1 /*
2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.comp;
27 
28 import java.util.*;
29 
30 import javax.lang.model.element.ElementKind;
31 import javax.tools.JavaFileObject;
32 
33 import com.sun.source.tree.IdentifierTree;
34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35 import com.sun.source.tree.MemberSelectTree;
36 import com.sun.source.tree.TreeVisitor;
37 import com.sun.source.util.SimpleTreeVisitor;
38 import com.sun.tools.javac.code.*;
39 import com.sun.tools.javac.code.Lint.LintCategory;
40 import com.sun.tools.javac.code.Symbol.*;
41 import com.sun.tools.javac.code.Type.*;
42 import com.sun.tools.javac.comp.Check.CheckContext;
43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
44 import com.sun.tools.javac.comp.Infer.InferenceContext;
45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
46 import com.sun.tools.javac.jvm.*;
47 import com.sun.tools.javac.tree.*;
48 import com.sun.tools.javac.tree.JCTree.*;
49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
50 import com.sun.tools.javac.util.*;
51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
52 import com.sun.tools.javac.util.List;
53 import static com.sun.tools.javac.code.Flags.*;
54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
55 import static com.sun.tools.javac.code.Flags.BLOCK;
56 import static com.sun.tools.javac.code.Kinds.*;
57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
58 import static com.sun.tools.javac.code.TypeTag.*;
59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
61 
62 /** This is the main context-dependent analysis phase in GJC. It
63  *  encompasses name resolution, type checking and constant folding as
64  *  subtasks. Some subtasks involve auxiliary classes.
65  *  @see Check
66  *  @see Resolve
67  *  @see ConstFold
68  *  @see Infer
69  *
70  *  <p><b>This is NOT part of any supported API.
71  *  If you write code that depends on this, you do so at your own risk.
72  *  This code and its internal interfaces are subject to change or
73  *  deletion without notice.</b>
74  */
75 public class Attr extends JCTree.Visitor {
76     protected static final Context.Key<Attr> attrKey =
77         new Context.Key<Attr>();
78 
79     final Names names;
80     final Log log;
81     final Symtab syms;
82     final Resolve rs;
83     final Infer infer;
84     final DeferredAttr deferredAttr;
85     final Check chk;
86     final Flow flow;
87     final MemberEnter memberEnter;
88     final TreeMaker make;
89     final ConstFold cfolder;
90     final Enter enter;
91     final Target target;
92     final Types types;
93     final JCDiagnostic.Factory diags;
94     final Annotate annotate;
95     final TypeAnnotations typeAnnotations;
96     final DeferredLintHandler deferredLintHandler;
97     final TypeEnvs typeEnvs;
98 
instance(Context context)99     public static Attr instance(Context context) {
100         Attr instance = context.get(attrKey);
101         if (instance == null)
102             instance = new Attr(context);
103         return instance;
104     }
105 
Attr(Context context)106     protected Attr(Context context) {
107         context.put(attrKey, this);
108 
109         names = Names.instance(context);
110         log = Log.instance(context);
111         syms = Symtab.instance(context);
112         rs = Resolve.instance(context);
113         chk = Check.instance(context);
114         flow = Flow.instance(context);
115         memberEnter = MemberEnter.instance(context);
116         make = TreeMaker.instance(context);
117         enter = Enter.instance(context);
118         infer = Infer.instance(context);
119         deferredAttr = DeferredAttr.instance(context);
120         cfolder = ConstFold.instance(context);
121         target = Target.instance(context);
122         types = Types.instance(context);
123         diags = JCDiagnostic.Factory.instance(context);
124         annotate = Annotate.instance(context);
125         typeAnnotations = TypeAnnotations.instance(context);
126         deferredLintHandler = DeferredLintHandler.instance(context);
127         typeEnvs = TypeEnvs.instance(context);
128 
129         Options options = Options.instance(context);
130 
131         Source source = Source.instance(context);
132         allowGenerics = source.allowGenerics();
133         allowVarargs = source.allowVarargs();
134         allowEnums = source.allowEnums();
135         allowBoxing = source.allowBoxing();
136         allowCovariantReturns = source.allowCovariantReturns();
137         allowAnonOuterThis = source.allowAnonOuterThis();
138         allowStringsInSwitch = source.allowStringsInSwitch();
139         allowPoly = source.allowPoly();
140         allowTypeAnnos = source.allowTypeAnnotations();
141         allowLambda = source.allowLambda();
142         allowDefaultMethods = source.allowDefaultMethods();
143         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
144         sourceName = source.name;
145         relax = (options.isSet("-retrofit") ||
146                  options.isSet("-relax"));
147         findDiamonds = options.get("findDiamond") != null &&
148                  source.allowDiamond();
149         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
150         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
151 
152         statInfo = new ResultInfo(NIL, Type.noType);
153         varInfo = new ResultInfo(VAR, Type.noType);
154         unknownExprInfo = new ResultInfo(VAL, Type.noType);
155         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
156         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
157         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
158         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
159 
160         noCheckTree = make.at(-1).Skip();
161     }
162 
163     /** Switch: relax some constraints for retrofit mode.
164      */
165     boolean relax;
166 
167     /** Switch: support target-typing inference
168      */
169     boolean allowPoly;
170 
171     /** Switch: support type annotations.
172      */
173     boolean allowTypeAnnos;
174 
175     /** Switch: support generics?
176      */
177     boolean allowGenerics;
178 
179     /** Switch: allow variable-arity methods.
180      */
181     boolean allowVarargs;
182 
183     /** Switch: support enums?
184      */
185     boolean allowEnums;
186 
187     /** Switch: support boxing and unboxing?
188      */
189     boolean allowBoxing;
190 
191     /** Switch: support covariant result types?
192      */
193     boolean allowCovariantReturns;
194 
195     /** Switch: support lambda expressions ?
196      */
197     boolean allowLambda;
198 
199     /** Switch: support default methods ?
200      */
201     boolean allowDefaultMethods;
202 
203     /** Switch: static interface methods enabled?
204      */
205     boolean allowStaticInterfaceMethods;
206 
207     /** Switch: allow references to surrounding object from anonymous
208      * objects during constructor call?
209      */
210     boolean allowAnonOuterThis;
211 
212     /** Switch: generates a warning if diamond can be safely applied
213      *  to a given new expression
214      */
215     boolean findDiamonds;
216 
217     /**
218      * Internally enables/disables diamond finder feature
219      */
220     static final boolean allowDiamondFinder = true;
221 
222     /**
223      * Switch: warn about use of variable before declaration?
224      * RFE: 6425594
225      */
226     boolean useBeforeDeclarationWarning;
227 
228     /**
229      * Switch: generate warnings whenever an anonymous inner class that is convertible
230      * to a lambda expression is found
231      */
232     boolean identifyLambdaCandidate;
233 
234     /**
235      * Switch: allow strings in switch?
236      */
237     boolean allowStringsInSwitch;
238 
239     /**
240      * Switch: name of source level; used for error reporting.
241      */
242     String sourceName;
243 
244     /** Check kind and type of given tree against protokind and prototype.
245      *  If check succeeds, store type in tree and return it.
246      *  If check fails, store errType in tree and return it.
247      *  No checks are performed if the prototype is a method type.
248      *  It is not necessary in this case since we know that kind and type
249      *  are correct.
250      *
251      *  @param tree     The tree whose kind and type is checked
252      *  @param found    The computed type of the tree
253      *  @param ownkind  The computed kind of the tree
254      *  @param resultInfo  The expected result of the tree
255      */
check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo)256     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
257         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
258         Type owntype;
259         boolean shouldCheck = !found.hasTag(ERROR) &&
260                 !resultInfo.pt.hasTag(METHOD) &&
261                 !resultInfo.pt.hasTag(FORALL);
262         if (shouldCheck && (ownkind & ~resultInfo.pkind) != 0) {
263             log.error(tree.pos(), "unexpected.type",
264                         kindNames(resultInfo.pkind),
265                         kindName(ownkind));
266             owntype = types.createErrorType(found);
267         } else if (allowPoly && inferenceContext.free(found)) {
268             //delay the check if there are inference variables in the found type
269             //this means we are dealing with a partially inferred poly expression
270             owntype = shouldCheck ? resultInfo.pt : found;
271             inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
272                     @Override
273                     public void typesInferred(InferenceContext inferenceContext) {
274                         ResultInfo pendingResult =
275                                 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
276                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
277                     }
278             });
279         } else {
280             owntype = shouldCheck ?
281             resultInfo.check(tree, found) :
282             found;
283         }
284         if (tree != noCheckTree) {
285             tree.type = owntype;
286         }
287         return owntype;
288     }
289 
290     /** Is given blank final variable assignable, i.e. in a scope where it
291      *  may be assigned to even though it is final?
292      *  @param v      The blank final variable.
293      *  @param env    The current environment.
294      */
isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env)295     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
296         Symbol owner = env.info.scope.owner;
297            // owner refers to the innermost variable, method or
298            // initializer block declaration at this point.
299         return
300             v.owner == owner
301             ||
302             ((owner.name == names.init ||    // i.e. we are in a constructor
303               owner.kind == VAR ||           // i.e. we are in a variable initializer
304               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
305              &&
306              v.owner == owner.owner
307              &&
308              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
309     }
310 
311     /** Check that variable can be assigned to.
312      *  @param pos    The current source code position.
313      *  @param v      The assigned varaible
314      *  @param base   If the variable is referred to in a Select, the part
315      *                to the left of the `.', null otherwise.
316      *  @param env    The current environment.
317      */
checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env)318     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
319         if ((v.flags() & FINAL) != 0 &&
320             ((v.flags() & HASINIT) != 0
321              ||
322              !((base == null ||
323                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
324                isAssignableAsBlankFinal(v, env)))) {
325             if (v.isResourceVariable()) { //TWR resource
326                 log.error(pos, "try.resource.may.not.be.assigned", v);
327             } else {
328                 log.error(pos, "cant.assign.val.to.final.var", v);
329             }
330         }
331     }
332 
333     /** Does tree represent a static reference to an identifier?
334      *  It is assumed that tree is either a SELECT or an IDENT.
335      *  We have to weed out selects from non-type names here.
336      *  @param tree    The candidate tree.
337      */
isStaticReference(JCTree tree)338     boolean isStaticReference(JCTree tree) {
339         if (tree.hasTag(SELECT)) {
340             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
341             if (lsym == null || lsym.kind != TYP) {
342                 return false;
343             }
344         }
345         return true;
346     }
347 
348     /** Is this symbol a type?
349      */
isType(Symbol sym)350     static boolean isType(Symbol sym) {
351         return sym != null && sym.kind == TYP;
352     }
353 
354     /** The current `this' symbol.
355      *  @param env    The current environment.
356      */
thisSym(DiagnosticPosition pos, Env<AttrContext> env)357     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
358         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
359     }
360 
361     /** Attribute a parsed identifier.
362      * @param tree Parsed identifier name
363      * @param topLevel The toplevel to use
364      */
attribIdent(JCTree tree, JCCompilationUnit topLevel)365     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
366         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
367         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
368                                            syms.errSymbol.name,
369                                            null, null, null, null);
370         localEnv.enclClass.sym = syms.errSymbol;
371         return tree.accept(identAttributer, localEnv);
372     }
373     // where
374         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
375         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
376             @Override
visitMemberSelect(MemberSelectTree node, Env<AttrContext> env)377             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
378                 Symbol site = visit(node.getExpression(), env);
379                 if (site.kind == ERR || site.kind == ABSENT_TYP)
380                     return site;
381                 Name name = (Name)node.getIdentifier();
382                 if (site.kind == PCK) {
383                     env.toplevel.packge = (PackageSymbol)site;
384                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
385                 } else {
386                     env.enclClass.sym = (ClassSymbol)site;
387                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
388                 }
389             }
390 
391             @Override
visitIdentifier(IdentifierTree node, Env<AttrContext> env)392             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
393                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
394             }
395         }
396 
coerce(Type etype, Type ttype)397     public Type coerce(Type etype, Type ttype) {
398         return cfolder.coerce(etype, ttype);
399     }
400 
attribType(JCTree node, TypeSymbol sym)401     public Type attribType(JCTree node, TypeSymbol sym) {
402         Env<AttrContext> env = typeEnvs.get(sym);
403         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
404         return attribTree(node, localEnv, unknownTypeInfo);
405     }
406 
attribImportQualifier(JCImport tree, Env<AttrContext> env)407     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
408         // Attribute qualifying package or class.
409         JCFieldAccess s = (JCFieldAccess)tree.qualid;
410         return attribTree(s.selected,
411                        env,
412                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
413                        Type.noType));
414     }
415 
attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree)416     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
417         breakTree = tree;
418         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
419         try {
420             attribExpr(expr, env);
421         } catch (BreakAttr b) {
422             return b.env;
423         } catch (AssertionError ae) {
424             if (ae.getCause() instanceof BreakAttr) {
425                 return ((BreakAttr)(ae.getCause())).env;
426             } else {
427                 throw ae;
428             }
429         } finally {
430             breakTree = null;
431             log.useSource(prev);
432         }
433         return env;
434     }
435 
attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree)436     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
437         breakTree = tree;
438         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
439         try {
440             attribStat(stmt, env);
441         } catch (BreakAttr b) {
442             return b.env;
443         } catch (AssertionError ae) {
444             if (ae.getCause() instanceof BreakAttr) {
445                 return ((BreakAttr)(ae.getCause())).env;
446             } else {
447                 throw ae;
448             }
449         } finally {
450             breakTree = null;
451             log.useSource(prev);
452         }
453         return env;
454     }
455 
456     private JCTree breakTree = null;
457 
458     private static class BreakAttr extends RuntimeException {
459         static final long serialVersionUID = -6924771130405446405L;
460         private Env<AttrContext> env;
BreakAttr(Env<AttrContext> env)461         private BreakAttr(Env<AttrContext> env) {
462             this.env = env;
463         }
464     }
465 
466     class ResultInfo {
467         final int pkind;
468         final Type pt;
469         final CheckContext checkContext;
470 
ResultInfo(int pkind, Type pt)471         ResultInfo(int pkind, Type pt) {
472             this(pkind, pt, chk.basicHandler);
473         }
474 
ResultInfo(int pkind, Type pt, CheckContext checkContext)475         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
476             this.pkind = pkind;
477             this.pt = pt;
478             this.checkContext = checkContext;
479         }
480 
check(final DiagnosticPosition pos, final Type found)481         protected Type check(final DiagnosticPosition pos, final Type found) {
482             return chk.checkType(pos, found, pt, checkContext);
483         }
484 
dup(Type newPt)485         protected ResultInfo dup(Type newPt) {
486             return new ResultInfo(pkind, newPt, checkContext);
487         }
488 
dup(CheckContext newContext)489         protected ResultInfo dup(CheckContext newContext) {
490             return new ResultInfo(pkind, pt, newContext);
491         }
492 
dup(Type newPt, CheckContext newContext)493         protected ResultInfo dup(Type newPt, CheckContext newContext) {
494             return new ResultInfo(pkind, newPt, newContext);
495         }
496 
497         @Override
toString()498         public String toString() {
499             if (pt != null) {
500                 return pt.toString();
501             } else {
502                 return "";
503             }
504         }
505     }
506 
507     class RecoveryInfo extends ResultInfo {
508 
RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext)509         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
510             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
511                 @Override
512                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
513                     return deferredAttrContext;
514                 }
515                 @Override
516                 public boolean compatible(Type found, Type req, Warner warn) {
517                     return true;
518                 }
519                 @Override
520                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
521                     chk.basicHandler.report(pos, details);
522                 }
523             });
524         }
525     }
526 
527     final ResultInfo statInfo;
528     final ResultInfo varInfo;
529     final ResultInfo unknownAnyPolyInfo;
530     final ResultInfo unknownExprInfo;
531     final ResultInfo unknownTypeInfo;
532     final ResultInfo unknownTypeExprInfo;
533     final ResultInfo recoveryInfo;
534 
pt()535     Type pt() {
536         return resultInfo.pt;
537     }
538 
pkind()539     int pkind() {
540         return resultInfo.pkind;
541     }
542 
543 /* ************************************************************************
544  * Visitor methods
545  *************************************************************************/
546 
547     /** Visitor argument: the current environment.
548      */
549     Env<AttrContext> env;
550 
551     /** Visitor argument: the currently expected attribution result.
552      */
553     ResultInfo resultInfo;
554 
555     /** Visitor result: the computed type.
556      */
557     Type result;
558 
559     /** Synthetic tree to be used during 'fake' checks.
560      */
561     JCTree noCheckTree;
562 
563     /** Visitor method: attribute a tree, catching any completion failure
564      *  exceptions. Return the tree's type.
565      *
566      *  @param tree    The tree to be visited.
567      *  @param env     The environment visitor argument.
568      *  @param resultInfo   The result info visitor argument.
569      */
attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo)570     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
571         Env<AttrContext> prevEnv = this.env;
572         ResultInfo prevResult = this.resultInfo;
573         try {
574             this.env = env;
575             this.resultInfo = resultInfo;
576             tree.accept(this);
577             if (tree == breakTree &&
578                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
579                 throw new BreakAttr(copyEnv(env));
580             }
581             return result;
582         } catch (CompletionFailure ex) {
583             tree.type = syms.errType;
584             return chk.completionError(tree.pos(), ex);
585         } finally {
586             this.env = prevEnv;
587             this.resultInfo = prevResult;
588         }
589     }
590 
copyEnv(Env<AttrContext> env)591     Env<AttrContext> copyEnv(Env<AttrContext> env) {
592         Env<AttrContext> newEnv =
593                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
594         if (newEnv.outer != null) {
595             newEnv.outer = copyEnv(newEnv.outer);
596         }
597         return newEnv;
598     }
599 
copyScope(Scope sc)600     Scope copyScope(Scope sc) {
601         Scope newScope = new Scope(sc.owner);
602         List<Symbol> elemsList = List.nil();
603         while (sc != null) {
604             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
605                 elemsList = elemsList.prepend(e.sym);
606             }
607             sc = sc.next;
608         }
609         for (Symbol s : elemsList) {
610             newScope.enter(s);
611         }
612         return newScope;
613     }
614 
615     /** Derived visitor method: attribute an expression tree.
616      */
attribExpr(JCTree tree, Env<AttrContext> env, Type pt)617     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
618         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
619     }
620 
621     /** Derived visitor method: attribute an expression tree with
622      *  no constraints on the computed type.
623      */
attribExpr(JCTree tree, Env<AttrContext> env)624     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
625         return attribTree(tree, env, unknownExprInfo);
626     }
627 
628     /** Derived visitor method: attribute a type tree.
629      */
attribType(JCTree tree, Env<AttrContext> env)630     public Type attribType(JCTree tree, Env<AttrContext> env) {
631         Type result = attribType(tree, env, Type.noType);
632         return result;
633     }
634 
635     /** Derived visitor method: attribute a type tree.
636      */
attribType(JCTree tree, Env<AttrContext> env, Type pt)637     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
638         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
639         return result;
640     }
641 
642     /** Derived visitor method: attribute a statement or definition tree.
643      */
attribStat(JCTree tree, Env<AttrContext> env)644     public Type attribStat(JCTree tree, Env<AttrContext> env) {
645         return attribTree(tree, env, statInfo);
646     }
647 
648     /** Attribute a list of expressions, returning a list of types.
649      */
attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt)650     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
651         ListBuffer<Type> ts = new ListBuffer<Type>();
652         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
653             ts.append(attribExpr(l.head, env, pt));
654         return ts.toList();
655     }
656 
657     /** Attribute a list of statements, returning nothing.
658      */
attribStats(List<T> trees, Env<AttrContext> env)659     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
660         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
661             attribStat(l.head, env);
662     }
663 
664     /** Attribute the arguments in a method call, returning the method kind.
665      */
attribArgs(int initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes)666     int attribArgs(int initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
667         int kind = initialKind;
668         for (JCExpression arg : trees) {
669             Type argtype;
670             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
671                 argtype = deferredAttr.new DeferredType(arg, env);
672                 kind |= POLY;
673             } else {
674                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
675             }
676             argtypes.append(argtype);
677         }
678         return kind;
679     }
680 
681     /** Attribute a type argument list, returning a list of types.
682      *  Caller is responsible for calling checkRefTypes.
