int i = indexFor(e.hash, dest.length);
524                     e.next = dest[i];
525                     dest[i] = e;
526                 }
527                 e = next;
528             }
529         }
530     }
531 
532     /**
533      * Copies all of the mappings from the specified map to this map.
534      * These mappings will replace any mappings that this map had for any
535      * of the keys currently in the specified map.
536      *
537      * @param m mappings to be stored in this map.
538      * @throws  NullPointerException if the specified map is null.
539      */
putAll(Map<? extends K, ? extends V> m)540     public void putAll(Map<? extends K, ? extends V> m) {
541         int numKeysToBeAdded = m.size();
542         if (numKeysToBeAdded == 0)
543             return;
544 
545         /*
546          * Expand the map if the map if the number of mappings to be added
547          * is greater than or equal to threshold.  This is conservative; the
548          * obvious condition is (m.size() + size) >= threshold, but this
549          * condition could result in a map with twice the appropriate capacity,
550          * if the keys to be added overlap with the keys already in this map.
551          * By using the conservative calculation, we subject ourself
552          * to at most one extra resize.
553          */
554         if (numKeysToBeAdded > threshold) {
555             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
556             if (targetCapacity > MAXIMUM_CAPACITY)
557                 targetCapacity = MAXIMUM_CAPACITY;
558             int newCapacity = table.length;
559             while (newCapacity < targetCapacity)
560                 newCapacity <<= 1;
561             if (newCapacity > table.length)
562                 resize(newCapacity);
563         }
564 
565         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
566             put(e.getKey(), e.getValue());
567     }
568 
569     /**
570      * Removes the mapping for a key from this weak hash map if it is present.
571      * More formally, if this map contains a mapping from key <tt>k</tt> to
572      * value <tt>v</tt> such that <code>(key==null ?  k==null :
573      * key.equals(k))</code>, that mapping is removed.  (The map can contain
574      * at most one such mapping.)
575      *
576      * <p>Returns the value to which this map previously associated the key,
577      * or <tt>null</tt> if the map contained no mapping for the key.  A
578      * return value of <tt>null</tt> does not <i>necessarily</i> indicate
579      * that the map contained no mapping for the key; it's also possible
580      * that the map explicitly mapped the key to <tt>null</tt>.
581      *
582      * <p>The map will not contain a mapping for the specified key once the
583      * call returns.
584      *
585      * @param key key whose mapping is to be removed from the map
586      * @return the previous value associated with <tt>key</tt>, or
587      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
588      */
remove(Object key)589     public V remove(Object key) {
590         Object k = maskNull(key);
591         int h = hash(k);
592         Entry<K,V>[] tab = getTable();
593         int i = indexFor(h, tab.length);
594         Entry<K,V> prev = tab[i];
595         Entry<K,V> e = prev;
596 
597         while (e != null) {
598             Entry<K,V> next = e.next;
599             if (h == e.hash && eq(k, e.get())) {
600                 modCount++;
601                 size--;
602                 if (prev == e)
603                     tab[i] = next;
604                 else
605                     prev.next = next;
606                 return e.value;
607             }
608             prev = e;
609             e = next;
610         }
611 
612         return null;
613     }
614 
615     /** Special version of remove needed by Entry set */
removeMapping(Object o)616     boolean removeMapping(Object o) {
617         if (!(o instanceof Map.Entry))
618             return false;
619         Entry<K,V>[] tab = getTable();
620         Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
621         Object k = maskNull(entry.getKey());
622         int h = hash(k);
623         int i = indexFor(h, tab.length);
624         Entry<K,V> prev = tab[i];
625         Entry<K,V> e = prev;
626 
627         while (e != null) {
628             Entry<K,V> next = e.next;
629             if (h == e.hash && e.equals(entry)) {
630                 modCount++;
631                 size--;
632                 if (prev == e)
633                     tab[i] = next;
634                 else
635                     prev.next = next;
636                 return true;
637             }
638             prev = e;
639             e = next;
640         }
641 
642         return false;
643     }
644 
645     /**
646      * Removes all of the mappings from this map.
647      * The map will be empty after this call returns.
648      */
clear()649     public void clear() {
650         // clear out ref queue. We don't need to expunge entries
651         // since table is getting cleared.
