1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;     use Atree;
27with Aspects;   use Aspects;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Einfo;     use Einfo;
32with Errout;    use Errout;
33with Elists;    use Elists;
34with Expander;  use Expander;
35with Exp_Aggr;  use Exp_Aggr;
36with Exp_Atag;  use Exp_Atag;
37with Exp_Ch2;   use Exp_Ch2;
38with Exp_Ch3;   use Exp_Ch3;
39with Exp_Ch7;   use Exp_Ch7;
40with Exp_Ch9;   use Exp_Ch9;
41with Exp_Dbug;  use Exp_Dbug;
42with Exp_Disp;  use Exp_Disp;
43with Exp_Dist;  use Exp_Dist;
44with Exp_Intr;  use Exp_Intr;
45with Exp_Pakd;  use Exp_Pakd;
46with Exp_Tss;   use Exp_Tss;
47with Exp_Util;  use Exp_Util;
48with Freeze;    use Freeze;
49with Inline;    use Inline;
50with Itypes;    use Itypes;
51with Lib;       use Lib;
52with Namet;     use Namet;
53with Nlists;    use Nlists;
54with Nmake;     use Nmake;
55with Opt;       use Opt;
56with Restrict;  use Restrict;
57with Rident;    use Rident;
58with Rtsfind;   use Rtsfind;
59with Sem;       use Sem;
60with Sem_Aux;   use Sem_Aux;
61with Sem_Ch6;   use Sem_Ch6;
62with Sem_Ch8;   use Sem_Ch8;
63with Sem_Ch13;  use Sem_Ch13;
64with Sem_Dim;   use Sem_Dim;
65with Sem_Disp;  use Sem_Disp;
66with Sem_Dist;  use Sem_Dist;
67with Sem_Eval;  use Sem_Eval;
68with Sem_Mech;  use Sem_Mech;
69with Sem_Res;   use Sem_Res;
70with Sem_SCIL;  use Sem_SCIL;
71with Sem_Util;  use Sem_Util;
72with Sinfo;     use Sinfo;
73with Snames;    use Snames;
74with Stand;     use Stand;
75with Tbuild;    use Tbuild;
76with Uintp;     use Uintp;
77with Validsw;   use Validsw;
78
79package body Exp_Ch6 is
80
81   -----------------------
82   -- Local Subprograms --
83   -----------------------
84
85   procedure Add_Access_Actual_To_Build_In_Place_Call
86     (Function_Call : Node_Id;
87      Function_Id   : Entity_Id;
88      Return_Object : Node_Id;
89      Is_Access     : Boolean := False);
90   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91   --  object name given by Return_Object and add the attribute to the end of
92   --  the actual parameter list associated with the build-in-place function
93   --  call denoted by Function_Call. However, if Is_Access is True, then
94   --  Return_Object is already an access expression, in which case it's passed
95   --  along directly to the build-in-place function. Finally, if Return_Object
96   --  is empty, then pass a null literal as the actual.
97
98   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99     (Function_Call  : Node_Id;
100      Function_Id    : Entity_Id;
101      Alloc_Form     : BIP_Allocation_Form := Unspecified;
102      Alloc_Form_Exp : Node_Id             := Empty;
103      Pool_Actual    : Node_Id             := Make_Null (No_Location));
104   --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105   --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
106   --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107   --  otherwise pass a literal corresponding to the Alloc_Form parameter
108   --  (which must not be Unspecified in that case). Pool_Actual is the
109   --  parameter to pass to BIP_Storage_Pool.
110
111   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112     (Func_Call  : Node_Id;
113      Func_Id    : Entity_Id;
114      Ptr_Typ    : Entity_Id := Empty;
115      Master_Exp : Node_Id   := Empty);
116   --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117   --  finalization actions, add an actual parameter which is a pointer to the
118   --  finalization master of the caller. If Master_Exp is not Empty, then that
119   --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120   --  will result in an automatic "null" value for the actual.
121
122   procedure Add_Task_Actuals_To_Build_In_Place_Call
123     (Function_Call : Node_Id;
124      Function_Id   : Entity_Id;
125      Master_Actual : Node_Id;
126      Chain         : Node_Id := Empty);
127   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128   --  contains tasks, add two actual parameters: the master, and a pointer to
129   --  the caller's activation chain. Master_Actual is the actual parameter
130   --  expression to pass for the master. In most cases, this is the current
131   --  master (_master). The two exceptions are: If the function call is the
132   --  initialization expression for an allocator, we pass the master of the
133   --  access type. If the function call is the initialization expression for a
134   --  return object, we pass along the master passed in by the caller. In most
135   --  contexts, the activation chain to pass is the local one, which is
136   --  indicated by No (Chain). However, in an allocator, the caller passes in
137   --  the activation Chain. Note: Master_Actual can be Empty, but only if
138   --  there are no tasks.
139
140   function Caller_Known_Size
141     (Func_Call   : Node_Id;
142      Result_Subt : Entity_Id) return Boolean;
143   --  True if result subtype is definite, or has a size that does not require
144   --  secondary stack usage (i.e. no variant part or components whose type
145   --  depends on discriminants). In particular, untagged types with only
146   --  access discriminants do not require secondary stack use. Note we must
147   --  always use the secondary stack for dispatching-on-result calls.
148
149   function Check_Number_Of_Actuals
150     (Subp_Call : Node_Id;
151      Subp_Id   : Entity_Id) return Boolean;
152   --  Given a subprogram call to the given subprogram return True if the
153   --  number of actual parameters (including extra actuals) is correct.
154
155   procedure Check_Overriding_Operation (Subp : Entity_Id);
156   --  Subp is a dispatching operation. Check whether it may override an
157   --  inherited private operation, in which case its DT entry is that of
158   --  the hidden operation, not the one it may have received earlier.
159   --  This must be done before emitting the code to set the corresponding
160   --  DT to the address of the subprogram. The actual placement of Subp in
161   --  the proper place in the list of primitive operations is done in
162   --  Declare_Inherited_Private_Subprograms, which also has to deal with
163   --  implicit operations. This duplication is unavoidable for now???
164
165   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
166   --  This procedure is called only if the subprogram body N, whose spec
167   --  has the given entity Spec, contains a parameterless recursive call.
168   --  It attempts to generate runtime code to detect if this a case of
169   --  infinite recursion.
170   --
171   --  The body is scanned to determine dependencies. If the only external
172   --  dependencies are on a small set of scalar variables, then the values
173   --  of these variables are captured on entry to the subprogram, and if
174   --  the values are not changed for the call, we know immediately that
175   --  we have an infinite recursion.
176
177   procedure Expand_Actuals
178     (N         : Node_Id;
179      Subp      : Entity_Id;
180      Post_Call : out List_Id);
181   --  Return a list of actions to take place after the call in Post_Call. The
182   --  call will later be rewritten as an Expression_With_Actions, with the
183   --  Post_Call actions inserted, and the call inside.
184   --
185   --  For each actual of an in-out or out parameter which is a numeric (view)
186   --  conversion of the form T (A), where A denotes a variable, we insert the
187   --  declaration:
188   --
189   --    Temp : T[ := T (A)];
190   --
191   --  prior to the call. Then we replace the actual with a reference to Temp,
192   --  and append the assignment:
193   --
194   --    A := TypeA (Temp);
195   --
196   --  after the call. Here TypeA is the actual type of variable A. For out
197   --  parameters, the initial declaration has no expression. If A is not an
198   --  entity name, we generate instead:
199   --
200   --    Var  : TypeA renames A;
201   --    Temp : T := Var;       --  omitting expression for out parameter.
202   --    ...
203   --    Var := TypeA (Temp);
204   --
205   --  For other in-out parameters, we emit the required constraint checks
206   --  before and/or after the call.
207   --
208   --  For all parameter modes, actuals that denote components and slices of
209   --  packed arrays are expanded into suitable temporaries.
210   --
211   --  For nonscalar objects that are possibly unaligned, add call by copy code
212   --  (copy in for IN and IN OUT, copy out for OUT and IN OUT).
213   --
214   --  For OUT and IN OUT parameters, add predicate checks after the call
215   --  based on the predicates of the actual type.
216
217   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
218   --  Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
219
220   procedure Expand_Ctrl_Function_Call (N : Node_Id);
221   --  N is a function call which returns a controlled object. Transform the
222   --  call into a temporary which retrieves the returned object from the
223   --  secondary stack using 'reference.
224
225   procedure Expand_Non_Function_Return (N : Node_Id);
226   --  Expand a simple return statement found in a procedure body, entry body,
227   --  accept statement, or an extended return statement. Note that all non-
228   --  function returns are simple return statements.
229
230   function Expand_Protected_Object_Reference
231     (N    : Node_Id;
232      Scop : Entity_Id) return Node_Id;
233
234   procedure Expand_Protected_Subprogram_Call
235     (N    : Node_Id;
236      Subp : Entity_Id;
237      Scop : Entity_Id);
238   --  A call to a protected subprogram within the protected object may appear
239   --  as a regular call. The list of actuals must be expanded to contain a
240   --  reference to the object itself, and the call becomes a call to the
241   --  corresponding protected subprogram.
242
243   procedure Expand_Simple_Function_Return (N : Node_Id);
244   --  Expand simple return from function. In the case where we are returning
245   --  from a function body this is called by Expand_N_Simple_Return_Statement.
246
247   function Has_Unconstrained_Access_Discriminants
248     (Subtyp : Entity_Id) return Boolean;
249   --  Returns True if the given subtype is unconstrained and has one or more
250   --  access discriminants.
251
252   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
253   --  Insert the Post_Call list previously produced by routine Expand_Actuals
254   --  or Expand_Call_Helper into the tree.
255
256   procedure Replace_Renaming_Declaration_Id
257      (New_Decl  : Node_Id;
258       Orig_Decl : Node_Id);
259   --  Replace the internal identifier of the new renaming declaration New_Decl
260   --  with the identifier of its original declaration Orig_Decl exchanging the
261   --  entities containing their defining identifiers to ensure the correct
262   --  replacement of the object declaration by the object renaming declaration
263   --  to avoid homograph conflicts (since the object declaration's defining
264   --  identifier was already entered in the current scope). The Next_Entity
265   --  links of the two entities are also swapped since the entities are part
266   --  of the return scope's entity list and the list structure would otherwise
267   --  be corrupted. The homonym chain is preserved as well.
268
269   procedure Rewrite_Function_Call_For_C (N : Node_Id);
270   --  When generating C code, replace a call to a function that returns an
271   --  array into the generated procedure with an additional out parameter.
272
273   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
274   --  N is a return statement for a function that returns its result on the
275   --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
276   --  function and all blocks and loops that the return statement is jumping
277   --  out of. This ensures that the secondary stack is not released; otherwise
278   --  the function result would be reclaimed before returning to the caller.
279
280   ----------------------------------------------
281   -- Add_Access_Actual_To_Build_In_Place_Call --
282   ----------------------------------------------
283
284   procedure Add_Access_Actual_To_Build_In_Place_Call
285     (Function_Call : Node_Id;
286      Function_Id   : Entity_Id;
287      Return_Object : Node_Id;
288      Is_Access     : Boolean := False)
289   is
290      Loc            : constant Source_Ptr := Sloc (Function_Call);
291      Obj_Address    : Node_Id;
292      Obj_Acc_Formal : Entity_Id;
293
294   begin
295      --  Locate the implicit access parameter in the called function
296
297      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
298
299      --  If no return object is provided, then pass null
300
301      if not Present (Return_Object) then
302         Obj_Address := Make_Null (Loc);
303         Set_Parent (Obj_Address, Function_Call);
304
305      --  If Return_Object is already an expression of an access type, then use
306      --  it directly, since it must be an access value denoting the return
307      --  object, and couldn't possibly be the return object itself.