683      */
attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env)684     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
685         ListBuffer<Type> argtypes = new ListBuffer<Type>();
686         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
687             argtypes.append(attribType(l.head, env));
688         return argtypes.toList();
689     }
690 
691     /** Attribute a type argument list, returning a list of types.
692      *  Check that all the types are references.
693      */
attribTypes(List<JCExpression> trees, Env<AttrContext> env)694     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
695         List<Type> types = attribAnyTypes(trees, env);
696         return chk.checkRefTypes(trees, types);
697     }
698 
699     /**
700      * Attribute type variables (of generic classes or methods).
701      * Compound types are attributed later in attribBounds.
702      * @param typarams the type variables to enter
703      * @param env      the current environment
704      */
attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env)705     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
706         for (JCTypeParameter tvar : typarams) {
707             TypeVar a = (TypeVar)tvar.type;
708             a.tsym.flags_field |= UNATTRIBUTED;
709             a.bound = Type.noType;
710             if (!tvar.bounds.isEmpty()) {
711                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
712                 for (JCExpression bound : tvar.bounds.tail)
713                     bounds = bounds.prepend(attribType(bound, env));
714                 types.setBounds(a, bounds.reverse());
715             } else {
716                 // if no bounds are given, assume a single bound of
717                 // java.lang.Object.
718                 types.setBounds(a, List.of(syms.objectType));
719             }
720             a.tsym.flags_field &= ~UNATTRIBUTED;
721         }
722         for (JCTypeParameter tvar : typarams) {
723             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
724         }
725     }
726 
727     /**
728      * Attribute the type references in a list of annotations.
729      */
attribAnnotationTypes(List<JCAnnotation> annotations, Env<AttrContext> env)730     void attribAnnotationTypes(List<JCAnnotation> annotations,
731                                Env<AttrContext> env) {
732         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
733             JCAnnotation a = al.head;
734             attribType(a.annotationType, env);
735         }
736     }
737 
738     /**
739      * Attribute a "lazy constant value".
740      *  @param env         The env for the const value
741      *  @param initializer The initializer for the const value
742      *  @param type        The expected type, or null
743      *  @see VarSymbol#setLazyConstValue
744      */
attribLazyConstantValue(Env<AttrContext> env, JCVariableDecl variable, Type type)745     public Object attribLazyConstantValue(Env<AttrContext> env,
746                                       JCVariableDecl variable,
747                                       Type type) {
748 
749         DiagnosticPosition prevLintPos
750                 = deferredLintHandler.setPos(variable.pos());
751 
752         try {
753             // Use null as symbol to not attach the type annotation to any symbol.
754             // The initializer will later also be visited and then we'll attach
755             // to the symbol.
756             // This prevents having multiple type annotations, just because of
757             // lazy constant value evaluation.
758             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
759             annotate.flush();
760             Type itype = attribExpr(variable.init, env, type);
761             if (itype.constValue() != null) {
762                 return coerce(itype, type).constValue();
763             } else {
764                 return null;
765             }
766         } finally {
767             deferredLintHandler.setPos(prevLintPos);
768         }
769     }
770 
771     /** Attribute type reference in an `extends' or `implements' clause.
772      *  Supertypes of anonymous inner classes are usually already attributed.
773      *
774      *  @param tree              The tree making up the type reference.
775      *  @param env               The environment current at the reference.
776      *  @param classExpected     true if only a class is expected here.
777      *  @param interfaceExpected true if only an interface is expected here.
778      */
attribBase(JCTree tree, Env<AttrContext> env, boolean classExpected, boolean interfaceExpected, boolean checkExtensible)779     Type attribBase(JCTree tree,
780                     Env<AttrContext> env,
781                     boolean classExpected,
782                     boolean interfaceExpected,
783                     boolean checkExtensible) {
784         Type t = tree.type != null ?
785             tree.type :
786             attribType(tree, env);
787         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
788     }
checkBase(Type t, JCTree tree, Env<AttrContext> env, boolean classExpected, boolean interfaceExpected, boolean checkExtensible)789     Type checkBase(Type t,
790                    JCTree tree,
791                    Env<AttrContext> env,
792                    boolean classExpected,
793                    boolean interfaceExpected,
794                    boolean checkExtensible) {
795         if (t.tsym.isAnonymous()) {
796             log.error(tree.pos(), "cant.inherit.from.anon");
797             return types.createErrorType(t);
798         }
799         if (t.isErroneous())
800             return t;
801         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
802             // check that type variable is already visible
803             if (t.getUpperBound() == null) {
804                 log.error(tree.pos(), "illegal.forward.ref");
805                 return types.createErrorType(t);
806             }
807         } else {
808             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
809         }
810         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
811             log.error(tree.pos(), "intf.expected.here");
812             // return errType is necessary since otherwise there might
813             // be undetected cycles which cause attribution to loop
814             return types.createErrorType(t);
815         } else if (checkExtensible &&
816                    classExpected &&
817                    (t.tsym.flags() & INTERFACE) != 0) {
818             log.error(tree.pos(), "no.intf.expected.here");
819             return types.createErrorType(t);
820         }
821         if (checkExtensible &&
822             ((t.tsym.flags() & FINAL) != 0)) {
823             log.error(tree.pos(),
824                       "cant.inherit.from.final", t.tsym);
825         }
826         chk.checkNonCyclic(tree.pos(), t);
827         return t;
828     }
829 
attribIdentAsEnumType(Env<AttrContext> env, JCIdent id)830     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
831         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
832         id.type = env.info.scope.owner.type;
833         id.sym = env.info.scope.owner;
834         return id.type;
835     }
836 
visitClassDef(JCClassDecl tree)837     public void visitClassDef(JCClassDecl tree) {
838         // Local and anonymous classes have not been entered yet, so we need to
839         // do it now.
840         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0) {
841             enter.classEnter(tree, env);
842         } else {
843             // If this class declaration is part of a class level annotation,
844             // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
845             // order to simplify later steps and allow for sensible error
846             // messages.
847             if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
848                 enter.classEnter(tree, env);
849         }
850 
851         ClassSymbol c = tree.sym;
852         if (c == null) {
853             // exit in case something drastic went wrong during enter.
854             result = null;
855         } else {
856             // make sure class has been completed:
857             c.complete();
858 
859             // If this class appears as an anonymous class
860             // in a superclass constructor call where
861             // no explicit outer instance is given,
862             // disable implicit outer instance from being passed.
863             // (This would be an illegal access to "this before super").
864             if (env.info.isSelfCall &&
865                 env.tree.hasTag(NEWCLASS) &&
866                 ((JCNewClass) env.tree).encl == null)
867             {
868                 c.flags_field |= NOOUTERTHIS;
869             }
870             attribClass(tree.pos(), c);
871             result = tree.type = c.type;
872         }
873     }
874 
visitMethodDef(JCMethodDecl tree)875     public void visitMethodDef(JCMethodDecl tree) {
876         MethodSymbol m = tree.sym;
877         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
878 
879         Lint lint = env.info.lint.augment(m);
880         Lint prevLint = chk.setLint(lint);
881         MethodSymbol prevMethod = chk.setMethod(m);
882         try {
883             deferredLintHandler.flush(tree.pos());
884             chk.checkDeprecatedAnnotation(tree.pos(), m);
885 
886 
887             // Create a new environment with local scope
888             // for attributing the method.
889             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
890             localEnv.info.lint = lint;
891 
892             attribStats(tree.typarams, localEnv);
893 
894             // If we override any other methods, check that we do so properly.
895             // JLS ???
896             if (m.isStatic()) {
897                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
898             } else {
899                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
900             }
901             chk.checkOverride(tree, m);
902 
903             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
904                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
905             }
906 
907             // Enter all type parameters into the local method scope.
908             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
909                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
910 
911             ClassSymbol owner = env.enclClass.sym;
912             if ((owner.flags() & ANNOTATION) != 0 &&
913                 tree.params.nonEmpty())
914                 log.error(tree.params.head.pos(),
915                           "intf.annotation.members.cant.have.params");
916 
917             // Attribute all value parameters.
918             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
919                 attribStat(l.head, localEnv);
920             }
921 
922             chk.checkVarargsMethodDecl(localEnv, tree);
923 
924             // Check that type parameters are well-formed.
925             chk.validate(tree.typarams, localEnv);
926 
927             // Check that result type is well-formed.
928             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
929                 chk.validate(tree.restype, localEnv);
930 
931             // Check that receiver type is well-formed.
932             if (tree.recvparam != null) {
933                 // Use a new environment to check the receiver parameter.
934                 // Otherwise I get "might not have been initialized" errors.
935                 // Is there a better way?
936                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
937                 attribType(tree.recvparam, newEnv);
938                 chk.validate(tree.recvparam, newEnv);
939             }
940 
941             // annotation method checks
942             if ((owner.flags() & ANNOTATION) != 0) {
943                 // annotation method cannot have throws clause
944                 if (tree.thrown.nonEmpty()) {
945                     log.error(tree.thrown.head.pos(),
946                             "throws.not.allowed.in.intf.annotation");
947                 }
948                 // annotation method cannot declare type-parameters
949                 if (tree.typarams.nonEmpty()) {
950                     log.error(tree.typarams.head.pos(),
951                             "intf.annotation.members.cant.have.type.params");
952                 }
953                 // validate annotation method's return type (could be an annotation type)
954                 chk.validateAnnotationType(tree.restype);
955                 // ensure that annotation method does not clash with members of Object/Annotation
956                 chk.validateAnnotationMethod(tree.pos(), m);
957             }
958 
959             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
960                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
961 
962             if (tree.body == null) {
963                 // Empty bodies are only allowed for
964                 // abstract, native, or interface methods, or for methods
965                 // in a retrofit signature class.
966                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
967                     !relax)
968                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
969                 if (tree.defaultValue != null) {
970                     if ((owner.flags() & ANNOTATION) == 0)
971                         log.error(tree.pos(),
972                                   "default.allowed.in.intf.annotation.member");
973                 }
974             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
975                 if ((owner.flags() & INTERFACE) != 0) {
976                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
977                 } else {
978                     log.error(tree.pos(), "abstract.meth.cant.have.body");
979                 }
980             } else if ((tree.mods.flags & NATIVE) != 0) {
981                 log.error(tree.pos(), "native.meth.cant.have.body");
982             } else {
983                 // Add an implicit super() call unless an explicit call to
984                 // super(...) or this(...) is given
985                 // or we are compiling class java.lang.Object.
986                 if (tree.name == names.init && owner.type != syms.objectType) {
987                     JCBlock body = tree.body;
988                     if (body.stats.isEmpty() ||
989                         !TreeInfo.isSelfCall(body.stats.head)) {
990                         body.stats = body.stats.
991                             prepend(memberEnter.SuperCall(make.at(body.pos),
992                                                           List.<Type>nil(),
993                                                           List.<JCVariableDecl>nil(),
994                                                           false));
995                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
996                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
997                                TreeInfo.isSuperCall(body.stats.head)) {
998                         // enum constructors are not allowed to call super
999                         // directly, so make sure there aren't any super calls
1000                         // in enum constructors, except in the compiler
1001                         // generated one.
1002                         log.error(tree.body.stats.head.pos(),
1003                                   "call.to.super.not.allowed.in.enum.ctor",
1004                                   env.enclClass.sym);
1005                     }
1006                 }
1007 
1008                 // Attribute all type annotations in the body
1009                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
1010                 annotate.flush();
1011 
1012                 // Attribute method body.
1013                 attribStat(tree.body, localEnv);
1014             }
1015 
1016             localEnv.info.scope.leave();
1017             result = tree.type = m.type;
1018         }
1019         finally {
1020             chk.setLint(prevLint);
1021             chk.setMethod(prevMethod);
1022         }
1023     }
1024 
visitVarDef(JCVariableDecl tree)1025     public void visitVarDef(JCVariableDecl tree) {
1026         // Local variables have not been entered yet, so we need to do it now:
1027         if (env.info.scope.owner.kind == MTH) {
1028             if (tree.sym != null) {
1029                 // parameters have already been entered
1030                 env.info.scope.enter(tree.sym);
1031             } else {
1032                 try {
1033                     annotate.enterStart();
1034                     memberEnter.memberEnter(tree, env);
1035                 } finally {
1036                     annotate.enterDone();
1037                 }
1038             }
1039         } else {
1040             if (tree.init != null) {
1041                 // Field initializer expression need to be entered.
1042                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
1043                 annotate.flush();
1044             }
1045         }
1046 
1047         VarSymbol v = tree.sym;
1048         Lint lint = env.info.lint.augment(v);
1049         Lint prevLint = chk.setLint(lint);
1050 
1051         // Check that the variable's declared type is well-formed.
1052         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1053                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1054                 (tree.sym.flags() & PARAMETER) != 0;
1055         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1056 
1057         try {
1058             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1059             deferredLintHandler.flush(tree.pos());
1060             chk.checkDeprecatedAnnotation(tree.pos(), v);
1061 
1062             if (tree.init != null) {
1063                 if ((v.flags_field & FINAL) == 0 ||
1064                     !memberEnter.needsLazyConstValue(tree.init)) {
1065                     // Not a compile-time constant
1066                     // Attribute initializer in a new environment
1067                     // with the declared variable as owner.
1068                     // Check that initializer conforms to variable's declared type.
1069                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1070                     initEnv.info.lint = lint;
1071                     // In order to catch self-references, we set the variable's
1072                     // declaration position to maximal possible value, effectively
1073                     // marking the variable as undefined.
1074                     initEnv.info.enclVar = v;
1075                     attribExpr(tree.init, initEnv, v.type);
1076                 }
1077             }
1078             result = tree.type = v.type;
1079         }
1080         finally {
1081             chk.setLint(prevLint);
1082         }
1083     }
1084 
visitSkip(JCSkip tree)1085     public void visitSkip(JCSkip tree) {
1086         result = null;
1087     }
1088 
visitBlock(JCBlock tree)1089     public void visitBlock(JCBlock tree) {
1090         if (env.info.scope.owner.kind == TYP) {
1091             // Block is a static or instance initializer;
1092             // let the owner of the environment be a freshly
1093             // created BLOCK-method.
1094             Env<AttrContext> localEnv =
1095                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1096             localEnv.info.scope.owner =
1097                 new MethodSymbol(tree.flags | BLOCK |
1098                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1099                     env.info.scope.owner);
1100             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1101 
1102             // Attribute all type annotations in the block
1103             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1104             annotate.flush();
1105 
1106             {
1107                 // Store init and clinit type annotations with the ClassSymbol
1108                 // to allow output in Gen.normalizeDefs.
1109                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1110                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1111                 if ((tree.flags & STATIC) != 0) {
1112                     cs.appendClassInitTypeAttributes(tas);
1113                 } else {
1114                     cs.appendInitTypeAttributes(tas);
1115                 }
1116             }
1117 
1118             attribStats(tree.stats, localEnv);
1119         } else {
1120             // Create a new local environment with a local scope.
1121             Env<AttrContext> localEnv =
1122                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1123             try {
1124                 attribStats(tree.stats, localEnv);
1125             } finally {
1126                 localEnv.info.scope.leave();
1127             }
1128         }
1129         result = null;
1130     }
1131 
visitDoLoop(JCDoWhileLoop tree)1132     public void visitDoLoop(JCDoWhileLoop tree) {
1133         attribStat(tree.body, env.dup(tree));
1134         attribExpr(tree.cond, env, syms.booleanType);
1135         result = null;
1136     }
1137 
visitWhileLoop(JCWhileLoop tree)1138     public void visitWhileLoop(JCWhileLoop tree) {
1139         attribExpr(tree.cond, env, syms.booleanType);
1140         attribStat(tree.body, env.dup(tree));
1141         result = null;
1142     }
1143 
visitForLoop(JCForLoop tree)1144     public void visitForLoop(JCForLoop tree) {
1145         Env<AttrContext> loopEnv =
1146             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1147         try {
1148             attribStats(tree.init, loopEnv);
1149             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1150             loopEnv.tree = tree; // before, we were not in loop!
1151             attribStats(tree.step, loopEnv);
1152             attribStat(tree.body, loopEnv);
1153             result = null;
1154         }
1155         finally {
1156             loopEnv.info.scope.leave();
1157         }
1158     }
1159 
visitForeachLoop(JCEnhancedForLoop tree)1160     public void visitForeachLoop(JCEnhancedForLoop tree) {
1161         Env<AttrContext> loopEnv =
1162             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1163         try {
1164             //the Formal Parameter of a for-each loop is not in the scope when
1165             //attributing the for-each expression; we mimick this by attributing
1166             //the for-each expression first (against original scope).
1167             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1168             attribStat(tree.var, loopEnv);
1169             chk.checkNonVoid(tree.pos(), exprType);
1170             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1171             if (elemtype == null) {
1172                 // or perhaps expr implements Iterable<T>?
1173                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1174                 if (base == null) {
1175                     log.error(tree.expr.pos(),
1176                             "foreach.not.applicable.to.type",
1177                             exprType,
1178                             diags.fragment("type.req.array.or.iterable"));
1179                     elemtype = types.createErrorType(exprType);
1180                 } else {
1181                     List<Type> iterableParams = base.allparams();
1182                     elemtype = iterableParams.isEmpty()
1183                         ? syms.objectType
1184                         : types.wildUpperBound(iterableParams.head);
1185                 }
1186             }
1187             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1188             loopEnv.tree = tree; // before, we were not in loop!
1189             attribStat(tree.body, loopEnv);
1190             result = null;
1191         }
1192         finally {
1193             loopEnv.info.scope.leave();
1194         }
1195     }
1196 
visitLabelled(JCLabeledStatement tree)1197     public void visitLabelled(JCLabeledStatement tree) {
1198         // Check that label is not used in an enclosing statement
1199         Env<AttrContext> env1 = env;
1200         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1201             if (env1.tree.hasTag(LABELLED) &&
1202                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1203                 log.error(tree.pos(), "label.already.in.use",
1204                           tree.label);
1205                 break;
1206             }
1207             env1 = env1.next;
1208         }
1209 
1210         attribStat(tree.body, env.dup(tree));
1211         result = null;
1212     }
1213 
visitSwitch(JCSwitch tree)1214     public void visitSwitch(JCSwitch tree) {
1215         Type seltype = attribExpr(tree.selector, env);
1216 
1217         Env<AttrContext> switchEnv =
1218             env.dup(tree, env.info.dup(env.info.scope.dup()));
1219 
1220         try {
1221 
1222             boolean enumSwitch =
1223                 allowEnums &&
1224                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1225             boolean stringSwitch = false;
1226             if (types.isSameType(seltype, syms.stringType)) {
1227                 if (allowStringsInSwitch) {
1228                     stringSwitch = true;
1229                 } else {
1230                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1231                 }
1232             }
1233             if (!enumSwitch && !stringSwitch)
1234                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1235 
1236             // Attribute all cases and
1237             // check that there are no duplicate case labels or default clauses.
1238             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1239             boolean hasDefault = false;      // Is there a default label?