652         while (queue.poll() != null)
653             ;
654 
655         modCount++;
656         Arrays.fill(table, null);
657         size = 0;
658 
659         // Allocation of array may have caused GC, which may have caused
660         // additional entries to go stale.  Removing these entries from the
661         // reference queue will make them eligible for reclamation.
662         while (queue.poll() != null)
663             ;
664     }
665 
666     /**
667      * Returns <tt>true</tt> if this map maps one or more keys to the
668      * specified value.
669      *
670      * @param value value whose presence in this map is to be tested
671      * @return <tt>true</tt> if this map maps one or more keys to the
672      *         specified value
673      */
containsValue(Object value)674     public boolean containsValue(Object value) {
675         if (value==null)
676             return containsNullValue();
677 
678         Entry<K,V>[] tab = getTable();
679         for (int i = tab.length; i-- > 0;)
680             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
681                 if (value.equals(e.value))
682                     return true;
683         return false;
684     }
685 
686     /**
687      * Special-case code for containsValue with null argument
688      */
containsNullValue()689     private boolean containsNullValue() {
690         Entry<K,V>[] tab = getTable();
691         for (int i = tab.length; i-- > 0;)
692             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
693                 if (e.value==null)
694                     return true;
695         return false;
696     }
697 
698     /**
699      * The entries in this hash table extend WeakReference, using its main ref
700      * field as the key.
701      */
702     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
703         V value;
704         final int hash;
705         Entry<K,V> next;
706 
707         /**
708          * Creates new entry.
709          */
Entry(Object key, V value, ReferenceQueue<Object> queue, int hash, Entry<K,V> next)710         Entry(Object key, V value,
711               ReferenceQueue<Object> queue,
712               int hash, Entry<K,V> next) {
713             super(key, queue);
714             this.value = value;
715             this.hash  = hash;
716             this.next  = next;
717         }
718 
719         @SuppressWarnings("unchecked")
getKey()720         public K getKey() {
721             return (K) WeakHashMap.unmaskNull(get());
722         }
723 
getValue()724         public V getValue() {
725             return value;
726         }
727 
setValue(V newValue)728         public V setValue(V newValue) {
729             V oldValue = value;
730             value = newValue;
731             return oldValue;
732         }
733 
equals(Object o)734         public boolean equals(Object o) {
735             if (!(o instanceof Map.Entry))
736                 return false;
737             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
738             K k1 = getKey();
739             Object k2 = e.getKey();
740             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
741                 V v1 = getValue();
742                 Object v2 = e.getValue();
743                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
744                     return true;
745             }
746             return false;
747         }
748 
hashCode()749         public int hashCode() {
750             K k = getKey();
751             V v = getValue();
752             return Objects.hashCode(k) ^ Objects.hashCode(v);
753         }
754 
toString()755         public String toString() {
756             return getKey() + "=" + getValue();
757         }
758     }
759 
760     private abstract class HashIterator<T> implements Iterator<T> {
761         private int index;
762         private Entry<K,V> entry;
763         private Entry<K,V> lastReturned;
764         private int expectedModCount = modCount;
765 
766         /**
767          * Strong reference needed to avoid disappearance of key
768          * between hasNext and next
769          */
770         private Object nextKey;
771 
772         /**
773          * Strong reference needed to avoid disappearance of key
774          * between nextEntry() and any use of the entry
775          */
776         private Object currentKey;
777 
HashIterator()778         HashIterator() {
779             index = isEmpty() ? 0 : table.length;
780         }
781 
hasNext()782         public boolean hasNext() {
783             Entry<K,V>[] t = table;
784 
785             while (nextKey == null) {
786                 Entry<K,V> e = entry;
787                 int i = index;
788                 while (e == null && i > 0)
789                     e = t[--i];
790                 entry = e;
791                 index = i;
792                 if (e == null) {
793                     currentKey = null;
794                     return false;
795                 }
796                 nextKey = e.get(); // hold on to key in strong ref
797                 if (nextKey == null)
798                     entry = entry.next;
799             }
800             return true;
801         }
802 
803         /** The common parts of next() across different types of iterators */
nextEntry()804         protected Entry<K,V> nextEntry() {
805             if (modCount != expectedModCount)
806                 throw new ConcurrentModificationException();
807             if (nextKey == null && !hasNext())
808                 throw new NoSuchElementException();
809 
810             lastReturned = entry;
811             entry = entry.next;
812             currentKey = nextKey;
813             nextKey = null;
814             return lastReturned;
815         }
816 
remove()817         public void remove() {
818             if (lastReturned == null)
819                 throw new IllegalStateException();
820             if (modCount != expectedModCount)
821                 throw new ConcurrentModificationException();
822 
823             WeakHashMap.this.remove(currentKey);
824             expectedModCount = modCount;
825             lastReturned = null;
826             currentKey = null;
827         }
828 
829     }
830 
831     private class ValueIterator extends HashIterator<V> {
next()832         public V next() {
833             return nextEntry().value;
834         }
835     }
836 
837     private class KeyIterator extends HashIterator<K> {
next()838         public K next() {
839             return nextEntry().getKey();
840         }
841     }
842 
843     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
next()844         public Map.Entry<K,V> next() {
845             return nextEntry();
846         }
847     }
848 
849     // Views
850 
851     private transient Set<Map.Entry<K,V>> entrySet;
852 
853     /**
854      * Returns a {@link Set} view of the keys contained in this map.