308
309      elsif Is_Access then
310         Obj_Address := Return_Object;
311         Set_Parent (Obj_Address, Function_Call);
312
313      --  Apply Unrestricted_Access to caller's return object
314
315      else
316         Obj_Address :=
317            Make_Attribute_Reference (Loc,
318              Prefix         => Return_Object,
319              Attribute_Name => Name_Unrestricted_Access);
320
321         Set_Parent (Return_Object, Obj_Address);
322         Set_Parent (Obj_Address, Function_Call);
323      end if;
324
325      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
326
327      --  Build the parameter association for the new actual and add it to the
328      --  end of the function's actuals.
329
330      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
331   end Add_Access_Actual_To_Build_In_Place_Call;
332
333   ------------------------------------------------------
334   -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
335   ------------------------------------------------------
336
337   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
338     (Function_Call  : Node_Id;
339      Function_Id    : Entity_Id;
340      Alloc_Form     : BIP_Allocation_Form := Unspecified;
341      Alloc_Form_Exp : Node_Id             := Empty;
342      Pool_Actual    : Node_Id             := Make_Null (No_Location))
343   is
344      Loc : constant Source_Ptr := Sloc (Function_Call);
345
346      Alloc_Form_Actual : Node_Id;
347      Alloc_Form_Formal : Node_Id;
348      Pool_Formal       : Node_Id;
349
350   begin
351      --  Nothing to do when the size of the object is known, and the caller is
352      --  in charge of allocating it, and the callee doesn't unconditionally
353      --  require an allocation form (such as due to having a tagged result).
354
355      if not Needs_BIP_Alloc_Form (Function_Id) then
356         return;
357      end if;
358
359      --  Locate the implicit allocation form parameter in the called function.
360      --  Maybe it would be better for each implicit formal of a build-in-place
361      --  function to have a flag or a Uint attribute to identify it. ???
362
363      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
364
365      if Present (Alloc_Form_Exp) then
366         pragma Assert (Alloc_Form = Unspecified);
367
368         Alloc_Form_Actual := Alloc_Form_Exp;
369
370      else
371         pragma Assert (Alloc_Form /= Unspecified);
372
373         Alloc_Form_Actual :=
374           Make_Integer_Literal (Loc,
375             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
376      end if;
377
378      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
379
380      --  Build the parameter association for the new actual and add it to the
381      --  end of the function's actuals.
382
383      Add_Extra_Actual_To_Call
384        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
385
386      --  Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
387      --  those targets do not support pools.
388
389      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
390         Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
391         Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
392         Add_Extra_Actual_To_Call
393           (Function_Call, Pool_Formal, Pool_Actual);
394      end if;
395   end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
396
397   -----------------------------------------------------------
398   -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
399   -----------------------------------------------------------
400
401   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
402     (Func_Call  : Node_Id;
403      Func_Id    : Entity_Id;
404      Ptr_Typ    : Entity_Id := Empty;
405      Master_Exp : Node_Id   := Empty)
406   is
407   begin
408      if not Needs_BIP_Finalization_Master (Func_Id) then
409         return;
410      end if;
411
412      declare
413         Formal : constant Entity_Id :=
414                    Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
415         Loc    : constant Source_Ptr := Sloc (Func_Call);
416
417         Actual    : Node_Id;
418         Desig_Typ : Entity_Id;
419
420      begin
421         --  If there is a finalization master actual, such as the implicit
422         --  finalization master of an enclosing build-in-place function,
423         --  then this must be added as an extra actual of the call.
424
425         if Present (Master_Exp) then
426            Actual := Master_Exp;
427
428         --  Case where the context does not require an actual master
429
430         elsif No (Ptr_Typ) then
431            Actual := Make_Null (Loc);
432
433         else
434            Desig_Typ := Directly_Designated_Type (Ptr_Typ);
435
436            --  Check for a library-level access type whose designated type has
437            --  suppressed finalization or the access type is subject to pragma
438            --  No_Heap_Finalization. Such an access type lacks a master. Pass
439            --  a null actual to callee in order to signal a missing master.
440
441            if Is_Library_Level_Entity (Ptr_Typ)
442              and then (Finalize_Storage_Only (Desig_Typ)
443                         or else No_Heap_Finalization (Ptr_Typ))
444            then
445               Actual := Make_Null (Loc);
446
447            --  Types in need of finalization actions
448
449            elsif Needs_Finalization (Desig_Typ) then
450
451               --  The general mechanism of creating finalization masters for
452               --  anonymous access types is disabled by default, otherwise
453               --  finalization masters will pop all over the place. Such types
454               --  use context-specific masters.
455
456               if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
457                 and then No (Finalization_Master (Ptr_Typ))
458               then
459                  Build_Anonymous_Master (Ptr_Typ);
460               end if;
461
462               --  Access-to-controlled types should always have a master
463
464               pragma Assert (Present (Finalization_Master (Ptr_Typ)));
465
466               Actual :=
467                 Make_Attribute_Reference (Loc,
468                   Prefix =>
469                     New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
470                   Attribute_Name => Name_Unrestricted_Access);
471
472            --  Tagged types
473
474            else
475               Actual := Make_Null (Loc);
476            end if;
477         end if;
478
479         Analyze_And_Resolve (Actual, Etype (Formal));
480
481         --  Build the parameter association for the new actual and add it to
482         --  the end of the function's actuals.
483
484         Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
485      end;
486   end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
487
488   ------------------------------
489   -- Add_Extra_Actual_To_Call --
490   ------------------------------
491
492   procedure Add_Extra_Actual_To_Call
493     (Subprogram_Call : Node_Id;
494      Extra_Formal    : Entity_Id;
495      Extra_Actual    : Node_Id)
496   is
497      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
498      Param_Assoc : Node_Id;
499
500   begin
501      Param_Assoc :=
502        Make_Parameter_Association (Loc,
503          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
504          Explicit_Actual_Parameter => Extra_Actual);
505
506      Set_Parent (Param_Assoc, Subprogram_Call);
507      Set_Parent (Extra_Actual, Param_Assoc);
508
509      if Present (Parameter_Associations (Subprogram_Call)) then
510         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
511              N_Parameter_Association
512         then
513
514            --  Find last named actual, and append
515
516            declare
517               L : Node_Id;
518            begin
519               L := First_Actual (Subprogram_Call);
520               while Present (L) loop
521                  if No (Next_Actual (L)) then
522                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
523                     exit;
524                  end if;
525                  Next_Actual (L);
526               end loop;
527            end;
528
529         else
530            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
531         end if;
532
533         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
534
535      else
536         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
537         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
538      end if;
539   end Add_Extra_Actual_To_Call;
540
541   ---------------------------------------------
542   -- Add_Task_Actuals_To_Build_In_Place_Call --
543   ---------------------------------------------
544
545   procedure Add_Task_Actuals_To_Build_In_Place_Call
546     (Function_Call : Node_Id;
547      Function_Id   : Entity_Id;
548      Master_Actual : Node_Id;
549      Chain         : Node_Id := Empty)
550   is
551      Loc           : constant Source_Ptr := Sloc (Function_Call);
552      Actual        : Node_Id;
553      Chain_Actual  : Node_Id;
554      Chain_Formal  : Node_Id;
555      Master_Formal : Node_Id;
556
557   begin
558      --  No such extra parameters are needed if there are no tasks
559
560      if not Needs_BIP_Task_Actuals (Function_Id) then
561         return;
562      end if;
563
564      Actual := Master_Actual;
565
566      --  Use a dummy _master actual in case of No_Task_Hierarchy
567
568      if Restriction_Active (No_Task_Hierarchy) then
569         Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
570
571      --  In the case where we use the master associated with an access type,
572      --  the actual is an entity and requires an explicit reference.
573
574      elsif Nkind (Actual) = N_Defining_Identifier then
575         Actual := New_Occurrence_Of (Actual, Loc);
576      end if;
577
578      --  Locate the implicit master parameter in the called function
579
580      Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
581      Analyze_And_Resolve (Actual, Etype (Master_Formal));
582
583      --  Build the parameter association for the new actual and add it to the
584      --  end of the function's actuals.
585
586      Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
587
588      --  Locate the implicit activation chain parameter in the called function
589
590      Chain_Formal :=
591        Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
592
593      --  Create the actual which is a pointer to the current activation chain
594
595      if No (Chain) then
596         Chain_Actual :=
597           Make_Attribute_Reference (Loc,
598             Prefix         => Make_Identifier (Loc, Name_uChain),
599             Attribute_Name => Name_Unrestricted_Access);
600
601      --  Allocator case; make a reference to the Chain passed in by the caller
602
603      else
604         Chain_Actual :=
605           Make_Attribute_Reference (Loc,
606             Prefix         => New_Occurrence_Of (Chain, Loc),
607             Attribute_Name => Name_Unrestricted_Access);
608      end if;
609
610      Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
611
612      --  Build the parameter association for the new actual and add it to the
613      --  end of the function's actuals.
614
615      Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
616   end Add_Task_Actuals_To_Build_In_Place_Call;
617
618   -----------------------
619   -- BIP_Formal_Suffix --
620   -----------------------
621
622   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
623   begin
624      case Kind is
625         when BIP_Alloc_Form =>
626            return "BIPalloc";
627
628         when BIP_Storage_Pool =>
629            return "BIPstoragepool";
630
631         when BIP_Finalization_Master =>
632            return "BIPfinalizationmaster";
633
634         when BIP_Task_Master =>
635            return "BIPtaskmaster";
636
637         when BIP_Activation_Chain =>
638            return "BIPactivationchain";
639
640         when BIP_Object_Access =>
641            return "BIPaccess";
642      end case;
643   end BIP_Formal_Suffix;
644
645   ---------------------------
646   -- Build_In_Place_Formal --
647   ---------------------------
648
649   function Build_In_Place_Formal
650     (Func : Entity_Id;
651      Kind : BIP_Formal_Kind) return Entity_Id
652   is
653      Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
654      Extra_Formal : Entity_Id := Extra_Formals (Func);
655
656   begin
657      --  Maybe it would be better for each implicit formal of a build-in-place
658      --  function to have a flag or a Uint attribute to identify it. ???
659
660      --  The return type in the function declaration may have been a limited
661      --  view, and the extra formals for the function were not generated at
662      --  that point. At the point of call the full view must be available and
663      --  the extra formals can be created.
664
665      if No (Extra_Formal) then
666         Create_Extra_Formals (Func);
667         Extra_Formal := Extra_Formals (Func);
668      end if;
669
670      --  We search for a formal with a matching suffix. We can't search
671      --  for the full name, because of the code at the end of Sem_Ch6.-
672      --  Create_Extra_Formals, which copies the Extra_Formals over to
673      --  the Alias of an instance, which will cause the formals to have
674      --  "incorrect" names.
675
676      loop
677         pragma Assert (Present (Extra_Formal));
678         declare
679            Name : constant String := Get_Name_String (Chars (Extra_Formal));
680         begin
681            exit when Name'Length >= Formal_Suffix'Length
682              and then Formal_Suffix =
683                Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
684         end;
685
686         Next_Formal_With_Extras (Extra_Formal);
687      end loop;
688
689      return Extra_Formal;
690   end Build_In_Place_Formal;
691
692   -------------------------------
693   -- Build_Procedure_Body_Form --
694   -------------------------------
695
696   function Build_Procedure_Body_Form
697     (Func_Id   : Entity_Id;
698      Func_Body : Node_Id) return Node_Id
699   is
700      Loc : constant Source_Ptr := Sloc (Func_Body);
701
702      Proc_Decl : constant Node_Id   :=
703                    Next (Unit_Declaration_Node (Func_Id));
704      --  It is assumed that the next node following the declaration of the
705      --  corresponding subprogram spec is the declaration of the procedure
706      --  form.
707
708      Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
709
710      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
711      --  Replace each return statement found in the list Stmts with an
712      --  assignment of the return expression to parameter Param_Id.
