1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
10 //  implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Analysis/AnalysisDeclContext.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
35 #include "llvm/ADT/APSInt.h"
36 #include "llvm/ADT/None.h"
37 #include "llvm/ADT/Optional.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include <cassert>
41 #include <tuple>
42 
43 using namespace clang;
44 using namespace ento;
45 
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
49 
anchor()50 void SValBuilder::anchor() {}
51 
makeZeroVal(QualType type)52 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
53   if (Loc::isLocType(type))
54     return makeNull();
55 
56   if (type->isIntegralOrEnumerationType())
57     return makeIntVal(0, type);
58 
59   if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
60       type->isAnyComplexType())
61     return makeCompoundVal(type, BasicVals.getEmptySValList());
62 
63   // FIXME: Handle floats.
64   return UnknownVal();
65 }
66 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)67 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
68                                 const llvm::APSInt& rhs, QualType type) {
69   // The Environment ensures we always get a persistent APSInt in
70   // BasicValueFactory, so we don't need to get the APSInt from
71   // BasicValueFactory again.
72   assert(lhs);
73   assert(!Loc::isLocType(type));
74   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
75 }
76 
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)77 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
78                                BinaryOperator::Opcode op, const SymExpr *rhs,
79                                QualType type) {
80   assert(rhs);
81   assert(!Loc::isLocType(type));
82   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
83 }
84 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)85 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
86                                const SymExpr *rhs, QualType type) {
87   assert(lhs && rhs);
88   assert(!Loc::isLocType(type));
89   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
90 }
91 
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)92 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
93                                QualType fromTy, QualType toTy) {
94   assert(operand);
95   assert(!Loc::isLocType(toTy));
96   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
97 }
98 
convertToArrayIndex(SVal val)99 SVal SValBuilder::convertToArrayIndex(SVal val) {
100   if (val.isUnknownOrUndef())
101     return val;
102 
103   // Common case: we have an appropriately sized integer.
104   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
105     const llvm::APSInt& I = CI->getValue();
106     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
107       return val;
108   }
109 
110   return evalCast(val, ArrayIndexTy, QualType{});
111 }
112 
makeBoolVal(const CXXBoolLiteralExpr * boolean)113 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
114   return makeTruthVal(boolean->getValue());
115 }
116 
117 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)118 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
119   QualType T = region->getValueType();
120 
121   if (T->isNullPtrType())
122     return makeZeroVal(T);
123 
124   if (!SymbolManager::canSymbolicate(T))
125     return UnknownVal();
126 
127   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
128 
129   if (Loc::isLocType(T))
130     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
131 
132   return nonloc::SymbolVal(sym);
133 }
134 
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)135 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
136                                                    const Expr *Ex,
137                                                    const LocationContext *LCtx,
138                                                    unsigned Count) {
139   QualType T = Ex->getType();
140 
141   if (T->isNullPtrType())
142     return makeZeroVal(T);
143 
144   // Compute the type of the result. If the expression is not an R-value, the
145   // result should be a location.
146   QualType ExType = Ex->getType();
147   if (Ex->isGLValue())
148     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
149 
150   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
151 }
152 
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)153 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
154                                                    const Expr *expr,
155                                                    const LocationContext *LCtx,
156                                                    QualType type,
157                                                    unsigned count) {
158   if (type->isNullPtrType())
159     return makeZeroVal(type);
160 
161   if (!SymbolManager::canSymbolicate(type))
162     return UnknownVal();
163 
164   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
165 
166   if (Loc::isLocType(type))
167     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
168 
169   return nonloc::SymbolVal(sym);
170 }
171 
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)172 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
173                                                    const LocationContext *LCtx,
174                                                    QualType type,
175                                                    unsigned visitCount) {