1240             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1241                 JCCase c = l.head;
1242                 Env<AttrContext> caseEnv =
1243                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1244                 try {
1245                     if (c.pat != null) {
1246                         if (enumSwitch) {
1247                             Symbol sym = enumConstant(c.pat, seltype);
1248                             if (sym == null) {
1249                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1250                             } else if (!labels.add(sym)) {
1251                                 log.error(c.pos(), "duplicate.case.label");
1252                             }
1253                         } else {
1254                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1255                             if (!pattype.hasTag(ERROR)) {
1256                                 if (pattype.constValue() == null) {
1257                                     log.error(c.pat.pos(),
1258                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1259                                 } else if (labels.contains(pattype.constValue())) {
1260                                     log.error(c.pos(), "duplicate.case.label");
1261                                 } else {
1262                                     labels.add(pattype.constValue());
1263                                 }
1264                             }
1265                         }
1266                     } else if (hasDefault) {
1267                         log.error(c.pos(), "duplicate.default.label");
1268                     } else {
1269                         hasDefault = true;
1270                     }
1271                     attribStats(c.stats, caseEnv);
1272                 } finally {
1273                     caseEnv.info.scope.leave();
1274                     addVars(c.stats, switchEnv.info.scope);
1275                 }
1276             }
1277 
1278             result = null;
1279         }
1280         finally {
1281             switchEnv.info.scope.leave();
1282         }
1283     }
1284     // where
1285         /** Add any variables defined in stats to the switch scope. */
addVars(List<JCStatement> stats, Scope switchScope)1286         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1287             for (;stats.nonEmpty(); stats = stats.tail) {
1288                 JCTree stat = stats.head;
1289                 if (stat.hasTag(VARDEF))
1290                     switchScope.enter(((JCVariableDecl) stat).sym);
1291             }
1292         }
1293     // where
1294     /** Return the selected enumeration constant symbol, or null. */
enumConstant(JCTree tree, Type enumType)1295     private Symbol enumConstant(JCTree tree, Type enumType) {
1296         if (!tree.hasTag(IDENT)) {
1297             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1298             return syms.errSymbol;
1299         }
1300         JCIdent ident = (JCIdent)tree;
1301         Name name = ident.name;
1302         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1303              e.scope != null; e = e.next()) {
1304             if (e.sym.kind == VAR) {
1305                 Symbol s = ident.sym = e.sym;
1306                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1307                 ident.type = s.type;
1308                 return ((s.flags_field & Flags.ENUM) == 0)
1309                     ? null : s;
1310             }
1311         }
1312         return null;
1313     }
1314 
visitSynchronized(JCSynchronized tree)1315     public void visitSynchronized(JCSynchronized tree) {
1316         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1317         attribStat(tree.body, env);
1318         result = null;
1319     }
1320 
visitTry(JCTry tree)1321     public void visitTry(JCTry tree) {
1322         // Create a new local environment with a local
1323         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1324         try {
1325             boolean isTryWithResource = tree.resources.nonEmpty();
1326             // Create a nested environment for attributing the try block if needed
1327             Env<AttrContext> tryEnv = isTryWithResource ?
1328                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1329                 localEnv;
1330             try {
1331                 // Attribute resource declarations
1332                 for (JCTree resource : tree.resources) {
1333                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1334                         @Override
1335                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1336                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1337                         }
1338                     };
1339                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1340                     if (resource.hasTag(VARDEF)) {
1341                         attribStat(resource, tryEnv);
1342                         twrResult.check(resource, resource.type);
1343 
1344                         //check that resource type cannot throw InterruptedException
1345                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1346 
1347                         VarSymbol var = ((JCVariableDecl) resource).sym;
1348                         var.setData(ElementKind.RESOURCE_VARIABLE);
1349                     } else {
1350                         attribTree(resource, tryEnv, twrResult);
1351                     }
1352                 }
1353                 // Attribute body
1354                 attribStat(tree.body, tryEnv);
1355             } finally {
1356                 if (isTryWithResource)
1357                     tryEnv.info.scope.leave();
1358             }
1359 
1360             // Attribute catch clauses
1361             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1362                 JCCatch c = l.head;
1363                 Env<AttrContext> catchEnv =
1364                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1365                 try {
1366                     Type ctype = attribStat(c.param, catchEnv);
1367                     if (TreeInfo.isMultiCatch(c)) {
1368                         //multi-catch parameter is implicitly marked as final
1369                         c.param.sym.flags_field |= FINAL | UNION;
1370                     }
1371                     if (c.param.sym.kind == Kinds.VAR) {
1372                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1373                     }
1374                     chk.checkType(c.param.vartype.pos(),
1375                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1376                                   syms.throwableType);
1377                     attribStat(c.body, catchEnv);
1378                 } finally {
1379                     catchEnv.info.scope.leave();
1380                 }
1381             }
1382 
1383             // Attribute finalizer
1384             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1385             result = null;
1386         }
1387         finally {
1388             localEnv.info.scope.leave();
1389         }
1390     }
1391 
checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource)1392     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1393         if (!resource.isErroneous() &&
1394             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1395             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1396             Symbol close = syms.noSymbol;
1397             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1398             try {
1399                 close = rs.resolveQualifiedMethod(pos,
1400                         env,
1401                         resource,
1402                         names.close,
1403                         List.<Type>nil(),
1404                         List.<Type>nil());
1405             }
1406             finally {
1407                 log.popDiagnosticHandler(discardHandler);
1408             }
1409             if (close.kind == MTH &&
1410                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1411                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1412                     env.info.lint.isEnabled(LintCategory.TRY)) {
1413                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1414             }
1415         }
1416     }
1417 
visitConditional(JCConditional tree)1418     public void visitConditional(JCConditional tree) {
1419         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1420 
1421         tree.polyKind = (!allowPoly ||
1422                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1423                 isBooleanOrNumeric(env, tree)) ?
1424                 PolyKind.STANDALONE : PolyKind.POLY;
1425 
1426         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1427             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1428             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1429             result = tree.type = types.createErrorType(resultInfo.pt);
1430             return;
1431         }
1432 
1433         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1434                 unknownExprInfo :
1435                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1436                     //this will use enclosing check context to check compatibility of
1437                     //subexpression against target type; if we are in a method check context,
1438                     //depending on whether boxing is allowed, we could have incompatibilities
1439                     @Override
1440                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1441                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1442                     }
1443                 });
1444 
1445         Type truetype = attribTree(tree.truepart, env, condInfo);
1446         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1447 
1448         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1449         if (condtype.constValue() != null &&
1450                 truetype.constValue() != null &&
1451                 falsetype.constValue() != null &&
1452                 !owntype.hasTag(NONE)) {
1453             //constant folding
1454             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1455         }
1456         result = check(tree, owntype, VAL, resultInfo);
1457     }
1458     //where
isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree)1459         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1460             switch (tree.getTag()) {
1461                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1462                               ((JCLiteral)tree).typetag == BOOLEAN ||
1463                               ((JCLiteral)tree).typetag == BOT;
1464                 case LAMBDA: case REFERENCE: return false;
1465                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1466                 case CONDEXPR:
1467                     JCConditional condTree = (JCConditional)tree;
1468                     return isBooleanOrNumeric(env, condTree.truepart) &&
1469                             isBooleanOrNumeric(env, condTree.falsepart);
1470                 case APPLY:
1471                     JCMethodInvocation speculativeMethodTree =
1472                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1473                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
1474                     return types.unboxedTypeOrType(owntype).isPrimitive();
1475                 case NEWCLASS:
1476                     JCExpression className =
1477                             removeClassParams.translate(((JCNewClass)tree).clazz);
1478                     JCExpression speculativeNewClassTree =
1479                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1480                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
1481                 default:
1482                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1483                     speculativeType = types.unboxedTypeOrType(speculativeType);
1484                     return speculativeType.isPrimitive();
1485             }
1486         }
1487         //where
1488             TreeTranslator removeClassParams = new TreeTranslator() {
1489                 @Override
1490                 public void visitTypeApply(JCTypeApply tree) {
1491                     result = translate(tree.clazz);
1492                 }
1493             };
1494 
1495         /** Compute the type of a conditional expression, after
1496          *  checking that it exists.  See JLS 15.25. Does not take into
1497          *  account the special case where condition and both arms
1498          *  are constants.
1499          *
1500          *  @param pos      The source position to be used for error
1501          *                  diagnostics.
1502          *  @param thentype The type of the expression's then-part.
1503          *  @param elsetype The type of the expression's else-part.
1504          */
condType(DiagnosticPosition pos, Type thentype, Type elsetype)1505         private Type condType(DiagnosticPosition pos,
1506                                Type thentype, Type elsetype) {
1507             // If same type, that is the result
1508             if (types.isSameType(thentype, elsetype))
1509                 return thentype.baseType();
1510 
1511             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1512                 ? thentype : types.unboxedType(thentype);
1513             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1514                 ? elsetype : types.unboxedType(elsetype);
1515 
1516             // Otherwise, if both arms can be converted to a numeric
1517             // type, return the least numeric type that fits both arms
1518             // (i.e. return larger of the two, or return int if one
1519             // arm is short, the other is char).
1520             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1521                 // If one arm has an integer subrange type (i.e., byte,
1522                 // short, or char), and the other is an integer constant
1523                 // that fits into the subrange, return the subrange type.
1524                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1525                     elseUnboxed.hasTag(INT) &&
1526                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1527                     return thenUnboxed.baseType();
1528                 }
1529                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1530                     thenUnboxed.hasTag(INT) &&
1531                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1532                     return elseUnboxed.baseType();
1533                 }
1534 
1535                 for (TypeTag tag : primitiveTags) {
1536                     Type candidate = syms.typeOfTag[tag.ordinal()];
1537                     if (types.isSubtype(thenUnboxed, candidate) &&
1538                         types.isSubtype(elseUnboxed, candidate)) {
1539                         return candidate;
1540                     }
1541                 }
1542             }
1543 
1544             // Those were all the cases that could result in a primitive
1545             if (allowBoxing) {
1546                 if (thentype.isPrimitive())
1547                     thentype = types.boxedClass(thentype).type;
1548                 if (elsetype.isPrimitive())
1549                     elsetype = types.boxedClass(elsetype).type;
1550             }
1551 
1552             if (types.isSubtype(thentype, elsetype))
1553                 return elsetype.baseType();
1554             if (types.isSubtype(elsetype, thentype))
1555                 return thentype.baseType();
1556 
1557             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1558                 log.error(pos, "neither.conditional.subtype",
1559                           thentype, elsetype);
1560                 return thentype.baseType();
1561             }
1562 
1563             // both are known to be reference types.  The result is
1564             // lub(thentype,elsetype). This cannot fail, as it will
1565             // always be possible to infer "Object" if nothing better.
1566             return types.lub(thentype.baseType(), elsetype.baseType());
1567         }
1568 
1569     final static TypeTag[] primitiveTags = new TypeTag[]{
1570         BYTE,
1571         CHAR,
1572         SHORT,
1573         INT,
1574         LONG,
1575         FLOAT,
1576         DOUBLE,
1577         BOOLEAN,
1578     };
1579 
visitIf(JCIf tree)1580     public void visitIf(JCIf tree) {
1581         attribExpr(tree.cond, env, syms.booleanType);
1582         attribStat(tree.thenpart, env);
1583         if (tree.elsepart != null)
1584             attribStat(tree.elsepart, env);
1585         chk.checkEmptyIf(tree);
1586         result = null;
1587     }
1588 
visitExec(JCExpressionStatement tree)1589     public void visitExec(JCExpressionStatement tree) {
1590         //a fresh environment is required for 292 inference to work properly ---
1591         //see Infer.instantiatePolymorphicSignatureInstance()
1592         Env<AttrContext> localEnv = env.dup(tree);
1593         attribExpr(tree.expr, localEnv);
1594         result = null;
1595     }
1596 
visitBreak(JCBreak tree)1597     public void visitBreak(JCBreak tree) {
1598         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1599         result = null;
1600     }
1601 
visitContinue(JCContinue tree)1602     public void visitContinue(JCContinue tree) {
1603         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1604         result = null;
1605     }
1606     //where
1607         /** Return the target of a break or continue statement, if it exists,
1608          *  report an error if not.
1609          *  Note: The target of a labelled break or continue is the
1610          *  (non-labelled) statement tree referred to by the label,
1611          *  not the tree representing the labelled statement itself.
1612          *
1613          *  @param pos     The position to be used for error diagnostics
1614          *  @param tag     The tag of the jump statement. This is either
1615          *                 Tree.BREAK or Tree.CONTINUE.
1616          *  @param label   The label of the jump statement, or null if no
1617          *                 label is given.
1618          *  @param env     The environment current at the jump statement.
1619          */
findJumpTarget(DiagnosticPosition pos, JCTree.Tag tag, Name label, Env<AttrContext> env)1620         private JCTree findJumpTarget(DiagnosticPosition pos,
1621                                     JCTree.Tag tag,
1622                                     Name label,
1623                                     Env<AttrContext> env) {
1624             // Search environments outwards from the point of jump.
1625             Env<AttrContext> env1 = env;
1626             LOOP:
1627             while (env1 != null) {
1628                 switch (env1.tree.getTag()) {
1629                     case LABELLED:
1630                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1631                         if (label == labelled.label) {
1632                             // If jump is a continue, check that target is a loop.
1633                             if (tag == CONTINUE) {
1634                                 if (!labelled.body.hasTag(DOLOOP) &&
1635                                         !labelled.body.hasTag(WHILELOOP) &&
1636                                         !labelled.body.hasTag(FORLOOP) &&
1637                                         !labelled.body.hasTag(FOREACHLOOP))
1638                                     log.error(pos, "not.loop.label", label);
1639                                 // Found labelled statement target, now go inwards
1640                                 // to next non-labelled tree.
1641                                 return TreeInfo.referencedStatement(labelled);
1642                             } else {
1643                                 return labelled;
1644                             }
1645                         }
1646                         break;
1647                     case DOLOOP:
1648                     case WHILELOOP:
1649                     case FORLOOP:
1650                     case FOREACHLOOP:
1651                         if (label == null) return env1.tree;
1652                         break;
1653                     case SWITCH:
1654                         if (label == null && tag == BREAK) return env1.tree;
1655                         break;
1656                     case LAMBDA:
1657                     case METHODDEF:
1658                     case CLASSDEF:
1659                         break LOOP;
1660                     default:
1661                 }
1662                 env1 = env1.next;
1663             }
1664             if (label != null)
1665                 log.error(pos, "undef.label", label);
1666             else if (tag == CONTINUE)
1667                 log.error(pos, "cont.outside.loop");
1668             else
1669                 log.error(pos, "break.outside.switch.loop");
1670             return null;
1671         }
1672 
visitReturn(JCReturn tree)1673     public void visitReturn(JCReturn tree) {
1674         // Check that there is an enclosing method which is
1675         // nested within than the enclosing class.
1676         if (env.info.returnResult == null) {
1677             log.error(tree.pos(), "ret.outside.meth");
1678         } else {
1679             // Attribute return expression, if it exists, and check that
1680             // it conforms to result type of enclosing method.
1681             if (tree.expr != null) {
1682                 if (env.info.returnResult.pt.hasTag(VOID)) {
1683                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1684                               diags.fragment("unexpected.ret.val"));
1685                 }
1686                 attribTree(tree.expr, env, env.info.returnResult);
1687             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1688                     !env.info.returnResult.pt.hasTag(NONE)) {
1689                 env.info.returnResult.checkContext.report(tree.pos(),
1690                               diags.fragment("missing.ret.val"));
1691             }
1692         }
1693         result = null;
1694     }
1695 
visitThrow(JCThrow tree)1696     public void visitThrow(JCThrow tree) {
1697         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1698         if (allowPoly) {
1699             chk.checkType(tree, owntype, syms.throwableType);
1700         }
1701         result = null;
1702     }
1703 
visitAssert(JCAssert tree)1704     public void visitAssert(JCAssert tree) {
1705         attribExpr(tree.cond, env, syms.booleanType);
1706         if (tree.detail != null) {
1707             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1708         }
1709         result = null;
1710     }
1711 
1712      /** Visitor method for method invocations.
1713      *  NOTE: The method part of an application will have in its type field
1714      *        the return type of the method, not the method's type itself!
1715      */
visitApply(JCMethodInvocation tree)1716     public void visitApply(JCMethodInvocation tree) {
1717         // The local environment of a method application is
1718         // a new environment nested in the current one.
1719         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1720 
1721         // The types of the actual method arguments.
1722         List<Type> argtypes;
1723 
1724         // The types of the actual method type arguments.
1725         List<Type> typeargtypes = null;
1726 
1727         Name methName = TreeInfo.name(tree.meth);
1728 
1729         boolean isConstructorCall =
1730             methName == names._this || methName == names._super;
1731 
1732         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1733         if (isConstructorCall) {
1734             // We are seeing a ...this(...) or ...super(...) call.
1735             // Check that this is the first statement in a constructor.
1736             if (checkFirstConstructorStat(tree, env)) {
1737 
1738                 // Record the fact
1739                 // that this is a constructor call (using isSelfCall).
1740                 localEnv.info.isSelfCall = true;
1741 
1742                 // Attribute arguments, yielding list of argument types.
1743                 int kind = attribArgs(MTH, tree.args, localEnv, argtypesBuf);
1744                 argtypes = argtypesBuf.toList();
1745                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1746 
1747                 // Variable `site' points to the class in which the called
1748                 // constructor is defined.
1749                 Type site = env.enclClass.sym.type;
1750                 if (methName == names._super) {
1751                     if (site == syms.objectType) {
1752                         log.error(tree.meth.pos(), "no.superclass", site);
1753                         site = types.createErrorType(syms.objectType);
1754                     } else {
1755                         site = types.supertype(site);
1756                     }
1757                 }
1758 
1759                 if (site.hasTag(CLASS)) {
1760                     Type encl = site.getEnclosingType();
1761                     while (encl != null && encl.hasTag(TYPEVAR))
1762                         encl = encl.getUpperBound();
1763                     if (encl.hasTag(CLASS)) {
1764                         // we are calling a nested class
1765 
1766                         if (tree.meth.hasTag(SELECT)) {
1767                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1768 
1769                             // We are seeing a prefixed call, of the form
1770                             //     <expr>.super(...).
1771                             // Check that the prefix expression conforms
1772                             // to the outer instance type of the class.
1773                             chk.checkRefType(qualifier.pos(),
1774                                              attribExpr(qualifier, localEnv,
1775                                                         encl));
1776                         } else if (methName == names._super) {
1777                             // qualifier omitted; check for existence
1778                             // of an appropriate implicit qualifier.
1779                             rs.resolveImplicitThis(tree.meth.pos(),
1780                                                    localEnv, site, true);
1781                         }
1782                     } else if (tree.meth.hasTag(SELECT)) {
1783                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1784                                   site.tsym);
1785                     }
1786 
1787                     // if we're calling a java.lang.Enum constructor,
1788                     // prefix the implicit String and int parameters
1789                     if (site.tsym == syms.enumSym && allowEnums)
1790                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1791 
1792                     // Resolve the called constructor under the assumption
1793                     // that we are referring to a superclass instance of the
1794                     // current instance (JLS ???).
1795                     boolean selectSuperPrev = localEnv.info.selectSuper;
1796                     localEnv.info.selectSuper = true;
1797                     localEnv.info.pendingResolutionPhase = null;
1798                     Symbol sym = rs.resolveConstructor(
1799                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1800                     localEnv.info.selectSuper = selectSuperPrev;
1801 
1802                     // Set method symbol to resolved constructor...
1803                     TreeInfo.setSymbol(tree.meth, sym);
1804 
1805                     // ...and check that it is legal in the current context.
1806                     // (this will also set the tree's type)
1807                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1808                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(kind, mpt));
1809                 }
1810                 // Otherwise, `site' is an error type and we do nothing
1811             }
1812             result = tree.type = syms.voidType;
1813         } else {
1814             // Otherwise, we are seeing a regular method call.
1815             // Attribute the arguments, yielding list of argument types, ...
1816             int kind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
1817             argtypes = argtypesBuf.toList();
1818             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1819 
1820             // ... and attribute the method using as a prototype a methodtype
1821             // whose formal argument types is exactly the list of actual
1822             // arguments (this will also set the method symbol).
1823             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1824             localEnv.info.pendingResolutionPhase = null;
1825             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1826 
1827             // Compute the result type.
1828             Type restype = mtype.getReturnType();
1829             if (restype.hasTag(WILDCARD))
1830                 throw new AssertionError(mtype);
1831 
1832             Type qualifier = (tree.meth.hasTag(SELECT))
1833                     ? ((JCFieldAccess) tree.meth).selected.type
1834                     : env.enclClass.sym.type;
1835             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1836 
1837             chk.checkRefTypes(tree.typeargs, typeargtypes);
1838 
1839             // Check that value of resulting type is admissible in the
1840             // current context.  Also, capture the return type
1841             result = check(tree, capture(restype), VAL, resultInfo);
1842         }
1843         chk.validate(tree.typeargs, localEnv);
1844     }
1845     //where
adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype)1846         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1847             if (allowCovariantReturns &&
1848                     methodName == names.clone &&
1849                 types.isArray(qualifierType)) {
1850                 // as a special case, array.clone() has a result that is
1851                 // the same as static type of the array being cloned
1852                 return qualifierType;
1853             } else if (allowGenerics &&
1854                     methodName == names.getClass &&
1855                     argtypes.isEmpty()) {
1856                 // as a special case, x.getClass() has type Class<? extends |X|>
1857                 return new ClassType(restype.getEnclosingType(),
1858                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1859                                                                BoundKind.EXTENDS,
1860                                                                syms.boundClass)),
1861                               restype.tsym);
1862             } else {
1863                 return restype;
1864             }
1865         }
1866 
1867         /** Check that given application node appears as first statement
1868          *  in a constructor call.