713
714      ---------------------
715      -- Replace_Returns --
716      ---------------------
717
718      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
719         Stmt : Node_Id;
720
721      begin
722         Stmt := First (Stmts);
723         while Present (Stmt) loop
724            if Nkind (Stmt) = N_Block_Statement then
725               Replace_Returns (Param_Id,
726                 Statements (Handled_Statement_Sequence (Stmt)));
727
728            elsif Nkind (Stmt) = N_Case_Statement then
729               declare
730                  Alt : Node_Id;
731               begin
732                  Alt := First (Alternatives (Stmt));
733                  while Present (Alt) loop
734                     Replace_Returns (Param_Id, Statements (Alt));
735                     Next (Alt);
736                  end loop;
737               end;
738
739            elsif Nkind (Stmt) = N_Extended_Return_Statement then
740               declare
741                  Ret_Obj : constant Entity_Id :=
742                              Defining_Entity
743                                (First (Return_Object_Declarations (Stmt)));
744                  Assign  : constant Node_Id :=
745                              Make_Assignment_Statement (Sloc (Stmt),
746                                Name       =>
747                                  New_Occurrence_Of (Param_Id, Loc),
748                                Expression =>
749                                  New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
750                  Stmts   : List_Id;
751
752               begin
753                  --  The extended return may just contain the declaration
754
755                  if Present (Handled_Statement_Sequence (Stmt)) then
756                     Stmts := Statements (Handled_Statement_Sequence (Stmt));
757                  else
758                     Stmts := New_List;
759                  end if;
760
761                  Set_Assignment_OK (Name (Assign));
762
763                  Rewrite (Stmt,
764                    Make_Block_Statement (Sloc (Stmt),
765                      Declarations               =>
766                        Return_Object_Declarations (Stmt),
767                      Handled_Statement_Sequence =>
768                        Make_Handled_Sequence_Of_Statements (Loc,
769                          Statements => Stmts)));
770
771                  Replace_Returns (Param_Id, Stmts);
772
773                  Append_To (Stmts, Assign);
774                  Append_To (Stmts, Make_Simple_Return_Statement (Loc));
775               end;
776
777            elsif Nkind (Stmt) = N_If_Statement then
778               Replace_Returns (Param_Id, Then_Statements (Stmt));
779               Replace_Returns (Param_Id, Else_Statements (Stmt));
780
781               declare
782                  Part : Node_Id;
783               begin
784                  Part := First (Elsif_Parts (Stmt));
785                  while Present (Part) loop
786                     Replace_Returns (Param_Id, Then_Statements (Part));
787                     Next (Part);
788                  end loop;
789               end;
790
791            elsif Nkind (Stmt) = N_Loop_Statement then
792               Replace_Returns (Param_Id, Statements (Stmt));
793
794            elsif Nkind (Stmt) = N_Simple_Return_Statement then
795
796               --  Generate:
797               --    Param := Expr;
798               --    return;
799
800               Rewrite (Stmt,
801                 Make_Assignment_Statement (Sloc (Stmt),
802                   Name       => New_Occurrence_Of (Param_Id, Loc),
803                   Expression => Relocate_Node (Expression (Stmt))));
804
805               Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
806
807               --  Skip the added return
808
809               Next (Stmt);
810            end if;
811
812            Next (Stmt);
813         end loop;
814      end Replace_Returns;
815
816      --  Local variables
817
818      Stmts    : List_Id;
819      New_Body : Node_Id;
820
821   --  Start of processing for Build_Procedure_Body_Form
822
823   begin
824      --  This routine replaces the original function body:
825
826      --    function F (...) return Array_Typ is
827      --    begin
828      --       ...
829      --       return Something;
830      --    end F;
831
832      --    with the following:
833
834      --    procedure P (..., Result : out Array_Typ) is
835      --    begin
836      --       ...
837      --       Result := Something;
838      --    end P;
839
840      Stmts :=
841        Statements (Handled_Statement_Sequence (Func_Body));
842      Replace_Returns (Last_Entity (Proc_Id), Stmts);
843
844      New_Body :=
845        Make_Subprogram_Body (Loc,
846          Specification              =>
847            Copy_Subprogram_Spec (Specification (Proc_Decl)),
848          Declarations               => Declarations (Func_Body),
849          Handled_Statement_Sequence =>
850            Make_Handled_Sequence_Of_Statements (Loc,
851              Statements => Stmts));
852
853      --  If the function is a generic instance, so is the new procedure.
854      --  Set flag accordingly so that the proper renaming declarations are
855      --  generated.
856
857      Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
858      return New_Body;
859   end Build_Procedure_Body_Form;
860
861   -----------------------
862   -- Caller_Known_Size --
863   -----------------------
864
865   function Caller_Known_Size
866     (Func_Call   : Node_Id;
867      Result_Subt : Entity_Id) return Boolean
868   is
869   begin
870      return
871          (Is_Definite_Subtype (Underlying_Type (Result_Subt))
872            and then No (Controlling_Argument (Func_Call)))
873        or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
874   end Caller_Known_Size;
875
876   -----------------------------
877   -- Check_Number_Of_Actuals --
878   -----------------------------
879
880   function Check_Number_Of_Actuals
881     (Subp_Call : Node_Id;
882      Subp_Id   : Entity_Id) return Boolean
883   is
884      Formal : Entity_Id;
885      Actual : Node_Id;
886
887   begin
888      pragma Assert (Nkind_In (Subp_Call, N_Entry_Call_Statement,
889                                          N_Function_Call,
890                                          N_Procedure_Call_Statement));
891
892      Formal := First_Formal_With_Extras (Subp_Id);
893      Actual := First_Actual (Subp_Call);
894
895      while Present (Formal) and then Present (Actual) loop
896         Next_Formal_With_Extras (Formal);
897         Next_Actual (Actual);
898      end loop;
899
900      return No (Formal) and then No (Actual);
901   end Check_Number_Of_Actuals;
902
903   --------------------------------
904   -- Check_Overriding_Operation --
905   --------------------------------
906
907   procedure Check_Overriding_Operation (Subp : Entity_Id) is
908      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
909      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
910      Op_Elmt : Elmt_Id;
911      Prim_Op : Entity_Id;
912      Par_Op  : Entity_Id;
913
914   begin
915      if Is_Derived_Type (Typ)
916        and then not Is_Private_Type (Typ)
917        and then In_Open_Scopes (Scope (Etype (Typ)))
918        and then Is_Base_Type (Typ)
919      then
920         --  Subp overrides an inherited private operation if there is an
921         --  inherited operation with a different name than Subp (see
922         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
923         --  same name as Subp.
924
925         Op_Elmt := First_Elmt (Op_List);
926         while Present (Op_Elmt) loop
927            Prim_Op := Node (Op_Elmt);
928            Par_Op  := Alias (Prim_Op);
929
930            if Present (Par_Op)
931              and then not Comes_From_Source (Prim_Op)
932              and then Chars (Prim_Op) /= Chars (Par_Op)
933              and then Chars (Par_Op) = Chars (Subp)
934              and then Is_Hidden (Par_Op)
935              and then Type_Conformant (Prim_Op, Subp)
936            then
937               Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
938            end if;
939
940            Next_Elmt (Op_Elmt);
941         end loop;
942      end if;
943   end Check_Overriding_Operation;
944
945   -------------------------------
946   -- Detect_Infinite_Recursion --
947   -------------------------------
948
949   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
950      Loc : constant Source_Ptr := Sloc (N);
951
952      Var_List : constant Elist_Id := New_Elmt_List;
953      --  List of globals referenced by body of procedure
954
955      Call_List : constant Elist_Id := New_Elmt_List;
956      --  List of recursive calls in body of procedure
957
958      Shad_List : constant Elist_Id := New_Elmt_List;
959      --  List of entity id's for entities created to capture the value of
960      --  referenced globals on entry to the procedure.
961
962      Scop : constant Uint := Scope_Depth (Spec);
963      --  This is used to record the scope depth of the current procedure, so
964      --  that we can identify global references.
965
966      Max_Vars : constant := 4;
967      --  Do not test more than four global variables
968
969      Count_Vars : Natural := 0;
970      --  Count variables found so far
971
972      Var  : Entity_Id;
973      Elm  : Elmt_Id;
974      Ent  : Entity_Id;
975      Call : Elmt_Id;
976      Decl : Node_Id;
977      Test : Node_Id;
978      Elm1 : Elmt_Id;
979      Elm2 : Elmt_Id;
980      Last : Node_Id;
981
982      function Process (Nod : Node_Id) return Traverse_Result;
983      --  Function to traverse the subprogram body (using Traverse_Func)
984
985      -------------
986      -- Process --
987      -------------
988
989      function Process (Nod : Node_Id) return Traverse_Result is
990      begin
991         --  Procedure call
992
993         if Nkind (Nod) = N_Procedure_Call_Statement then
994
995            --  Case of one of the detected recursive calls
996
997            if Is_Entity_Name (Name (Nod))
998              and then Has_Recursive_Call (Entity (Name (Nod)))
999              and then Entity (Name (Nod)) = Spec
1000            then
1001               Append_Elmt (Nod, Call_List);
1002               return Skip;
1003
1004            --  Any other procedure call may have side effects
1005
1006            else
1007               return Abandon;
1008            end if;
1009
1010         --  A call to a pure function can always be ignored
1011
1012         elsif Nkind (Nod) = N_Function_Call
1013           and then Is_Entity_Name (Name (Nod))
1014           and then Is_Pure (Entity (Name (Nod)))
1015         then
1016            return Skip;
1017
1018         --  Case of an identifier reference
1019
1020         elsif Nkind (Nod) = N_Identifier then
1021            Ent := Entity (Nod);
1022
1023            --  If no entity, then ignore the reference
1024
1025            --  Not clear why this can happen. To investigate, remove this
1026            --  test and look at the crash that occurs here in 3401-004 ???
1027
1028            if No (Ent) then
1029               return Skip;
1030
1031            --  Ignore entities with no Scope, again not clear how this
1032            --  can happen, to investigate, look at 4108-008 ???
1033
1034            elsif No (Scope (Ent)) then
1035               return Skip;
1036
1037            --  Ignore the reference if not to a more global object
1038
1039            elsif Scope_Depth (Scope (Ent)) >= Scop then
1040               return Skip;
1041
1042            --  References to types, exceptions and constants are always OK
1043
1044            elsif Is_Type (Ent)
1045              or else Ekind (Ent) = E_Exception
1046              or else Ekind (Ent) = E_Constant
1047            then
1048               return Skip;
1049
1050            --  If other than a non-volatile scalar variable, we have some
1051            --  kind of global reference (e.g. to a function) that we cannot
1052            --  deal with so we forget the attempt.
1053
1054            elsif Ekind (Ent) /= E_Variable
1055              or else not Is_Scalar_Type (Etype (Ent))
1056              or else Treat_As_Volatile (Ent)
1057            then
1058               return Abandon;
1059
1060            --  Otherwise we have a reference to a global scalar
1061
1062            else
1063               --  Loop through global entities already detected
1064
1065               Elm := First_Elmt (Var_List);
1066               loop
1067                  --  If not detected before, record this new global reference
1068
1069                  if No (Elm) then
1070                     Count_Vars := Count_Vars + 1;
1071
1072                     if Count_Vars <= Max_Vars then
1073                        Append_Elmt (Entity (Nod), Var_List);
1074                     else
1075                        return Abandon;
1076                     end if;
1077
1078                     exit;
1079
1080                  --  If recorded before, ignore
1081
1082                  elsif Node (Elm) = Entity (Nod) then
1083                     return Skip;
1084
1085                  --  Otherwise keep looking
1086
1087                  else
1088                     Next_Elmt (Elm);
1089                  end if;
1090               end loop;
1091
1092               return Skip;
1093            end if;
1094
1095         --  For all other node kinds, recursively visit syntactic children
1096
1097         else
1098            return OK;
1099         end if;
1100      end Process;
1101
1102      function Traverse_Body is new Traverse_Func (Process);
1103
1104   --  Start of processing for Detect_Infinite_Recursion
1105
1106   begin
1107      --  Do not attempt detection in No_Implicit_Conditional mode, since we
1108      --  won't be able to generate the code to handle the recursion in any
1109      --  case.