176   if (type->isNullPtrType())
177     return makeZeroVal(type);
178 
179   if (!SymbolManager::canSymbolicate(type))
180     return UnknownVal();
181 
182   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
183 
184   if (Loc::isLocType(type))
185     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
186 
187   return nonloc::SymbolVal(sym);
188 }
189 
190 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)191 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
192                                       const LocationContext *LCtx,
193                                       unsigned VisitCount) {
194   QualType T = E->getType();
195   return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
196 }
197 
198 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,QualType type,unsigned VisitCount)199 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
200                                       const LocationContext *LCtx,
201                                       QualType type, unsigned VisitCount) {
202   assert(Loc::isLocType(type));
203   assert(SymbolManager::canSymbolicate(type));
204   if (type->isNullPtrType())
205     return makeZeroVal(type);
206 
207   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
208   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
209 }
210 
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,const LocationContext * LCtx,unsigned count)211 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
212                                               const MemRegion *region,
213                                               const Expr *expr, QualType type,
214                                               const LocationContext *LCtx,
215                                               unsigned count) {
216   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
217 
218   SymbolRef sym =
219       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
220 
221   if (Loc::isLocType(type))
222     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
223 
224   return nonloc::SymbolVal(sym);
225 }
226 
227 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)228 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
229                                              const TypedValueRegion *region) {
230   QualType T = region->getValueType();
231 
232   if (T->isNullPtrType())
233     return makeZeroVal(T);
234 
235   if (!SymbolManager::canSymbolicate(T))
236     return UnknownVal();
237 
238   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
239 
240   if (Loc::isLocType(T))
241     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
242 
243   return nonloc::SymbolVal(sym);
244 }
245 
getMemberPointer(const NamedDecl * ND)246 DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
247   assert(!ND || isa<CXXMethodDecl>(ND) || isa<FieldDecl>(ND) ||
248          isa<IndirectFieldDecl>(ND));
249 
250   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
251     // Sema treats pointers to static member functions as have function pointer
252     // type, so return a function pointer for the method.
253     // We don't need to play a similar trick for static member fields
254     // because these are represented as plain VarDecls and not FieldDecls
255     // in the AST.
256     if (MD->isStatic())
257       return getFunctionPointer(MD);
258   }
259 
260   return nonloc::PointerToMember(ND);
261 }
262 
getFunctionPointer(const FunctionDecl * func)263 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
264   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
265 }
266 
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext,unsigned blockCount)267 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
268                                          CanQualType locTy,
269                                          const LocationContext *locContext,
270                                          unsigned blockCount) {
271   const BlockCodeRegion *BC =
272     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
273   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
274                                                         blockCount);
275   return loc::MemRegionVal(BD);
276 }
277 
278 Optional<loc::MemRegionVal>
getCastedMemRegionVal(const MemRegion * R,QualType Ty)279 SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
280   if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
281     return loc::MemRegionVal(*OptR);
282   return None;
283 }
284 
285 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)286 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
287                                           const StackFrameContext *SFC) {
288   return loc::MemRegionVal(
289       getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
290 }
291 
292 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)293 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
294                                           const StackFrameContext *SFC) {
295   const Type *T = D->getTypeForDecl();
296   QualType PT = getContext().getPointerType(QualType(T, 0));
297   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
298 }
299 
getConstantVal(const Expr * E)300 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
301   E = E->IgnoreParens();
302 
303   switch (E->getStmtClass()) {
304   // Handle expressions that we treat differently from the AST's constant
305   // evaluator.
306   case Stmt::AddrLabelExprClass:
307     return makeLoc(cast<AddrLabelExpr>(E));
308 