1869          *  @param tree   The application node
1870          *  @param env    The environment current at the application.
1871          */
checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env)1872         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1873             JCMethodDecl enclMethod = env.enclMethod;
1874             if (enclMethod != null && enclMethod.name == names.init) {
1875                 JCBlock body = enclMethod.body;
1876                 if (body.stats.head.hasTag(EXEC) &&
1877                     ((JCExpressionStatement) body.stats.head).expr == tree)
1878                     return true;
1879             }
1880             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1881                       TreeInfo.name(tree.meth));
1882             return false;
1883         }
1884 
1885         /** Obtain a method type with given argument types.
1886          */
newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes)1887         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1888             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1889             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1890         }
1891 
visitNewClass(final JCNewClass tree)1892     public void visitNewClass(final JCNewClass tree) {
1893         Type owntype = types.createErrorType(tree.type);
1894 
1895         // The local environment of a class creation is
1896         // a new environment nested in the current one.
1897         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1898 
1899         // The anonymous inner class definition of the new expression,
1900         // if one is defined by it.
1901         JCClassDecl cdef = tree.def;
1902 
1903         // If enclosing class is given, attribute it, and
1904         // complete class name to be fully qualified
1905         JCExpression clazz = tree.clazz; // Class field following new
1906         JCExpression clazzid;            // Identifier in class field
1907         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1908         annoclazzid = null;
1909 
1910         if (clazz.hasTag(TYPEAPPLY)) {
1911             clazzid = ((JCTypeApply) clazz).clazz;
1912             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1913                 annoclazzid = (JCAnnotatedType) clazzid;
1914                 clazzid = annoclazzid.underlyingType;
1915             }
1916         } else {
1917             if (clazz.hasTag(ANNOTATED_TYPE)) {
1918                 annoclazzid = (JCAnnotatedType) clazz;
1919                 clazzid = annoclazzid.underlyingType;
1920             } else {
1921                 clazzid = clazz;
1922             }
1923         }
1924 
1925         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1926 
1927         if (tree.encl != null) {
1928             // We are seeing a qualified new, of the form
1929             //    <expr>.new C <...> (...) ...
1930             // In this case, we let clazz stand for the name of the
1931             // allocated class C prefixed with the type of the qualifier
1932             // expression, so that we can
1933             // resolve it with standard techniques later. I.e., if
1934             // <expr> has type T, then <expr>.new C <...> (...)
1935             // yields a clazz T.C.
1936             Type encltype = chk.checkRefType(tree.encl.pos(),
1937                                              attribExpr(tree.encl, env));
1938             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1939             // from expr to the combined type, or not? Yes, do this.
1940             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1941                                                  ((JCIdent) clazzid).name);
1942 
1943             EndPosTable endPosTable = this.env.toplevel.endPositions;
1944             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1945             if (clazz.hasTag(ANNOTATED_TYPE)) {
1946                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1947                 List<JCAnnotation> annos = annoType.annotations;
1948 
1949                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1950                     clazzid1 = make.at(tree.pos).
1951                         TypeApply(clazzid1,
1952                                   ((JCTypeApply) clazz).arguments);
1953                 }
1954 
1955                 clazzid1 = make.at(tree.pos).
1956                     AnnotatedType(annos, clazzid1);
1957             } else if (clazz.hasTag(TYPEAPPLY)) {
1958                 clazzid1 = make.at(tree.pos).
1959                     TypeApply(clazzid1,
1960                               ((JCTypeApply) clazz).arguments);
1961             }
1962 
1963             clazz = clazzid1;
1964         }
1965 
1966         // Attribute clazz expression and store
1967         // symbol + type back into the attributed tree.
1968         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1969             attribIdentAsEnumType(env, (JCIdent)clazz) :
1970             attribType(clazz, env);
1971 
1972         clazztype = chk.checkDiamond(tree, clazztype);
1973         chk.validate(clazz, localEnv);
1974         if (tree.encl != null) {
1975             // We have to work in this case to store
1976             // symbol + type back into the attributed tree.
1977             tree.clazz.type = clazztype;
1978             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1979             clazzid.type = ((JCIdent) clazzid).sym.type;
1980             if (annoclazzid != null) {
1981                 annoclazzid.type = clazzid.type;
1982             }
1983             if (!clazztype.isErroneous()) {
1984                 if (cdef != null && clazztype.tsym.isInterface()) {
1985                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1986                 } else if (clazztype.tsym.isStatic()) {
1987                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1988                 }
1989             }
1990         } else if (!clazztype.tsym.isInterface() &&
1991                    clazztype.getEnclosingType().hasTag(CLASS)) {
1992             // Check for the existence of an apropos outer instance
1993             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1994         }
1995 
1996         // Attribute constructor arguments.
1997         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1998         int pkind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
1999         List<Type> argtypes = argtypesBuf.toList();
2000         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2001 
2002         // If we have made no mistakes in the class type...
2003         if (clazztype.hasTag(CLASS)) {
2004             // Enums may not be instantiated except implicitly
2005             if (allowEnums &&
2006                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
2007                 (!env.tree.hasTag(VARDEF) ||
2008                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
2009                  ((JCVariableDecl) env.tree).init != tree))
2010                 log.error(tree.pos(), "enum.cant.be.instantiated");
2011             // Check that class is not abstract
2012             if (cdef == null &&
2013                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2014                 log.error(tree.pos(), "abstract.cant.be.instantiated",
2015                           clazztype.tsym);
2016             } else if (cdef != null && clazztype.tsym.isInterface()) {
2017                 // Check that no constructor arguments are given to
2018                 // anonymous classes implementing an interface
2019                 if (!argtypes.isEmpty())
2020                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2021 
2022                 if (!typeargtypes.isEmpty())
2023                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2024 
2025                 // Error recovery: pretend no arguments were supplied.
2026                 argtypes = List.nil();
2027                 typeargtypes = List.nil();
2028             } else if (TreeInfo.isDiamond(tree)) {
2029                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2030                             clazztype.tsym.type.getTypeArguments(),
2031                             clazztype.tsym);
2032 
2033                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2034                 diamondEnv.info.selectSuper = cdef != null;
2035                 diamondEnv.info.pendingResolutionPhase = null;
2036 
2037                 //if the type of the instance creation expression is a class type
2038                 //apply method resolution inference (JLS 15.12.2.7). The return type
2039                 //of the resolved constructor will be a partially instantiated type
2040                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2041                             diamondEnv,
2042                             site,
2043                             argtypes,
2044                             typeargtypes);
2045                 tree.constructor = constructor.baseSymbol();
2046 
2047                 final TypeSymbol csym = clazztype.tsym;
2048                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2049                     @Override
2050                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2051                         enclosingContext.report(tree.clazz,
2052                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2053                     }
2054                 });
2055                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2056                 constructorType = checkId(noCheckTree, site,
2057                         constructor,
2058                         diamondEnv,
2059                         diamondResult);
2060 
2061                 tree.clazz.type = types.createErrorType(clazztype);
2062                 if (!constructorType.isErroneous()) {
2063                     tree.clazz.type = clazztype = constructorType.getReturnType();
2064                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2065                 }
2066                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2067             }
2068 
2069             // Resolve the called constructor under the assumption
2070             // that we are referring to a superclass instance of the
2071             // current instance (JLS ???).
2072             else {
2073                 //the following code alters some of the fields in the current
2074                 //AttrContext - hence, the current context must be dup'ed in
2075                 //order to avoid downstream failures
2076                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2077                 rsEnv.info.selectSuper = cdef != null;
2078                 rsEnv.info.pendingResolutionPhase = null;
2079                 tree.constructor = rs.resolveConstructor(
2080                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2081                 if (cdef == null) { //do not check twice!
2082                     tree.constructorType = checkId(noCheckTree,
2083                             clazztype,
2084                             tree.constructor,
2085                             rsEnv,
2086                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2087                     if (rsEnv.info.lastResolveVarargs())
2088                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2089                 }
2090                 if (cdef == null &&
2091                         !clazztype.isErroneous() &&
2092                         clazztype.getTypeArguments().nonEmpty() &&
2093                         findDiamonds) {
2094                     findDiamond(localEnv, tree, clazztype);
2095                 }
2096             }
2097 
2098             if (cdef != null) {
2099                 // We are seeing an anonymous class instance creation.
2100                 // In this case, the class instance creation
2101                 // expression
2102                 //
2103                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2104                 //
2105                 // is represented internally as
2106                 //
2107                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2108                 //
2109                 // This expression is then *transformed* as follows:
2110                 //
2111                 // (1) add a STATIC flag to the class definition
2112                 //     if the current environment is static
2113                 // (2) add an extends or implements clause
2114                 // (3) add a constructor.
2115                 //
2116                 // For instance, if C is a class, and ET is the type of E,
2117                 // the expression
2118                 //
2119                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2120                 //
2121                 // is translated to (where X is a fresh name and typarams is the
2122                 // parameter list of the super constructor):
2123                 //
2124                 //   new <typeargs1>X(<*nullchk*>E, args) where
2125                 //     X extends C<typargs2> {
2126                 //       <typarams> X(ET e, args) {
2127                 //         e.<typeargs1>super(args)
2128                 //       }
2129                 //       ...
2130                 //     }
2131                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2132 
2133                 if (clazztype.tsym.isInterface()) {
2134                     cdef.implementing = List.of(clazz);
2135                 } else {
2136                     cdef.extending = clazz;
2137                 }
2138 
2139                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2140                     isSerializable(clazztype)) {
2141                     localEnv.info.isSerializable = true;
2142                 }
2143 
2144                 attribStat(cdef, localEnv);
2145 
2146                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2147 
2148                 // If an outer instance is given,
2149                 // prefix it to the constructor arguments
2150                 // and delete it from the new expression
2151                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2152                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2153                     argtypes = argtypes.prepend(tree.encl.type);
2154                     tree.encl = null;
2155                 }
2156 
2157                 // Reassign clazztype and recompute constructor.
2158                 clazztype = cdef.sym.type;
2159                 Symbol sym = tree.constructor = rs.resolveConstructor(
2160                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2161                 Assert.check(sym.kind < AMBIGUOUS);
2162                 tree.constructor = sym;
2163                 tree.constructorType = checkId(noCheckTree,
2164                     clazztype,
2165                     tree.constructor,
2166                     localEnv,
2167                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2168             }
2169 
2170             if (tree.constructor != null && tree.constructor.kind == MTH)
2171                 owntype = clazztype;
2172         }
2173         result = check(tree, owntype, VAL, resultInfo);
2174         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2175         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2176             //we need to wait for inference to finish and then replace inference vars in the constructor type
2177             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2178                     new FreeTypeListener() {
2179                         @Override
2180                         public void typesInferred(InferenceContext instantiatedContext) {
2181                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2182                         }
2183                     });
2184         }
2185         chk.validate(tree.typeargs, localEnv);
2186     }
2187     //where
2188         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2189             JCTypeApply ta = (JCTypeApply)tree.clazz;
2190             List<JCExpression> prevTypeargs = ta.arguments;
2191             try {
2192                 //create a 'fake' diamond AST node by removing type-argument trees
2193                 ta.arguments = List.nil();
2194                 ResultInfo findDiamondResult = new ResultInfo(VAL,
2195                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2196                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2197                 Type polyPt = allowPoly ?
2198                         syms.objectType :
2199                         clazztype;
2200                 if (!inferred.isErroneous() &&
2201                     (allowPoly && pt() == Infer.anyPoly ?
2202                         types.isSameType(inferred, clazztype) :
2203                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
2204                     String key = types.isSameType(clazztype, inferred) ?
2205                         "diamond.redundant.args" :
2206                         "diamond.redundant.args.1";
2207                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
2208                 }
2209             } finally {
2210                 ta.arguments = prevTypeargs;
2211             }
2212         }
2213 
2214             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2215                 if (allowLambda &&
2216                         identifyLambdaCandidate &&
2217                         clazztype.hasTag(CLASS) &&
2218                         !pt().hasTag(NONE) &&
2219                         types.isFunctionalInterface(clazztype.tsym)) {
2220                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2221                     int count = 0;
2222                     boolean found = false;
2223                     for (Symbol sym : csym.members().getElements()) {
2224                         if ((sym.flags() & SYNTHETIC) != 0 ||
2225                                 sym.isConstructor()) continue;
2226                         count++;
2227                         if (sym.kind != MTH ||
2228                                 !sym.name.equals(descriptor.name)) continue;
2229                         Type mtype = types.memberType(clazztype, sym);
2230                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2231                             found = true;
2232                         }
2233                     }
2234                     if (found && count == 1) {
2235                         log.note(tree.def, "potential.lambda.found");
2236                     }
2237                 }
2238             }
2239 
2240     /** Make an attributed null check tree.
2241      */
2242     public JCExpression makeNullCheck(JCExpression arg) {
2243         // optimization: X.this is never null; skip null check
2244         Name name = TreeInfo.name(arg);
2245         if (name == names._this || name == names._super) return arg;
2246 
2247         JCTree.Tag optag = NULLCHK;
2248         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2249         tree.operator = syms.nullcheck;
2250         tree.type = arg.type;
2251         return tree;
2252     }
2253 
2254     public void visitNewArray(JCNewArray tree) {
2255         Type owntype = types.createErrorType(tree.type);
2256         Env<AttrContext> localEnv = env.dup(tree);
2257         Type elemtype;
2258         if (tree.elemtype != null) {
2259             elemtype = attribType(tree.elemtype, localEnv);
2260             chk.validate(tree.elemtype, localEnv);
2261             owntype = elemtype;
2262             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2263                 attribExpr(l.head, localEnv, syms.intType);
2264                 owntype = new ArrayType(owntype, syms.arrayClass);
2265             }
2266         } else {
2267             // we are seeing an untyped aggregate { ... }
2268             // this is allowed only if the prototype is an array
2269             if (pt().hasTag(ARRAY)) {
2270                 elemtype = types.elemtype(pt());
2271             } else {
2272                 if (!pt().hasTag(ERROR)) {
2273                     log.error(tree.pos(), "illegal.initializer.for.type",
2274                               pt());
2275                 }
2276                 elemtype = types.createErrorType(pt());
2277             }
2278         }
2279         if (tree.elems != null) {
2280             attribExprs(tree.elems, localEnv, elemtype);
2281             owntype = new ArrayType(elemtype, syms.arrayClass);
2282         }
2283         if (!types.isReifiable(elemtype))
2284             log.error(tree.pos(), "generic.array.creation");
2285         result = check(tree, owntype, VAL, resultInfo);
2286     }
2287 
2288     /*
2289      * A lambda expression can only be attributed when a target-type is available.
2290      * In addition, if the target-type is that of a functional interface whose
2291      * descriptor contains inference variables in argument position the lambda expression
2292      * is 'stuck' (see DeferredAttr).
2293      */
2294     @Override
2295     public void visitLambda(final JCLambda that) {
2296         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2297             if (pt().hasTag(NONE)) {
2298                 //lambda only allowed in assignment or method invocation/cast context
2299                 log.error(that.pos(), "unexpected.lambda");
2300             }
2301             result = that.type = types.createErrorType(pt());
2302             return;
2303         }
2304         //create an environment for attribution of the lambda expression
2305         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2306         boolean needsRecovery =
2307                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2308         try {
2309             Type currentTarget = pt();
2310             if (needsRecovery && isSerializable(currentTarget)) {
2311                 localEnv.info.isSerializable = true;
2312             }
2313             List<Type> explicitParamTypes = null;
2314             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2315                 //attribute lambda parameters
2316                 attribStats(that.params, localEnv);
2317                 explicitParamTypes = TreeInfo.types(that.params);
2318             }
2319 
2320             Type lambdaType;
2321             if (pt() != Type.recoveryType) {
2322                 /* We need to adjust the target. If the target is an
2323                  * intersection type, for example: SAM & I1 & I2 ...
2324                  * the target will be updated to SAM
2325                  */
2326                 currentTarget = targetChecker.visit(currentTarget, that);
2327                 if (explicitParamTypes != null) {
2328                     currentTarget = infer.instantiateFunctionalInterface(that,
2329                             currentTarget, explicitParamTypes, resultInfo.checkContext);
2330                 }
2331                 currentTarget = types.removeWildcards(currentTarget);
2332                 lambdaType = types.findDescriptorType(currentTarget);
2333             } else {
2334                 currentTarget = Type.recoveryType;
2335                 lambdaType = fallbackDescriptorType(that);
2336             }
2337 
2338             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2339 
2340             if (lambdaType.hasTag(FORALL)) {
2341                 //lambda expression target desc cannot be a generic method
2342                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2343                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2344                 result = that.type = types.createErrorType(pt());
2345                 return;
2346             }
2347 
2348             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2349                 //add param type info in the AST
2350                 List<Type> actuals = lambdaType.getParameterTypes();
2351                 List<JCVariableDecl> params = that.params;
2352 
2353                 boolean arityMismatch = false;
2354 
2355                 while (params.nonEmpty()) {
2356                     if (actuals.isEmpty()) {
2357                         //not enough actuals to perform lambda parameter inference
2358                         arityMismatch = true;
2359                     }
2360                     //reset previously set info
2361                     Type argType = arityMismatch ?
2362                             syms.errType :
2363                             actuals.head;
2364                     params.head.vartype = make.at(params.head).Type(argType);
2365                     params.head.sym = null;
2366                     actuals = actuals.isEmpty() ?
2367                             actuals :
2368                             actuals.tail;
2369                     params = params.tail;
2370                 }
2371 
2372                 //attribute lambda parameters
2373                 attribStats(that.params, localEnv);
2374 
2375                 if (arityMismatch) {
2376                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2377                         result = that.type = types.createErrorType(currentTarget);
2378                         return;
2379                 }
2380             }
2381 
2382             //from this point on, no recovery is needed; if we are in assignment context
2383             //we will be able to attribute the whole lambda body, regardless of errors;
2384             //if we are in a 'check' method context, and the lambda is not compatible
2385             //with the target-type, it will be recovered anyway in Attr.checkId
2386             needsRecovery = false;
2387 
2388             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2389                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2390                     new FunctionalReturnContext(resultInfo.checkContext);
2391 
2392             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2393                 recoveryInfo :
2394                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2395             localEnv.info.returnResult = bodyResultInfo;
2396 
2397             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2398                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2399             } else {
2400                 JCBlock body = (JCBlock)that.body;
2401                 attribStats(body.stats, localEnv);
2402             }
2403 
2404             result = check(that, currentTarget, VAL, resultInfo);
2405 
2406             boolean isSpeculativeRound =
2407                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2408 
2409             preFlow(that);
2410             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2411 
2412             that.type = currentTarget; //avoids recovery at this stage
2413             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2414 
2415             if (!isSpeculativeRound) {
2416                 //add thrown types as bounds to the thrown types free variables if needed:
2417                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2418                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2419                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2420 
2421                     chk.unhandled(inferredThrownTypes, thrownTypes);
2422                 }
2423 
2424                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2425             }
2426             result = check(that, currentTarget, VAL, resultInfo);
2427         } catch (Types.FunctionDescriptorLookupError ex) {
2428             JCDiagnostic cause = ex.getDiagnostic();
2429             resultInfo.checkContext.report(that, cause);
2430             result = that.type = types.createErrorType(pt());
2431             return;
2432         } finally {
2433             localEnv.info.scope.leave();
2434             if (needsRecovery) {
2435                 attribTree(that, env, recoveryInfo);
2436             }
2437         }
2438     }
2439     //where
2440         void preFlow(JCLambda tree) {
2441             new PostAttrAnalyzer() {
2442                 @Override
2443                 public void scan(JCTree tree) {
2444                     if (tree == null ||
2445                             (tree.type != null &&
2446                             tree.type == Type.stuckType)) {
2447                         //don't touch stuck expressions!
2448                         return;
2449                     }
2450                     super.scan(tree);
2451                 }
2452             }.scan(tree);
2453         }
2454 
2455         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2456 
2457             @Override
2458             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2459                 return t.isIntersection() ?