1110
1111      if Restriction_Active (No_Implicit_Conditionals) then
1112         return;
1113      end if;
1114
1115      --  Otherwise do traversal and quit if we get abandon signal
1116
1117      if Traverse_Body (N) = Abandon then
1118         return;
1119
1120      --  We must have a call, since Has_Recursive_Call was set. If not just
1121      --  ignore (this is only an error check, so if we have a funny situation,
1122      --  due to bugs or errors, we do not want to bomb).
1123
1124      elsif Is_Empty_Elmt_List (Call_List) then
1125         return;
1126      end if;
1127
1128      --  Here is the case where we detect recursion at compile time
1129
1130      --  Push our current scope for analyzing the declarations and code that
1131      --  we will insert for the checking.
1132
1133      Push_Scope (Spec);
1134
1135      --  This loop builds temporary variables for each of the referenced
1136      --  globals, so that at the end of the loop the list Shad_List contains
1137      --  these temporaries in one-to-one correspondence with the elements in
1138      --  Var_List.
1139
1140      Last := Empty;
1141      Elm := First_Elmt (Var_List);
1142      while Present (Elm) loop
1143         Var := Node (Elm);
1144         Ent := Make_Temporary (Loc, 'S');
1145         Append_Elmt (Ent, Shad_List);
1146
1147         --  Insert a declaration for this temporary at the start of the
1148         --  declarations for the procedure. The temporaries are declared as
1149         --  constant objects initialized to the current values of the
1150         --  corresponding temporaries.
1151
1152         Decl :=
1153           Make_Object_Declaration (Loc,
1154             Defining_Identifier => Ent,
1155             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
1156             Constant_Present    => True,
1157             Expression          => New_Occurrence_Of (Var, Loc));
1158
1159         if No (Last) then
1160            Prepend (Decl, Declarations (N));
1161         else
1162            Insert_After (Last, Decl);
1163         end if;
1164
1165         Last := Decl;
1166         Analyze (Decl);
1167         Next_Elmt (Elm);
1168      end loop;
1169
1170      --  Loop through calls
1171
1172      Call := First_Elmt (Call_List);
1173      while Present (Call) loop
1174
1175         --  Build a predicate expression of the form
1176
1177         --    True
1178         --      and then global1 = temp1
1179         --      and then global2 = temp2
1180         --      ...
1181
1182         --  This predicate determines if any of the global values
1183         --  referenced by the procedure have changed since the
1184         --  current call, if not an infinite recursion is assured.
1185
1186         Test := New_Occurrence_Of (Standard_True, Loc);
1187
1188         Elm1 := First_Elmt (Var_List);
1189         Elm2 := First_Elmt (Shad_List);
1190         while Present (Elm1) loop
1191            Test :=
1192              Make_And_Then (Loc,
1193                Left_Opnd  => Test,
1194                Right_Opnd =>
1195                  Make_Op_Eq (Loc,
1196                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
1197                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1198
1199            Next_Elmt (Elm1);
1200            Next_Elmt (Elm2);
1201         end loop;
1202
1203         --  Now we replace the call with the sequence
1204
1205         --    if no-changes (see above) then
1206         --       raise Storage_Error;
1207         --    else
1208         --       original-call
1209         --    end if;
1210
1211         Rewrite (Node (Call),
1212           Make_If_Statement (Loc,
1213             Condition       => Test,
1214             Then_Statements => New_List (
1215               Make_Raise_Storage_Error (Loc,
1216                 Reason => SE_Infinite_Recursion)),
1217
1218             Else_Statements => New_List (
1219               Relocate_Node (Node (Call)))));
1220
1221         Analyze (Node (Call));
1222
1223         Next_Elmt (Call);
1224      end loop;
1225
1226      --  Remove temporary scope stack entry used for analysis
1227
1228      Pop_Scope;
1229   end Detect_Infinite_Recursion;
1230
1231   --------------------
1232   -- Expand_Actuals --
1233   --------------------
1234
1235   procedure Expand_Actuals
1236     (N         : Node_Id;
1237      Subp      : Entity_Id;
1238      Post_Call : out List_Id)
1239   is
1240      Loc       : constant Source_Ptr := Sloc (N);
1241      Actual    : Node_Id;
1242      Formal    : Entity_Id;
1243      N_Node    : Node_Id;
1244      E_Actual  : Entity_Id;
1245      E_Formal  : Entity_Id;
1246
1247      procedure Add_Call_By_Copy_Code;
1248      --  For cases where the parameter must be passed by copy, this routine
1249      --  generates a temporary variable into which the actual is copied and
1250      --  then passes this as the parameter. For an OUT or IN OUT parameter,
1251      --  an assignment is also generated to copy the result back. The call
1252      --  also takes care of any constraint checks required for the type
1253      --  conversion case (on both the way in and the way out).
1254
1255      procedure Add_Simple_Call_By_Copy_Code (Bit_Packed_Array : Boolean);
1256      --  This is similar to the above, but is used in cases where we know
1257      --  that all that is needed is to simply create a temporary and copy
1258      --  the value in and out of the temporary. If Bit_Packed_Array is True,
1259      --  the procedure is called for a bit-packed array actual.
1260
1261      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1262      --  Perform copy-back for actual parameter Act which denotes a validation
1263      --  variable.
1264
1265      procedure Check_Fortran_Logical;
1266      --  A value of type Logical that is passed through a formal parameter
1267      --  must be normalized because .TRUE. usually does not have the same
1268      --  representation as True. We assume that .FALSE. = False = 0.
1269      --  What about functions that return a logical type ???
1270
1271      function Is_Legal_Copy return Boolean;
1272      --  Check that an actual can be copied before generating the temporary
1273      --  to be used in the call. If the formal is of a by_reference type or
1274      --  is aliased, then the program is illegal (this can only happen in
1275      --  the presence of representation clauses that force a misalignment)
1276      --  If the formal is a by_reference parameter imposed by a DEC pragma,
1277      --  emit a warning that this might lead to unaligned arguments.
1278
1279      function Make_Var (Actual : Node_Id) return Entity_Id;
1280      --  Returns an entity that refers to the given actual parameter, Actual
1281      --  (not including any type conversion). If Actual is an entity name,
1282      --  then this entity is returned unchanged, otherwise a renaming is
1283      --  created to provide an entity for the actual.
1284
1285      procedure Reset_Packed_Prefix;
1286      --  The expansion of a packed array component reference is delayed in
1287      --  the context of a call. Now we need to complete the expansion, so we
1288      --  unmark the analyzed bits in all prefixes.
1289
1290      function Requires_Atomic_Or_Volatile_Copy return Boolean;
1291      --  Returns whether a copy is required as per RM C.6(19) and gives a
1292      --  warning in this case.
1293
1294      ---------------------------
1295      -- Add_Call_By_Copy_Code --
1296      ---------------------------
1297
1298      procedure Add_Call_By_Copy_Code is
1299         Crep  : Boolean;
1300         Expr  : Node_Id;
1301         F_Typ : Entity_Id := Etype (Formal);
1302         Indic : Node_Id;
1303         Init  : Node_Id;
1304         Temp  : Entity_Id;
1305         V_Typ : Entity_Id;
1306         Var   : Entity_Id;
1307
1308      begin
1309         if not Is_Legal_Copy then
1310            return;
1311         end if;
1312
1313         Temp := Make_Temporary (Loc, 'T', Actual);
1314
1315         --  Handle formals whose type comes from the limited view
1316
1317         if From_Limited_With (F_Typ)
1318           and then Has_Non_Limited_View (F_Typ)
1319         then
1320            F_Typ := Non_Limited_View (F_Typ);
1321         end if;
1322
1323         --  Use formal type for temp, unless formal type is an unconstrained
1324         --  array, in which case we don't have to worry about bounds checks,
1325         --  and we use the actual type, since that has appropriate bounds.
1326
1327         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1328            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1329         else
1330            Indic := New_Occurrence_Of (F_Typ, Loc);
1331         end if;
1332
1333         --  The new code will be properly analyzed below and the setting of
1334         --  the Do_Range_Check flag recomputed so remove the obsolete one.
1335
1336         Set_Do_Range_Check (Actual, False);
1337
1338         if Nkind (Actual) = N_Type_Conversion then
1339            Set_Do_Range_Check (Expression (Actual), False);
1340
1341            V_Typ := Etype (Expression (Actual));
1342
1343            --  If the formal is an (in-)out parameter, capture the name
1344            --  of the variable in order to build the post-call assignment.
1345
1346            Var := Make_Var (Expression (Actual));
1347
1348            Crep := not Same_Representation
1349                          (F_Typ, Etype (Expression (Actual)));
1350
1351         else
1352            V_Typ := Etype (Actual);
1353            Var   := Make_Var (Actual);
1354            Crep  := False;
1355         end if;
1356
1357         --  Setup initialization for case of in out parameter, or an out
1358         --  parameter where the formal is an unconstrained array (in the
1359         --  latter case, we have to pass in an object with bounds).
1360
1361         --  If this is an out parameter, the initial copy is wasteful, so as
1362         --  an optimization for the one-dimensional case we extract the
1363         --  bounds of the actual and build an uninitialized temporary of the
1364         --  right size.
1365
1366         --  If the formal is an out parameter with discriminants, the
1367         --  discriminants must be captured even if the rest of the object
1368         --  is in principle uninitialized, because the discriminants may
1369         --  be read by the called subprogram.
1370
1371         if Ekind (Formal) = E_In_Out_Parameter
1372           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1373           or else Has_Discriminants (F_Typ)
1374         then
1375            if Nkind (Actual) = N_Type_Conversion then
1376               if Conversion_OK (Actual) then
1377                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1378               else
1379                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1380               end if;
1381
1382            elsif Ekind (Formal) = E_Out_Parameter
1383              and then Is_Array_Type (F_Typ)
1384              and then Number_Dimensions (F_Typ) = 1
1385              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1386            then
1387               --  Actual is a one-dimensional array or slice, and the type
1388               --  requires no initialization. Create a temporary of the
1389               --  right size, but do not copy actual into it (optimization).
1390
1391               Init := Empty;
1392               Indic :=
1393                 Make_Subtype_Indication (Loc,
1394                   Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1395                   Constraint   =>
1396                     Make_Index_Or_Discriminant_Constraint (Loc,
1397                       Constraints => New_List (
1398                         Make_Range (Loc,
1399                           Low_Bound  =>
1400                             Make_Attribute_Reference (Loc,
1401                               Prefix         => New_Occurrence_Of (Var, Loc),
1402                               Attribute_Name => Name_First),
1403                           High_Bound =>
1404                             Make_Attribute_Reference (Loc,
1405                               Prefix         => New_Occurrence_Of (Var, Loc),
1406                               Attribute_Name => Name_Last)))));
1407
1408            else
1409               Init := New_Occurrence_Of (Var, Loc);
1410            end if;
1411
1412         --  An initialization is created for packed conversions as
1413         --  actuals for out parameters to enable Make_Object_Declaration
1414         --  to determine the proper subtype for N_Node. Note that this
1415         --  is wasteful because the extra copying on the call side is
1416         --  not required for such out parameters. ???
1417
1418         elsif Ekind (Formal) = E_Out_Parameter
1419           and then Nkind (Actual) = N_Type_Conversion
1420           and then (Is_Bit_Packed_Array (F_Typ)
1421                       or else
1422                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
1423         then
1424            if Conversion_OK (Actual) then
1425               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1426            else
1427               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1428            end if;
1429
1430         elsif Ekind (Formal) = E_In_Parameter then
1431
1432            --  Handle the case in which the actual is a type conversion
1433
1434            if Nkind (Actual) = N_Type_Conversion then
1435               if Conversion_OK (Actual) then
1436                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1437               else
1438                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1439               end if;
1440            else
1441               Init := New_Occurrence_Of (Var, Loc);
1442            end if;
1443
1444         --  Access types are passed in without checks, but if a copy-back is
1445         --  required for a null-excluding check on an in-out or out parameter,
1446         --  then the initial value is that of the actual.