855      * The set is backed by the map, so changes to the map are
856      * reflected in the set, and vice-versa.  If the map is modified
857      * while an iteration over the set is in progress (except through
858      * the iterator's own <tt>remove</tt> operation), the results of
859      * the iteration are undefined.  The set supports element removal,
860      * which removes the corresponding mapping from the map, via the
861      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
862      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
863      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
864      * operations.
865      */
keySet()866     public Set<K> keySet() {
867         Set<K> ks = keySet;
868         if (ks == null) {
869             ks = new KeySet();
870             keySet = ks;
871         }
872         return ks;
873     }
874 
875     private class KeySet extends AbstractSet<K> {
iterator()876         public Iterator<K> iterator() {
877             return new KeyIterator();
878         }
879 
size()880         public int size() {
881             return WeakHashMap.this.size();
882         }
883 
contains(Object o)884         public boolean contains(Object o) {
885             return containsKey(o);
886         }
887 
remove(Object o)888         public boolean remove(Object o) {
889             if (containsKey(o)) {
890                 WeakHashMap.this.remove(o);
891                 return true;
892             }
893             else
894                 return false;
895         }
896 
clear()897         public void clear() {
898             WeakHashMap.this.clear();
899         }
900 
spliterator()901         public Spliterator<K> spliterator() {
902             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
903         }
904     }
905 
906     /**
907      * Returns a {@link Collection} view of the values contained in this map.
908      * The collection is backed by the map, so changes to the map are
909      * reflected in the collection, and vice-versa.  If the map is
910      * modified while an iteration over the collection is in progress
911      * (except through the iterator's own <tt>remove</tt> operation),
912      * the results of the iteration are undefined.  The collection
913      * supports element removal, which removes the corresponding
914      * mapping from the map, via the <tt>Iterator.remove</tt>,
915      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
916      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
917      * support the <tt>add</tt> or <tt>addAll</tt> operations.
918      */
values()919     public Collection<V> values() {
920         Collection<V> vs = values;
921         if (vs == null) {
922             vs = new Values();
923             values = vs;
924         }
925         return vs;
926     }
927 
928     private class Values extends AbstractCollection<V> {
iterator()929         public Iterator<V> iterator() {
930             return new ValueIterator();
931         }
932 
size()933         public int size() {
934             return WeakHashMap.this.size();
935         }
936 
contains(Object o)937         public boolean contains(Object o) {
938             return containsValue(o);
939         }
940 
clear()941         public void clear() {
942             WeakHashMap.this.clear();
943         }
944 
spliterator()945         public Spliterator<V> spliterator() {
946             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
947         }
948     }
949 
950     /**
951      * Returns a {@link Set} view of the mappings contained in this map.
