1 /*******************************************************************************
2  * Copyright (c) 2000, 2003 IBM Corporation and others.
3  * All rights reserved. This program and the accompanying materials
4  * are made available under the terms of the Common Public License v1.0
5  * which accompanies this distribution, and is available at
6  * http://www.eclipse.org/legal/cpl-v10.html
7  *
8  * Contributors:
9  *     IBM Corporation - initial API and implementation
10  *******************************************************************************/
11 package net.sourceforge.phpdt.internal.compiler.lookup;
12 
13 import net.sourceforge.phpdt.core.compiler.CharOperation;
14 import net.sourceforge.phpdt.internal.compiler.ast.AbstractMethodDeclaration;
15 import net.sourceforge.phpdt.internal.compiler.ast.ConstructorDeclaration;
16 import net.sourceforge.phpdt.internal.compiler.ast.TypeDeclaration;
17 import net.sourceforge.phpdt.internal.compiler.problem.ProblemReporter;
18 
19 public class BlockScope extends Scope {
20 
21 	// Local variable management
22 	public LocalVariableBinding[] locals;
23 
24 	public int localIndex; // position for next variable
25 
26 	public int startIndex; // start position in this scope - for ordering
27 							// scopes vs. variables
28 
29 	public int offset; // for variable allocation throughout scopes
30 
31 	public int maxOffset; // for variable allocation throughout scopes
32 
33 	// finally scopes must be shifted behind respective try&catch scope(s) so as
34 	// to avoid
35 	// collisions of secret variables (return address, save value).
36 	public BlockScope[] shiftScopes;
37 
38 	public final static VariableBinding[] EmulationPathToImplicitThis = {};
39 
40 	public final static VariableBinding[] NoEnclosingInstanceInConstructorCall = {};
41 
42 	public final static VariableBinding[] NoEnclosingInstanceInStaticContext = {};
43 
44 	public Scope[] subscopes = new Scope[1]; // need access from code assist
45 
46 	public int scopeIndex = 0; // need access from code assist
47 
BlockScope(int kind, Scope parent)48 	protected BlockScope(int kind, Scope parent) {
49 
50 		super(kind, parent);
51 	}
52 
BlockScope(BlockScope parent)53 	public BlockScope(BlockScope parent) {
54 
55 		this(parent, true);
56 	}
57 
BlockScope(BlockScope parent, boolean addToParentScope)58 	public BlockScope(BlockScope parent, boolean addToParentScope) {
59 
60 		this(BLOCK_SCOPE, parent);
61 		locals = new LocalVariableBinding[5];
62 		if (addToParentScope)
63 			parent.addSubscope(this);
64 		this.startIndex = parent.localIndex;
65 	}
66 
BlockScope(BlockScope parent, int variableCount)67 	public BlockScope(BlockScope parent, int variableCount) {
68 
69 		this(BLOCK_SCOPE, parent);
70 		locals = new LocalVariableBinding[variableCount];
71 		parent.addSubscope(this);
72 		this.startIndex = parent.localIndex;
73 	}
74 
75 	/*
76 	 * Create the class scope & binding for the anonymous type.
77 	 */
addAnonymousType(TypeDeclaration anonymousType, ReferenceBinding superBinding)78 	public final void addAnonymousType(TypeDeclaration anonymousType,
79 			ReferenceBinding superBinding) {
80 
81 		ClassScope anonymousClassScope = new ClassScope(this, anonymousType);
82 		anonymousClassScope.buildAnonymousTypeBinding(enclosingSourceType(),
83 				superBinding);
84 	}
85 
86 	/*
87 	 * Create the class scope & binding for the local type.
88 	 */
addLocalType(TypeDeclaration localType)89 	public final void addLocalType(TypeDeclaration localType) {
90 
91 		// check that the localType does not conflict with an enclosing type
92 		ReferenceBinding type = enclosingSourceType();
93 		do {
94 			if (CharOperation.equals(type.sourceName, localType.name)) {
95 				problemReporter().hidingEnclosingType(localType);
96 				return;
97 			}
98 			type = type.enclosingType();
99 		} while (type != null);
100 
101 		// check that the localType does not conflict with another sibling local
102 		// type
103 		Scope scope = this;
104 		do {
105 			if (((BlockScope) scope).findLocalType(localType.name) != null) {
106 				problemReporter().duplicateNestedType(localType);
107 				return;
108 			}
109 		} while ((scope = scope.parent) instanceof BlockScope);
110 
111 		ClassScope localTypeScope = new ClassScope(this, localType);
112 		addSubscope(localTypeScope);
113 		localTypeScope.buildLocalTypeBinding(enclosingSourceType());
114 	}
115 
116 	/*
117 	 * Insert a local variable into a given scope, updating its position and
118 	 * checking there are not too many locals or arguments allocated.
119 	 */
addLocalVariable(LocalVariableBinding binding)120 	public final void addLocalVariable(LocalVariableBinding binding) {
121 
122 		checkAndSetModifiersForVariable(binding);
123 
124 		// insert local in scope
125 		if (localIndex == locals.length)
126 			System.arraycopy(locals, 0,
127 					(locals = new LocalVariableBinding[localIndex * 2]), 0,
128 					localIndex);
129 		locals[localIndex++] = binding;
130 
131 		// update local variable binding
132 		binding.declaringScope = this;
133 		binding.id = this.outerMostMethodScope().analysisIndex++;
134 		// share the outermost method scope analysisIndex
135 	}
136 
addSubscope(Scope childScope)137 	public void addSubscope(Scope childScope) {
138 		if (scopeIndex == subscopes.length)
139 			System.arraycopy(subscopes, 0,
140 					(subscopes = new Scope[scopeIndex * 2]), 0, scopeIndex);
141 		subscopes[scopeIndex++] = childScope;
142 	}
143 
144 	/*
145 	 * Answer true if the receiver is suitable for assigning final blank fields.
146 	 *
147 	 * in other words, it is inside an initializer, a constructor or a clinit
148 	 */
allowBlankFinalFieldAssignment(FieldBinding binding)149 	public final boolean allowBlankFinalFieldAssignment(FieldBinding binding) {
150 
151 		if (enclosingSourceType() != binding.declaringClass)
152 			return false;
153 
154 		MethodScope methodScope = methodScope();
155 		if (methodScope.isStatic != binding.isStatic())
156 			return false;
157 		return methodScope.isInsideInitializer() // inside initializer
158 				|| ((AbstractMethodDeclaration) methodScope.referenceContext)
159 						.isInitializationMethod(); // inside constructor or
160 													// clinit
161 	}
162 
basicToString(int tab)163 	String basicToString(int tab) {
164 		String newLine = "\n"; //$NON-NLS-1$
165 		for (int i = tab; --i >= 0;)
166 			newLine += "\t"; //$NON-NLS-1$
167 
168 		String s = newLine + "--- Block Scope ---"; //$NON-NLS-1$
169 		newLine += "\t"; //$NON-NLS-1$
170 		s += newLine + "locals:"; //$NON-NLS-1$
171 		for (int i = 0; i < localIndex; i++)
172 			s += newLine + "\t" + locals[i].toString(); //$NON-NLS-1$
173 		s += newLine + "startIndex = " + startIndex; //$NON-NLS-1$
174 		return s;
175 	}
176 
checkAndSetModifiersForVariable(LocalVariableBinding varBinding)177 	private void checkAndSetModifiersForVariable(LocalVariableBinding varBinding) {
178 
179 		int modifiers = varBinding.modifiers;
180 		if ((modifiers & AccAlternateModifierProblem) != 0
181 				&& varBinding.declaration != null) {
182 			problemReporter().duplicateModifierForVariable(
183 					varBinding.declaration, this instanceof MethodScope);
184 		}
185 		int realModifiers = modifiers & AccJustFlag;
186 
187 		int unexpectedModifiers = ~AccFinal;
188 		if ((realModifiers & unexpectedModifiers) != 0
189 				&& varBinding.declaration != null) {
190 			problemReporter().illegalModifierForVariable(
191 					varBinding.declaration, this instanceof MethodScope);
192 		}
193 		varBinding.modifiers = modifiers;
194 	}
195 
196 	/*
197 	 * Compute variable positions in scopes given an initial position offset
198 	 * ignoring unused local variables.