2460                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2461             }
2462 
2463             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2464                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2465                 Type target = null;
2466                 for (Type bound : ict.getExplicitComponents()) {
2467                     TypeSymbol boundSym = bound.tsym;
2468                     if (types.isFunctionalInterface(boundSym) &&
2469                             types.findDescriptorSymbol(boundSym) == desc) {
2470                         target = bound;
2471                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2472                         //bound must be an interface
2473                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2474                     }
2475                 }
2476                 return target != null ?
2477                         target :
2478                         ict.getExplicitComponents().head; //error recovery
2479             }
2480 
2481             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2482                 ListBuffer<Type> targs = new ListBuffer<>();
2483                 ListBuffer<Type> supertypes = new ListBuffer<>();
2484                 for (Type i : ict.interfaces_field) {
2485                     if (i.isParameterized()) {
2486                         targs.appendList(i.tsym.type.allparams());
2487                     }
2488                     supertypes.append(i.tsym.type);
2489                 }
2490                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
2491                 notionalIntf.allparams_field = targs.toList();
2492                 notionalIntf.tsym.flags_field |= INTERFACE;
2493                 return notionalIntf.tsym;
2494             }
2495 
2496             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2497                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2498                         diags.fragment(key, args)));
2499             }
2500         };
2501 
2502         private Type fallbackDescriptorType(JCExpression tree) {
2503             switch (tree.getTag()) {
2504                 case LAMBDA:
2505                     JCLambda lambda = (JCLambda)tree;
2506                     List<Type> argtypes = List.nil();
2507                     for (JCVariableDecl param : lambda.params) {
2508                         argtypes = param.vartype != null ?
2509                                 argtypes.append(param.vartype.type) :
2510                                 argtypes.append(syms.errType);
2511                     }
2512                     return new MethodType(argtypes, Type.recoveryType,
2513                             List.of(syms.throwableType), syms.methodClass);
2514                 case REFERENCE:
2515                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2516                             List.of(syms.throwableType), syms.methodClass);
2517                 default:
2518                     Assert.error("Cannot get here!");
2519             }
2520             return null;
2521         }
2522 
2523         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2524                 final InferenceContext inferenceContext, final Type... ts) {
2525             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2526         }
2527 
2528         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2529                 final InferenceContext inferenceContext, final List<Type> ts) {
2530             if (inferenceContext.free(ts)) {
2531                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2532                     @Override
2533                     public void typesInferred(InferenceContext inferenceContext) {
2534                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2535                     }
2536                 });
2537             } else {
2538                 for (Type t : ts) {
2539                     rs.checkAccessibleType(env, t);
2540                 }
2541             }
2542         }
2543 
2544         /**
2545          * Lambda/method reference have a special check context that ensures
2546          * that i.e. a lambda return type is compatible with the expected
2547          * type according to both the inherited context and the assignment
2548          * context.
2549          */
2550         class FunctionalReturnContext extends Check.NestedCheckContext {
2551 
2552             FunctionalReturnContext(CheckContext enclosingContext) {
2553                 super(enclosingContext);
2554             }
2555 
2556             @Override
2557             public boolean compatible(Type found, Type req, Warner warn) {
2558                 //return type must be compatible in both current context and assignment context
2559                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2560             }
2561 
2562             @Override
2563             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2564                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2565             }
2566         }
2567 
2568         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2569 
2570             JCExpression expr;
2571 
2572             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2573                 super(enclosingContext);
2574                 this.expr = expr;
2575             }
2576 
2577             @Override
2578             public boolean compatible(Type found, Type req, Warner warn) {
2579                 //a void return is compatible with an expression statement lambda
2580                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2581                         super.compatible(found, req, warn);
2582             }
2583         }
2584 
2585         /**
2586         * Lambda compatibility. Check that given return types, thrown types, parameter types
2587         * are compatible with the expected functional interface descriptor. This means that:
2588         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2589         * types must be compatible with the return type of the expected descriptor.
2590         */
2591         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2592             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2593 
2594             //return values have already been checked - but if lambda has no return
2595             //values, we must ensure that void/value compatibility is correct;
2596             //this amounts at checking that, if a lambda body can complete normally,
2597             //the descriptor's return type must be void
2598             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2599                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2600                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2601                         diags.fragment("missing.ret.val", returnType)));
2602             }
2603 
2604             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2605             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2606                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2607             }
2608         }
2609 
2610         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2611          * static field and that lambda has type annotations, these annotations will
2612          * also be stored at these fake clinit methods.
2613          *
2614          * LambdaToMethod also use fake clinit methods so they can be reused.
2615          * Also as LTM is a phase subsequent to attribution, the methods from
2616          * clinits can be safely removed by LTM to save memory.
2617          */
2618         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2619 
2620         public MethodSymbol removeClinit(ClassSymbol sym) {
2621             return clinits.remove(sym);
2622         }
2623 
2624         /* This method returns an environment to be used to attribute a lambda
2625          * expression.
2626          *
2627          * The owner of this environment is a method symbol. If the current owner
2628          * is not a method, for example if the lambda is used to initialize
2629          * a field, then if the field is:
2630          *
2631          * - an instance field, we use the first constructor.
2632          * - a static field, we create a fake clinit method.
2633          */
2634         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2635             Env<AttrContext> lambdaEnv;
2636             Symbol owner = env.info.scope.owner;
2637             if (owner.kind == VAR && owner.owner.kind == TYP) {
2638                 //field initializer
2639                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2640                 ClassSymbol enclClass = owner.enclClass();
2641                 /* if the field isn't static, then we can get the first constructor
2642                  * and use it as the owner of the environment. This is what
2643                  * LTM code is doing to look for type annotations so we are fine.
2644                  */
2645                 if ((owner.flags() & STATIC) == 0) {
2646                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
2647                         lambdaEnv.info.scope.owner = s;
2648                         break;
2649                     }
2650                 } else {
2651                     /* if the field is static then we need to create a fake clinit
2652                      * method, this method can later be reused by LTM.
2653                      */
2654                     MethodSymbol clinit = clinits.get(enclClass);
2655                     if (clinit == null) {
2656                         Type clinitType = new MethodType(List.<Type>nil(),
2657                                 syms.voidType, List.<Type>nil(), syms.methodClass);
2658                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2659                                 names.clinit, clinitType, enclClass);
2660                         clinit.params = List.<VarSymbol>nil();
2661                         clinits.put(enclClass, clinit);
2662                     }
2663                     lambdaEnv.info.scope.owner = clinit;
2664                 }
2665             } else {
2666                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2667             }
2668             return lambdaEnv;
2669         }
2670 
2671     @Override
2672     public void visitReference(final JCMemberReference that) {
2673         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2674             if (pt().hasTag(NONE)) {
2675                 //method reference only allowed in assignment or method invocation/cast context
2676                 log.error(that.pos(), "unexpected.mref");
2677             }
2678             result = that.type = types.createErrorType(pt());
2679             return;
2680         }
2681         final Env<AttrContext> localEnv = env.dup(that);
2682         try {
2683             //attribute member reference qualifier - if this is a constructor
2684             //reference, the expected kind must be a type
2685             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2686 
2687             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2688                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2689                 if (!exprType.isErroneous() &&
2690                     exprType.isRaw() &&
2691                     that.typeargs != null) {
2692                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2693                         diags.fragment("mref.infer.and.explicit.params"));
2694                     exprType = types.createErrorType(exprType);
2695                 }
2696             }
2697 
2698             if (exprType.isErroneous()) {
2699                 //if the qualifier expression contains problems,
2700                 //give up attribution of method reference
2701                 result = that.type = exprType;
2702                 return;
2703             }
2704 
2705             if (TreeInfo.isStaticSelector(that.expr, names)) {
2706                 //if the qualifier is a type, validate it; raw warning check is
2707                 //omitted as we don't know at this stage as to whether this is a
2708                 //raw selector (because of inference)
2709                 chk.validate(that.expr, env, false);
2710             }
2711 
2712             //attrib type-arguments
2713             List<Type> typeargtypes = List.nil();
2714             if (that.typeargs != null) {
2715                 typeargtypes = attribTypes(that.typeargs, localEnv);
2716             }
2717 
2718             Type desc;
2719             Type currentTarget = pt();
2720             boolean isTargetSerializable =
2721                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2722                     isSerializable(currentTarget);
2723             if (currentTarget != Type.recoveryType) {
2724                 currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2725                 desc = types.findDescriptorType(currentTarget);
2726             } else {
2727                 currentTarget = Type.recoveryType;
2728                 desc = fallbackDescriptorType(that);
2729             }
2730 
2731             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2732             List<Type> argtypes = desc.getParameterTypes();
2733             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2734 
2735             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2736                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2737             }
2738 
2739             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2740             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2741             try {
2742                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2743                         that.name, argtypes, typeargtypes, referenceCheck,
2744                         resultInfo.checkContext.inferenceContext(),
2745                         resultInfo.checkContext.deferredAttrContext().mode);
2746             } finally {
2747                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2748             }
2749 
2750             Symbol refSym = refResult.fst;
2751             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2752 
2753             if (refSym.kind != MTH) {
2754                 boolean targetError;
2755                 switch (refSym.kind) {
2756                     case ABSENT_MTH:
2757                         targetError = false;
2758                         break;
2759                     case WRONG_MTH:
2760                     case WRONG_MTHS:
2761                     case AMBIGUOUS:
2762                     case HIDDEN:
2763                     case STATICERR:
2764                     case MISSING_ENCL:
2765                     case WRONG_STATICNESS:
2766                         targetError = true;
2767                         break;
2768                     default:
2769                         Assert.error("unexpected result kind " + refSym.kind);
2770                         targetError = false;
2771                 }
2772 
2773                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2774                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2775 
2776                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2777                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2778 
2779                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2780                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2781 
2782                 if (targetError && currentTarget == Type.recoveryType) {
2783                     //a target error doesn't make sense during recovery stage
2784                     //as we don't know what actual parameter types are
2785                     result = that.type = currentTarget;
2786                     return;
2787                 } else {
2788                     if (targetError) {
2789                         resultInfo.checkContext.report(that, diag);
2790                     } else {
2791                         log.report(diag);
2792                     }
2793                     result = that.type = types.createErrorType(currentTarget);
2794                     return;
2795                 }
2796             }
2797 
2798             that.sym = refSym.baseSymbol();
2799             that.kind = lookupHelper.referenceKind(that.sym);
2800             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2801 
2802             if (desc.getReturnType() == Type.recoveryType) {
2803                 // stop here
2804                 result = that.type = currentTarget;
2805                 return;
2806             }
2807 
2808             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2809 
2810                 if (that.getMode() == ReferenceMode.INVOKE &&
2811                         TreeInfo.isStaticSelector(that.expr, names) &&
2812                         that.kind.isUnbound() &&
2813                         !desc.getParameterTypes().head.isParameterized()) {
2814                     chk.checkRaw(that.expr, localEnv);
2815                 }
2816 
2817                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2818                         exprType.getTypeArguments().nonEmpty()) {
2819                     //static ref with class type-args
2820                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2821                             diags.fragment("static.mref.with.targs"));
2822                     result = that.type = types.createErrorType(currentTarget);
2823                     return;
2824                 }
2825 
2826                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2827                         !that.kind.isUnbound()) {
2828                     //no static bound mrefs
2829                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2830                             diags.fragment("static.bound.mref"));
2831                     result = that.type = types.createErrorType(currentTarget);
2832                     return;
2833                 }
2834 
2835                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2836                     // Check that super-qualified symbols are not abstract (JLS)
2837                     rs.checkNonAbstract(that.pos(), that.sym);
2838                 }
2839 
2840                 if (isTargetSerializable) {
2841                     chk.checkElemAccessFromSerializableLambda(that);
2842                 }
2843             }
2844 
2845             ResultInfo checkInfo =
2846                     resultInfo.dup(newMethodTemplate(
2847                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2848                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2849                         new FunctionalReturnContext(resultInfo.checkContext));
2850 
2851             Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);
2852 
2853             if (that.kind.isUnbound() &&
2854                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2855                 //re-generate inference constraints for unbound receiver
2856                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2857                     //cannot happen as this has already been checked - we just need
2858                     //to regenerate the inference constraints, as that has been lost
2859                     //as a result of the call to inferenceContext.save()
2860                     Assert.error("Can't get here");
2861                 }
2862             }
2863 
2864             if (!refType.isErroneous()) {
2865                 refType = types.createMethodTypeWithReturn(refType,
2866                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2867             }
2868 
2869             //go ahead with standard method reference compatibility check - note that param check
2870             //is a no-op (as this has been taken care during method applicability)
2871             boolean isSpeculativeRound =
2872                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2873 
2874             that.type = currentTarget; //avoids recovery at this stage
2875             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2876             if (!isSpeculativeRound) {
2877                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2878             }
2879             result = check(that, currentTarget, VAL, resultInfo);
2880         } catch (Types.FunctionDescriptorLookupError ex) {
2881             JCDiagnostic cause = ex.getDiagnostic();
2882             resultInfo.checkContext.report(that, cause);
2883             result = that.type = types.createErrorType(pt());
2884             return;
2885         }
2886     }
2887     //where
2888         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2889             //if this is a constructor reference, the expected kind must be a type
2890             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
2891         }
2892 
2893 
2894     @SuppressWarnings("fallthrough")
2895     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2896         Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2897 
2898         Type resType;
2899         switch (tree.getMode()) {
2900             case NEW:
2901                 if (!tree.expr.type.isRaw()) {
2902                     resType = tree.expr.type;
2903                     break;
2904                 }
2905             default:
2906                 resType = refType.getReturnType();
2907         }
2908 
2909         Type incompatibleReturnType = resType;
2910 
2911         if (returnType.hasTag(VOID)) {
2912             incompatibleReturnType = null;
2913         }
2914 
2915         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2916             if (resType.isErroneous() ||
2917                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2918                 incompatibleReturnType = null;
2919             }
2920         }
2921 
2922         if (incompatibleReturnType != null) {
2923             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2924                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2925         }
2926 
2927         if (!speculativeAttr) {
2928             List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
2929             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2930                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2931             }
2932         }
2933     }
2934 
2935     /**
2936      * Set functional type info on the underlying AST. Note: as the target descriptor
2937      * might contain inference variables, we might need to register an hook in the
2938      * current inference context.
2939      */
2940     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2941             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2942         if (checkContext.inferenceContext().free(descriptorType)) {
2943             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2944                 public void typesInferred(InferenceContext inferenceContext) {
2945                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2946                             inferenceContext.asInstType(primaryTarget), checkContext);
2947                 }
2948             });
2949         } else {
2950             ListBuffer<Type> targets = new ListBuffer<>();
2951             if (pt.hasTag(CLASS)) {
2952                 if (pt.isCompound()) {
2953                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
2954                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2955                         if (t != primaryTarget) {
2956                             targets.append(types.removeWildcards(t));
2957                         }
2958                     }
2959                 } else {
2960                     targets.append(types.removeWildcards(primaryTarget));
2961                 }
2962             }
2963             fExpr.targets = targets.toList();
2964             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2965                     pt != Type.recoveryType) {
2966                 //check that functional interface class is well-formed
2967                 try {
2968                     /* Types.makeFunctionalInterfaceClass() may throw an exception
2969                      * when it's executed post-inference. See the listener code
2970                      * above.
2971                      */
2972                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2973                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
2974                     if (csym != null) {
2975                         chk.checkImplementations(env.tree, csym, csym);
2976                     }
2977                 } catch (Types.FunctionDescriptorLookupError ex) {
2978                     JCDiagnostic cause = ex.getDiagnostic();
2979                     resultInfo.checkContext.report(env.tree, cause);
2980                 }
2981             }
2982         }
2983     }
2984 
2985     public void visitParens(JCParens tree) {
2986         Type owntype = attribTree(tree.expr, env, resultInfo);
2987         result = check(tree, owntype, pkind(), resultInfo);
2988         Symbol sym = TreeInfo.symbol(tree);
2989         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2990             log.error(tree.pos(), "illegal.start.of.type");
2991     }
2992 
2993     public void visitAssign(JCAssign tree) {
2994         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2995         Type capturedType = capture(owntype);
2996         attribExpr(tree.rhs, env, owntype);
2997         result = check(tree, capturedType, VAL, resultInfo);
2998     }
2999 
3000     public void visitAssignop(JCAssignOp tree) {
3001         // Attribute arguments.
3002         Type owntype = attribTree(tree.lhs, env, varInfo);
3003         Type operand = attribExpr(tree.rhs, env);
3004         // Find operator.
3005         Symbol operator = tree.operator = rs.resolveBinaryOperator(
3006             tree.pos(), tree.getTag().noAssignOp(), env,
3007             owntype, operand);
3008 
3009         if (operator.kind == MTH &&
3010                 !owntype.isErroneous() &&
3011                 !operand.isErroneous()) {
3012             chk.checkOperator(tree.pos(),
3013                               (OperatorSymbol)operator,
3014                               tree.getTag().noAssignOp(),
3015                               owntype,
3016                               operand);
3017             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3018             chk.checkCastable(tree.rhs.pos(),
3019                               operator.type.getReturnType(),
3020                               owntype);
3021         }
3022         result = check(tree, owntype, VAL, resultInfo);
3023     }
3024 
3025     public void visitUnary(JCUnary tree) {
3026         // Attribute arguments.
3027         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3028             ? attribTree(tree.arg, env, varInfo)
3029             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3030 
3031         // Find operator.
3032         Symbol operator = tree.operator =
3033             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
3034 
3035         Type owntype = types.createErrorType(tree.type);
3036         if (operator.kind == MTH &&
3037                 !argtype.isErroneous()) {
3038             owntype = (tree.getTag().isIncOrDecUnaryOp())
3039                 ? tree.arg.type
3040                 : operator.type.getReturnType();
3041             int opc = ((OperatorSymbol)operator).opcode;
3042 
3043             // If the argument is constant, fold it.
3044             if (argtype.constValue() != null) {
3045                 Type ctype = cfolder.fold1(opc, argtype);
3046                 if (ctype != null) {
3047                     owntype = cfolder.coerce(ctype, owntype);
3048                 }
3049             }
3050         }
3051         result = check(tree, owntype, VAL, resultInfo);
3052     }
3053 
3054     public void visitBinary(JCBinary tree) {
3055         // Attribute arguments.
3056         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3057         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
3058 
3059         // Find operator.
3060         Symbol operator = tree.operator =
3061             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
3062 
3063         Type owntype = types.createErrorType(tree.type);
3064         if (operator.kind == MTH &&
3065                 !left.isErroneous() &&
3066                 !right.isErroneous()) {
3067             owntype = operator.type.getReturnType();
3068             // This will figure out when unboxing can happen and
3069             // choose the right comparison operator.
3070             int opc = chk.checkOperator(tree.lhs.pos(),
3071                                         (OperatorSymbol)operator,
3072                                         tree.getTag(),
3073                                         left,
3074                                         right);
3075 
3076             // If both arguments are constants, fold them.
3077             if (left.constValue() != null && right.constValue() != null) {
3078                 Type ctype = cfolder.fold2(opc, left, right);
3079                 if (ctype != null) {
3080                     owntype = cfolder.coerce(ctype, owntype);
3081                 }
3082             }
3083 
3084             // Check that argument types of a reference ==, != are
3085             // castable to each other, (JLS 15.21).  Note: unboxing
3086             // comparisons will not have an acmp* opc at this point.
3087             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3088                 if (!types.isEqualityComparable(left, right,
3089                                                 new Warner(tree.pos()))) {
3090                     log.error(tree.pos(), "incomparable.types", left, right);
3091                 }
3092             }
3093 
3094             chk.checkDivZero(tree.rhs.pos(), operator, right);
3095         }
3096         result = check(tree, owntype, VAL, resultInfo);
3097     }
3098 
3099     public void visitTypeCast(final JCTypeCast tree) {
3100         Type clazztype = attribType(tree.clazz, env);
3101         chk.validate(tree.clazz, env, false);
3102         //a fresh environment is required for 292 inference to work properly ---
3103         //see Infer.instantiatePolymorphicSignatureInstance()
3104         Env<AttrContext> localEnv = env.dup(tree);
3105         //should we propagate the target type?