952      * The set is backed by the map, so changes to the map are
953      * reflected in the set, and vice-versa.  If the map is modified
954      * while an iteration over the set is in progress (except through
955      * the iterator's own <tt>remove</tt> operation, or through the
956      * <tt>setValue</tt> operation on a map entry returned by the
957      * iterator) the results of the iteration are undefined.  The set
958      * supports element removal, which removes the corresponding
959      * mapping from the map, via the <tt>Iterator.remove</tt>,
960      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
961      * <tt>clear</tt> operations.  It does not support the
962      * <tt>add</tt> or <tt>addAll</tt> operations.
963      */
entrySet()964     public Set<Map.Entry<K,V>> entrySet() {
965         Set<Map.Entry<K,V>> es = entrySet;
966         return es != null ? es : (entrySet = new EntrySet());
967     }
968 
969     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
iterator()970         public Iterator<Map.Entry<K,V>> iterator() {
971             return new EntryIterator();
972         }
973 
contains(Object o)974         public boolean contains(Object o) {
975             if (!(o instanceof Map.Entry))
976                 return false;
977             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
978             Entry<K,V> candidate = getEntry(e.getKey());
979             return candidate != null && candidate.equals(e);
980         }
981 
remove(Object o)982         public boolean remove(Object o) {
983             return removeMapping(o);
984         }
985 
size()986         public int size() {
987             return WeakHashMap.this.size();
988         }
989 
clear()990         public void clear() {
991             WeakHashMap.this.clear();
992         }
993 
deepCopy()994         private List<Map.Entry<K,V>> deepCopy() {
995             List<Map.Entry<K,V>> list = new ArrayList<>(size());
996             for (Map.Entry<K,V> e : this)
997                 list.add(new AbstractMap.SimpleEntry<>(e));
998             return list;
999         }
1000 
toArray()1001         public Object[] toArray() {
1002             return deepCopy().toArray();
1003         }
1004 
toArray(T[] a)1005         public <T> T[] toArray(T[] a) {
1006             return deepCopy().toArray(a);
1007         }
1008 
spliterator()1009         public Spliterator<Map.Entry<K,V>> spliterator() {
1010             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1011         }
1012     }
1013 
1014     @SuppressWarnings("unchecked")
1015     @Override
forEach(BiConsumer<? super K, ? super V> action)1016     public void forEach(BiConsumer<? super K, ? super V> action) {
1017         Objects.requireNonNull(action);
1018         int expectedModCount = modCount;
1019 
1020         Entry<K, V>[] tab = getTable();
1021         for (Entry<K, V> entry : tab) {
1022             while (entry != null) {
1023                 Object key = entry.get();
1024                 if (key != null) {
1025                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1026                 }
1027                 entry = entry.next;
1028 
1029                 if (expectedModCount != modCount) {
1030                     throw new ConcurrentModificationException();
1031                 }
1032             }
1033         }
1034     }
1035 
1036     @SuppressWarnings("unchecked")
1037     @Override
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1038     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1039         Objects.requireNonNull(function);
1040         int expectedModCount = modCount;
1041 
1042         Entry<K, V>[] tab = getTable();;
1043         for (Entry<K, V> entry : tab) {
1044             while (entry != null) {
1045                 Object key = entry.get();
1046                 if (key != null) {
1047                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1048                 }
1049                 entry = entry.next;
1050 
1051                 if (expectedModCount != modCount) {
1052                     throw new ConcurrentModificationException();
1053                 }
1054             }
1055         }
1056     }
1057 
1058     /**
1059      * Similar form as other hash Spliterators, but skips dead
1060      * elements.