199 	 *
200 	 * No argument is expected here (ilocal is the first non-argument local of
201 	 * the outermost scope) Arguments are managed by the MethodScope method
202 	 */
203 	// void computeLocalVariablePositions(int ilocal, int initOffset, CodeStream
204 	// codeStream) {
205 	//
206 	// this.offset = initOffset;
207 	// this.maxOffset = initOffset;
208 	//
209 	// // local variable init
210 	// int maxLocals = this.localIndex;
211 	// boolean hasMoreVariables = ilocal < maxLocals;
212 	//
213 	// // scope init
214 	// int iscope = 0, maxScopes = this.scopeIndex;
215 	// boolean hasMoreScopes = maxScopes > 0;
216 	//
217 	// // iterate scopes and variables in parallel
218 	// while (hasMoreVariables || hasMoreScopes) {
219 	// if (hasMoreScopes
220 	// && (!hasMoreVariables || (subscopes[iscope].startIndex() <= ilocal))) {
221 	// // consider subscope first
222 	// if (subscopes[iscope] instanceof BlockScope) {
223 	// BlockScope subscope = (BlockScope) subscopes[iscope];
224 	// int subOffset = subscope.shiftScopes == null ? this.offset :
225 	// subscope.maxShiftedOffset();
226 	// subscope.computeLocalVariablePositions(0, subOffset, codeStream);
227 	// if (subscope.maxOffset > this.maxOffset)
228 	// this.maxOffset = subscope.maxOffset;
229 	// }
230 	// hasMoreScopes = ++iscope < maxScopes;
231 	// } else {
232 	//
233 	// // consider variable first
234 	// LocalVariableBinding local = locals[ilocal]; // if no local at all, will
235 	// be locals[ilocal]==null
236 	//
237 	// // check if variable is actually used, and may force it to be preserved
238 	// boolean generateCurrentLocalVar = (local.useFlag ==
239 	// LocalVariableBinding.USED && (local.constant == Constant.NotAConstant));
240 	//
241 	// // do not report fake used variable
242 	// if (local.useFlag == LocalVariableBinding.UNUSED
243 	// && (local.declaration != null) // unused (and non secret) local
244 	// && ((local.declaration.bits & ASTNode.IsLocalDeclarationReachableMASK) !=
245 	// 0)) { // declaration is reachable
246 	//
247 	// if (!(local.declaration instanceof Argument)) // do not report unused
248 	// catch arguments
249 	// this.problemReporter().unusedLocalVariable(local.declaration);
250 	// }
251 	//
252 	// // could be optimized out, but does need to preserve unread variables ?
253 	// // if (!generateCurrentLocalVar) {
254 	// // if (local.declaration != null &&
255 	// environment().options.preserveAllLocalVariables) {
256 	// // generateCurrentLocalVar = true; // force it to be preserved in the
257 	// generated code
258 	// // local.useFlag = LocalVariableBinding.USED;
259 	// // }
260 	// // }
261 	//
262 	// // allocate variable
263 	// if (generateCurrentLocalVar) {
264 	//
265 	// if (local.declaration != null) {
266 	// codeStream.record(local); // record user-defined local variables for
267 	// attribute generation
268 	// }
269 	// // assign variable position
270 	// local.resolvedPosition = this.offset;
271 	//
272 	// if ((local.type == LongBinding) || (local.type == DoubleBinding)) {
273 	// this.offset += 2;
274 	// } else {
275 	// this.offset++;
276 	// }
277 	// if (this.offset > 0xFFFF) { // no more than 65535 words of locals
278 	// this.problemReporter().noMoreAvailableSpaceForLocal(
279 	// local,
280 	// local.declaration == null ? (ASTNode)this.methodScope().referenceContext
281 	// : local.declaration);
282 	// }
283 	// } else {
284 	// local.resolvedPosition = -1; // not generated
285 	// }
286 	// hasMoreVariables = ++ilocal < maxLocals;
287 	// }
288 	// }
289 	// if (this.offset > this.maxOffset)
290 	// this.maxOffset = this.offset;
291 	// }
292 	/*
293 	 * Answer true if the variable name already exists within the receiver's
294 	 * scope.
295 	 */
duplicateName(char[] name)296 	public final LocalVariableBinding duplicateName(char[] name) {
297 		for (int i = 0; i < localIndex; i++)
298 			if (CharOperation.equals(name, locals[i].name))
299 				return locals[i];
300 
301 		if (this instanceof MethodScope)
302 			return null;
303 		else
304 			return ((BlockScope) parent).duplicateName(name);
305 	}
306 
307 	/*
308 	 * Record the suitable binding denoting a synthetic field or constructor
309 	 * argument, mapping to the actual outer local variable in the scope
310 	 * context. Note that this may not need any effect, in case the outer local
311 	 * variable does not need to be emulated and can directly be used as is
312 	 * (using its back pointer to its declaring scope).
313 	 */
emulateOuterAccess(LocalVariableBinding outerLocalVariable)314 	public void emulateOuterAccess(LocalVariableBinding outerLocalVariable) {
315 
316 		MethodScope currentMethodScope;
317 		if ((currentMethodScope = this.methodScope()) != outerLocalVariable.declaringScope
318 				.methodScope()) {
319 			NestedTypeBinding currentType = (NestedTypeBinding) this
320 					.enclosingSourceType();
321 
322 			// do nothing for member types, pre emulation was performed already
323 			if (!currentType.isLocalType()) {
324 				return;
325 			}
326 			// must also add a synthetic field if we're not inside a constructor
327 			if (!currentMethodScope.isInsideInitializerOrConstructor()) {
328 				currentType.addSyntheticArgumentAndField(outerLocalVariable);
329 			} else {
330 				currentType.addSyntheticArgument(outerLocalVariable);
331 			}
332 		}
333 	}
334 
335 	/*
336 	 * Note that it must never produce a direct access to the
337 	 * targetEnclosingType, but instead a field sequence (this$2.this$1.this$0)
338 	 * so as to handle such a test case:
339 	 *
340 	 * class XX { void foo() { class A { class B { class C { boolean foo() {
341 	 * return (Object) A.this == (Object) B.this; } } } } new A().new B().new
342 	 * C(); } } where we only want to deal with ONE enclosing instance for C
343 	 * (could not figure out an A for C)
344 	 */
findLocalType(char[] name)345 	public final ReferenceBinding findLocalType(char[] name) {
346 
347 		for (int i = 0, length = scopeIndex; i < length; i++) {
348 			if (subscopes[i] instanceof ClassScope) {
349 				SourceTypeBinding sourceType = ((ClassScope) subscopes[i]).referenceContext.binding;
350 				if (CharOperation.equals(sourceType.sourceName(), name))
351 					return sourceType;
352 			}
353 		}
354 		return null;
355 	}
356 
findVariable(char[] variable)357 	public LocalVariableBinding findVariable(char[] variable) {
358 
359 		int variableLength = variable.length;
360 		for (int i = 0, length = locals.length; i < length; i++) {
361 			LocalVariableBinding local = locals[i];
362 			if (local == null)
363 				return null;
364 			if (local.name.length == variableLength
365 					&& CharOperation.prefixEquals(local.name, variable))
366 				return local;
367 		}
368 		return null;
369 	}
370 
371 	/*
372 	 * API flag is a mask of the following values VARIABLE (= FIELD or LOCAL),
373 	 * TYPE. Only bindings corresponding to the mask will be answered.