3106         final ResultInfo castInfo;
3107         JCExpression expr = TreeInfo.skipParens(tree.expr);
3108         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3109         if (isPoly) {
3110             //expression is a poly - we need to propagate target type info
3111             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
3112                 @Override
3113                 public boolean compatible(Type found, Type req, Warner warn) {
3114                     return types.isCastable(found, req, warn);
3115                 }
3116             });
3117         } else {
3118             //standalone cast - target-type info is not propagated
3119             castInfo = unknownExprInfo;
3120         }
3121         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3122         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3123         if (exprtype.constValue() != null)
3124             owntype = cfolder.coerce(exprtype, owntype);
3125         result = check(tree, capture(owntype), VAL, resultInfo);
3126         if (!isPoly)
3127             chk.checkRedundantCast(localEnv, tree);
3128     }
3129 
3130     public void visitTypeTest(JCInstanceOf tree) {
3131         Type exprtype = chk.checkNullOrRefType(
3132             tree.expr.pos(), attribExpr(tree.expr, env));
3133         Type clazztype = attribType(tree.clazz, env);
3134         if (!clazztype.hasTag(TYPEVAR)) {
3135             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3136         }
3137         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3138             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3139             clazztype = types.createErrorType(clazztype);
3140         }
3141         chk.validate(tree.clazz, env, false);
3142         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3143         result = check(tree, syms.booleanType, VAL, resultInfo);
3144     }
3145 
3146     public void visitIndexed(JCArrayAccess tree) {
3147         Type owntype = types.createErrorType(tree.type);
3148         Type atype = attribExpr(tree.indexed, env);
3149         attribExpr(tree.index, env, syms.intType);
3150         if (types.isArray(atype))
3151             owntype = types.elemtype(atype);
3152         else if (!atype.hasTag(ERROR))
3153             log.error(tree.pos(), "array.req.but.found", atype);
3154         if ((pkind() & VAR) == 0) owntype = capture(owntype);
3155         result = check(tree, owntype, VAR, resultInfo);
3156     }
3157 
3158     public void visitIdent(JCIdent tree) {
3159         Symbol sym;
3160 
3161         // Find symbol
3162         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3163             // If we are looking for a method, the prototype `pt' will be a
3164             // method type with the type of the call's arguments as parameters.
3165             env.info.pendingResolutionPhase = null;
3166             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3167         } else if (tree.sym != null && tree.sym.kind != VAR) {
3168             sym = tree.sym;
3169         } else {
3170             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3171         }
3172         tree.sym = sym;
3173 
3174         // (1) Also find the environment current for the class where
3175         //     sym is defined (`symEnv').
3176         // Only for pre-tiger versions (1.4 and earlier):
3177         // (2) Also determine whether we access symbol out of an anonymous
3178         //     class in a this or super call.  This is illegal for instance
3179         //     members since such classes don't carry a this$n link.
3180         //     (`noOuterThisPath').
3181         Env<AttrContext> symEnv = env;
3182         boolean noOuterThisPath = false;
3183         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3184             (sym.kind & (VAR | MTH | TYP)) != 0 &&
3185             sym.owner.kind == TYP &&
3186             tree.name != names._this && tree.name != names._super) {
3187 
3188             // Find environment in which identifier is defined.
3189             while (symEnv.outer != null &&
3190                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3191                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3192                     noOuterThisPath = !allowAnonOuterThis;
3193                 symEnv = symEnv.outer;
3194             }
3195         }
3196 
3197         // If symbol is a variable, ...
3198         if (sym.kind == VAR) {
3199             VarSymbol v = (VarSymbol)sym;
3200 
3201             // ..., evaluate its initializer, if it has one, and check for
3202             // illegal forward reference.
3203             checkInit(tree, env, v, false);
3204 
3205             // If we are expecting a variable (as opposed to a value), check
3206             // that the variable is assignable in the current environment.
3207             if (pkind() == VAR)
3208                 checkAssignable(tree.pos(), v, null, env);
3209         }
3210 
3211         // In a constructor body,
3212         // if symbol is a field or instance method, check that it is
3213         // not accessed before the supertype constructor is called.
3214         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3215             (sym.kind & (VAR | MTH)) != 0 &&
3216             sym.owner.kind == TYP &&
3217             (sym.flags() & STATIC) == 0) {
3218             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
3219         }
3220         Env<AttrContext> env1 = env;
3221         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
3222             // If the found symbol is inaccessible, then it is
3223             // accessed through an enclosing instance.  Locate this
3224             // enclosing instance:
3225             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3226                 env1 = env1.outer;
3227         }
3228 
3229         if (env.info.isSerializable) {
3230             chk.checkElemAccessFromSerializableLambda(tree);
3231         }
3232 
3233         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3234     }
3235 
3236     public void visitSelect(JCFieldAccess tree) {
3237         // Determine the expected kind of the qualifier expression.
3238         int skind = 0;
3239         if (tree.name == names._this || tree.name == names._super ||
3240             tree.name == names._class)
3241         {
3242             skind = TYP;
3243         } else {
3244             if ((pkind() & PCK) != 0) skind = skind | PCK;
3245             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
3246             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
3247         }
3248 
3249         // Attribute the qualifier expression, and determine its symbol (if any).
3250         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3251         if ((pkind() & (PCK | TYP)) == 0)
3252             site = capture(site); // Capture field access
3253 
3254         // don't allow T.class T[].class, etc
3255         if (skind == TYP) {
3256             Type elt = site;
3257             while (elt.hasTag(ARRAY))
3258                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
3259             if (elt.hasTag(TYPEVAR)) {
3260                 log.error(tree.pos(), "type.var.cant.be.deref");
3261                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3262                 tree.sym = tree.type.tsym;
3263                 return ;
3264             }
3265         }
3266 
3267         // If qualifier symbol is a type or `super', assert `selectSuper'
3268         // for the selection. This is relevant for determining whether
3269         // protected symbols are accessible.
3270         Symbol sitesym = TreeInfo.symbol(tree.selected);
3271         boolean selectSuperPrev = env.info.selectSuper;
3272         env.info.selectSuper =
3273             sitesym != null &&
3274             sitesym.name == names._super;
3275 
3276         // Determine the symbol represented by the selection.
3277         env.info.pendingResolutionPhase = null;
3278         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3279         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3280             log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3281             sym = syms.errSymbol;
3282         }
3283         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
3284             site = capture(site);
3285             sym = selectSym(tree, sitesym, site, env, resultInfo);
3286         }
3287         boolean varArgs = env.info.lastResolveVarargs();
3288         tree.sym = sym;
3289 
3290         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3291             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3292             site = capture(site);
3293         }
3294 
3295         // If that symbol is a variable, ...
3296         if (sym.kind == VAR) {
3297             VarSymbol v = (VarSymbol)sym;
3298 
3299             // ..., evaluate its initializer, if it has one, and check for
3300             // illegal forward reference.
3301             checkInit(tree, env, v, true);
3302 
3303             // If we are expecting a variable (as opposed to a value), check
3304             // that the variable is assignable in the current environment.
3305             if (pkind() == VAR)
3306                 checkAssignable(tree.pos(), v, tree.selected, env);
3307         }
3308 
3309         if (sitesym != null &&
3310                 sitesym.kind == VAR &&
3311                 ((VarSymbol)sitesym).isResourceVariable() &&
3312                 sym.kind == MTH &&
3313                 sym.name.equals(names.close) &&
3314                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3315                 env.info.lint.isEnabled(LintCategory.TRY)) {
3316             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3317         }
3318 
3319         // Disallow selecting a type from an expression
3320         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
3321             tree.type = check(tree.selected, pt(),
3322                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
3323         }
3324 
3325         if (isType(sitesym)) {
3326             if (sym.name == names._this) {
3327                 // If `C' is the currently compiled class, check that
3328                 // C.this' does not appear in a call to a super(...)
3329                 if (env.info.isSelfCall &&
3330                     site.tsym == env.enclClass.sym) {
3331                     chk.earlyRefError(tree.pos(), sym);
3332                 }
3333             } else {
3334                 // Check if type-qualified fields or methods are static (JLS)
3335                 if ((sym.flags() & STATIC) == 0 &&
3336                     !env.next.tree.hasTag(REFERENCE) &&
3337                     sym.name != names._super &&
3338                     (sym.kind == VAR || sym.kind == MTH)) {
3339                     rs.accessBase(rs.new StaticError(sym),
3340                               tree.pos(), site, sym.name, true);
3341                 }
3342             }
3343             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3344                     sym.isStatic() && sym.kind == MTH) {
3345                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3346             }
3347         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
3348             // If the qualified item is not a type and the selected item is static, report
3349             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3350             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3351         }
3352 
3353         // If we are selecting an instance member via a `super', ...
3354         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3355 
3356             // Check that super-qualified symbols are not abstract (JLS)
3357             rs.checkNonAbstract(tree.pos(), sym);
3358 
3359             if (site.isRaw()) {
3360                 // Determine argument types for site.
3361                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3362                 if (site1 != null) site = site1;
3363             }
3364         }
3365 
3366         if (env.info.isSerializable) {
3367             chk.checkElemAccessFromSerializableLambda(tree);
3368         }
3369 
3370         env.info.selectSuper = selectSuperPrev;
3371         result = checkId(tree, site, sym, env, resultInfo);
3372     }
3373     //where
3374         /** Determine symbol referenced by a Select expression,
3375          *
3376          *  @param tree   The select tree.
3377          *  @param site   The type of the selected expression,
3378          *  @param env    The current environment.
3379          *  @param resultInfo The current result.
3380          */
3381         private Symbol selectSym(JCFieldAccess tree,
3382                                  Symbol location,
3383                                  Type site,
3384                                  Env<AttrContext> env,
3385                                  ResultInfo resultInfo) {
3386             DiagnosticPosition pos = tree.pos();
3387             Name name = tree.name;
3388             switch (site.getTag()) {
3389             case PACKAGE:
3390                 return rs.accessBase(
3391                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3392                     pos, location, site, name, true);
3393             case ARRAY:
3394             case CLASS:
3395                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3396                     return rs.resolveQualifiedMethod(
3397                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3398                 } else if (name == names._this || name == names._super) {
3399                     return rs.resolveSelf(pos, env, site.tsym, name);
3400                 } else if (name == names._class) {
3401                     // In this case, we have already made sure in
3402                     // visitSelect that qualifier expression is a type.
3403                     Type t = syms.classType;
3404                     List<Type> typeargs = allowGenerics
3405                         ? List.of(types.erasure(site))
3406                         : List.<Type>nil();
3407                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3408                     return new VarSymbol(
3409                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3410                 } else {
3411                     // We are seeing a plain identifier as selector.
3412                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3413                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3414                         sym = rs.accessBase(sym, pos, location, site, name, true);
3415                     return sym;
3416                 }
3417             case WILDCARD:
3418                 throw new AssertionError(tree);
3419             case TYPEVAR:
3420                 // Normally, site.getUpperBound() shouldn't be null.
3421                 // It should only happen during memberEnter/attribBase
3422                 // when determining the super type which *must* beac
3423                 // done before attributing the type variables.  In
3424                 // other words, we are seeing this illegal program:
3425                 // class B<T> extends A<T.foo> {}
3426                 Symbol sym = (site.getUpperBound() != null)
3427                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3428                     : null;
3429                 if (sym == null) {
3430                     log.error(pos, "type.var.cant.be.deref");
3431                     return syms.errSymbol;
3432                 } else {
3433                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3434                         rs.new AccessError(env, site, sym) :
3435                                 sym;
3436                     rs.accessBase(sym2, pos, location, site, name, true);
3437                     return sym;
3438                 }
3439             case ERROR:
3440                 // preserve identifier names through errors
3441                 return types.createErrorType(name, site.tsym, site).tsym;
3442             default:
3443                 // The qualifier expression is of a primitive type -- only
3444                 // .class is allowed for these.
3445                 if (name == names._class) {
3446                     // In this case, we have already made sure in Select that
3447                     // qualifier expression is a type.
3448                     Type t = syms.classType;
3449                     Type arg = types.boxedClass(site).type;
3450                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3451                     return new VarSymbol(
3452                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3453                 } else {
3454                     log.error(pos, "cant.deref", site);
3455                     return syms.errSymbol;
3456                 }
3457             }
3458         }
3459 
3460         /** Determine type of identifier or select expression and check that
3461          *  (1) the referenced symbol is not deprecated
3462          *  (2) the symbol's type is safe (@see checkSafe)
3463          *  (3) if symbol is a variable, check that its type and kind are
3464          *      compatible with the prototype and protokind.
3465          *  (4) if symbol is an instance field of a raw type,
3466          *      which is being assigned to, issue an unchecked warning if its
3467          *      type changes under erasure.
3468          *  (5) if symbol is an instance method of a raw type, issue an
3469          *      unchecked warning if its argument types change under erasure.
3470          *  If checks succeed:
3471          *    If symbol is a constant, return its constant type
3472          *    else if symbol is a method, return its result type
3473          *    otherwise return its type.
3474          *  Otherwise return errType.
3475          *
3476          *  @param tree       The syntax tree representing the identifier
3477          *  @param site       If this is a select, the type of the selected
3478          *                    expression, otherwise the type of the current class.
3479          *  @param sym        The symbol representing the identifier.
3480          *  @param env        The current environment.
3481          *  @param resultInfo    The expected result
3482          */
3483         Type checkId(JCTree tree,
3484                      Type site,
3485                      Symbol sym,
3486                      Env<AttrContext> env,
3487                      ResultInfo resultInfo) {
3488             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3489                     checkMethodId(tree, site, sym, env, resultInfo) :
3490                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3491         }
3492 
3493         Type checkMethodId(JCTree tree,
3494                      Type site,
3495                      Symbol sym,
3496                      Env<AttrContext> env,
3497                      ResultInfo resultInfo) {
3498             boolean isPolymorhicSignature =
3499                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3500             return isPolymorhicSignature ?
3501                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3502                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3503         }
3504 
3505         Type checkSigPolyMethodId(JCTree tree,
3506                      Type site,
3507                      Symbol sym,
3508                      Env<AttrContext> env,
3509                      ResultInfo resultInfo) {
3510             //recover original symbol for signature polymorphic methods
3511             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3512             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3513             return sym.type;
3514         }
3515 
3516         Type checkMethodIdInternal(JCTree tree,
3517                      Type site,
3518                      Symbol sym,
3519                      Env<AttrContext> env,
3520                      ResultInfo resultInfo) {
3521             if ((resultInfo.pkind & POLY) != 0) {
3522                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3523                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3524                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3525                 return owntype;
3526             } else {
3527                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3528             }
3529         }
3530 
3531         Type checkIdInternal(JCTree tree,
3532                      Type site,
3533                      Symbol sym,
3534                      Type pt,
3535                      Env<AttrContext> env,
3536                      ResultInfo resultInfo) {
3537             if (pt.isErroneous()) {
3538                 return types.createErrorType(site);
3539             }
3540             Type owntype; // The computed type of this identifier occurrence.
3541             switch (sym.kind) {
3542             case TYP:
3543                 // For types, the computed type equals the symbol's type,
3544                 // except for two situations:
3545                 owntype = sym.type;
3546                 if (owntype.hasTag(CLASS)) {
3547                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3548                     Type ownOuter = owntype.getEnclosingType();
3549 
3550                     // (a) If the symbol's type is parameterized, erase it
3551                     // because no type parameters were given.
3552                     // We recover generic outer type later in visitTypeApply.
3553                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3554                         owntype = types.erasure(owntype);
3555                     }
3556 
3557                     // (b) If the symbol's type is an inner class, then
3558                     // we have to interpret its outer type as a superclass
3559                     // of the site type. Example:
3560                     //
3561                     // class Tree<A> { class Visitor { ... } }
3562                     // class PointTree extends Tree<Point> { ... }
3563                     // ...PointTree.Visitor...
3564                     //
3565                     // Then the type of the last expression above is
3566                     // Tree<Point>.Visitor.
3567                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3568                         Type normOuter = site;
3569                         if (normOuter.hasTag(CLASS)) {
3570                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3571                         }
3572                         if (normOuter == null) // perhaps from an import
3573                             normOuter = types.erasure(ownOuter);
3574                         if (normOuter != ownOuter)
3575                             owntype = new ClassType(
3576                                 normOuter, List.<Type>nil(), owntype.tsym);
3577                     }
3578                 }
3579                 break;
3580             case VAR:
3581                 VarSymbol v = (VarSymbol)sym;
3582                 // Test (4): if symbol is an instance field of a raw type,
3583                 // which is being assigned to, issue an unchecked warning if
3584                 // its type changes under erasure.
3585                 if (allowGenerics &&
3586                     resultInfo.pkind == VAR &&
3587                     v.owner.kind == TYP &&
3588                     (v.flags() & STATIC) == 0 &&
3589                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3590                     Type s = types.asOuterSuper(site, v.owner);
3591                     if (s != null &&
3592                         s.isRaw() &&
3593                         !types.isSameType(v.type, v.erasure(types))) {
3594                         chk.warnUnchecked(tree.pos(),
3595                                           "unchecked.assign.to.var",
3596                                           v, s);
3597                     }
3598                 }
3599                 // The computed type of a variable is the type of the
3600                 // variable symbol, taken as a member of the site type.
3601                 owntype = (sym.owner.kind == TYP &&
3602                            sym.name != names._this && sym.name != names._super)
3603                     ? types.memberType(site, sym)
3604                     : sym.type;
3605 
3606                 // If the variable is a constant, record constant value in
3607                 // computed type.
3608                 if (v.getConstValue() != null && isStaticReference(tree))
3609                     owntype = owntype.constType(v.getConstValue());
3610 
3611                 if (resultInfo.pkind == VAL) {
3612                     owntype = capture(owntype); // capture "names as expressions"
3613                 }
3614                 break;
3615             case MTH: {
3616                 owntype = checkMethod(site, sym,
3617                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3618                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3619                         resultInfo.pt.getTypeArguments());
3620                 break;
3621             }
3622             case PCK: case ERR:
3623                 owntype = sym.type;
3624                 break;
3625             default:
3626                 throw new AssertionError("unexpected kind: " + sym.kind +
3627                                          " in tree " + tree);
3628             }
3629 
3630             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3631             // (for constructors, the error was given when the constructor was
3632             // resolved)
3633 
3634             if (sym.name != names.init) {
3635                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3636                 chk.checkSunAPI(tree.pos(), sym);
3637                 chk.checkProfile(tree.pos(), sym);
3638             }
3639 
3640             // Test (3): if symbol is a variable, check that its type and
3641             // kind are compatible with the prototype and protokind.
3642             return check(tree, owntype, sym.kind, resultInfo);
3643         }
3644 
3645         /** Check that variable is initialized and evaluate the variable's
3646          *  initializer, if not yet done. Also check that variable is not
3647          *  referenced before it is defined.
3648          *  @param tree    The tree making up the variable reference.
3649          *  @param env     The current environment.
3650          *  @param v       The variable's symbol.
3651          */
3652         private void checkInit(JCTree tree,
3653                                Env<AttrContext> env,
3654                                VarSymbol v,
3655                                boolean onlyWarning) {
3656 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3657 //                             tree.pos + " " + v.pos + " " +
3658 //                             Resolve.isStatic(env));//DEBUG
3659 
3660             // A forward reference is diagnosed if the declaration position
3661             // of the variable is greater than the current tree position
3662             // and the tree and variable definition occur in the same class
3663             // definition.  Note that writes don't count as references.
3664             // This check applies only to class and instance
3665             // variables.  Local variables follow different scope rules,
3666             // and are subject to definite assignment checking.
3667             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3668                 v.owner.kind == TYP &&
3669                 enclosingInitEnv(env) != null &&
3670                 v.owner == env.info.scope.owner.enclClass() &&
3671                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3672                 (!env.tree.hasTag(ASSIGN) ||
3673                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3674                 String suffix = (env.info.enclVar == v) ?
3675                                 "self.ref" : "forward.ref";
3676                 if (!onlyWarning || isStaticEnumField(v)) {
3677                     log.error(tree.pos(), "illegal." + suffix);
3678                 } else if (useBeforeDeclarationWarning) {
3679                     log.warning(tree.pos(), suffix, v);
3680                 }
3681             }
3682 
3683             v.getConstValue(); // ensure initializer is evaluated
3684 
3685             checkEnumInitializer(tree, env, v);
3686         }
3687 
3688         /**
3689          * Returns the enclosing init environment associated with this env (if any). An init env
3690          * can be either a field declaration env or a static/instance initializer env.