1061      */
1062     static class WeakHashMapSpliterator<K,V> {
1063         final WeakHashMap<K,V> map;
1064         WeakHashMap.Entry<K,V> current; // current node
1065         int index;             // current index, modified on advance/split
1066         int fence;             // -1 until first use; then one past last index
1067         int est;               // size estimate
1068         int expectedModCount;  // for comodification checks
1069 
WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1070         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1071                                int fence, int est,
1072                                int expectedModCount) {
1073             this.map = m;
1074             this.index = origin;
1075             this.fence = fence;
1076             this.est = est;
1077             this.expectedModCount = expectedModCount;
1078         }
1079 
getFence()1080         final int getFence() { // initialize fence and size on first use
1081             int hi;
1082             if ((hi = fence) < 0) {
1083                 WeakHashMap<K,V> m = map;
1084                 est = m.size();
1085                 expectedModCount = m.modCount;
1086                 hi = fence = m.table.length;
1087             }
1088             return hi;
1089         }
1090 
estimateSize()1091         public final long estimateSize() {
1092             getFence(); // force init
1093             return (long) est;
1094         }
1095     }
1096 
1097     static final class KeySpliterator<K,V>
1098         extends WeakHashMapSpliterator<K,V>
1099         implements Spliterator<K> {
KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1100         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1101                        int expectedModCount) {
1102             super(m, origin, fence, est, expectedModCount);
1103         }
1104 
trySplit()1105         public KeySpliterator<K,V> trySplit() {
1106             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1107             return (lo >= mid) ? null :
1108                 new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1109                                         expectedModCount);
1110         }
1111 
forEachRemaining(Consumer<? super K> action)1112         public void forEachRemaining(Consumer<? super K> action) {
1113             int i, hi, mc;
1114             if (action == null)
1115                 throw new NullPointerException();
1116             WeakHashMap<K,V> m = map;
1117             WeakHashMap.Entry<K,V>[] tab = m.table;
1118             if ((hi = fence) < 0) {
1119                 mc = expectedModCount = m.modCount;
1120                 hi = fence = tab.length;
1121             }
1122             else
1123                 mc = expectedModCount;
1124             if (tab.length >= hi && (i = index) >= 0 &&
1125                 (i < (index = hi) || current != null)) {
1126                 WeakHashMap.Entry<K,V> p = current;
1127                 current = null; // exhaust
1128                 do {
1129                     if (p == null)
1130                         p = tab[i++];
1131                     else {
1132                         Object x = p.get();
1133                         p = p.next;
1134                         if (x != null) {
1135                             @SuppressWarnings("unchecked") K k =
1136                                 (K) WeakHashMap.unmaskNull(x);
1137                             action.accept(k);
1138                         }
1139                     }
1140                 } while (p != null || i < hi);
1141             }
1142             if (m.modCount != mc)
1143                 throw new ConcurrentModificationException();
1144         }
1145 
tryAdvance(Consumer<? super K> action)1146         public boolean tryAdvance(Consumer<? super K> action) {
1147             int hi;
1148             if (action == null)
1149                 throw new NullPointerException();
1150             WeakHashMap.Entry<K,V>[] tab = map.table;
1151             if (tab.length >= (hi = getFence()) && index >= 0) {
1152                 while (current != null || index < hi) {
1153                     if (current == null)
1154                         current = tab[index++];
1155                     else {
1156                         Object x = current.get();
1157                         current = current.next;
1158                         if (x != null) {
1159                             @SuppressWarnings("unchecked") K k =
1160                                 (K) WeakHashMap.unmaskNull(x);
1161                             action.accept(k);
1162                             if (map.modCount != expectedModCount)
1163                                 throw new ConcurrentModificationException();
1164                             return true;
1165                         }
1166                     }
1167                 }
1168             }
1169             return false;
1170         }
1171 
characteristics()1172         public int characteristics() {
1173             return Spliterator.DISTINCT;
1174         }
1175     }
1176 
1177     static final class ValueSpliterator<K,V>
1178         extends WeakHashMapSpliterator<K,V>
1179         implements Spliterator<V> {
ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1180         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1181                          int expectedModCount) {
1182             super(m, origin, fence, est, expectedModCount);
1183         }
1184 
trySplit()1185         public ValueSpliterator<K,V> trySplit() {
1186             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1187             return (lo >= mid) ? null :
1188                 new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1189                                           expectedModCount);
1190         }
1191 
forEachRemaining(Consumer<? super V> action)1192         public void forEachRemaining(Consumer<? super V> action) {
1193             int i, hi, mc;
1194             if (action == null)
1195                 throw new NullPointerException();
1196             WeakHashMap<K,V> m = map;
1197             WeakHashMap.Entry<K,V>[] tab = m.table;