374 	 *
375 	 * if the VARIABLE mask is set then If the first name provided is a field
376 	 * (or local) then the field (or local) is answered Otherwise, package names
377 	 * and type names are consumed until a field is found. In this case, the
378 	 * field is answered.
379 	 *
380 	 * if the TYPE mask is set, package names and type names are consumed until
381 	 * the end of the input. Only if all of the input is consumed is the type
382 	 * answered
383 	 *
384 	 * All other conditions are errors, and a problem binding is returned.
385 	 *
386 	 * NOTE: If a problem binding is returned, senders should extract the
387 	 * compound name from the binding & not assume the problem applies to the
388 	 * entire compoundName.
389 	 *
390 	 * The VARIABLE mask has precedence over the TYPE mask.
391 	 *
392 	 * InvocationSite implements isSuperAccess(); this is used to determine if
393 	 * the discovered field is visible. setFieldIndex(int); this is used to
394 	 * record the number of names that were consumed.
395 	 *
396 	 * For example, getBinding({"foo","y","q", VARIABLE, site) will answer the
397 	 * binding for the field or local named "foo" (or an error binding if none
398 	 * exists). In addition, setFieldIndex(1) will be sent to the invocation
399 	 * site. If a type named "foo" exists, it will not be detected (and an error
400 	 * binding will be answered)
401 	 *
402 	 * IMPORTANT NOTE: This method is written under the assumption that
403 	 * compoundName is longer than length 1.
404 	 */
getBinding(char[][] compoundName, int mask, InvocationSite invocationSite)405 	public Binding getBinding(char[][] compoundName, int mask,
406 			InvocationSite invocationSite) {
407 
408 		Binding binding = getBinding(compoundName[0], mask | TYPE | PACKAGE,
409 				invocationSite);
410 		invocationSite.setFieldIndex(1);
411 		if (binding instanceof VariableBinding)
412 			return binding;
413 		compilationUnitScope().recordSimpleReference(compoundName[0]);
414 		if (!binding.isValidBinding())
415 			return binding;
416 
417 		int length = compoundName.length;
418 		int currentIndex = 1;
419 		foundType: if (binding instanceof PackageBinding) {
420 			PackageBinding packageBinding = (PackageBinding) binding;
421 			while (currentIndex < length) {
422 				compilationUnitScope()
423 						.recordReference(packageBinding.compoundName,
424 								compoundName[currentIndex]);
425 				binding = packageBinding
426 						.getTypeOrPackage(compoundName[currentIndex++]);
427 				invocationSite.setFieldIndex(currentIndex);
428 				if (binding == null) {
429 					if (currentIndex == length)
430 						// must be a type if its the last name, otherwise we
431 						// have no idea if its a package or type
432 						return new ProblemReferenceBinding(CharOperation
433 								.subarray(compoundName, 0, currentIndex),
434 								NotFound);
435 					else
436 						return new ProblemBinding(CharOperation.subarray(
437 								compoundName, 0, currentIndex), NotFound);
438 				}
439 				if (binding instanceof ReferenceBinding) {
440 					if (!binding.isValidBinding())
441 						return new ProblemReferenceBinding(CharOperation
442 								.subarray(compoundName, 0, currentIndex),
443 								binding.problemId());
444 					if (!((ReferenceBinding) binding).canBeSeenBy(this))
445 						return new ProblemReferenceBinding(CharOperation
446 								.subarray(compoundName, 0, currentIndex),
447 								(ReferenceBinding) binding, NotVisible);
448 					break foundType;
449 				}
450 				packageBinding = (PackageBinding) binding;
451 			}
452 
453 			// It is illegal to request a PACKAGE from this method.
454 			return new ProblemReferenceBinding(CharOperation.subarray(
455 					compoundName, 0, currentIndex), NotFound);
456 		}
457 
458 		// know binding is now a ReferenceBinding
459 		while (currentIndex < length) {
460 			ReferenceBinding typeBinding = (ReferenceBinding) binding;
461 			char[] nextName = compoundName[currentIndex++];
462 			invocationSite.setFieldIndex(currentIndex);
463 			invocationSite.setActualReceiverType(typeBinding);
464 			if ((mask & FIELD) != 0
465 					&& (binding = findField(typeBinding, nextName,
466 							invocationSite)) != null) {
467 				if (!binding.isValidBinding())
468 					return new ProblemFieldBinding(
469 							((FieldBinding) binding).declaringClass,
470 							CharOperation.subarray(compoundName, 0,
471 									currentIndex), binding.problemId());
472 				break; // binding is now a field
473 			}
474 			if ((binding = findMemberType(nextName, typeBinding)) == null) {
475 				if ((mask & FIELD) != 0) {
476 					return new ProblemBinding(CharOperation.subarray(
477 							compoundName, 0, currentIndex), typeBinding,
478 							NotFound);
479 				} else {
480 					return new ProblemReferenceBinding(CharOperation.subarray(
481 							compoundName, 0, currentIndex), typeBinding,
482 							NotFound);
483 				}
484 			}
485 			if (!binding.isValidBinding())
486 				return new ProblemReferenceBinding(CharOperation.subarray(
487 						compoundName, 0, currentIndex), binding.problemId());
488 		}
489 
490 		if ((mask & FIELD) != 0 && (binding instanceof FieldBinding)) {
491 			// was looking for a field and found a field
492 			FieldBinding field = (FieldBinding) binding;
493 			if (!field.isStatic())
494 				return new ProblemFieldBinding(field.declaringClass,
495 						CharOperation.subarray(compoundName, 0, currentIndex),
496 						NonStaticReferenceInStaticContext);
497 			return binding;
498 		}
499 		if ((mask & TYPE) != 0 && (binding instanceof ReferenceBinding)) {
500 			// was looking for a type and found a type
501 			return binding;
502 		}
503 
504 		// handle the case when a field or type was asked for but we resolved
505 		// the compoundName to a type or field
506 		return new ProblemBinding(CharOperation.subarray(compoundName, 0,
507 				currentIndex), NotFound);
508 	}
509 
510 	// Added for code assist... NOT Public API
getBinding(char[][] compoundName, InvocationSite invocationSite)511 	public final Binding getBinding(char[][] compoundName,
512 			InvocationSite invocationSite) {
513 		int currentIndex = 0;
514 		int length = compoundName.length;
515 		Binding binding = getBinding(compoundName[currentIndex++], VARIABLE
516 				| TYPE | PACKAGE, invocationSite);
517 		if (!binding.isValidBinding())
518 			return binding;
519 
520 		foundType: if (binding instanceof PackageBinding) {
521 			while (currentIndex < length) {
522 				PackageBinding packageBinding = (PackageBinding) binding;
523 				binding = packageBinding
524 						.getTypeOrPackage(compoundName[currentIndex++]);
525 				if (binding == null) {
526 					if (currentIndex == length)
527 						// must be a type if its the last name, otherwise we
528 						// have no idea if its a package or type
529 						return new ProblemReferenceBinding(CharOperation
530 								.subarray(compoundName, 0, currentIndex),
531 								NotFound);
532 					else
533 						return new ProblemBinding(CharOperation.subarray(
534 								compoundName, 0, currentIndex), NotFound);
535 				}
536 				if (binding instanceof ReferenceBinding) {
537 					if (!binding.isValidBinding())
538 						return new ProblemReferenceBinding(CharOperation
539 								.subarray(compoundName, 0, currentIndex),
540 								binding.problemId());
541 					if (!((ReferenceBinding) binding).canBeSeenBy(this))
542 						return new ProblemReferenceBinding(CharOperation
543 								.subarray(compoundName, 0, currentIndex),
544 								(ReferenceBinding) binding, NotVisible);
545 					break foundType;
546 				}
547 			}
548 			return binding;
549 		}
550 
551 		foundField: if (binding instanceof ReferenceBinding) {
552 			while (currentIndex < length) {
553 				ReferenceBinding typeBinding = (ReferenceBinding) binding;
554 				char[] nextName = compoundName[currentIndex++];
555 				if ((binding = findField(typeBinding, nextName, invocationSite)) != null) {
556 					if (!binding.isValidBinding())
557 						return new ProblemFieldBinding(
558 								((FieldBinding) binding).declaringClass,