309   case Stmt::CXXScalarValueInitExprClass:
310   case Stmt::ImplicitValueInitExprClass:
311     return makeZeroVal(E->getType());
312 
313   case Stmt::ObjCStringLiteralClass: {
314     const auto *SL = cast<ObjCStringLiteral>(E);
315     return makeLoc(getRegionManager().getObjCStringRegion(SL));
316   }
317 
318   case Stmt::StringLiteralClass: {
319     const auto *SL = cast<StringLiteral>(E);
320     return makeLoc(getRegionManager().getStringRegion(SL));
321   }
322 
323   case Stmt::PredefinedExprClass: {
324     const auto *PE = cast<PredefinedExpr>(E);
325     assert(PE->getFunctionName() &&
326            "Since we analyze only instantiated functions, PredefinedExpr "
327            "should have a function name.");
328     return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
329   }
330 
331   // Fast-path some expressions to avoid the overhead of going through the AST's
332   // constant evaluator
333   case Stmt::CharacterLiteralClass: {
334     const auto *C = cast<CharacterLiteral>(E);
335     return makeIntVal(C->getValue(), C->getType());
336   }
337 
338   case Stmt::CXXBoolLiteralExprClass:
339     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
340 
341   case Stmt::TypeTraitExprClass: {
342     const auto *TE = cast<TypeTraitExpr>(E);
343     return makeTruthVal(TE->getValue(), TE->getType());
344   }
345 
346   case Stmt::IntegerLiteralClass:
347     return makeIntVal(cast<IntegerLiteral>(E));
348 
349   case Stmt::ObjCBoolLiteralExprClass:
350     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
351 
352   case Stmt::CXXNullPtrLiteralExprClass:
353     return makeNull();
354 
355   case Stmt::CStyleCastExprClass:
356   case Stmt::CXXFunctionalCastExprClass:
357   case Stmt::CXXConstCastExprClass:
358   case Stmt::CXXReinterpretCastExprClass:
359   case Stmt::CXXStaticCastExprClass:
360   case Stmt::ImplicitCastExprClass: {
361     const auto *CE = cast<CastExpr>(E);
362     switch (CE->getCastKind()) {
363     default:
364       break;
365     case CK_ArrayToPointerDecay:
366     case CK_IntegralToPointer:
367     case CK_NoOp:
368     case CK_BitCast: {
369       const Expr *SE = CE->getSubExpr();
370       Optional<SVal> Val = getConstantVal(SE);
371       if (!Val)
372         return None;
373       return evalCast(*Val, CE->getType(), SE->getType());
374     }
375     }
376     // FALLTHROUGH
377     LLVM_FALLTHROUGH;
378   }
379 
380   // If we don't have a special case, fall back to the AST's constant evaluator.
381   default: {
382     // Don't try to come up with a value for materialized temporaries.
383     if (E->isGLValue())
384       return None;
385 
386     ASTContext &Ctx = getContext();
387     Expr::EvalResult Result;
388     if (E->EvaluateAsInt(Result, Ctx))
389       return makeIntVal(Result.Val.getInt());
390 
391     if (Loc::isLocType(E->getType()))
392       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
393         return makeNull();
394 
395     return None;
396   }
397   }
398 }
399 
makeSymExprValNN(BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)400 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
401                                    NonLoc LHS, NonLoc RHS,
402                                    QualType ResultTy) {
403   SymbolRef symLHS = LHS.getAsSymbol();
404   SymbolRef symRHS = RHS.getAsSymbol();
405 
406   // TODO: When the Max Complexity is reached, we should conjure a symbol
407   // instead of generating an Unknown value and propagate the taint info to it.
408   const unsigned MaxComp = StateMgr.getOwningEngine()
409                                .getAnalysisManager()
410                                .options.MaxSymbolComplexity;
411 
412   if (symLHS && symRHS &&
413       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
414     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
415 
416   if (symLHS && symLHS->computeComplexity() < MaxComp)
417     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
418       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
419 
420   if (symRHS && symRHS->computeComplexity() < MaxComp)
421     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
422       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
423 
424   return UnknownVal();
425 }
426 
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)427 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
428                             SVal lhs, SVal rhs, QualType type) {
429   if (lhs.isUndef() || rhs.isUndef())
430     return UndefinedVal();
431 
432   if (lhs.isUnknown() || rhs.isUnknown())
433     return UnknownVal();
434 
435   if (lhs.getAs<nonloc::LazyCompoundVal>() ||
436       rhs.getAs<nonloc::LazyCompoundVal>()) {
437     return UnknownVal();
438   }
439 
440   if (op == BinaryOperatorKind::BO_Cmp) {
441     // We can't reason about C++20 spaceship operator yet.
442     //
443     // FIXME: Support C++20 spaceship operator.
444     //        The main problem here is that the result is not integer.
445     return UnknownVal();
446   }
447 
448   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
449     if (Optional<Loc> RV = rhs.getAs<Loc>())
450       return evalBinOpLL(state, op, *LV, *RV, type);
451 
452     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
453   }
454 
455   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
456     // Support pointer arithmetic where the addend is on the left
457     // and the pointer on the right.
458     assert(op == BO_Add);
459 
460     // Commute the operands.