3691          */
enclosingInitEnv(Env<AttrContext> env)3692         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3693             while (true) {
3694                 switch (env.tree.getTag()) {
3695                     case VARDEF:
3696                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3697                         if (vdecl.sym.owner.kind == TYP) {
3698                             //field
3699                             return env;
3700                         }
3701                         break;
3702                     case BLOCK:
3703                         if (env.next.tree.hasTag(CLASSDEF)) {
3704                             //instance/static initializer
3705                             return env;
3706                         }
3707                         break;
3708                     case METHODDEF:
3709                     case CLASSDEF:
3710                     case TOPLEVEL:
3711                         return null;
3712                 }
3713                 Assert.checkNonNull(env.next);
3714                 env = env.next;
3715             }
3716         }
3717 
3718         /**
3719          * Check for illegal references to static members of enum.  In
3720          * an enum type, constructors and initializers may not
3721          * reference its static members unless they are constant.
3722          *
3723          * @param tree    The tree making up the variable reference.
3724          * @param env     The current environment.
3725          * @param v       The variable's symbol.
3726          * @jls  section 8.9 Enums
3727          */
checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v)3728         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3729             // JLS:
3730             //
3731             // "It is a compile-time error to reference a static field
3732             // of an enum type that is not a compile-time constant
3733             // (15.28) from constructors, instance initializer blocks,
3734             // or instance variable initializer expressions of that
3735             // type. It is a compile-time error for the constructors,
3736             // instance initializer blocks, or instance variable
3737             // initializer expressions of an enum constant e to refer
3738             // to itself or to an enum constant of the same type that
3739             // is declared to the right of e."
3740             if (isStaticEnumField(v)) {
3741                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3742 
3743                 if (enclClass == null || enclClass.owner == null)
3744                     return;
3745 
3746                 // See if the enclosing class is the enum (or a
3747                 // subclass thereof) declaring v.  If not, this
3748                 // reference is OK.
3749                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3750                     return;
3751 
3752                 // If the reference isn't from an initializer, then
3753                 // the reference is OK.
3754                 if (!Resolve.isInitializer(env))
3755                     return;
3756 
3757                 log.error(tree.pos(), "illegal.enum.static.ref");
3758             }
3759         }
3760 
3761         /** Is the given symbol a static, non-constant field of an Enum?
3762          *  Note: enum literals should not be regarded as such
3763          */
isStaticEnumField(VarSymbol v)3764         private boolean isStaticEnumField(VarSymbol v) {
3765             return Flags.isEnum(v.owner) &&
3766                    Flags.isStatic(v) &&
3767                    !Flags.isConstant(v) &&
3768                    v.name != names._class;
3769         }
3770 
3771     Warner noteWarner = new Warner();
3772 
3773     /**
3774      * Check that method arguments conform to its instantiation.
3775      **/
checkMethod(Type site, final Symbol sym, ResultInfo resultInfo, Env<AttrContext> env, final List<JCExpression> argtrees, List<Type> argtypes, List<Type> typeargtypes)3776     public Type checkMethod(Type site,
3777                             final Symbol sym,
3778                             ResultInfo resultInfo,
3779                             Env<AttrContext> env,
3780                             final List<JCExpression> argtrees,
3781                             List<Type> argtypes,
3782                             List<Type> typeargtypes) {
3783         // Test (5): if symbol is an instance method of a raw type, issue
3784         // an unchecked warning if its argument types change under erasure.
3785         if (allowGenerics &&
3786             (sym.flags() & STATIC) == 0 &&
3787             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3788             Type s = types.asOuterSuper(site, sym.owner);
3789             if (s != null && s.isRaw() &&
3790                 !types.isSameTypes(sym.type.getParameterTypes(),
3791                                    sym.erasure(types).getParameterTypes())) {
3792                 chk.warnUnchecked(env.tree.pos(),
3793                                   "unchecked.call.mbr.of.raw.type",
3794                                   sym, s);
3795             }
3796         }
3797 
3798         if (env.info.defaultSuperCallSite != null) {
3799             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3800                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3801                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3802                 List<MethodSymbol> icand_sup =
3803                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3804                 if (icand_sup.nonEmpty() &&
3805                         icand_sup.head != sym &&
3806                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3807                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3808                         diags.fragment("overridden.default", sym, sup));
3809                     break;
3810                 }
3811             }
3812             env.info.defaultSuperCallSite = null;
3813         }
3814 
3815         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3816             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3817             if (app.meth.hasTag(SELECT) &&
3818                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3819                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3820             }
3821         }
3822 
3823         // Compute the identifier's instantiated type.
3824         // For methods, we need to compute the instance type by
3825         // Resolve.instantiate from the symbol's type as well as
3826         // any type arguments and value arguments.
3827         noteWarner.clear();
3828         try {
3829             Type owntype = rs.checkMethod(
3830                     env,
3831                     site,
3832                     sym,
3833                     resultInfo,
3834                     argtypes,
3835                     typeargtypes,
3836                     noteWarner);
3837 
3838             DeferredAttr.DeferredTypeMap checkDeferredMap =
3839                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3840 
3841             argtypes = Type.map(argtypes, checkDeferredMap);
3842 
3843             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3844                 chk.warnUnchecked(env.tree.pos(),
3845                         "unchecked.meth.invocation.applied",
3846                         kindName(sym),
3847                         sym.name,
3848                         rs.methodArguments(sym.type.getParameterTypes()),
3849                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3850                         kindName(sym.location()),
3851                         sym.location());
3852                owntype = new MethodType(owntype.getParameterTypes(),
3853                        types.erasure(owntype.getReturnType()),
3854                        types.erasure(owntype.getThrownTypes()),
3855                        syms.methodClass);
3856             }
3857 
3858             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3859                     resultInfo.checkContext.inferenceContext());
3860         } catch (Infer.InferenceException ex) {
3861             //invalid target type - propagate exception outwards or report error
3862             //depending on the current check context
3863             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3864             return types.createErrorType(site);
3865         } catch (Resolve.InapplicableMethodException ex) {
3866             final JCDiagnostic diag = ex.getDiagnostic();
3867             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3868                 @Override
3869                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
3870                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
3871                 }
3872             };
3873             List<Type> argtypes2 = Type.map(argtypes,
3874                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3875             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3876                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3877             log.report(errDiag);
3878             return types.createErrorType(site);
3879         }
3880     }
3881 
visitLiteral(JCLiteral tree)3882     public void visitLiteral(JCLiteral tree) {
3883         result = check(
3884             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3885     }
3886     //where
3887     /** Return the type of a literal with given type tag.
3888      */
litType(TypeTag tag)3889     Type litType(TypeTag tag) {
3890         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3891     }
3892 
visitTypeIdent(JCPrimitiveTypeTree tree)3893     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3894         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3895     }
3896 
visitTypeArray(JCArrayTypeTree tree)3897     public void visitTypeArray(JCArrayTypeTree tree) {
3898         Type etype = attribType(tree.elemtype, env);
3899         Type type = new ArrayType(etype, syms.arrayClass);
3900         result = check(tree, type, TYP, resultInfo);
3901     }
3902 
3903     /** Visitor method for parameterized types.
3904      *  Bound checking is left until later, since types are attributed
3905      *  before supertype structure is completely known
3906      */
visitTypeApply(JCTypeApply tree)3907     public void visitTypeApply(JCTypeApply tree) {
3908         Type owntype = types.createErrorType(tree.type);
3909 
3910         // Attribute functor part of application and make sure it's a class.
3911         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3912 
3913         // Attribute type parameters
3914         List<Type> actuals = attribTypes(tree.arguments, env);
3915 
3916         if (clazztype.hasTag(CLASS)) {
3917             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3918             if (actuals.isEmpty()) //diamond
3919                 actuals = formals;
3920 
3921             if (actuals.length() == formals.length()) {
3922                 List<Type> a = actuals;
3923                 List<Type> f = formals;
3924                 while (a.nonEmpty()) {
3925                     a.head = a.head.withTypeVar(f.head);
3926                     a = a.tail;
3927                     f = f.tail;
3928                 }
3929                 // Compute the proper generic outer
3930                 Type clazzOuter = clazztype.getEnclosingType();
3931                 if (clazzOuter.hasTag(CLASS)) {
3932                     Type site;
3933                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3934                     if (clazz.hasTag(IDENT)) {
3935                         site = env.enclClass.sym.type;
3936                     } else if (clazz.hasTag(SELECT)) {
3937                         site = ((JCFieldAccess) clazz).selected.type;
3938                     } else throw new AssertionError(""+tree);
3939                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3940                         if (site.hasTag(CLASS))
3941                             site = types.asOuterSuper(site, clazzOuter.tsym);
3942                         if (site == null)
3943                             site = types.erasure(clazzOuter);
3944                         clazzOuter = site;
3945                     }
3946                 }
3947                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3948             } else {
3949                 if (formals.length() != 0) {
3950                     log.error(tree.pos(), "wrong.number.type.args",
3951                               Integer.toString(formals.length()));
3952                 } else {
3953                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3954                 }
3955                 owntype = types.createErrorType(tree.type);
3956             }
3957         }
3958         result = check(tree, owntype, TYP, resultInfo);
3959     }
3960 
visitTypeUnion(JCTypeUnion tree)3961     public void visitTypeUnion(JCTypeUnion tree) {
3962         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3963         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3964         for (JCExpression typeTree : tree.alternatives) {
3965             Type ctype = attribType(typeTree, env);
3966             ctype = chk.checkType(typeTree.pos(),
3967                           chk.checkClassType(typeTree.pos(), ctype),
3968                           syms.throwableType);
3969             if (!ctype.isErroneous()) {
3970                 //check that alternatives of a union type are pairwise
3971                 //unrelated w.r.t. subtyping
3972                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3973                     for (Type t : multicatchTypes) {
3974                         boolean sub = types.isSubtype(ctype, t);
3975                         boolean sup = types.isSubtype(t, ctype);
3976                         if (sub || sup) {
3977                             //assume 'a' <: 'b'
3978                             Type a = sub ? ctype : t;
3979                             Type b = sub ? t : ctype;
3980                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3981                         }
3982                     }
3983                 }
3984                 multicatchTypes.append(ctype);
3985                 if (all_multicatchTypes != null)
3986                     all_multicatchTypes.append(ctype);
3987             } else {
3988                 if (all_multicatchTypes == null) {
3989                     all_multicatchTypes = new ListBuffer<>();
3990                     all_multicatchTypes.appendList(multicatchTypes);
3991                 }
3992                 all_multicatchTypes.append(ctype);
3993             }
3994         }
3995         Type t = check(noCheckTree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3996         if (t.hasTag(CLASS)) {
3997             List<Type> alternatives =
3998                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3999             t = new UnionClassType((ClassType) t, alternatives);
4000         }
4001         tree.type = result = t;
4002     }
4003 
visitTypeIntersection(JCTypeIntersection tree)4004     public void visitTypeIntersection(JCTypeIntersection tree) {
4005         attribTypes(tree.bounds, env);
4006         tree.type = result = checkIntersection(tree, tree.bounds);
4007     }
4008 
visitTypeParameter(JCTypeParameter tree)4009     public void visitTypeParameter(JCTypeParameter tree) {
4010         TypeVar typeVar = (TypeVar) tree.type;
4011 
4012         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4013             annotateType(tree, tree.annotations);
4014         }
4015 
4016         if (!typeVar.bound.isErroneous()) {
4017             //fixup type-parameter bound computed in 'attribTypeVariables'
4018             typeVar.bound = checkIntersection(tree, tree.bounds);
4019         }
4020     }
4021 
checkIntersection(JCTree tree, List<JCExpression> bounds)4022     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4023         Set<Type> boundSet = new HashSet<Type>();
4024         if (bounds.nonEmpty()) {
4025             // accept class or interface or typevar as first bound.
4026             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4027             boundSet.add(types.erasure(bounds.head.type));
4028             if (bounds.head.type.isErroneous()) {
4029                 return bounds.head.type;
4030             }
4031             else if (bounds.head.type.hasTag(TYPEVAR)) {
4032                 // if first bound was a typevar, do not accept further bounds.
4033                 if (bounds.tail.nonEmpty()) {
4034                     log.error(bounds.tail.head.pos(),
4035                               "type.var.may.not.be.followed.by.other.bounds");
4036                     return bounds.head.type;
4037                 }
4038             } else {
4039                 // if first bound was a class or interface, accept only interfaces
4040                 // as further bounds.
4041                 for (JCExpression bound : bounds.tail) {
4042                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4043                     if (bound.type.isErroneous()) {
4044                         bounds = List.of(bound);
4045                     }
4046                     else if (bound.type.hasTag(CLASS)) {
4047                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4048                     }
4049                 }
4050             }
4051         }
4052 
4053         if (bounds.length() == 0) {
4054             return syms.objectType;
4055         } else if (bounds.length() == 1) {
4056             return bounds.head.type;
4057         } else {
4058             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4059             // ... the variable's bound is a class type flagged COMPOUND
4060             // (see comment for TypeVar.bound).
4061             // In this case, generate a class tree that represents the
4062             // bound class, ...
4063             JCExpression extending;
4064             List<JCExpression> implementing;
4065             if (!bounds.head.type.isInterface()) {
4066                 extending = bounds.head;
4067                 implementing = bounds.tail;
4068             } else {
4069                 extending = null;
4070                 implementing = bounds;
4071             }
4072             JCClassDecl cd = make.at(tree).ClassDef(
4073                 make.Modifiers(PUBLIC | ABSTRACT),
4074                 names.empty, List.<JCTypeParameter>nil(),
4075                 extending, implementing, List.<JCTree>nil());
4076 
4077             ClassSymbol c = (ClassSymbol)owntype.tsym;
4078             Assert.check((c.flags() & COMPOUND) != 0);
4079             cd.sym = c;
4080             c.sourcefile = env.toplevel.sourcefile;
4081 
4082             // ... and attribute the bound class
4083             c.flags_field |= UNATTRIBUTED;
4084             Env<AttrContext> cenv = enter.classEnv(cd, env);
4085             typeEnvs.put(c, cenv);
4086             attribClass(c);
4087             return owntype;
4088         }
4089     }
4090 
visitWildcard(JCWildcard tree)4091     public void visitWildcard(JCWildcard tree) {
4092         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4093         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4094             ? syms.objectType
4095             : attribType(tree.inner, env);
4096         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4097                                               tree.kind.kind,
4098                                               syms.boundClass),
4099                        TYP, resultInfo);
4100     }
4101 
visitAnnotation(JCAnnotation tree)4102     public void visitAnnotation(JCAnnotation tree) {
4103         Assert.error("should be handled in Annotate");
4104     }
4105 
visitAnnotatedType(JCAnnotatedType tree)4106     public void visitAnnotatedType(JCAnnotatedType tree) {
4107         Type underlyingType = attribType(tree.getUnderlyingType(), env);
4108         this.attribAnnotationTypes(tree.annotations, env);
4109         annotateType(tree, tree.annotations);
4110         result = tree.type = underlyingType;
4111     }
4112 
4113     /**
4114      * Apply the annotations to the particular type.
4115      */
annotateType(final JCTree tree, final List<JCAnnotation> annotations)4116     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
4117         annotate.typeAnnotation(new Annotate.Worker() {
4118             @Override
4119             public String toString() {
4120                 return "annotate " + annotations + " onto " + tree;
4121             }
4122             @Override
4123             public void run() {
4124                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
4125                 if (annotations.size() == compounds.size()) {
4126                     // All annotations were successfully converted into compounds
4127                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
4128                 }
4129             }
4130         });
4131     }
4132 
fromAnnotations(List<JCAnnotation> annotations)4133     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
4134         if (annotations.isEmpty()) {
4135             return List.nil();
4136         }
4137 
4138         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
4139         for (JCAnnotation anno : annotations) {
4140             if (anno.attribute != null) {
4141                 // TODO: this null-check is only needed for an obscure
4142                 // ordering issue, where annotate.flush is called when
4143                 // the attribute is not set yet. For an example failure
4144                 // try the referenceinfos/NestedTypes.java test.
4145                 // Any better solutions?
4146                 buf.append((Attribute.TypeCompound) anno.attribute);
4147             }
4148             // Eventually we will want to throw an exception here, but
4149             // we can't do that just yet, because it gets triggered
4150             // when attempting to attach an annotation that isn't
4151             // defined.
4152         }
4153         return buf.toList();
4154     }
4155 
visitErroneous(JCErroneous tree)4156     public void visitErroneous(JCErroneous tree) {
4157         if (tree.errs != null)
4158             for (JCTree err : tree.errs)
4159                 attribTree(err, env, new ResultInfo(ERR, pt()));
4160         result = tree.type = syms.errType;
4161     }
4162 
4163     /** Default visitor method for all other trees.
4164      */
visitTree(JCTree tree)4165     public void visitTree(JCTree tree) {
4166         throw new AssertionError();
4167     }
4168 
4169     /**
4170      * Attribute an env for either a top level tree or class declaration.
4171      */
attrib(Env<AttrContext> env)4172     public void attrib(Env<AttrContext> env) {
4173         if (env.tree.hasTag(TOPLEVEL))
4174             attribTopLevel(env);
4175         else
4176             attribClass(env.tree.pos(), env.enclClass.sym);
4177     }
4178 
4179     /**
4180      * Attribute a top level tree. These trees are encountered when the
4181      * package declaration has annotations.
4182      */
attribTopLevel(Env<AttrContext> env)4183     public void attribTopLevel(Env<AttrContext> env) {
4184         JCCompilationUnit toplevel = env.toplevel;
4185         try {
4186             annotate.flush();
4187         } catch (CompletionFailure ex) {
4188             chk.completionError(toplevel.pos(), ex);
4189         }
4190     }
4191 
4192     /** Main method: attribute class definition associated with given class symbol.
4193      *  reporting completion failures at the given position.
4194      *  @param pos The source position at which completion errors are to be
4195      *             reported.
4196      *  @param c   The class symbol whose definition will be attributed.
4197      */
attribClass(DiagnosticPosition pos, ClassSymbol c)4198     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4199         try {
4200             annotate.flush();
4201             attribClass(c);
4202         } catch (CompletionFailure ex) {
4203             chk.completionError(pos, ex);
4204         }
4205     }
4206 
4207     /** Attribute class definition associated with given class symbol.
4208      *  @param c   The class symbol whose definition will be attributed.
4209      */
attribClass(ClassSymbol c)4210     void attribClass(ClassSymbol c) throws CompletionFailure {
4211         if (c.type.hasTag(ERROR)) return;
4212 
4213         // Check for cycles in the inheritance graph, which can arise from
4214         // ill-formed class files.
4215         chk.checkNonCyclic(null, c.type);
4216 
4217         Type st = types.supertype(c.type);
4218         if ((c.flags_field & Flags.COMPOUND) == 0) {
4219             // First, attribute superclass.
4220             if (st.hasTag(CLASS))
4221                 attribClass((ClassSymbol)st.tsym);
4222 
4223             // Next attribute owner, if it is a class.
4224             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4225                 attribClass((ClassSymbol)c.owner);
4226         }
4227 
4228         // The previous operations might have attributed the current class
4229         // if there was a cycle. So we test first whether the class is still
4230         // UNATTRIBUTED.
4231         if ((c.flags_field & UNATTRIBUTED) != 0) {
4232             c.flags_field &= ~UNATTRIBUTED;
4233 
4234             // Get environment current at the point of class definition.
4235             Env<AttrContext> env = typeEnvs.get(c);
4236 
4237             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4238             // because the annotations were not available at the time the env was created. Therefore,
4239             // we look up the environment chain for the first enclosing environment for which the
4240             // lint value is set. Typically, this is the parent env, but might be further if there
4241             // are any envs created as a result of TypeParameter nodes.