559 								CharOperation.subarray(compoundName, 0,
560 										currentIndex), binding.problemId());
561 					if (!((FieldBinding) binding).isStatic())
562 						return new ProblemFieldBinding(
563 								((FieldBinding) binding).declaringClass,
564 								CharOperation.subarray(compoundName, 0,
565 										currentIndex),
566 								NonStaticReferenceInStaticContext);
567 					break foundField; // binding is now a field
568 				}
569 				if ((binding = findMemberType(nextName, typeBinding)) == null)
570 					return new ProblemBinding(CharOperation.subarray(
571 							compoundName, 0, currentIndex), typeBinding,
572 							NotFound);
573 				if (!binding.isValidBinding())
574 					return new ProblemReferenceBinding(CharOperation.subarray(
575 							compoundName, 0, currentIndex), binding.problemId());
576 			}
577 			return binding;
578 		}
579 
580 		VariableBinding variableBinding = (VariableBinding) binding;
581 		while (currentIndex < length) {
582 			TypeBinding typeBinding = variableBinding.type;
583 			if (typeBinding == null)
584 				return new ProblemFieldBinding(null, CharOperation.subarray(
585 						compoundName, 0, currentIndex + 1), NotFound);
586 			variableBinding = findField(typeBinding,
587 					compoundName[currentIndex++], invocationSite);
588 			if (variableBinding == null)
589 				return new ProblemFieldBinding(null, CharOperation.subarray(
590 						compoundName, 0, currentIndex), NotFound);
591 			if (!variableBinding.isValidBinding())
592 				return variableBinding;
593 		}
594 		return variableBinding;
595 	}
596 
597 	/*
598 	 * API
599 	 *
600 	 * Answer the binding that corresponds to the argument name. flag is a mask
601 	 * of the following values VARIABLE (= FIELD or LOCAL), TYPE, PACKAGE. Only
602 	 * bindings corresponding to the mask can be answered.
603 	 *
604 	 * For example, getBinding("foo", VARIABLE, site) will answer the binding
605 	 * for the field or local named "foo" (or an error binding if none exists).
606 	 * If a type named "foo" exists, it will not be detected (and an error
607 	 * binding will be answered)
608 	 *
609 	 * The VARIABLE mask has precedence over the TYPE mask.
610 	 *
611 	 * If the VARIABLE mask is not set, neither fields nor locals will be looked
612 	 * for.
613 	 *
614 	 * InvocationSite implements: isSuperAccess(); this is used to determine if
615 	 * the discovered field is visible.
616 	 *
617 	 * Limitations: cannot request FIELD independently of LOCAL, or vice versa
618 	 */
getBinding(char[] name, int mask, InvocationSite invocationSite)619 	public Binding getBinding(char[] name, int mask,
620 			InvocationSite invocationSite) {
621 
622 		Binding binding = null;
623 		FieldBinding problemField = null;
624 		if ((mask & VARIABLE) != 0) {
625 			if (this.kind == BLOCK_SCOPE || this.kind == METHOD_SCOPE) {
626 				LocalVariableBinding variableBinding = findVariable(name);
627 				// looks in this scope only
628 				if (variableBinding != null)
629 					return variableBinding;
630 			}
631 
632 			boolean insideStaticContext = false;
633 			boolean insideConstructorCall = false;
634 			if (this.kind == METHOD_SCOPE) {
635 				MethodScope methodScope = (MethodScope) this;
636 				insideStaticContext |= methodScope.isStatic;
637 				insideConstructorCall |= methodScope.isConstructorCall;
638 			}
639 
640 			FieldBinding foundField = null;
641 			// can be a problem field which is answered if a valid field is not
642 			// found
643 			ProblemFieldBinding foundInsideProblem = null;
644 			// inside Constructor call or inside static context
645 			Scope scope = parent;
646 			int depth = 0;
647 			int foundDepth = 0;
648 			ReferenceBinding foundActualReceiverType = null;
649 			done: while (true) { // done when a COMPILATION_UNIT_SCOPE is
650 									// found
651 				switch (scope.kind) {
652 				case METHOD_SCOPE:
653 					MethodScope methodScope = (MethodScope) scope;
654 					insideStaticContext |= methodScope.isStatic;
655 					insideConstructorCall |= methodScope.isConstructorCall;
656 					// Fall through... could duplicate the code below to save a
657 					// cast - questionable optimization
658 				case BLOCK_SCOPE:
659 					LocalVariableBinding variableBinding = ((BlockScope) scope)
660 							.findVariable(name);
661 					// looks in this scope only
662 					if (variableBinding != null) {
663 						if (foundField != null && foundField.isValidBinding())
664 							return new ProblemFieldBinding(
665 									foundField.declaringClass, name,
666 									InheritedNameHidesEnclosingName);
667 						if (depth > 0)
668 							invocationSite.setDepth(depth);
669 						return variableBinding;
670 					}
671 					break;
672 				case CLASS_SCOPE:
673 					ClassScope classScope = (ClassScope) scope;
674 					SourceTypeBinding enclosingType = classScope.referenceContext.binding;
675 					FieldBinding fieldBinding = classScope.findField(
676 							enclosingType, name, invocationSite);
677 					// Use next line instead if willing to enable protected
678 					// access accross inner types
679 					// FieldBinding fieldBinding = findField(enclosingType,
680 					// name, invocationSite);
681 					if (fieldBinding != null) { // skip it if we did not find
682 												// anything
683 						if (fieldBinding.problemId() == Ambiguous) {
684 							if (foundField == null
685 									|| foundField.problemId() == NotVisible)
686 								// supercedes any potential
687 								// InheritedNameHidesEnclosingName problem
688 								return fieldBinding;
689 							else
690 								// make the user qualify the field, likely wants
691 								// the first inherited field (javac generates an
692 								// ambiguous error instead)
693 								return new ProblemFieldBinding(
694 										fieldBinding.declaringClass, name,
695 										InheritedNameHidesEnclosingName);
696 						}
697 
698 						ProblemFieldBinding insideProblem = null;
699 						if (fieldBinding.isValidBinding()) {
700 							if (!fieldBinding.isStatic()) {
701 								if (insideConstructorCall) {
702 									insideProblem = new ProblemFieldBinding(
703 											fieldBinding.declaringClass, name,
704 											NonStaticReferenceInConstructorInvocation);
705 								} else if (insideStaticContext) {
706 									insideProblem = new ProblemFieldBinding(
707 											fieldBinding.declaringClass, name,
708 											NonStaticReferenceInStaticContext);
709 								}
710 							}
711 							// if (enclosingType == fieldBinding.declaringClass
712 							// || environment().options.complianceLevel >=
713 							// CompilerOptions.JDK1_4){
714 							// // found a valid field in the 'immediate' scope
715 							// (ie. not inherited)
716 							// // OR in 1.4 mode (inherited shadows enclosing)
717 							// if (foundField == null) {
718 							// if (depth > 0){
719 							// invocationSite.setDepth(depth);
720 							// invocationSite.setActualReceiverType(enclosingType);
721 							// }
722 							// // return the fieldBinding if it is not declared
723 							// in a superclass of the scope's binding (that is,
724 							// inherited)
725 							// return insideProblem == null ? fieldBinding :
726 							// insideProblem;
727 							// }
728 							// if (foundField.isValidBinding())
729 							// // if a valid field was found, complain when
730 							// another is found in an 'immediate' enclosing type
731 							// (that is, not inherited)
732 							// if (foundField.declaringClass !=
733 							// fieldBinding.declaringClass)
734 							// // ie. have we found the same field - do not
735 							// trust field identity yet
736 							// return new ProblemFieldBinding(
737 							// fieldBinding.declaringClass,
738 							// name,
739 							// InheritedNameHidesEnclosingName);
740 							// }
741 						}
742 
743 						if (foundField == null
744 								|| (foundField.problemId() == NotVisible && fieldBinding
745 										.problemId() != NotVisible)) {
746 							// only remember the fieldBinding if its the first
747 							// one found or the previous one was not visible &
748 							// fieldBinding is...