461     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
462   }
463 
464   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
465                      type);
466 }
467 
areEqual(ProgramStateRef state,SVal lhs,SVal rhs)468 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
469                                         SVal rhs) {
470   return state->isNonNull(evalEQ(state, lhs, rhs));
471 }
472 
evalEQ(ProgramStateRef state,SVal lhs,SVal rhs)473 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
474   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
475 }
476 
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)477 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
478                                          DefinedOrUnknownSVal lhs,
479                                          DefinedOrUnknownSVal rhs) {
480   return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
481       .castAs<DefinedOrUnknownSVal>();
482 }
483 
484 /// Recursively check if the pointer types are equal modulo const, volatile,
485 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
486 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)487 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
488                                                          QualType FromTy) {
489   while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
490     Qualifiers Quals1, Quals2;
491     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
492     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
493 
494     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
495     // spaces) are identical.
496     Quals1.removeCVRQualifiers();
497     Quals2.removeCVRQualifiers();
498     if (Quals1 != Quals2)
499       return false;
500   }
501 
502   // If we are casting to void, the 'From' value can be used to represent the
503   // 'To' value.
504   //
505   // FIXME: Doing this after unwrapping the types doesn't make any sense. A
506   // cast from 'int**' to 'void**' is not special in the way that a cast from
507   // 'int*' to 'void*' is.
508   if (ToTy->isVoidType())
509     return true;
510 
511   if (ToTy != FromTy)
512     return false;
513 
514   return true;
515 }
516 
517 // Handles casts of type CK_IntegralCast.
518 // At the moment, this function will redirect to evalCast, except when the range
519 // of the original value is known to be greater than the max of the target type.
evalIntegralCast(ProgramStateRef state,SVal val,QualType castTy,QualType originalTy)520 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
521                                    QualType castTy, QualType originalTy) {
522   // No truncations if target type is big enough.
523   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
524     return evalCast(val, castTy, originalTy);
525 
526   SymbolRef se = val.getAsSymbol();
527   if (!se) // Let evalCast handle non symbolic expressions.
528     return evalCast(val, castTy, originalTy);
529 
530   // Find the maximum value of the target type.
531   APSIntType ToType(getContext().getTypeSize(castTy),
532                     castTy->isUnsignedIntegerType());
533   llvm::APSInt ToTypeMax = ToType.getMaxValue();
534   NonLoc ToTypeMaxVal =
535       makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
536                                         : ToTypeMax.getSExtValue(),
537                  castTy)
538           .castAs<NonLoc>();
539   // Check the range of the symbol being casted against the maximum value of the
540   // target type.
541   NonLoc FromVal = val.castAs<NonLoc>();
542   QualType CmpTy = getConditionType();
543   NonLoc CompVal =
544       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
545   ProgramStateRef IsNotTruncated, IsTruncated;
546   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
547   if (!IsNotTruncated && IsTruncated) {
548     // Symbol is truncated so we evaluate it as a cast.
549     NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
550     return CastVal;
551   }
552   return evalCast(val, castTy, originalTy);
553 }
554 
555 //===----------------------------------------------------------------------===//
556 // Cast methods.
557 // `evalCast` is the main method
558 // `evalCastKind` and `evalCastSubKind` are helpers
559 //===----------------------------------------------------------------------===//
560 
561 /// Cast a given SVal to another SVal using given QualType's.
562 /// \param V -- SVal that should be casted.
563 /// \param CastTy -- QualType that V should be casted according to.
564 /// \param OriginalTy -- QualType which is associated to V. It provides
565 /// additional information about what type the cast performs from.
566 /// \returns the most appropriate casted SVal.
567 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
568 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
569 /// It can be crucial in certain cases and generates different results.
570 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
571 /// only. This behavior is uncertain and should be improved.
evalCast(SVal V,QualType CastTy,QualType OriginalTy)572 SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
573   if (CastTy.isNull())
574     return V;
575 
576   CastTy = Context.getCanonicalType(CastTy);
577 
578   const bool IsUnknownOriginalType = OriginalTy.isNull();
579   if (!IsUnknownOriginalType) {
580     OriginalTy = Context.getCanonicalType(OriginalTy);
581 
582     if (CastTy == OriginalTy)
583       return V;
584 
585     // FIXME: Move this check to the most appropriate
586     // evalCastKind/evalCastSubKind function. For const casts, casts to void,
587     // just propagate the value.
588     if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
589       if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
590                                   Context.getPointerType(OriginalTy)))
591         return V;
592   }
593 
594   // Cast SVal according to kinds.