1447
1448         elsif Is_Access_Type (E_Formal)
1449           and then Can_Never_Be_Null (Etype (Actual))
1450           and then not Can_Never_Be_Null (E_Formal)
1451         then
1452            Init := New_Occurrence_Of (Var, Loc);
1453
1454         else
1455            Init := Empty;
1456         end if;
1457
1458         N_Node :=
1459           Make_Object_Declaration (Loc,
1460             Defining_Identifier => Temp,
1461             Object_Definition   => Indic,
1462             Expression          => Init);
1463         Set_Assignment_OK (N_Node);
1464         Insert_Action (N, N_Node);
1465
1466         --  Now, normally the deal here is that we use the defining
1467         --  identifier created by that object declaration. There is
1468         --  one exception to this. In the change of representation case
1469         --  the above declaration will end up looking like:
1470
1471         --    temp : type := identifier;
1472
1473         --  And in this case we might as well use the identifier directly
1474         --  and eliminate the temporary. Note that the analysis of the
1475         --  declaration was not a waste of time in that case, since it is
1476         --  what generated the necessary change of representation code. If
1477         --  the change of representation introduced additional code, as in
1478         --  a fixed-integer conversion, the expression is not an identifier
1479         --  and must be kept.
1480
1481         if Crep
1482           and then Present (Expression (N_Node))
1483           and then Is_Entity_Name (Expression (N_Node))
1484         then
1485            Temp := Entity (Expression (N_Node));
1486            Rewrite (N_Node, Make_Null_Statement (Loc));
1487         end if;
1488
1489         --  For IN parameter, all we do is to replace the actual
1490
1491         if Ekind (Formal) = E_In_Parameter then
1492            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1493            Analyze (Actual);
1494
1495         --  Processing for OUT or IN OUT parameter
1496
1497         else
1498            --  Kill current value indications for the temporary variable we
1499            --  created, since we just passed it as an OUT parameter.
1500
1501            Kill_Current_Values (Temp);
1502            Set_Is_Known_Valid (Temp, False);
1503            Set_Is_True_Constant (Temp, False);
1504
1505            --  If type conversion, use reverse conversion on exit
1506
1507            if Nkind (Actual) = N_Type_Conversion then
1508               if Conversion_OK (Actual) then
1509                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1510               else
1511                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1512               end if;
1513            else
1514               Expr := New_Occurrence_Of (Temp, Loc);
1515            end if;
1516
1517            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1518            Analyze (Actual);
1519
1520            --  If the actual is a conversion of a packed reference, it may
1521            --  already have been expanded by Remove_Side_Effects, and the
1522            --  resulting variable is a temporary which does not designate
1523            --  the proper out-parameter, which may not be addressable. In
1524            --  that case, generate an assignment to the original expression
1525            --  (before expansion of the packed reference) so that the proper
1526            --  expansion of assignment to a packed component can take place.
1527
1528            declare
1529               Obj : Node_Id;
1530               Lhs : Node_Id;
1531
1532            begin
1533               if Is_Renaming_Of_Object (Var)
1534                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1535                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1536                   = N_Indexed_Component
1537                 and then
1538                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1539               then
1540                  Obj := Renamed_Object (Var);
1541                  Lhs :=
1542                    Make_Selected_Component (Loc,
1543                      Prefix        =>
1544                        New_Copy_Tree (Original_Node (Prefix (Obj))),
1545                      Selector_Name => New_Copy (Selector_Name (Obj)));
1546                  Reset_Analyzed_Flags (Lhs);
1547
1548               else
1549                  Lhs := New_Occurrence_Of (Var, Loc);
1550               end if;
1551
1552               Set_Assignment_OK (Lhs);
1553
1554               if Is_Access_Type (E_Formal)
1555                 and then Is_Entity_Name (Lhs)
1556                 and then
1557                   Present (Effective_Extra_Accessibility (Entity (Lhs)))
1558               then
1559                  --  Copyback target is an Ada 2012 stand-alone object of an
1560                  --  anonymous access type.
1561
1562                  pragma Assert (Ada_Version >= Ada_2012);
1563
1564                  if Type_Access_Level (E_Formal) >
1565                     Object_Access_Level (Lhs)
1566                  then
1567                     Append_To (Post_Call,
1568                       Make_Raise_Program_Error (Loc,
1569                         Reason => PE_Accessibility_Check_Failed));
1570                  end if;
1571
1572                  Append_To (Post_Call,
1573                    Make_Assignment_Statement (Loc,
1574                      Name       => Lhs,
1575                      Expression => Expr));
1576
1577                  --  We would like to somehow suppress generation of the
1578                  --  extra_accessibility assignment generated by the expansion
1579                  --  of the above assignment statement. It's not a correctness
1580                  --  issue because the following assignment renders it dead,
1581                  --  but generating back-to-back assignments to the same
1582                  --  target is undesirable. ???
1583
1584                  Append_To (Post_Call,
1585                    Make_Assignment_Statement (Loc,
1586                      Name       => New_Occurrence_Of (
1587                        Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1588                      Expression => Make_Integer_Literal (Loc,
1589                        Type_Access_Level (E_Formal))));
1590
1591               else
1592                  if Is_Access_Type (E_Formal)
1593                    and then Can_Never_Be_Null (Etype (Actual))
1594                    and then not Can_Never_Be_Null (E_Formal)
1595                  then
1596                     Append_To (Post_Call,
1597                       Make_Raise_Constraint_Error (Loc,
1598                         Condition =>
1599                           Make_Op_Eq (Loc,
1600                             Left_Opnd  => New_Occurrence_Of (Temp, Loc),
1601                             Right_Opnd => Make_Null (Loc)),
1602                         Reason => CE_Access_Check_Failed));
1603                  end if;
1604
1605                  Append_To (Post_Call,
1606                    Make_Assignment_Statement (Loc,
1607                      Name       => Lhs,
1608                      Expression => Expr));
1609               end if;
1610            end;
1611         end if;
1612      end Add_Call_By_Copy_Code;
1613
1614      ----------------------------------
1615      -- Add_Simple_Call_By_Copy_Code --
1616      ----------------------------------
1617
1618      procedure Add_Simple_Call_By_Copy_Code (Bit_Packed_Array : Boolean) is
1619         Decl   : Node_Id;
1620         F_Typ  : Entity_Id := Etype (Formal);
1621         Incod  : Node_Id;
1622         Indic  : Node_Id;
1623         Lhs    : Node_Id;
1624         Outcod : Node_Id;
1625         Rhs    : Node_Id;
1626         Temp   : Entity_Id;
1627
1628      begin
1629         --  ??? We need to do the copy for a bit-packed array because this is
1630         --  where the rewriting into a mask-and-shift sequence is done. But of
1631         --  course this may break the program if it expects bits to be really
1632         --  passed by reference. That's what we have done historically though.
1633
1634         if not Bit_Packed_Array and then not Is_Legal_Copy then
1635            return;
1636         end if;
1637
1638         --  Handle formals whose type comes from the limited view
1639
1640         if From_Limited_With (F_Typ)
1641           and then Has_Non_Limited_View (F_Typ)
1642         then
1643            F_Typ := Non_Limited_View (F_Typ);
1644         end if;
1645
1646         --  Use formal type for temp, unless formal type is an unconstrained
1647         --  array, in which case we don't have to worry about bounds checks,
1648         --  and we use the actual type, since that has appropriate bounds.
1649
1650         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1651            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1652         else
1653            Indic := New_Occurrence_Of (F_Typ, Loc);
1654         end if;
1655
1656         --  Prepare to generate code
1657
1658         Reset_Packed_Prefix;
1659
1660         Temp := Make_Temporary (Loc, 'T', Actual);
1661         Incod  := Relocate_Node (Actual);
1662         Outcod := New_Copy_Tree (Incod);
1663
1664         --  Generate declaration of temporary variable, initializing it
1665         --  with the input parameter unless we have an OUT formal or
1666         --  this is an initialization call.
1667
1668         --  If the formal is an out parameter with discriminants, the
1669         --  discriminants must be captured even if the rest of the object
1670         --  is in principle uninitialized, because the discriminants may
1671         --  be read by the called subprogram.
1672
1673         if Ekind (Formal) = E_Out_Parameter then
1674            Incod := Empty;
1675
1676            if Has_Discriminants (F_Typ) then
1677               Indic := New_Occurrence_Of (Etype (Actual), Loc);
1678            end if;
1679
1680         elsif Inside_Init_Proc then
1681
1682            --  Could use a comment here to match comment below ???
1683
1684            if Nkind (Actual) /= N_Selected_Component
1685              or else
1686                not Has_Discriminant_Dependent_Constraint
1687                  (Entity (Selector_Name (Actual)))
1688            then
1689               Incod := Empty;
1690
1691            --  Otherwise, keep the component in order to generate the proper
1692            --  actual subtype, that depends on enclosing discriminants.
1693
1694            else
1695               null;
1696            end if;
1697         end if;
1698
1699         Decl :=
1700           Make_Object_Declaration (Loc,
1701             Defining_Identifier => Temp,
1702             Object_Definition   => Indic,
1703             Expression          => Incod);
1704
1705         if Inside_Init_Proc
1706           and then No (Incod)
1707         then
1708            --  If the call is to initialize a component of a composite type,
1709            --  and the component does not depend on discriminants, use the
1710            --  actual type of the component. This is required in case the
1711            --  component is constrained, because in general the formal of the
1712            --  initialization procedure will be unconstrained. Note that if
1713            --  the component being initialized is constrained by an enclosing
1714            --  discriminant, the presence of the initialization in the
1715            --  declaration will generate an expression for the actual subtype.
1716
1717            Set_No_Initialization (Decl);
1718            Set_Object_Definition (Decl,
1719              New_Occurrence_Of (Etype (Actual), Loc));
1720         end if;
1721
1722         Insert_Action (N, Decl);
1723
1724         --  The actual is simply a reference to the temporary
1725
1726         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1727
1728         --  Generate copy out if OUT or IN OUT parameter
1729
1730         if Ekind (Formal) /= E_In_Parameter then
1731            Lhs := Outcod;
1732            Rhs := New_Occurrence_Of (Temp, Loc);
1733            Set_Is_True_Constant (Temp, False);
1734
1735            --  Deal with conversion
1736
1737            if Nkind (Lhs) = N_Type_Conversion then
1738               Lhs := Expression (Lhs);
1739               Rhs := Convert_To (Etype (Actual), Rhs);
1740            end if;
1741
1742            Append_To (Post_Call,
1743              Make_Assignment_Statement (Loc,
1744                Name       => Lhs,
1745                Expression => Rhs));
1746            Set_Assignment_OK (Name (Last (Post_Call)));
1747         end if;
1748      end Add_Simple_Call_By_Copy_Code;
1749
1750      --------------------------------------
1751      -- Add_Validation_Call_By_Copy_Code --
1752      --------------------------------------
1753
1754      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1755         Expr    : Node_Id;
1756         Obj     : Node_Id;
1757         Obj_Typ : Entity_Id;
1758         Var     : constant Node_Id := Unqual_Conv (Act);
1759         Var_Id  : Entity_Id;
1760
1761      begin
1762         --  Generate range check if required
1763
1764         if Do_Range_Check (Actual) then
1765            Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
1766         end if;
1767
1768         --  If there is a type conversion in the actual, it will be reinstated
1769         --  below, the new instance will be properly analyzed and the setting
1770         --  of the Do_Range_Check flag recomputed so remove the obsolete one.