749 							foundDepth = depth;
750 							foundActualReceiverType = enclosingType;
751 							foundInsideProblem = insideProblem;
752 							foundField = fieldBinding;
753 						}
754 					}
755 					depth++;
756 					insideStaticContext |= enclosingType.isStatic();
757 					// 1EX5I8Z - accessing outer fields within a constructor
758 					// call is permitted
759 					// in order to do so, we change the flag as we exit from the
760 					// type, not the method
761 					// itself, because the class scope is used to retrieve the
762 					// fields.
763 					MethodScope enclosingMethodScope = scope.methodScope();
764 					insideConstructorCall = enclosingMethodScope == null ? false
765 							: enclosingMethodScope.isConstructorCall;
766 					break;
767 				case COMPILATION_UNIT_SCOPE:
768 					break done;
769 				}
770 				scope = scope.parent;
771 			}
772 
773 			if (foundInsideProblem != null) {
774 				return foundInsideProblem;
775 			}
776 			if (foundField != null) {
777 				if (foundField.isValidBinding()) {
778 					if (foundDepth > 0) {
779 						invocationSite.setDepth(foundDepth);
780 						invocationSite
781 								.setActualReceiverType(foundActualReceiverType);
782 					}
783 					return foundField;
784 				}
785 				problemField = foundField;
786 			}
787 		}
788 
789 		// We did not find a local or instance variable.
790 		if ((mask & TYPE) != 0) {
791 			if ((binding = getBaseType(name)) != null)
792 				return binding;
793 			binding = getTypeOrPackage(name, (mask & PACKAGE) == 0 ? TYPE
794 					: TYPE | PACKAGE);
795 			if (binding.isValidBinding() || mask == TYPE)
796 				return binding;
797 			// answer the problem type binding if we are only looking for a type
798 		} else if ((mask & PACKAGE) != 0) {
799 			compilationUnitScope().recordSimpleReference(name);
800 			if ((binding = environment().getTopLevelPackage(name)) != null)
801 				return binding;
802 		}
803 		if (problemField != null)
804 			return problemField;
805 		else
806 			return new ProblemBinding(name, enclosingSourceType(), NotFound);
807 	}
808 
809 	/*
810 	 * API
811 	 *
812 	 * Answer the constructor binding that corresponds to receiverType,
813 	 * argumentTypes.
814 	 *
815 	 * InvocationSite implements isSuperAccess(); this is used to determine if
816 	 * the discovered constructor is visible.
817 	 *
818 	 * If no visible constructor is discovered, an error binding is answered.
819 	 */
getConstructor(ReferenceBinding receiverType, TypeBinding[] argumentTypes, InvocationSite invocationSite)820 	public MethodBinding getConstructor(ReferenceBinding receiverType,
821 			TypeBinding[] argumentTypes, InvocationSite invocationSite) {
822 
823 		compilationUnitScope().recordTypeReference(receiverType);
824 		compilationUnitScope().recordTypeReferences(argumentTypes);
825 		MethodBinding methodBinding = receiverType
826 				.getExactConstructor(argumentTypes);
827 		if (methodBinding != null) {
828 			if (methodBinding.canBeSeenBy(invocationSite, this))
829 				return methodBinding;
830 		}
831 		MethodBinding[] methods = receiverType
832 				.getMethods(ConstructorDeclaration.ConstantPoolName);
833 		if (methods == NoMethods) {
834 			return new ProblemMethodBinding(
835 					ConstructorDeclaration.ConstantPoolName, argumentTypes,
836 					NotFound);
837 		}
838 		MethodBinding[] compatible = new MethodBinding[methods.length];
839 		int compatibleIndex = 0;
840 		for (int i = 0, length = methods.length; i < length; i++)
841 			if (areParametersAssignable(methods[i].parameters, argumentTypes))
842 				compatible[compatibleIndex++] = methods[i];
843 		if (compatibleIndex == 0)
844 			return new ProblemMethodBinding(
845 					ConstructorDeclaration.ConstantPoolName, argumentTypes,
846 					NotFound);
847 		// need a more descriptive error... cannot convert from X to Y
848 
849 		MethodBinding[] visible = new MethodBinding[compatibleIndex];
850 		int visibleIndex = 0;
851 		for (int i = 0; i < compatibleIndex; i++) {
852 			MethodBinding method = compatible[i];
853 			if (method.canBeSeenBy(invocationSite, this))
854 				visible[visibleIndex++] = method;
855 		}
856 		if (visibleIndex == 1)
857 			return visible[0];
858 		if (visibleIndex == 0)
859 			return new ProblemMethodBinding(compatible[0],
860 					ConstructorDeclaration.ConstantPoolName,
861 					compatible[0].parameters, NotVisible);
862 		return mostSpecificClassMethodBinding(visible, visibleIndex);
863 	}
864 
865 	/*
866 	 * This retrieves the argument that maps to an enclosing instance of the
867 	 * suitable type, if not found then answers nil -- do not create one
868 	 *
869 	 * #implicitThis : the implicit this will be ok #((arg) this$n) : available
870 	 * as a constructor arg #((arg) this$n ... this$p) : available as as a
871 	 * constructor arg + a sequence of fields #((fieldDescr) this$n ... this$p) :
872 	 * available as a sequence of fields nil : not found
873 	 *
874 	 * Note that this algorithm should answer the shortest possible sequence
875 	 * when shortcuts are available: this$0 . this$0 . this$0 instead of this$2 .