595   switch (V.getBaseKind()) {
596   case SVal::UndefinedValKind:
597     return evalCastKind(V.castAs<UndefinedVal>(), CastTy, OriginalTy);
598   case SVal::UnknownValKind:
599     return evalCastKind(V.castAs<UnknownVal>(), CastTy, OriginalTy);
600   case SVal::LocKind:
601     return evalCastKind(V.castAs<Loc>(), CastTy, OriginalTy);
602   case SVal::NonLocKind:
603     return evalCastKind(V.castAs<NonLoc>(), CastTy, OriginalTy);
604   }
605 
606   llvm_unreachable("Unknown SVal kind");
607 }
608 
evalCastKind(UndefinedVal V,QualType CastTy,QualType OriginalTy)609 SVal SValBuilder::evalCastKind(UndefinedVal V, QualType CastTy,
610                                QualType OriginalTy) {
611   return V;
612 }
613 
evalCastKind(UnknownVal V,QualType CastTy,QualType OriginalTy)614 SVal SValBuilder::evalCastKind(UnknownVal V, QualType CastTy,
615                                QualType OriginalTy) {
616   return V;
617 }
618 
evalCastKind(Loc V,QualType CastTy,QualType OriginalTy)619 SVal SValBuilder::evalCastKind(Loc V, QualType CastTy, QualType OriginalTy) {
620   switch (V.getSubKind()) {
621   case loc::ConcreteIntKind:
622     return evalCastSubKind(V.castAs<loc::ConcreteInt>(), CastTy, OriginalTy);
623   case loc::GotoLabelKind:
624     return evalCastSubKind(V.castAs<loc::GotoLabel>(), CastTy, OriginalTy);
625   case loc::MemRegionValKind:
626     return evalCastSubKind(V.castAs<loc::MemRegionVal>(), CastTy, OriginalTy);
627   }
628 
629   llvm_unreachable("Unknown SVal kind");
630 }
631 
evalCastKind(NonLoc V,QualType CastTy,QualType OriginalTy)632 SVal SValBuilder::evalCastKind(NonLoc V, QualType CastTy, QualType OriginalTy) {
633   switch (V.getSubKind()) {
634   case nonloc::CompoundValKind:
635     return evalCastSubKind(V.castAs<nonloc::CompoundVal>(), CastTy, OriginalTy);
636   case nonloc::ConcreteIntKind:
637     return evalCastSubKind(V.castAs<nonloc::ConcreteInt>(), CastTy, OriginalTy);
638   case nonloc::LazyCompoundValKind:
639     return evalCastSubKind(V.castAs<nonloc::LazyCompoundVal>(), CastTy,
640                            OriginalTy);
641   case nonloc::LocAsIntegerKind:
642     return evalCastSubKind(V.castAs<nonloc::LocAsInteger>(), CastTy,
643                            OriginalTy);
644   case nonloc::SymbolValKind:
645     return evalCastSubKind(V.castAs<nonloc::SymbolVal>(), CastTy, OriginalTy);
646   case nonloc::PointerToMemberKind:
647     return evalCastSubKind(V.castAs<nonloc::PointerToMember>(), CastTy,
648                            OriginalTy);
649   }
650 
651   llvm_unreachable("Unknown SVal kind");
652 }
653 
evalCastSubKind(loc::ConcreteInt V,QualType CastTy,QualType OriginalTy)654 SVal SValBuilder::evalCastSubKind(loc::ConcreteInt V, QualType CastTy,
655                                   QualType OriginalTy) {
656   // Pointer to bool.
657   if (CastTy->isBooleanType())
658     return makeTruthVal(V.getValue().getBoolValue(), CastTy);
659 
660   // Pointer to integer.
661   if (CastTy->isIntegralOrEnumerationType()) {
662     llvm::APSInt Value = V.getValue();
663     BasicVals.getAPSIntType(CastTy).apply(Value);
664     return makeIntVal(Value);
665   }
666 
667   // Pointer to any pointer.
668   if (Loc::isLocType(CastTy))
669     return V;
670 
671   // Pointer to whatever else.
672   return UnknownVal();
673 }
674 
evalCastSubKind(loc::GotoLabel V,QualType CastTy,QualType OriginalTy)675 SVal SValBuilder::evalCastSubKind(loc::GotoLabel V, QualType CastTy,
676                                   QualType OriginalTy) {
677   // Pointer to bool.