4242             Env<AttrContext> lintEnv = env;
4243             while (lintEnv.info.lint == null)
4244                 lintEnv = lintEnv.next;
4245 
4246             // Having found the enclosing lint value, we can initialize the lint value for this class
4247             env.info.lint = lintEnv.info.lint.augment(c);
4248 
4249             Lint prevLint = chk.setLint(env.info.lint);
4250             JavaFileObject prev = log.useSource(c.sourcefile);
4251             ResultInfo prevReturnRes = env.info.returnResult;
4252 
4253             try {
4254                 deferredLintHandler.flush(env.tree);
4255                 env.info.returnResult = null;
4256                 // java.lang.Enum may not be subclassed by a non-enum
4257                 if (st.tsym == syms.enumSym &&
4258                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4259                     log.error(env.tree.pos(), "enum.no.subclassing");
4260 
4261                 // Enums may not be extended by source-level classes
4262                 if (st.tsym != null &&
4263                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4264                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4265                     log.error(env.tree.pos(), "enum.types.not.extensible");
4266                 }
4267 
4268                 if (isSerializable(c.type)) {
4269                     env.info.isSerializable = true;
4270                 }
4271 
4272                 attribClassBody(env, c);
4273 
4274                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4275                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4276                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4277             } finally {
4278                 env.info.returnResult = prevReturnRes;
4279                 log.useSource(prev);
4280                 chk.setLint(prevLint);
4281             }
4282 
4283         }
4284     }
4285 
visitImport(JCImport tree)4286     public void visitImport(JCImport tree) {
4287         // nothing to do
4288     }
4289 
4290     /** Finish the attribution of a class. */
attribClassBody(Env<AttrContext> env, ClassSymbol c)4291     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4292         JCClassDecl tree = (JCClassDecl)env.tree;
4293         Assert.check(c == tree.sym);
4294 
4295         // Validate type parameters, supertype and interfaces.
4296         attribStats(tree.typarams, env);
4297         if (!c.isAnonymous()) {
4298             //already checked if anonymous
4299             chk.validate(tree.typarams, env);
4300             chk.validate(tree.extending, env);
4301             chk.validate(tree.implementing, env);
4302         }
4303 
4304         c.markAbstractIfNeeded(types);
4305 
4306         // If this is a non-abstract class, check that it has no abstract
4307         // methods or unimplemented methods of an implemented interface.
4308         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4309             if (!relax)
4310                 chk.checkAllDefined(tree.pos(), c);
4311         }
4312 
4313         if ((c.flags() & ANNOTATION) != 0) {
4314             if (tree.implementing.nonEmpty())
4315                 log.error(tree.implementing.head.pos(),
4316                           "cant.extend.intf.annotation");
4317             if (tree.typarams.nonEmpty())
4318                 log.error(tree.typarams.head.pos(),
4319                           "intf.annotation.cant.have.type.params");
4320 
4321             // If this annotation has a @Repeatable, validate
4322             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4323             if (repeatable != null) {
4324                 // get diagnostic position for error reporting
4325                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4326                 Assert.checkNonNull(cbPos);
4327 
4328                 chk.validateRepeatable(c, repeatable, cbPos);
4329             }
4330         } else {
4331             // Check that all extended classes and interfaces
4332             // are compatible (i.e. no two define methods with same arguments
4333             // yet different return types).  (JLS 8.4.6.3)
4334             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4335             if (allowDefaultMethods) {
4336                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4337             }
4338         }
4339 
4340         // Check that class does not import the same parameterized interface
4341         // with two different argument lists.
4342         chk.checkClassBounds(tree.pos(), c.type);
4343 
4344         tree.type = c.type;
4345 
4346         for (List<JCTypeParameter> l = tree.typarams;
4347              l.nonEmpty(); l = l.tail) {
4348              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
4349         }
4350 
4351         // Check that a generic class doesn't extend Throwable
4352         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4353             log.error(tree.extending.pos(), "generic.throwable");
4354 
4355         // Check that all methods which implement some
4356         // method conform to the method they implement.
4357         chk.checkImplementations(tree);
4358 
4359         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4360         checkAutoCloseable(tree.pos(), env, c.type);
4361 
4362         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4363             // Attribute declaration
4364             attribStat(l.head, env);
4365             // Check that declarations in inner classes are not static (JLS 8.1.2)
4366             // Make an exception for static constants.
4367             if (c.owner.kind != PCK &&
4368                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4369                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4370                 Symbol sym = null;
4371                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4372                 if (sym == null ||
4373                     sym.kind != VAR ||
4374                     ((VarSymbol) sym).getConstValue() == null)
4375                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4376             }
4377         }
4378 
4379         // Check for cycles among non-initial constructors.
4380         chk.checkCyclicConstructors(tree);
4381 
4382         // Check for cycles among annotation elements.
4383         chk.checkNonCyclicElements(tree);
4384 
4385         // Check for proper use of serialVersionUID
4386         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4387             isSerializable(c.type) &&
4388             (c.flags() & Flags.ENUM) == 0 &&
4389             checkForSerial(c)) {
4390             checkSerialVersionUID(tree, c);
4391         }
4392         if (allowTypeAnnos) {
4393             // Correctly organize the postions of the type annotations
4394             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4395 
4396             // Check type annotations applicability rules
4397             validateTypeAnnotations(tree, false);
4398         }
4399     }
4400         // where
checkForSerial(ClassSymbol c)4401         boolean checkForSerial(ClassSymbol c) {
4402             if ((c.flags() & ABSTRACT) == 0) {
4403                 return true;
4404             } else {
4405                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4406             }
4407         }
4408 
4409         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4410             @Override
4411             public boolean accepts(Symbol s) {
4412                 return s.kind == Kinds.MTH &&
4413                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4414             }
4415         };
4416 
4417         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
getDiagnosticPosition(JCClassDecl tree, Type t)4418         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4419             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4420                 if (types.isSameType(al.head.annotationType.type, t))
4421                     return al.head.pos();
4422             }
4423 
4424             return null;
4425         }
4426 
4427         /** check if a type is a subtype of Serializable, if that is available. */
isSerializable(Type t)4428         boolean isSerializable(Type t) {
4429             try {
4430                 syms.serializableType.complete();
4431             }
4432             catch (CompletionFailure e) {
4433                 return false;
4434             }
4435             return types.isSubtype(t, syms.serializableType);
4436         }
4437 
4438         /** Check that an appropriate serialVersionUID member is defined. */
checkSerialVersionUID(JCClassDecl tree, ClassSymbol c)4439         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4440 
4441             // check for presence of serialVersionUID
4442             Scope.Entry e = c.members().lookup(names.serialVersionUID);
4443             while (e.scope != null && e.sym.kind != VAR) e = e.next();
4444             if (e.scope == null) {
4445                 log.warning(LintCategory.SERIAL,
4446                         tree.pos(), "missing.SVUID", c);
4447                 return;
4448             }
4449 
4450             // check that it is static final
4451             VarSymbol svuid = (VarSymbol)e.sym;
4452             if ((svuid.flags() & (STATIC | FINAL)) !=
4453                 (STATIC | FINAL))
4454                 log.warning(LintCategory.SERIAL,
4455                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4456 
4457             // check that it is long
4458             else if (!svuid.type.hasTag(LONG))
4459                 log.warning(LintCategory.SERIAL,
4460                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4461 
4462             // check constant
4463             else if (svuid.getConstValue() == null)
4464                 log.warning(LintCategory.SERIAL,
4465                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4466         }
4467 
capture(Type type)4468     private Type capture(Type type) {
4469         return types.capture(type);
4470     }
4471 
validateTypeAnnotations(JCTree tree, boolean sigOnly)4472     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4473         tree.accept(new TypeAnnotationsValidator(sigOnly));
4474     }
4475     //where
4476     private final class TypeAnnotationsValidator extends TreeScanner {
4477 
4478         private final boolean sigOnly;
TypeAnnotationsValidator(boolean sigOnly)4479         public TypeAnnotationsValidator(boolean sigOnly) {
4480             this.sigOnly = sigOnly;
4481         }
4482 
visitAnnotation(JCAnnotation tree)4483         public void visitAnnotation(JCAnnotation tree) {
4484             chk.validateTypeAnnotation(tree, false);
4485             super.visitAnnotation(tree);
4486         }
visitAnnotatedType(JCAnnotatedType tree)4487         public void visitAnnotatedType(JCAnnotatedType tree) {
4488             if (!tree.underlyingType.type.isErroneous()) {
4489                 super.visitAnnotatedType(tree);
4490             }
4491         }
visitTypeParameter(JCTypeParameter tree)4492         public void visitTypeParameter(JCTypeParameter tree) {
4493             chk.validateTypeAnnotations(tree.annotations, true);
4494             scan(tree.bounds);
4495             // Don't call super.
4496             // This is needed because above we call validateTypeAnnotation with
4497             // false, which would forbid annotations on type parameters.
4498             // super.visitTypeParameter(tree);
4499         }
visitMethodDef(JCMethodDecl tree)4500         public void visitMethodDef(JCMethodDecl tree) {
4501             if (tree.recvparam != null &&
4502                     !tree.recvparam.vartype.type.isErroneous()) {
4503                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4504                         tree.recvparam.vartype.type.tsym);
4505             }
4506             if (tree.restype != null && tree.restype.type != null) {
4507                 validateAnnotatedType(tree.restype, tree.restype.type);
4508             }
4509             if (sigOnly) {
4510                 scan(tree.mods);
4511                 scan(tree.restype);
4512                 scan(tree.typarams);
4513                 scan(tree.recvparam);
4514                 scan(tree.params);
4515                 scan(tree.thrown);
4516             } else {
4517                 scan(tree.defaultValue);
4518                 scan(tree.body);
4519             }
4520         }
visitVarDef(final JCVariableDecl tree)4521         public void visitVarDef(final JCVariableDecl tree) {
4522             if (tree.sym != null && tree.sym.type != null)
4523                 validateAnnotatedType(tree.vartype, tree.sym.type);
4524             scan(tree.mods);
4525             scan(tree.vartype);
4526             if (!sigOnly) {
4527                 scan(tree.init);
4528             }
4529         }
visitTypeCast(JCTypeCast tree)4530         public void visitTypeCast(JCTypeCast tree) {
4531             if (tree.clazz != null && tree.clazz.type != null)
4532                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4533             super.visitTypeCast(tree);
4534         }
visitTypeTest(JCInstanceOf tree)4535         public void visitTypeTest(JCInstanceOf tree) {
4536             if (tree.clazz != null && tree.clazz.type != null)
4537                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4538             super.visitTypeTest(tree);
4539         }
visitNewClass(JCNewClass tree)4540         public void visitNewClass(JCNewClass tree) {
4541             if (tree.clazz != null && tree.clazz.type != null) {
4542                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4543                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4544                             tree.clazz.type.tsym);
4545                 }
4546                 if (tree.def != null) {
4547                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4548                 }
4549 
4550                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4551             }
4552             super.visitNewClass(tree);
4553         }
visitNewArray(JCNewArray tree)4554         public void visitNewArray(JCNewArray tree) {
4555             if (tree.elemtype != null && tree.elemtype.type != null) {
4556                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4557                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4558                             tree.elemtype.type.tsym);
4559                 }
4560                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4561             }
4562             super.visitNewArray(tree);
4563         }
visitClassDef(JCClassDecl tree)4564         public void visitClassDef(JCClassDecl tree) {
4565             if (sigOnly) {
4566                 scan(tree.mods);
4567                 scan(tree.typarams);
4568                 scan(tree.extending);
4569                 scan(tree.implementing);
4570             }
4571             for (JCTree member : tree.defs) {
4572                 if (member.hasTag(Tag.CLASSDEF)) {
4573                     continue;
4574                 }
4575                 scan(member);
4576             }
4577         }
visitBlock(JCBlock tree)4578         public void visitBlock(JCBlock tree) {
4579             if (!sigOnly) {
4580                 scan(tree.stats);
4581             }
4582         }
4583 
4584         /* I would want to model this after
4585          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4586          * and override visitSelect and visitTypeApply.
4587          * However, we only set the annotated type in the top-level type
4588          * of the symbol.
4589          * Therefore, we need to override each individual location where a type
4590          * can occur.
4591          */
validateAnnotatedType(final JCTree errtree, final Type type)4592         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4593             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4594 
4595             if (type.isPrimitiveOrVoid()) {
4596                 return;
4597             }
4598 
4599             JCTree enclTr = errtree;
4600             Type enclTy = type;
4601 
4602             boolean repeat = true;
4603             while (repeat) {
4604                 if (enclTr.hasTag(TYPEAPPLY)) {
4605                     List<Type> tyargs = enclTy.getTypeArguments();
4606                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4607                     if (trargs.length() > 0) {
4608                         // Nothing to do for diamonds
4609                         if (tyargs.length() == trargs.length()) {
4610                             for (int i = 0; i < tyargs.length(); ++i) {
4611                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4612                             }
4613                         }
4614                         // If the lengths don't match, it's either a diamond
4615                         // or some nested type that redundantly provides
4616                         // type arguments in the tree.
4617                     }
4618 
4619                     // Look at the clazz part of a generic type
4620                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4621                 }
4622 
4623                 if (enclTr.hasTag(SELECT)) {
4624                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4625                     if (enclTy != null &&
4626                             !enclTy.hasTag(NONE)) {
4627                         enclTy = enclTy.getEnclosingType();
4628                     }
4629                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4630                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4631                     if (enclTy == null ||
4632                             enclTy.hasTag(NONE)) {
4633                         if (at.getAnnotations().size() == 1) {
4634                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4635                         } else {
4636                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
4637                             for (JCAnnotation an : at.getAnnotations()) {
4638                                 comps.add(an.attribute);
4639                             }
4640                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4641                         }
4642                         repeat = false;
4643                     }
4644                     enclTr = at.underlyingType;
4645                     // enclTy doesn't need to be changed
4646                 } else if (enclTr.hasTag(IDENT)) {
4647                     repeat = false;
4648                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4649                     JCWildcard wc = (JCWildcard) enclTr;
4650                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4651                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
4652                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4653                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
4654                     } else {
4655                         // Nothing to do for UNBOUND
4656                     }
4657                     repeat = false;
4658                 } else if (enclTr.hasTag(TYPEARRAY)) {
4659                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4660                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
4661                     repeat = false;
4662                 } else if (enclTr.hasTag(TYPEUNION)) {
4663                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4664                     for (JCTree t : ut.getTypeAlternatives()) {
4665                         validateAnnotatedType(t, t.type);
4666                     }
4667                     repeat = false;
4668                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4669                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4670                     for (JCTree t : it.getBounds()) {
4671                         validateAnnotatedType(t, t.type);
4672                     }
4673                     repeat = false;
4674                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4675                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4676                     repeat = false;
4677                 } else {
4678                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4679                             " within: "+ errtree + " with kind: " + errtree.getKind());
4680                 }
4681             }
4682         }
4683 
checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, Symbol sym)4684         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4685                 Symbol sym) {
4686             // Ensure that no declaration annotations are present.
4687             // Note that a tree type might be an AnnotatedType with
4688             // empty annotations, if only declaration annotations were given.
4689             // This method will raise an error for such a type.
4690             for (JCAnnotation ai : annotations) {
4691                 if (!ai.type.isErroneous() &&
4692                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4693                     log.error(ai.pos(), "annotation.type.not.applicable");
4694                 }
4695             }
4696         }
4697     };
4698 
4699     // <editor-fold desc="post-attribution visitor">
4700 
4701     /**
4702      * Handle missing types/symbols in an AST. This routine is useful when
4703      * the compiler has encountered some errors (which might have ended up
4704      * terminating attribution abruptly); if the compiler is used in fail-over
4705      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4706      * prevents NPE to be progagated during subsequent compilation steps.
4707      */
postAttr(JCTree tree)4708     public void postAttr(JCTree tree) {
4709         new PostAttrAnalyzer().scan(tree);
4710     }
4711 
4712     class PostAttrAnalyzer extends TreeScanner {
4713 
initTypeIfNeeded(JCTree that)4714         private void initTypeIfNeeded(JCTree that) {
4715             if (that.type == null) {
4716                 if (that.hasTag(METHODDEF)) {
4717                     that.type = dummyMethodType((JCMethodDecl)that);
4718                 } else {
4719                     that.type = syms.unknownType;
4720                 }
4721             }
4722         }
4723 
4724         /* Construct a dummy method type. If we have a method declaration,
4725          * and the declared return type is void, then use that return type
4726          * instead of UNKNOWN to avoid spurious error messages in lambda
4727          * bodies (see:JDK-8041704).
4728          */
dummyMethodType(JCMethodDecl md)4729         private Type dummyMethodType(JCMethodDecl md) {
4730             Type restype = syms.unknownType;
4731             if (md != null && md.restype.hasTag(TYPEIDENT)) {
4732                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4733                 if (prim.typetag == VOID)
4734                     restype = syms.voidType;
4735             }
4736             return new MethodType(List.<Type>nil(), restype,
4737                                   List.<Type>nil(), syms.methodClass);
4738         }
dummyMethodType()4739         private Type dummyMethodType() {
4740             return dummyMethodType(null);
4741         }
4742 
4743         @Override
scan(JCTree tree)4744         public void scan(JCTree tree) {
4745             if (tree == null) return;
4746             if (tree instanceof JCExpression) {
4747                 initTypeIfNeeded(tree);
4748             }
4749             super.scan(tree);
4750         }
4751 
4752         @Override
visitIdent(JCIdent that)4753         public void visitIdent(JCIdent that) {
4754             if (that.sym == null) {
4755                 that.sym = syms.unknownSymbol;
4756             }
4757         }
4758 
4759         @Override
visitSelect(JCFieldAccess that)4760         public void visitSelect(JCFieldAccess that) {
4761             if (that.sym == null) {
4762                 that.sym = syms.unknownSymbol;
4763             }
4764             super.visitSelect(that);
4765         }
4766 
4767         @Override
visitClassDef(JCClassDecl that)4768         public void visitClassDef(JCClassDecl that) {
4769             initTypeIfNeeded(that);
4770             if (that.sym == null) {
4771                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4772             }
4773             super.visitClassDef(that);
4774         }
4775 
4776         @Override
visitMethodDef(JCMethodDecl that)4777         public void visitMethodDef(JCMethodDecl that) {
4778             initTypeIfNeeded(that);
4779             if (that.sym == null) {
4780                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4781             }
4782             super.visitMethodDef(that);
4783         }
4784 
4785         @Override
visitVarDef(JCVariableDecl that)4786         public void visitVarDef(JCVariableDecl that) {
4787             initTypeIfNeeded(that);
4788             if (that.sym == null) {
4789                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4790                 that.sym.adr = 0;
4791             }
4792             super.visitVarDef(that);
4793         }
4794 
4795         @Override
visitNewClass(JCNewClass that)4796         public void visitNewClass(JCNewClass that) {
4797             if (that.constructor == null) {
4798                 that.constructor = new MethodSymbol(0, names.init,
4799                         dummyMethodType(), syms.noSymbol);
4800             }
4801             if (that.constructorType == null) {
4802                 that.constructorType = syms.unknownType;
4803             }
4804             super.visitNewClass(that);
4805         }
4806 
4807         @Override
visitAssignop(JCAssignOp that)4808         public void visitAssignop(JCAssignOp that) {
4809             if (that.operator == null) {
4810                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4811                         -1, syms.noSymbol);
4812             }
4813             super.visitAssignop(that);
4814         }
4815 
4816         @Override
visitBinary(JCBinary that)4817         public void visitBinary(JCBinary that) {
4818             if (that.operator == null) {
4819                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4820                         -1, syms.noSymbol);
4821             }
4822             super.visitBinary(that);
4823         }
4824 
4825         @Override
visitUnary(JCUnary that)4826         public void visitUnary(JCUnary that) {
4827             if (that.operator == null) {
4828                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4829                         -1, syms.noSymbol);
4830             }
4831             super.visitUnary(that);
4832         }
4833 
4834         @Override
visitLambda(JCLambda that)4835         public void visitLambda(JCLambda that) {
4836             super.visitLambda(that);
4837             if (that.targets == null) {
4838                 that.targets = List.nil();
4839             }
4840         }
4841 
4842         @Override
visitReference(JCMemberReference that)4843         public void visitReference(JCMemberReference that) {
4844             super.visitReference(that);
4845             if (that.sym == null) {
4846                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4847                         syms.noSymbol);
4848             }
4849             if (that.targets == null) {
4850                 that.targets = List.nil();
4851             }
4852         }
4853     }
4854     // </editor-fold>
4855 }
4856