876 	 * this$1 . this$0 . this$1 . this$0 thus the code generation will be more
877 	 * compact and runtime faster
878 	 */
getEmulationPath( LocalVariableBinding outerLocalVariable)879 	public VariableBinding[] getEmulationPath(
880 			LocalVariableBinding outerLocalVariable) {
881 
882 		MethodScope currentMethodScope = this.methodScope();
883 		SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType();
884 
885 		// identity check
886 		if (currentMethodScope == outerLocalVariable.declaringScope
887 				.methodScope()) {
888 			return new VariableBinding[] { outerLocalVariable };
889 			// implicit this is good enough
890 		}
891 		// use synthetic constructor arguments if possible
892 		if (currentMethodScope.isInsideInitializerOrConstructor()
893 				&& (sourceType.isNestedType())) {
894 			SyntheticArgumentBinding syntheticArg;
895 			if ((syntheticArg = ((NestedTypeBinding) sourceType)
896 					.getSyntheticArgument(outerLocalVariable)) != null) {
897 				return new VariableBinding[] { syntheticArg };
898 			}
899 		}
900 		// use a synthetic field then
901 		if (!currentMethodScope.isStatic) {
902 			FieldBinding syntheticField;
903 			if ((syntheticField = sourceType
904 					.getSyntheticField(outerLocalVariable)) != null) {
905 				return new VariableBinding[] { syntheticField };
906 			}
907 		}
908 		return null;
909 	}
910 
911 	/*
912 	 * This retrieves the argument that maps to an enclosing instance of the
913 	 * suitable type, if not found then answers nil -- do not create one
914 	 *
915 	 * #implicitThis : the implicit this will be ok #((arg) this$n) : available
916 	 * as a constructor arg #((arg) this$n access$m... access$p) : available as
917 	 * as a constructor arg + a sequence of synthetic accessors to synthetic
918 	 * fields #((fieldDescr) this$n access#m... access$p) : available as a first
919 	 * synthetic field + a sequence of synthetic accessors to synthetic fields
920 	 * nil : not found jls 15.9.2
921 	 */
getEmulationPath(ReferenceBinding targetEnclosingType, boolean onlyExactMatch, boolean ignoreEnclosingArgInConstructorCall)922 	public Object[] getEmulationPath(ReferenceBinding targetEnclosingType,
923 			boolean onlyExactMatch, boolean ignoreEnclosingArgInConstructorCall) {
924 		// TODO: (philippe) investigate why exactly test76 fails if
925 		// ignoreEnclosingArgInConstructorCall is always false
926 		MethodScope currentMethodScope = this.methodScope();
927 		SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType();
928 
929 		// identity check
930 		if (!currentMethodScope.isStatic
931 				&& (!currentMethodScope.isConstructorCall || ignoreEnclosingArgInConstructorCall)
932 				&& (sourceType == targetEnclosingType || (!onlyExactMatch && targetEnclosingType
933 						.isSuperclassOf(sourceType)))) {
934 			if (currentMethodScope.isConstructorCall) {
935 				return NoEnclosingInstanceInConstructorCall;
936 			}
937 			if (currentMethodScope.isStatic) {
938 				return NoEnclosingInstanceInStaticContext;
939 			}
940 			return EmulationPathToImplicitThis; // implicit this is good enough
941 		}
942 		if (!sourceType.isNestedType() || sourceType.isStatic()) { // no
943 																	// emulation
944 																	// from
945 																	// within
946 																	// non-inner
947 																	// types
948 			if (currentMethodScope.isConstructorCall) {
949 				return NoEnclosingInstanceInConstructorCall;
950 			}
951 			if (currentMethodScope.isStatic) {
952 				return NoEnclosingInstanceInStaticContext;
953 			}
954 			return null;
955 		}
956 		boolean insideConstructor = currentMethodScope
957 				.isInsideInitializerOrConstructor();
958 		// use synthetic constructor arguments if possible
959 		if (insideConstructor) {
960 			SyntheticArgumentBinding syntheticArg;
961 			if ((syntheticArg = ((NestedTypeBinding) sourceType)
962 					.getSyntheticArgument(targetEnclosingType, onlyExactMatch)) != null) {
963 				return new Object[] { syntheticArg };
964 			}
965 		}
966 
967 		// use a direct synthetic field then
968 		if (currentMethodScope.isStatic) {
969 			return NoEnclosingInstanceInStaticContext;
970 		}
971 		FieldBinding syntheticField = sourceType.getSyntheticField(
972 				targetEnclosingType, onlyExactMatch);
973 		if (syntheticField != null) {
974 			if (currentMethodScope.isConstructorCall) {
975 				return NoEnclosingInstanceInConstructorCall;
976 			}
977 			return new Object[] { syntheticField };
978 		}
979 		// could be reached through a sequence of enclosing instance link
980 		// (nested members)
981 		Object[] path = new Object[2]; // probably at least 2 of them
982 		ReferenceBinding currentType = sourceType.enclosingType();
983 		if (insideConstructor) {
984 			path[0] = ((NestedTypeBinding) sourceType).getSyntheticArgument(
985 					(SourceTypeBinding) currentType, onlyExactMatch);
986 		} else {
987 			if (currentMethodScope.isConstructorCall) {
988 				return NoEnclosingInstanceInConstructorCall;
989 			}
990 			path[0] = sourceType.getSyntheticField(
991 					(SourceTypeBinding) currentType, onlyExactMatch);
992 		}
993 		if (path[0] != null) { // keep accumulating
994 
995 			int count = 1;
996 			ReferenceBinding currentEnclosingType;
997 			while ((currentEnclosingType = currentType.enclosingType()) != null) {
998 
999 				// done?
1000 				if (currentType == targetEnclosingType
1001 						|| (!onlyExactMatch && targetEnclosingType
1002 								.isSuperclassOf(currentType)))
1003 					break;
1004 
1005 				if (currentMethodScope != null) {
1006 					currentMethodScope = currentMethodScope
1007 							.enclosingMethodScope();
1008 					if (currentMethodScope != null
1009 							&& currentMethodScope.isConstructorCall) {
1010 						return NoEnclosingInstanceInConstructorCall;
1011 					}
1012 					if (currentMethodScope != null
1013 							&& currentMethodScope.isStatic) {
1014 						return NoEnclosingInstanceInStaticContext;
1015 					}
1016 				}
1017 
1018 				syntheticField = ((NestedTypeBinding) currentType)
1019 						.getSyntheticField(
1020 								(SourceTypeBinding) currentEnclosingType,
1021 								onlyExactMatch);
1022 				if (syntheticField == null)
1023 					break;
1024 
1025 				// append inside the path
1026 				if (count == path.length) {
1027 					System.arraycopy(path, 0, (path = new Object[count + 1]),
1028 							0, count);
1029 				}
1030 				// private access emulation is necessary since synthetic field
1031 				// is private
1032 				path[count++] = ((SourceTypeBinding) syntheticField.declaringClass)
1033 						.addSyntheticMethod(syntheticField, true);
1034 				currentType = currentEnclosingType;
1035 			}
1036 			if (currentType == targetEnclosingType
1037 					|| (!onlyExactMatch && targetEnclosingType
1038 							.isSuperclassOf(currentType))) {
1039 				return path;
1040 			}
1041 		}
1042 		return null;
1043 	}
1044 
1045 	/*
1046 	 * API
1047 	 *
1048 	 * Answer the field binding that corresponds to fieldName. Start the lookup
1049 	 * at the receiverType. InvocationSite implements isSuperAccess(); this is
1050 	 * used to determine if the discovered field is visible. Only fields defined
1051 	 * by the receiverType or its supertypes are answered; a field of an
1052 	 * enclosing type will not be found using this API.
1053 	 *
1054 	 * If no visible field is discovered, an error binding is answered.