678   if (CastTy->isBooleanType())
679     // Labels are always true.
680     return makeTruthVal(true, CastTy);
681 
682   // Pointer to integer.
683   if (CastTy->isIntegralOrEnumerationType()) {
684     const unsigned BitWidth = Context.getIntWidth(CastTy);
685     return makeLocAsInteger(V, BitWidth);
686   }
687 
688   const bool IsUnknownOriginalType = OriginalTy.isNull();
689   if (!IsUnknownOriginalType) {
690     // Array to pointer.
691     if (isa<ArrayType>(OriginalTy))
692       if (CastTy->isPointerType() || CastTy->isReferenceType())
693         return UnknownVal();
694   }
695 
696   // Pointer to any pointer.
697   if (Loc::isLocType(CastTy))
698     return V;
699 
700   // Pointer to whatever else.
701   return UnknownVal();
702 }
703 
hasSameUnqualifiedPointeeType(QualType ty1,QualType ty2)704 static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2) {
705   return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
706          ty2->getPointeeType().getCanonicalType().getTypePtr();
707 }
708 
evalCastSubKind(loc::MemRegionVal V,QualType CastTy,QualType OriginalTy)709 SVal SValBuilder::evalCastSubKind(loc::MemRegionVal V, QualType CastTy,
710                                   QualType OriginalTy) {
711   // Pointer to bool.
712   if (CastTy->isBooleanType()) {
713     const MemRegion *R = V.getRegion();
714     if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
715       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
716         if (FD->isWeak())
717           // FIXME: Currently we are using an extent symbol here,
718           // because there are no generic region address metadata
719           // symbols to use, only content metadata.
720           return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
721 
722     if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
723       SymbolRef Sym = SymR->getSymbol();
724       QualType Ty = Sym->getType();
725       // This change is needed for architectures with varying
726       // pointer widths. See the amdgcn opencl reproducer with
727       // this change as an example: solver-sym-simplification-ptr-bool.cl
728       // FIXME: We could encounter a reference here,
729       //        try returning a concrete 'true' since it might
730       //        be easier on the solver.
731       // FIXME: Cleanup remainder of `getZeroWithPtrWidth ()`
732       //        and `getIntWithPtrWidth()` functions to prevent future
733       //        confusion
734       const llvm::APSInt &Zero = Ty->isReferenceType()
735                                      ? BasicVals.getZeroWithPtrWidth()
736                                      : BasicVals.getZeroWithTypeSize(Ty);
737       return makeNonLoc(Sym, BO_NE, Zero, CastTy);
738     }
739     // Non-symbolic memory regions are always true.
740     return makeTruthVal(true, CastTy);
741   }
742 
743   const bool IsUnknownOriginalType = OriginalTy.isNull();
744   // Try to cast to array
745   const auto *ArrayTy =
746       IsUnknownOriginalType
747           ? nullptr
748           : dyn_cast<ArrayType>(OriginalTy.getCanonicalType());
749 
750   // Pointer to integer.
751   if (CastTy->isIntegralOrEnumerationType()) {
752     SVal Val = V;
753     // Array to integer.
754     if (ArrayTy) {
755       // We will always decay to a pointer.
756       QualType ElemTy = ArrayTy->getElementType();
757       Val = StateMgr.ArrayToPointer(V, ElemTy);
758       // FIXME: Keep these here for now in case we decide soon that we
759       // need the original decayed type.
760       //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
761       //    QualType pointerTy = C.getPointerType(elemTy);
762     }
763     const unsigned BitWidth = Context.getIntWidth(CastTy);
764     return makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
765   }
766 
767   // Pointer to pointer.
768   if (Loc::isLocType(CastTy)) {
769 
770     if (IsUnknownOriginalType) {
771       // When retrieving symbolic pointer and expecting a non-void pointer,
772       // wrap them into element regions of the expected type if necessary.
773       // It is necessary to make sure that the retrieved value makes sense,
774       // because there's no other cast in the AST that would tell us to cast
775       // it to the correct pointer type. We might need to do that for non-void
776       // pointers as well.
777       // FIXME: We really need a single good function to perform casts for us
778       // correctly every time we need it.