1771
1772         if Nkind (Actual) = N_Type_Conversion then
1773            Set_Do_Range_Check (Expression (Actual), False);
1774         end if;
1775
1776         --  Copy the value of the validation variable back into the object
1777         --  being validated.
1778
1779         if Is_Entity_Name (Var) then
1780            Var_Id  := Entity (Var);
1781            Obj     := Validated_Object (Var_Id);
1782            Obj_Typ := Etype (Obj);
1783
1784            Expr := New_Occurrence_Of (Var_Id, Loc);
1785
1786            --  A type conversion is needed when the validation variable and
1787            --  the validated object carry different types. This case occurs
1788            --  when the actual is qualified in some fashion.
1789
1790            --    Common:
1791            --      subtype Int is Integer range ...;
1792            --      procedure Call (Val : in out Integer);
1793
1794            --    Original:
1795            --      Object : Int;
1796            --      Call (Integer (Object));
1797
1798            --    Expanded:
1799            --      Object : Int;
1800            --      Var : Integer := Object;  --  conversion to base type
1801            --      if not Var'Valid then     --  validity check
1802            --      Call (Var);               --  modify Var
1803            --      Object := Int (Var);      --  conversion to subtype
1804
1805            if Etype (Var_Id) /= Obj_Typ then
1806               Expr :=
1807                 Make_Type_Conversion (Loc,
1808                   Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1809                   Expression   => Expr);
1810            end if;
1811
1812            --  Generate:
1813            --    Object := Var;
1814            --      <or>
1815            --    Object := Object_Type (Var);
1816
1817            Append_To (Post_Call,
1818              Make_Assignment_Statement (Loc,
1819                Name       => Obj,
1820                Expression => Expr));
1821
1822         --  If the flow reaches this point, then this routine was invoked with
1823         --  an actual which does not denote a validation variable.
1824
1825         else
1826            pragma Assert (False);
1827            null;
1828         end if;
1829      end Add_Validation_Call_By_Copy_Code;
1830
1831      ---------------------------
1832      -- Check_Fortran_Logical --
1833      ---------------------------
1834
1835      procedure Check_Fortran_Logical is
1836         Logical : constant Entity_Id := Etype (Formal);
1837         Var     : Entity_Id;
1838
1839      --  Note: this is very incomplete, e.g. it does not handle arrays
1840      --  of logical values. This is really not the right approach at all???)
1841
1842      begin
1843         if Convention (Subp) = Convention_Fortran
1844           and then Root_Type (Etype (Formal)) = Standard_Boolean
1845           and then Ekind (Formal) /= E_In_Parameter
1846         then
1847            Var := Make_Var (Actual);
1848            Append_To (Post_Call,
1849              Make_Assignment_Statement (Loc,
1850                Name => New_Occurrence_Of (Var, Loc),
1851                Expression =>
1852                  Unchecked_Convert_To (
1853                    Logical,
1854                    Make_Op_Ne (Loc,
1855                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
1856                      Right_Opnd =>
1857                        Unchecked_Convert_To (
1858                          Logical,
1859                          New_Occurrence_Of (Standard_False, Loc))))));
1860         end if;
1861      end Check_Fortran_Logical;
1862
1863      -------------------
1864      -- Is_Legal_Copy --
1865      -------------------
1866
1867      function Is_Legal_Copy return Boolean is
1868      begin
1869         --  An attempt to copy a value of such a type can only occur if
1870         --  representation clauses give the actual a misaligned address.
1871
1872         if Is_By_Reference_Type (Etype (Formal))
1873           or else Is_Aliased (Formal)
1874           or else (Mechanism (Formal) = By_Reference
1875                     and then not Has_Foreign_Convention (Subp))
1876         then
1877
1878            --  The actual may in fact be properly aligned but there is not
1879            --  enough front-end information to determine this. In that case
1880            --  gigi will emit an error or a warning if a copy is not legal,
1881            --  or generate the proper code.
1882
1883            return False;
1884
1885         --  For users of Starlet, we assume that the specification of by-
1886         --  reference mechanism is mandatory. This may lead to unaligned
1887         --  objects but at least for DEC legacy code it is known to work.
1888         --  The warning will alert users of this code that a problem may
1889         --  be lurking.
1890
1891         elsif Mechanism (Formal) = By_Reference
1892           and then Ekind (Scope (Formal)) = E_Procedure
1893           and then Is_Valued_Procedure (Scope (Formal))
1894         then
1895            Error_Msg_N
1896              ("by_reference actual may be misaligned??", Actual);
1897            return False;
1898
1899         else
1900            return True;
1901         end if;
1902      end Is_Legal_Copy;
1903
1904      --------------
1905      -- Make_Var --
1906      --------------
1907
1908      function Make_Var (Actual : Node_Id) return Entity_Id is
1909         Var : Entity_Id;
1910
1911      begin
1912         if Is_Entity_Name (Actual) then
1913            return Entity (Actual);
1914
1915         else
1916            Var := Make_Temporary (Loc, 'T', Actual);
1917
1918            N_Node :=
1919              Make_Object_Renaming_Declaration (Loc,
1920                Defining_Identifier => Var,
1921                Subtype_Mark        =>
1922                  New_Occurrence_Of (Etype (Actual), Loc),
1923                Name                => Relocate_Node (Actual));
1924
1925            Insert_Action (N, N_Node);
1926            return Var;
1927         end if;
1928      end Make_Var;
1929
1930      -------------------------
1931      -- Reset_Packed_Prefix --
1932      -------------------------
1933
1934      procedure Reset_Packed_Prefix is
1935         Pfx : Node_Id := Actual;
1936      begin
1937         loop
1938            Set_Analyzed (Pfx, False);
1939            exit when
1940              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1941            Pfx := Prefix (Pfx);
1942         end loop;
1943      end Reset_Packed_Prefix;
1944
1945      ----------------------------------------
1946      --  Requires_Atomic_Or_Volatile_Copy  --
1947      ----------------------------------------
1948
1949      function Requires_Atomic_Or_Volatile_Copy return Boolean is
1950      begin
1951         --  If the formal is already passed by copy, no need to do anything
1952
1953         if Is_By_Copy_Type (E_Formal) then
1954            return False;
1955         end if;
1956
1957         --  Check for atomicity mismatch
1958
1959         if Is_Atomic_Object (Actual) and then not Is_Atomic (E_Formal)
1960         then
1961            if Comes_From_Source (N) then
1962               Error_Msg_N
1963                 ("?atomic actual passed by copy (RM C.6(19))", Actual);
1964            end if;
1965            return True;
1966         end if;
1967
1968         --  Check for volatility mismatch
1969
1970         if Is_Volatile_Object (Actual) and then not Is_Volatile (E_Formal)
1971         then
1972            if Comes_From_Source (N) then
1973               Error_Msg_N
1974                 ("?volatile actual passed by copy (RM C.6(19))", Actual);
1975            end if;
1976            return True;
1977         end if;
1978
1979         return False;
1980      end Requires_Atomic_Or_Volatile_Copy;
1981
1982   --  Start of processing for Expand_Actuals
1983
1984   begin
1985      Post_Call := New_List;
1986
1987      Formal := First_Formal (Subp);
1988      Actual := First_Actual (N);
1989      while Present (Formal) loop
1990         E_Formal := Etype (Formal);
1991         E_Actual := Etype (Actual);
1992
1993         --  Handle formals whose type comes from the limited view
1994
1995         if From_Limited_With (E_Formal)
1996           and then Has_Non_Limited_View (E_Formal)
1997         then
1998            E_Formal := Non_Limited_View (E_Formal);
1999         end if;
2000
2001         if Is_Scalar_Type (E_Formal)
2002           or else Nkind (Actual) = N_Slice
2003         then
2004            Check_Fortran_Logical;
2005
2006         --  RM 6.4.1 (11)
2007
2008         elsif Ekind (Formal) /= E_Out_Parameter then
2009
2010            --  The unusual case of the current instance of a protected type
2011            --  requires special handling. This can only occur in the context
2012            --  of a call within the body of a protected operation.
2013
2014            if Is_Entity_Name (Actual)
2015              and then Ekind (Entity (Actual)) = E_Protected_Type
2016              and then In_Open_Scopes (Entity (Actual))
2017            then
2018               if Scope (Subp) /= Entity (Actual) then
2019                  Error_Msg_N
2020                    ("operation outside protected type may not "
2021                     & "call back its protected operations??", Actual);
2022               end if;
2023
2024               Rewrite (Actual,
2025                 Expand_Protected_Object_Reference (N, Entity (Actual)));
2026            end if;
2027
2028            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
2029            --  build-in-place function, then a temporary return object needs
2030            --  to be created and access to it must be passed to the function.
2031            --  Currently we limit such functions to those with inherently
2032            --  limited result subtypes, but eventually we plan to expand the
2033            --  functions that are treated as build-in-place to include other
2034            --  composite result types.
2035
2036            if Is_Build_In_Place_Function_Call (Actual) then
2037               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
2038
2039            --  Ada 2005 (AI-318-02): Specialization of the previous case for
2040            --  actuals containing build-in-place function calls whose returned
2041            --  object covers interface types.
2042
2043            elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
2044               Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
2045            end if;
2046
2047            Apply_Constraint_Check (Actual, E_Formal);
2048
2049         --  Out parameter case. No constraint checks on access type
2050         --  RM 6.4.1 (13), but on return a null-excluding check may be
2051         --  required (see below).
2052
2053         elsif Is_Access_Type (E_Formal) then
2054            null;
2055
2056         --  RM 6.4.1 (14)
2057
2058         elsif Has_Discriminants (Base_Type (E_Formal))
2059           or else Has_Non_Null_Base_Init_Proc (E_Formal)
2060         then
2061            Apply_Constraint_Check (Actual, E_Formal);
2062
2063         --  RM 6.4.1 (15)
2064
2065         else
2066            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
2067         end if;
2068
2069         --  Processing for IN-OUT and OUT parameters
2070
2071         if Ekind (Formal) /= E_In_Parameter then
2072
2073            --  For type conversions of arrays, apply length/range checks
2074
2075            if Is_Array_Type (E_Formal)
2076              and then Nkind (Actual) = N_Type_Conversion
2077            then
2078               if Is_Constrained (E_Formal) then
2079                  Apply_Length_Check (Expression (Actual), E_Formal);
2080               else
2081                  Apply_Range_Check (Expression (Actual), E_Formal);
2082               end if;
2083            end if;
2084
2085            --  The actual denotes a variable which captures the value of an
2086            --  object for validation purposes. Add a copy-back to reflect any
2087            --  potential changes in value back into the original object.
2088
2089            --    Var : ... := Object;
2090            --    if not Var'Valid then  --  validity check
2091            --    Call (Var);            --  modify var
2092            --    Object := Var;         --  update Object
2093
2094            --  This case is given higher priority because the subsequent check
2095            --  for type conversion may add an extra copy of the variable and
2096            --  prevent proper value propagation back in the original object.
2097
2098            if Is_Validation_Variable_Reference (Actual) then
2099               Add_Validation_Call_By_Copy_Code (Actual);
2100
2101            --  If argument is a type conversion for a type that is passed by
2102            --  copy, then we must pass the parameter by copy.
2103
2104            elsif Nkind (Actual) = N_Type_Conversion
2105              and then
2106                (Is_Numeric_Type (E_Formal)
2107                  or else Is_Access_Type (E_Formal)
2108                  or else Is_Enumeration_Type (E_Formal)
2109                  or else Is_Bit_Packed_Array (Etype (Formal))
2110                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
2111
2112                  --  Also pass by copy if change of representation
2113
2114                  or else not Same_Representation
2115                                (Etype (Formal),
2116                                 Etype (Expression (Actual))))
2117            then
2118               Add_Call_By_Copy_Code;
2119
2120            --  References to components of bit-packed arrays are expanded
2121            --  at this point, rather than at the point of analysis of the
2122            --  actuals, to handle the expansion of the assignment to
2123            --  [in] out parameters.