1055 	 */
getField(TypeBinding receiverType, char[] fieldName, InvocationSite invocationSite)1056 	public FieldBinding getField(TypeBinding receiverType, char[] fieldName,
1057 			InvocationSite invocationSite) {
1058 
1059 		FieldBinding field = findField(receiverType, fieldName, invocationSite);
1060 		if (field == null)
1061 			return new ProblemFieldBinding(
1062 					receiverType instanceof ReferenceBinding ? (ReferenceBinding) receiverType
1063 							: null, fieldName, NotFound);
1064 		else
1065 			return field;
1066 	}
1067 
1068 	/*
1069 	 * API
1070 	 *
1071 	 * Answer the method binding that corresponds to selector, argumentTypes.
1072 	 * Start the lookup at the enclosing type of the receiver. InvocationSite
1073 	 * implements isSuperAccess(); this is used to determine if the discovered
1074 	 * method is visible. setDepth(int); this is used to record the depth of the
1075 	 * discovered method relative to the enclosing type of the receiver. (If the
1076 	 * method is defined in the enclosing type of the receiver, the depth is 0;
1077 	 * in the next enclosing type, the depth is 1; and so on
1078 	 *
1079 	 * If no visible method is discovered, an error binding is answered.
1080 	 */
getImplicitMethod(char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite)1081 	public MethodBinding getImplicitMethod(char[] selector,
1082 			TypeBinding[] argumentTypes, InvocationSite invocationSite) {
1083 
1084 		boolean insideStaticContext = false;
1085 		boolean insideConstructorCall = false;
1086 		MethodBinding foundMethod = null;
1087 		ProblemMethodBinding foundFuzzyProblem = null;
1088 		// the weird method lookup case (matches method name in scope, then arg
1089 		// types, then visibility)
1090 		ProblemMethodBinding foundInsideProblem = null;
1091 		// inside Constructor call or inside static context
1092 		Scope scope = this;
1093 		int depth = 0;
1094 		done: while (true) { // done when a COMPILATION_UNIT_SCOPE is found
1095 			switch (scope.kind) {
1096 			case METHOD_SCOPE:
1097 				MethodScope methodScope = (MethodScope) scope;
1098 				insideStaticContext |= methodScope.isStatic;
1099 				insideConstructorCall |= methodScope.isConstructorCall;
1100 				break;
1101 			case CLASS_SCOPE:
1102 				ClassScope classScope = (ClassScope) scope;
1103 				SourceTypeBinding receiverType = classScope.referenceContext.binding;
1104 				boolean isExactMatch = true;
1105 				// retrieve an exact visible match (if possible)
1106 				MethodBinding methodBinding = (foundMethod == null) ? classScope
1107 						.findExactMethod(receiverType, selector, argumentTypes,
1108 								invocationSite)
1109 						: classScope.findExactMethod(receiverType,
1110 								foundMethod.selector, foundMethod.parameters,
1111 								invocationSite);
1112 				// ? findExactMethod(receiverType, selector, argumentTypes,
1113 				// invocationSite)
1114 				// : findExactMethod(receiverType, foundMethod.selector,
1115 				// foundMethod.parameters, invocationSite);
1116 				if (methodBinding == null) {
1117 					// answers closest approximation, may not check
1118 					// argumentTypes or visibility
1119 					isExactMatch = false;
1120 					methodBinding = classScope.findMethod(receiverType,
1121 							selector, argumentTypes, invocationSite);
1122 					// methodBinding = findMethod(receiverType, selector,
1123 					// argumentTypes, invocationSite);
1124 				}
1125 				if (methodBinding != null) { // skip it if we did not find
1126 												// anything
1127 					if (methodBinding.problemId() == Ambiguous) {
1128 						if (foundMethod == null
1129 								|| foundMethod.problemId() == NotVisible)
1130 							// supercedes any potential
1131 							// InheritedNameHidesEnclosingName problem
1132 							return methodBinding;
1133 						else
1134 							// make the user qualify the method, likely wants
1135 							// the first inherited method (javac generates an
1136 							// ambiguous error instead)
1137 							return new ProblemMethodBinding(selector,
1138 									argumentTypes,
1139 									InheritedNameHidesEnclosingName);
1140 					}
1141 
1142 					ProblemMethodBinding fuzzyProblem = null;
1143 					ProblemMethodBinding insideProblem = null;
1144 					if (methodBinding.isValidBinding()) {
1145 						if (!isExactMatch) {
1146 							if (!areParametersAssignable(
1147 									methodBinding.parameters, argumentTypes)) {
1148 								if (foundMethod == null
1149 										|| foundMethod.problemId() == NotVisible) {
1150 									// inherited mismatch is reported directly,
1151 									// not looking at enclosing matches
1152 									return new ProblemMethodBinding(
1153 											methodBinding, selector,
1154 											argumentTypes, NotFound);
1155 								}
1156 								// make the user qualify the method, likely
1157 								// wants the first inherited method (javac
1158 								// generates an ambiguous error instead)
1159 								fuzzyProblem = new ProblemMethodBinding(
1160 										selector, methodBinding.parameters,
1161 										InheritedNameHidesEnclosingName);
1162 
1163 							} else if (!methodBinding.canBeSeenBy(receiverType,
1164 									invocationSite, classScope)) {
1165 								// using <classScope> instead of <this> for
1166 								// visibility check does grant all access to
1167 								// innerclass
1168 								fuzzyProblem = new ProblemMethodBinding(
1169 										methodBinding, selector,
1170 										methodBinding.parameters, NotVisible);
1171 							}
1172 						}
1173 						if (fuzzyProblem == null && !methodBinding.isStatic()) {
1174 							if (insideConstructorCall) {
1175 								insideProblem = new ProblemMethodBinding(
1176 										methodBinding.selector,
1177 										methodBinding.parameters,
1178 										NonStaticReferenceInConstructorInvocation);
1179 							} else if (insideStaticContext) {
1180 								insideProblem = new ProblemMethodBinding(
1181 										methodBinding.selector,
1182 										methodBinding.parameters,
1183 										NonStaticReferenceInStaticContext);
1184 							}
1185 						}
1186 
1187 						// if (receiverType == methodBinding.declaringClass
1188 						// || (receiverType.getMethods(selector)) != NoMethods
1189 						// || ((fuzzyProblem == null || fuzzyProblem.problemId()
1190 						// != NotVisible) &&
1191 						// environment().options.complianceLevel >=
1192 						// CompilerOptions.JDK1_4)){
1193 						// // found a valid method in the 'immediate' scope (ie.
1194 						// not inherited)
1195 						// // OR the receiverType implemented a method with the
1196 						// correct name
1197 						// // OR in 1.4 mode (inherited visible shadows
1198 						// enclosing)
1199 						// if (foundMethod == null) {
1200 						// if (depth > 0){
1201 						// invocationSite.setDepth(depth);
1202 						// invocationSite.setActualReceiverType(receiverType);
1203 						// }
1204 						// // return the methodBinding if it is not declared in
1205 						// a superclass of the scope's binding (that is,
1206 						// inherited)
1207 						// if (fuzzyProblem != null)
1208 						// return fuzzyProblem;
1209 						// if (insideProblem != null)
1210 						// return insideProblem;
1211 						// return methodBinding;
1212 						// }
1213 						// // if a method was found, complain when another is
1214 						// found in an 'immediate' enclosing type (that is, not
1215 						// inherited)
1216 						// // NOTE: Unlike fields, a non visible method hides a
1217 						// visible method
1218 						// if (foundMethod.declaringClass !=
1219 						// methodBinding.declaringClass)
1220 						// // ie. have we found the same method - do not trust
1221 						// field identity yet
1222 						// return new ProblemMethodBinding(
1223 						// methodBinding.selector,
1224 						// methodBinding.parameters,
1225 						// InheritedNameHidesEnclosingName);
1226 						// }
1227 					}
1228 
1229 					if (foundMethod == null
1230 							|| (foundMethod.problemId() == NotVisible && methodBinding
1231 									.problemId() != NotVisible)) {
1232 						// only remember the methodBinding if its the first one
1233 						// found or the previous one was not visible &
1234 						// methodBinding is...