779       const MemRegion *R = V.getRegion();
780       if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
781         if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
782           QualType SRTy = SR->getSymbol()->getType();
783           if (!hasSameUnqualifiedPointeeType(SRTy, CastTy)) {
784             if (auto OptMemRegV = getCastedMemRegionVal(SR, CastTy))
785               return *OptMemRegV;
786           }
787         }
788       }
789       // Next fixes pointer dereference using type different from its initial
790       // one. See PR37503 and PR49007 for details.
791       if (const auto *ER = dyn_cast<ElementRegion>(R)) {
792         if (auto OptMemRegV = getCastedMemRegionVal(ER, CastTy))
793           return *OptMemRegV;
794       }
795 
796       return V;
797     }
798 
799     if (OriginalTy->isIntegralOrEnumerationType() ||
800         OriginalTy->isBlockPointerType() || OriginalTy->isFunctionPointerType())
801       return V;
802 
803     // Array to pointer.
804     if (ArrayTy) {
805       // Are we casting from an array to a pointer?  If so just pass on
806       // the decayed value.
807       if (CastTy->isPointerType() || CastTy->isReferenceType()) {
808         // We will always decay to a pointer.
809         QualType ElemTy = ArrayTy->getElementType();
810         return StateMgr.ArrayToPointer(V, ElemTy);
811       }
812       // Are we casting from an array to an integer?  If so, cast the decayed
813       // pointer value to an integer.
814       assert(CastTy->isIntegralOrEnumerationType());
815     }
816 
817     // Other pointer to pointer.
818     assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
819            CastTy->isReferenceType());
820 
821     // We get a symbolic function pointer for a dereference of a function
822     // pointer, but it is of function type. Example:
823 
824     //  struct FPRec {
825     //    void (*my_func)(int * x);
826     //  };
827     //
828     //  int bar(int x);
829     //
830     //  int f1_a(struct FPRec* foo) {
831     //    int x;
832     //    (*foo->my_func)(&x);
833     //    return bar(x)+1; // no-warning
834     //  }
835 
836     // Get the result of casting a region to a different type.
837     const MemRegion *R = V.getRegion();
838     if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
839       return *OptMemRegV;
840   }
841 
842   // Pointer to whatever else.
843   // FIXME: There can be gross cases where one casts the result of a
844   // function (that returns a pointer) to some other value that happens to
845   // fit within that pointer value.  We currently have no good way to model
846   // such operations.  When this happens, the underlying operation is that
847   // the caller is reasoning about bits.  Conceptually we are layering a
848   // "view" of a location on top of those bits.  Perhaps we need to be more
849   // lazy about mutual possible views, even on an SVal?  This may be
850   // necessary for bit-level reasoning as well.
851   return UnknownVal();
852 }
853 
evalCastSubKind(nonloc::CompoundVal V,QualType CastTy,QualType OriginalTy)854 SVal SValBuilder::evalCastSubKind(nonloc::CompoundVal V, QualType CastTy,
855                                   QualType OriginalTy) {
856   // Compound to whatever.
857   return UnknownVal();
858 }
859 
evalCastSubKind(nonloc::ConcreteInt V,QualType CastTy,QualType OriginalTy)860 SVal SValBuilder::evalCastSubKind(nonloc::ConcreteInt V, QualType CastTy,
861                                   QualType OriginalTy) {
862   auto CastedValue = [V, CastTy, this]() {
863     llvm::APSInt Value = V.getValue();
864     BasicVals.getAPSIntType(CastTy).apply(Value);
865     return Value;
866   };
867 
868   // Integer to bool.
869   if (CastTy->isBooleanType())
870     return makeTruthVal(V.getValue().getBoolValue(), CastTy);
871 
872   // Integer to pointer.
873   if (CastTy->isIntegralOrEnumerationType())
874     return makeIntVal(CastedValue());
875 
876   // Integer to pointer.
877   if (Loc::isLocType(CastTy))
878     return makeIntLocVal(CastedValue());
879 
880   // Pointer to whatever else.
881   return UnknownVal();
882 }
883 
evalCastSubKind(nonloc::LazyCompoundVal V,QualType CastTy,QualType OriginalTy)884 SVal SValBuilder::evalCastSubKind(nonloc::LazyCompoundVal V, QualType CastTy,
885                                   QualType OriginalTy) {
886   // Compound to whatever.