2124
2125            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2126               Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => True);
2127
2128            --  If a nonscalar actual is possibly bit-aligned, we need a copy
2129            --  because the back-end cannot cope with such objects. In other
2130            --  cases where alignment forces a copy, the back-end generates
2131            --  it properly. It should not be generated unconditionally in the
2132            --  front-end because it does not know precisely the alignment
2133            --  requirements of the target, and makes too conservative an
2134            --  estimate, leading to superfluous copies or spurious errors
2135            --  on by-reference parameters.
2136
2137            elsif Nkind (Actual) = N_Selected_Component
2138              and then
2139                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2140              and then not Represented_As_Scalar (Etype (Formal))
2141            then
2142               Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => False);
2143
2144            --  References to slices of bit-packed arrays are expanded
2145
2146            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2147               Add_Call_By_Copy_Code;
2148
2149            --  References to possibly unaligned slices of arrays are expanded
2150
2151            elsif Is_Possibly_Unaligned_Slice (Actual) then
2152               Add_Call_By_Copy_Code;
2153
2154            --  Deal with access types where the actual subtype and the
2155            --  formal subtype are not the same, requiring a check.
2156
2157            --  It is necessary to exclude tagged types because of "downward
2158            --  conversion" errors, but null-excluding checks on return may be
2159            --  required.
2160
2161            elsif Is_Access_Type (E_Formal)
2162              and then not Is_Tagged_Type (Designated_Type (E_Formal))
2163              and then (not Same_Type (E_Formal, E_Actual)
2164                or else (Can_Never_Be_Null (E_Actual)
2165                          and then not Can_Never_Be_Null (E_Formal)))
2166            then
2167               Add_Call_By_Copy_Code;
2168
2169            --  We may need to force a copy because of atomicity or volatility
2170            --  considerations.
2171
2172            elsif Requires_Atomic_Or_Volatile_Copy then
2173               Add_Call_By_Copy_Code;
2174
2175            --  Add call-by-copy code for the case of scalar out parameters
2176            --  when it is not known at compile time that the subtype of the
2177            --  formal is a subrange of the subtype of the actual (or vice
2178            --  versa for in out parameters), in order to get range checks
2179            --  on such actuals. (Maybe this case should be handled earlier
2180            --  in the if statement???)
2181
2182            elsif Is_Scalar_Type (E_Formal)
2183              and then
2184                (not In_Subrange_Of (E_Formal, E_Actual)
2185                  or else
2186                    (Ekind (Formal) = E_In_Out_Parameter
2187                      and then not In_Subrange_Of (E_Actual, E_Formal)))
2188            then
2189               Add_Call_By_Copy_Code;
2190            end if;
2191
2192            --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
2193            --  by-reference parameters on exit from the call. If the actual
2194            --  is a derived type and the operation is inherited, the body
2195            --  of the operation will not contain a call to the predicate
2196            --  function, so it must be done explicitly after the call. Ditto
2197            --  if the actual is an entity of a predicated subtype.
2198
2199            --  The rule refers to by-reference types, but a check is needed
2200            --  for by-copy types as well. That check is subsumed by the rule
2201            --  for subtype conversion on assignment, but we can generate the
2202            --  required check now.
2203
2204            --  Note also that Subp may be either a subprogram entity for
2205            --  direct calls, or a type entity for indirect calls, which must
2206            --  be handled separately because the name does not denote an
2207            --  overloadable entity.
2208
2209            By_Ref_Predicate_Check : declare
2210               Aund : constant Entity_Id := Underlying_Type (E_Actual);
2211               Atyp : Entity_Id;
2212
2213               function Is_Public_Subp return Boolean;
2214               --  Check whether the subprogram being called is a visible
2215               --  operation of the type of the actual. Used to determine
2216               --  whether an invariant check must be generated on the
2217               --  caller side.
2218
2219               ---------------------
2220               --  Is_Public_Subp --
2221               ---------------------
2222
2223               function Is_Public_Subp return Boolean is
2224                  Pack      : constant Entity_Id := Scope (Subp);
2225                  Subp_Decl : Node_Id;
2226
2227               begin
2228                  if not Is_Subprogram (Subp) then
2229                     return False;
2230
2231                  --  The operation may be inherited, or a primitive of the
2232                  --  root type.
2233
2234                  elsif
2235                    Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2236                                             N_Full_Type_Declaration)
2237                  then
2238                     Subp_Decl := Parent (Subp);
2239
2240                  else
2241                     Subp_Decl := Unit_Declaration_Node (Subp);
2242                  end if;
2243
2244                  return Ekind (Pack) = E_Package
2245                    and then
2246                      List_Containing (Subp_Decl) =
2247                        Visible_Declarations
2248                          (Specification (Unit_Declaration_Node (Pack)));
2249               end Is_Public_Subp;
2250
2251            --  Start of processing for By_Ref_Predicate_Check
2252
2253            begin
2254               if No (Aund) then
2255                  Atyp := E_Actual;
2256               else
2257                  Atyp := Aund;
2258               end if;
2259
2260               if Has_Predicates (Atyp)
2261                 and then Present (Predicate_Function (Atyp))
2262
2263                 --  Skip predicate checks for special cases
2264
2265                 and then Predicate_Tests_On_Arguments (Subp)
2266               then
2267                  Append_To (Post_Call,
2268                    Make_Predicate_Check (Atyp, Actual));
2269               end if;
2270
2271               --  We generated caller-side invariant checks in two cases:
2272
2273               --  a) when calling an inherited operation, where there is an
2274               --  implicit view conversion of the actual to the parent type.
2275
2276               --  b) When the conversion is explicit
2277
2278               --  We treat these cases separately because the required
2279               --  conversion for a) is added later when expanding the call.
2280
2281               if Has_Invariants (Etype (Actual))
2282                  and then
2283                    Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2284               then
2285                  if Comes_From_Source (N) and then Is_Public_Subp then
2286                     Append_To (Post_Call, Make_Invariant_Call (Actual));
2287                  end if;
2288
2289               elsif Nkind (Actual) = N_Type_Conversion
2290                 and then Has_Invariants (Etype (Expression (Actual)))
2291               then
2292                  if Comes_From_Source (N) and then Is_Public_Subp then
2293                     Append_To (Post_Call,
2294                       Make_Invariant_Call (Expression (Actual)));
2295                  end if;
2296               end if;
2297            end By_Ref_Predicate_Check;
2298
2299         --  Processing for IN parameters
2300
2301         else
2302            --  Generate range check if required
2303
2304            if Do_Range_Check (Actual) then
2305               Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2306            end if;
2307
2308            --  For IN parameters in the bit-packed array case, we expand an
2309            --  indexed component (the circuit in Exp_Ch4 deliberately left
2310            --  indexed components appearing as actuals untouched, so that
2311            --  the special processing above for the OUT and IN OUT cases
2312            --  could be performed. We could make the test in Exp_Ch4 more
2313            --  complex and have it detect the parameter mode, but it is
2314            --  easier simply to handle all cases here.)
2315
2316            if Nkind (Actual) = N_Indexed_Component
2317              and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2318            then
2319               Reset_Packed_Prefix;
2320               Expand_Packed_Element_Reference (Actual);
2321
2322            --  If we have a reference to a bit-packed array, we copy it, since
2323            --  the actual must be byte aligned.
2324
2325            --  Is this really necessary in all cases???
2326
2327            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2328               Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => True);
2329
2330            --  If a nonscalar actual is possibly unaligned, we need a copy
2331
2332            elsif Is_Possibly_Unaligned_Object (Actual)
2333              and then not Represented_As_Scalar (Etype (Formal))
2334            then
2335               Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => False);
2336
2337            --  Similarly, we have to expand slices of packed arrays here
2338            --  because the result must be byte aligned.
2339
2340            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2341               Add_Call_By_Copy_Code;
2342
2343            --  Only processing remaining is to pass by copy if this is a
2344            --  reference to a possibly unaligned slice, since the caller
2345            --  expects an appropriately aligned argument.
2346
2347            elsif Is_Possibly_Unaligned_Slice (Actual) then
2348               Add_Call_By_Copy_Code;
2349
2350            --  We may need to force a copy because of atomicity or volatility
2351            --  considerations.
2352
2353            elsif Requires_Atomic_Or_Volatile_Copy then
2354               Add_Call_By_Copy_Code;
2355
2356            --  An unusual case: a current instance of an enclosing task can be
2357            --  an actual, and must be replaced by a reference to self.
2358
2359            elsif Is_Entity_Name (Actual)
2360              and then Is_Task_Type (Entity (Actual))
2361            then
2362               if In_Open_Scopes (Entity (Actual)) then
2363                  Rewrite (Actual,
2364                    (Make_Function_Call (Loc,
2365                       Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2366                  Analyze (Actual);
2367
2368               --  A task type cannot otherwise appear as an actual
2369
2370               else
2371                  raise Program_Error;
2372               end if;
2373            end if;
2374         end if;
2375
2376         Next_Formal (Formal);
2377         Next_Actual (Actual);
2378      end loop;
2379   end Expand_Actuals;
2380
2381   -----------------
2382   -- Expand_Call --
2383   -----------------
2384
2385   procedure Expand_Call (N : Node_Id) is
2386      Post_Call : List_Id;
2387
2388   begin
2389      pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2390                                  N_Function_Call,
2391                                  N_Procedure_Call_Statement));
2392
2393      Expand_Call_Helper (N, Post_Call);
2394      Insert_Post_Call_Actions (N, Post_Call);
2395   end Expand_Call;
2396
2397   ------------------------
2398   -- Expand_Call_Helper --
2399   ------------------------
2400
2401   --  This procedure handles expansion of function calls and procedure call
2402   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
2403   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
2404
2405   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
2406   --    Provide values of actuals for all formals in Extra_Formals list
2407   --    Replace "call" to enumeration literal function by literal itself
2408   --    Rewrite call to predefined operator as operator
2409   --    Replace actuals to in-out parameters that are numeric conversions,
2410   --     with explicit assignment to temporaries before and after the call.
2411
2412   --   Note that the list of actuals has been filled with default expressions
2413   --   during semantic analysis of the call. Only the extra actuals required
2414   --   for the 'Constrained attribute and for accessibility checks are added
2415   --   at this point.
2416
2417   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2418      Loc           : constant Source_Ptr := Sloc (N);
2419      Call_Node     : Node_Id := N;
2420      Extra_Actuals : List_Id := No_List;
2421      Prev          : Node_Id := Empty;
2422
2423      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2424      --  Adds one entry to the end of the actual parameter list. Used for
2425      --  default parameters and for extra actuals (for Extra_Formals). The
2426      --  argument is an N_Parameter_Association node.
2427
2428      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2429      --  Adds an extra actual to the list of extra actuals. Expr is the
2430      --  expression for the value of the actual, EF is the entity for the
2431      --  extra formal.
2432
2433      procedure Add_View_Conversion_Invariants
2434        (Formal : Entity_Id;
2435         Actual : Node_Id);
2436      --  Adds invariant checks for every intermediate type between the range
2437      --  of a view converted argument to its ancestor (from parent to child).
2438
2439      function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean;
2440      --  Try to constant-fold a predicate check, which often enough is a
2441      --  simple arithmetic expression that can be computed statically if
2442      --  its argument is static. This cleans up the output of CCG, even
2443      --  though useless predicate checks will be generally removed by
2444      --  back-end optimizations.
2445
2446      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2447      --  Within an instance, a type derived from an untagged formal derived
2448      --  type inherits from the original parent, not from the actual. The
2449      --  current derivation mechanism has the derived type inherit from the
2450      --  actual, which is only correct outside of the instance. If the
2451      --  subprogram is inherited, we test for this particular case through a
2452      --  convoluted tree traversal before setting the proper subprogram to be
2453      --  called.
2454
2455      function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2456      --  Return true if E comes from an instance that is not yet frozen
2457
2458      function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean;
2459      --  Return True when E is a class-wide interface type or an access to
2460      --  a class-wide interface type.