1235 						// remember that private methods are visible if defined
1236 						// directly by an enclosing class
1237 						if (depth > 0) {
1238 							invocationSite.setDepth(depth);
1239 							invocationSite.setActualReceiverType(receiverType);
1240 						}
1241 						foundFuzzyProblem = fuzzyProblem;
1242 						foundInsideProblem = insideProblem;
1243 						if (fuzzyProblem == null)
1244 							foundMethod = methodBinding; // only keep it if
1245 															// no error was
1246 															// found
1247 					}
1248 				}
1249 				depth++;
1250 				insideStaticContext |= receiverType.isStatic();
1251 				// 1EX5I8Z - accessing outer fields within a constructor call is
1252 				// permitted
1253 				// in order to do so, we change the flag as we exit from the
1254 				// type, not the method
1255 				// itself, because the class scope is used to retrieve the
1256 				// fields.
1257 				MethodScope enclosingMethodScope = scope.methodScope();
1258 				insideConstructorCall = enclosingMethodScope == null ? false
1259 						: enclosingMethodScope.isConstructorCall;
1260 				break;
1261 			case COMPILATION_UNIT_SCOPE:
1262 				break done;
1263 			}
1264 			scope = scope.parent;
1265 		}
1266 
1267 		if (foundFuzzyProblem != null)
1268 			return foundFuzzyProblem;
1269 		if (foundInsideProblem != null)
1270 			return foundInsideProblem;
1271 		if (foundMethod != null)
1272 			return foundMethod;
1273 		return new ProblemMethodBinding(selector, argumentTypes, NotFound);
1274 	}
1275 
1276 	/*
1277 	 * API
1278 	 *
1279 	 * Answer the method binding that corresponds to selector, argumentTypes.
1280 	 * Start the lookup at the receiverType. InvocationSite implements
1281 	 * isSuperAccess(); this is used to determine if the discovered method is
1282 	 * visible.
1283 	 *
1284 	 * Only methods defined by the receiverType or its supertypes are answered;
1285 	 * use getImplicitMethod() to discover methods of enclosing types.
1286 	 *
1287 	 * If no visible method is discovered, an error binding is answered.
1288 	 */
getMethod(TypeBinding receiverType, char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite)1289 	public MethodBinding getMethod(TypeBinding receiverType, char[] selector,
1290 			TypeBinding[] argumentTypes, InvocationSite invocationSite) {
1291 
1292 		if (receiverType.isArrayType())
1293 			return findMethodForArray((ArrayBinding) receiverType, selector,
1294 					argumentTypes, invocationSite);
1295 		if (receiverType.isBaseType())
1296 			return new ProblemMethodBinding(selector, argumentTypes, NotFound);
1297 
1298 		ReferenceBinding currentType = (ReferenceBinding) receiverType;
1299 		if (!currentType.canBeSeenBy(this))
1300 			return new ProblemMethodBinding(selector, argumentTypes,
1301 					ReceiverTypeNotVisible);
1302 
1303 		// retrieve an exact visible match (if possible)
1304 		MethodBinding methodBinding = findExactMethod(currentType, selector,
1305 				argumentTypes, invocationSite);
1306 		if (methodBinding != null)
1307 			return methodBinding;
1308 
1309 		// answers closest approximation, may not check argumentTypes or
1310 		// visibility
1311 		methodBinding = findMethod(currentType, selector, argumentTypes,
1312 				invocationSite);
1313 		if (methodBinding == null)
1314 			return new ProblemMethodBinding(selector, argumentTypes, NotFound);
1315 		if (methodBinding.isValidBinding()) {
1316 			if (!areParametersAssignable(methodBinding.parameters,
1317 					argumentTypes))
1318 				return new ProblemMethodBinding(methodBinding, selector,
1319 						argumentTypes, NotFound);
1320 			if (!methodBinding.canBeSeenBy(currentType, invocationSite, this))
1321 				return new ProblemMethodBinding(methodBinding, selector,
1322 						methodBinding.parameters, NotVisible);
1323 		}
1324 		return methodBinding;
1325 	}
1326 
maxShiftedOffset()1327 	public int maxShiftedOffset() {
1328 		int max = -1;
1329 		if (this.shiftScopes != null) {
1330 			for (int i = 0, length = this.shiftScopes.length; i < length; i++) {
1331 				int subMaxOffset = this.shiftScopes[i].maxOffset;
1332 				if (subMaxOffset > max)
1333 					max = subMaxOffset;
1334 			}
1335 		}
1336 		return max;
1337 	}
1338 
1339 	/*
1340 	 * Answer the problem reporter to use for raising new problems.
1341 	 *
1342 	 * Note that as a side-effect, this updates the current reference context
1343 	 * (unit, type or method) in case the problem handler decides it is
1344 	 * necessary to abort.
1345 	 */
problemReporter()1346 	public ProblemReporter problemReporter() {
1347 
1348 		return outerMostMethodScope().problemReporter();
1349 	}
1350 
1351 	/*
1352 	 * Code responsible to request some more emulation work inside the
1353 	 * invocation type, so as to supply correct synthetic arguments to any
1354 	 * allocation of the target type.
1355 	 */
propagateInnerEmulation(ReferenceBinding targetType, boolean isEnclosingInstanceSupplied)1356 	public void propagateInnerEmulation(ReferenceBinding targetType,
1357 			boolean isEnclosingInstanceSupplied) {
1358 
1359 		// no need to propagate enclosing instances, they got eagerly allocated
1360 		// already.
1361 
1362 		SyntheticArgumentBinding[] syntheticArguments;
1363 		if ((syntheticArguments = targetType.syntheticOuterLocalVariables()) != null) {
1364 			for (int i = 0, max = syntheticArguments.length; i < max; i++) {
1365 				SyntheticArgumentBinding syntheticArg = syntheticArguments[i];
1366 				// need to filter out the one that could match a supplied
1367 				// enclosing instance
1368 				if (!(isEnclosingInstanceSupplied && (syntheticArg.type == targetType
1369 						.enclosingType()))) {
1370 					this
1371 							.emulateOuterAccess(syntheticArg.actualOuterLocalVariable);
1372 				}
1373 			}
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Answer the reference type of this scope.
1379 	 *
1380 	 * It is the nearest enclosing type of this scope.
1381 	 */
referenceType()1382 	public TypeDeclaration referenceType() {
1383 
1384 		return methodScope().referenceType();
1385 	}
1386 
1387 	// start position in this scope - for ordering scopes vs. variables
startIndex()1388 	int startIndex() {
1389 		return startIndex;
1390 	}
1391 
toString()1392 	public String toString() {
1393 		return toString(0);
1394 	}
1395 
toString(int tab)1396 	public String toString(int tab) {
1397 
1398 		String s = basicToString(tab);
1399 		for (int i = 0; i < scopeIndex; i++)
1400 			if (subscopes[i] instanceof BlockScope)
1401 				s += ((BlockScope) subscopes[i]).toString(tab + 1) + "\n"; //$NON-NLS-1$
1402 		return s;
1403 	}
1404 }
1405