1198             if ((hi = fence) < 0) {
1199                 mc = expectedModCount = m.modCount;
1200                 hi = fence = tab.length;
1201             }
1202             else
1203                 mc = expectedModCount;
1204             if (tab.length >= hi && (i = index) >= 0 &&
1205                 (i < (index = hi) || current != null)) {
1206                 WeakHashMap.Entry<K,V> p = current;
1207                 current = null; // exhaust
1208                 do {
1209                     if (p == null)
1210                         p = tab[i++];
1211                     else {
1212                         Object x = p.get();
1213                         V v = p.value;
1214                         p = p.next;
1215                         if (x != null)
1216                             action.accept(v);
1217                     }
1218                 } while (p != null || i < hi);
1219             }
1220             if (m.modCount != mc)
1221                 throw new ConcurrentModificationException();
1222         }
1223 
tryAdvance(Consumer<? super V> action)1224         public boolean tryAdvance(Consumer<? super V> action) {
1225             int hi;
1226             if (action == null)
1227                 throw new NullPointerException();
1228             WeakHashMap.Entry<K,V>[] tab = map.table;
1229             if (tab.length >= (hi = getFence()) && index >= 0) {
1230                 while (current != null || index < hi) {
1231                     if (current == null)
1232                         current = tab[index++];
1233                     else {
1234                         Object x = current.get();
1235                         V v = current.value;
1236                         current = current.next;
1237                         if (x != null) {
1238                             action.accept(v);
1239                             if (map.modCount != expectedModCount)
1240                                 throw new ConcurrentModificationException();
1241                             return true;
1242                         }
1243                     }
1244                 }
1245             }
1246             return false;
1247         }
1248 
characteristics()1249         public int characteristics() {
1250             return 0;
1251         }
1252     }
1253 
1254     static final class EntrySpliterator<K,V>
1255         extends WeakHashMapSpliterator<K,V>
1256         implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1257         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1258                        int expectedModCount) {
1259             super(m, origin, fence, est, expectedModCount);
1260         }
1261 
trySplit()1262         public EntrySpliterator<K,V> trySplit() {
1263             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1264             return (lo >= mid) ? null :
1265                 new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1266                                           expectedModCount);
1267         }
1268 
1269 
forEachRemaining(Consumer<? super Map.Entry<K, V>> action)1270         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1271             int i, hi, mc;
1272             if (action == null)
1273                 throw new NullPointerException();
1274             WeakHashMap<K,V> m = map;
1275             WeakHashMap.Entry<K,V>[] tab = m.table;
1276             if ((hi = fence) < 0) {
1277                 mc = expectedModCount = m.modCount;
1278                 hi = fence = tab.length;
1279             }
1280             else
1281                 mc = expectedModCount;
1282             if (tab.length >= hi && (i = index) >= 0 &&
1283                 (i < (index = hi) || current != null)) {
1284                 WeakHashMap.Entry<K,V> p = current;
1285                 current = null; // exhaust
1286                 do {
1287                     if (p == null)
1288                         p = tab[i++];
1289                     else {
1290                         Object x = p.get();
1291                         V v = p.value;
1292                         p = p.next;
1293                         if (x != null) {
1294                             @SuppressWarnings("unchecked") K k =
1295                                 (K) WeakHashMap.unmaskNull(x);
1296                             action.accept
1297                                 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1298                         }
1299                     }
1300                 } while (p != null || i < hi);
1301             }
1302             if (m.modCount != mc)
1303                 throw new ConcurrentModificationException();
1304         }
1305 
tryAdvance(Consumer<? super Map.Entry<K,V>> action)1306         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1307             int hi;
1308             if (action == null)
1309                 throw new NullPointerException();
1310             WeakHashMap.Entry<K,V>[] tab = map.table;
1311             if (tab.length >= (hi = getFence()) && index >= 0) {
1312                 while (current != null || index < hi) {
1313                     if (current == null)
1314                         current = tab[index++];
1315                     else {
1316                         Object x = current.get();
1317                         V v = current.value;
1318                         current = current.next;
1319                         if (x != null) {
1320                             @SuppressWarnings("unchecked") K k =
1321                                 (K) WeakHashMap.unmaskNull(x);
1322                             action.accept
1323                                 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1324                             if (map.modCount != expectedModCount)
1325                                 throw new ConcurrentModificationException();
1326                             return true;
1327                         }
1328                     }
1329                 }
1330             }
1331             return false;
1332         }
1333 
characteristics()1334         public int characteristics() {
1335             return Spliterator.DISTINCT;
1336         }
1337     }
1338 
1339 }
1340