887   return UnknownVal();
888 }
889 
evalCastSubKind(nonloc::LocAsInteger V,QualType CastTy,QualType OriginalTy)890 SVal SValBuilder::evalCastSubKind(nonloc::LocAsInteger V, QualType CastTy,
891                                   QualType OriginalTy) {
892   Loc L = V.getLoc();
893 
894   // Pointer as integer to bool.
895   if (CastTy->isBooleanType())
896     // Pass to Loc function.
897     return evalCastKind(L, CastTy, OriginalTy);
898 
899   const bool IsUnknownOriginalType = OriginalTy.isNull();
900   // Pointer as integer to pointer.
901   if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
902       OriginalTy->isIntegralOrEnumerationType()) {
903     if (const MemRegion *R = L.getAsRegion())
904       if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
905         return *OptMemRegV;
906     return L;
907   }
908 
909   // Pointer as integer with region to integer/pointer.
910   const MemRegion *R = L.getAsRegion();
911   if (!IsUnknownOriginalType && R) {
912     if (CastTy->isIntegralOrEnumerationType())
913       return evalCastSubKind(loc::MemRegionVal(R), CastTy, OriginalTy);
914 
915     if (Loc::isLocType(CastTy)) {
916       assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
917              CastTy->isReferenceType());
918       // Delegate to store manager to get the result of casting a region to a
919       // different type. If the MemRegion* returned is NULL, this expression
920       // Evaluates to UnknownVal.
921       if (auto OptMemRegV = getCastedMemRegionVal(R, CastTy))
922         return *OptMemRegV;
923     }
924   } else {
925     if (Loc::isLocType(CastTy)) {
926       if (IsUnknownOriginalType)
927         return evalCastSubKind(loc::MemRegionVal(R), CastTy, OriginalTy);
928       return L;
929     }
930 
931     SymbolRef SE = nullptr;
932     if (R) {
933       if (const SymbolicRegion *SR =
934               dyn_cast<SymbolicRegion>(R->StripCasts())) {
935         SE = SR->getSymbol();
936       }
937     }
938 
939     if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
940       // FIXME: Correctly support promotions/truncations.
941       const unsigned CastSize = Context.getIntWidth(CastTy);
942       if (CastSize == V.getNumBits())
943         return V;
944 
945       return makeLocAsInteger(L, CastSize);
946     }
947   }
948 
949   // Pointer as integer to whatever else.
950   return UnknownVal();
951 }
952 
evalCastSubKind(nonloc::SymbolVal V,QualType CastTy,QualType OriginalTy)953 SVal SValBuilder::evalCastSubKind(nonloc::SymbolVal V, QualType CastTy,
954                                   QualType OriginalTy) {
955   SymbolRef SE = V.getSymbol();
956 
957   const bool IsUnknownOriginalType = OriginalTy.isNull();
958   // Symbol to bool.
959   if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
960     // Non-float to bool.
961     if (Loc::isLocType(OriginalTy) ||
962         OriginalTy->isIntegralOrEnumerationType() ||
963         OriginalTy->isMemberPointerType()) {
964       BasicValueFactory &BVF = getBasicValueFactory();
965       return makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
966     }
967   } else {
968     // Symbol to integer, float.
969     QualType T = Context.getCanonicalType(SE->getType());
970     // If types are the same or both are integers, ignore the cast.
971     // FIXME: Remove this hack when we support symbolic truncation/extension.
972     // HACK: If both castTy and T are integers, ignore the cast.  This is
973     // not a permanent solution.  Eventually we want to precisely handle
974     // extension/truncation of symbolic integers.  This prevents us from losing
975     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
976     // different integer types.
977     if (haveSameType(T, CastTy))
978       return V;
979     if (!Loc::isLocType(CastTy))
980       if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
981           T->isFloatingType())
982         return makeNonLoc(SE, T, CastTy);
983   }
984 
985   // Symbol to pointer and whatever else.
986   return UnknownVal();
987 }
988 
evalCastSubKind(nonloc::PointerToMember V,QualType CastTy,QualType OriginalTy)989 SVal SValBuilder::evalCastSubKind(nonloc::PointerToMember V, QualType CastTy,
990                                   QualType OriginalTy) {
991   // Member pointer to whatever.
992   return V;
993 }
994