2461
2462      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2463      --  Determine if Subp denotes a non-dispatching call to a Deep routine
2464
2465      function New_Value (From : Node_Id) return Node_Id;
2466      --  From is the original Expression. New_Value is equivalent to a call
2467      --  to Duplicate_Subexpr with an explicit dereference when From is an
2468      --  access parameter.
2469
2470      --------------------------
2471      -- Add_Actual_Parameter --
2472      --------------------------
2473
2474      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2475         Actual_Expr : constant Node_Id :=
2476                         Explicit_Actual_Parameter (Insert_Param);
2477
2478      begin
2479         --  Case of insertion is first named actual
2480
2481         if No (Prev) or else
2482            Nkind (Parent (Prev)) /= N_Parameter_Association
2483         then
2484            Set_Next_Named_Actual
2485              (Insert_Param, First_Named_Actual (Call_Node));
2486            Set_First_Named_Actual (Call_Node, Actual_Expr);
2487
2488            if No (Prev) then
2489               if No (Parameter_Associations (Call_Node)) then
2490                  Set_Parameter_Associations (Call_Node, New_List);
2491               end if;
2492
2493               Append (Insert_Param, Parameter_Associations (Call_Node));
2494
2495            else
2496               Insert_After (Prev, Insert_Param);
2497            end if;
2498
2499         --  Case of insertion is not first named actual
2500
2501         else
2502            Set_Next_Named_Actual
2503              (Insert_Param, Next_Named_Actual (Parent (Prev)));
2504            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2505            Append (Insert_Param, Parameter_Associations (Call_Node));
2506         end if;
2507
2508         Prev := Actual_Expr;
2509      end Add_Actual_Parameter;
2510
2511      ----------------------
2512      -- Add_Extra_Actual --
2513      ----------------------
2514
2515      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2516         Loc : constant Source_Ptr := Sloc (Expr);
2517
2518      begin
2519         if Extra_Actuals = No_List then
2520            Extra_Actuals := New_List;
2521            Set_Parent (Extra_Actuals, Call_Node);
2522         end if;
2523
2524         Append_To (Extra_Actuals,
2525           Make_Parameter_Association (Loc,
2526             Selector_Name             => New_Occurrence_Of (EF, Loc),
2527             Explicit_Actual_Parameter => Expr));
2528
2529         Analyze_And_Resolve (Expr, Etype (EF));
2530
2531         if Nkind (Call_Node) = N_Function_Call then
2532            Set_Is_Accessibility_Actual (Parent (Expr));
2533         end if;
2534      end Add_Extra_Actual;
2535
2536      ------------------------------------
2537      -- Add_View_Conversion_Invariants --
2538      ------------------------------------
2539
2540      procedure Add_View_Conversion_Invariants
2541        (Formal : Entity_Id;
2542         Actual : Node_Id)
2543      is
2544         Arg        : Entity_Id;
2545         Curr_Typ   : Entity_Id;
2546         Inv_Checks : List_Id;
2547         Par_Typ    : Entity_Id;
2548
2549      begin
2550         Inv_Checks := No_List;
2551
2552         --  Extract the argument from a potentially nested set of view
2553         --  conversions.
2554
2555         Arg := Actual;
2556         while Nkind (Arg) = N_Type_Conversion loop
2557            Arg := Expression (Arg);
2558         end loop;
2559
2560         --  Move up the derivation chain starting with the type of the formal
2561         --  parameter down to the type of the actual object.
2562
2563         Curr_Typ := Empty;
2564         Par_Typ  := Etype (Arg);
2565         while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2566            Curr_Typ := Par_Typ;
2567
2568            if Has_Invariants (Curr_Typ)
2569              and then Present (Invariant_Procedure (Curr_Typ))
2570            then
2571               --  Verify the invariate of the current type. Generate:
2572
2573               --    <Curr_Typ>Invariant (Curr_Typ (Arg));
2574
2575               Prepend_New_To (Inv_Checks,
2576                 Make_Procedure_Call_Statement (Loc,
2577                   Name                   =>
2578                     New_Occurrence_Of
2579                       (Invariant_Procedure (Curr_Typ), Loc),
2580                   Parameter_Associations => New_List (
2581                     Make_Type_Conversion (Loc,
2582                       Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2583                       Expression   => New_Copy_Tree (Arg)))));
2584            end if;
2585
2586            Par_Typ := Base_Type (Etype (Curr_Typ));
2587         end loop;
2588
2589         if not Is_Empty_List (Inv_Checks) then
2590            Insert_Actions_After (N, Inv_Checks);
2591         end if;
2592      end Add_View_Conversion_Invariants;
2593
2594      -----------------------------
2595      -- Can_Fold_Predicate_Call --
2596      -----------------------------
2597
2598      function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean is
2599         Actual : Node_Id;
2600
2601         function May_Fold (N : Node_Id) return Traverse_Result;
2602         --  The predicate expression is foldable if it only contains operators
2603         --  and literals. During this check, we also replace occurrences of
2604         --  the formal of the constructed predicate function with the static
2605         --  value of the actual. This is done on a copy of the analyzed
2606         --  expression for the predicate.
2607
2608         --------------
2609         -- May_Fold --
2610         --------------
2611
2612         function May_Fold (N : Node_Id) return Traverse_Result is
2613         begin
2614            case Nkind (N) is
2615               when N_Binary_Op
2616                  | N_Unary_Op
2617               =>
2618                  return OK;
2619
2620               when N_Expanded_Name
2621                  | N_Identifier
2622               =>
2623                  if Ekind (Entity (N)) = E_In_Parameter
2624                    and then Entity (N) = First_Entity (P)
2625                  then
2626                     Rewrite (N, New_Copy (Actual));
2627                     Set_Is_Static_Expression (N);
2628                     return OK;
2629
2630                  elsif Ekind (Entity (N)) = E_Enumeration_Literal then
2631                     return OK;
2632
2633                  else
2634                     return Abandon;
2635                  end if;
2636
2637               when N_Case_Expression
2638                  | N_If_Expression
2639               =>
2640                  return OK;
2641
2642               when N_Integer_Literal =>
2643                  return OK;
2644
2645               when others =>
2646                  return Abandon;
2647            end case;
2648         end May_Fold;
2649
2650         function Try_Fold is new Traverse_Func (May_Fold);
2651
2652         --  Other lLocal variables
2653
2654         Subt   : constant Entity_Id := Etype (First_Entity (P));
2655         Aspect : Node_Id;
2656         Pred   : Node_Id;
2657
2658      --  Start of processing for Can_Fold_Predicate_Call
2659
2660      begin
2661         --  Folding is only interesting if the actual is static and its type
2662         --  has a Dynamic_Predicate aspect. For CodePeer we preserve the
2663         --  function call.
2664
2665         Actual := First (Parameter_Associations (Call_Node));
2666         Aspect := Find_Aspect (Subt, Aspect_Dynamic_Predicate);
2667
2668         --  If actual is a declared constant, retrieve its value
2669
2670         if Is_Entity_Name (Actual)
2671           and then Ekind (Entity (Actual)) = E_Constant
2672         then
2673            Actual := Constant_Value (Entity (Actual));
2674         end if;
2675
2676         if No (Actual)
2677           or else Nkind (Actual) /= N_Integer_Literal
2678           or else not Has_Dynamic_Predicate_Aspect (Subt)
2679           or else No (Aspect)
2680           or else CodePeer_Mode
2681         then
2682            return False;
2683         end if;
2684
2685         --  Retrieve the analyzed expression for the predicate
2686
2687         Pred := New_Copy_Tree (Expression (Aspect));
2688
2689         if Try_Fold (Pred) = OK then
2690            Rewrite (Call_Node, Pred);
2691            Analyze_And_Resolve (Call_Node, Standard_Boolean);
2692            return True;
2693
2694         --  Otherwise continue the expansion of the function call
2695
2696         else
2697            return False;
2698         end if;
2699      end Can_Fold_Predicate_Call;
2700
2701      ---------------------------
2702      -- Inherited_From_Formal --
2703      ---------------------------
2704
2705      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2706         Par      : Entity_Id;
2707         Gen_Par  : Entity_Id;
2708         Gen_Prim : Elist_Id;
2709         Elmt     : Elmt_Id;
2710         Indic    : Node_Id;
2711
2712      begin
2713         --  If the operation is inherited, it is attached to the corresponding
2714         --  type derivation. If the parent in the derivation is a generic
2715         --  actual, it is a subtype of the actual, and we have to recover the
2716         --  original derived type declaration to find the proper parent.
2717
2718         if Nkind (Parent (S)) /= N_Full_Type_Declaration
2719           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2720           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2721                                                   N_Derived_Type_Definition
2722           or else not In_Instance
2723         then
2724            return Empty;
2725
2726         else
2727            Indic :=
2728              Subtype_Indication
2729                (Type_Definition (Original_Node (Parent (S))));
2730
2731            if Nkind (Indic) = N_Subtype_Indication then
2732               Par := Entity (Subtype_Mark (Indic));
2733            else
2734               Par := Entity (Indic);
2735            end if;
2736         end if;
2737
2738         if not Is_Generic_Actual_Type (Par)
2739           or else Is_Tagged_Type (Par)
2740           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2741           or else not In_Open_Scopes (Scope (Par))
2742         then
2743            return Empty;
2744         else
2745            Gen_Par := Generic_Parent_Type (Parent (Par));
2746         end if;
2747
2748         --  If the actual has no generic parent type, the formal is not
2749         --  a formal derived type, so nothing to inherit.
2750
2751         if No (Gen_Par) then
2752            return Empty;
2753         end if;
2754
2755         --  If the generic parent type is still the generic type, this is a
2756         --  private formal, not a derived formal, and there are no operations
2757         --  inherited from the formal.
2758
2759         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2760            return Empty;
2761         end if;
2762
2763         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2764
2765         Elmt := First_Elmt (Gen_Prim);
2766         while Present (Elmt) loop
2767            if Chars (Node (Elmt)) = Chars (S) then
2768               declare
2769                  F1 : Entity_Id;
2770                  F2 : Entity_Id;
2771
2772               begin
2773                  F1 := First_Formal (S);
2774                  F2 := First_Formal (Node (Elmt));
2775                  while Present (F1)
2776                    and then Present (F2)
2777                  loop
2778                     if Etype (F1) = Etype (F2)
2779                       or else Etype (F2) = Gen_Par
2780                     then
2781                        Next_Formal (F1);
2782                        Next_Formal (F2);
2783                     else
2784                        Next_Elmt (Elmt);
2785                        exit;   --  not the right subprogram
2786                     end if;
2787
2788                     return Node (Elmt);
2789                  end loop;
2790               end;
2791
2792            else
2793               Next_Elmt (Elmt);
2794            end if;
2795         end loop;
2796
2797         raise Program_Error;
2798      end Inherited_From_Formal;
2799
2800      --------------------------
2801      -- In_Unfrozen_Instance --
2802      --------------------------
2803
2804      function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2805         S : Entity_Id;
2806
2807      begin
2808         S := E;
2809         while Present (S) and then S /= Standard_Standard loop
2810            if Is_Generic_Instance (S)
2811              and then Present (Freeze_Node (S))
2812              and then not Analyzed (Freeze_Node (S))
2813            then
2814               return True;
2815            end if;
2816
2817            S := Scope (S);
2818         end loop;
2819
2820         return False;
2821      end In_Unfrozen_Instance;
2822
2823      ----------------------------------
2824      -- Is_Class_Wide_Interface_Type --
2825      ----------------------------------
2826
2827      function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean is
2828         DDT : Entity_Id;
2829         Typ : Entity_Id := E;
2830
2831      begin
2832         if Has_Non_Limited_View (Typ) then
2833            Typ := Non_Limited_View (Typ);
2834         end if;
2835
2836         if Ekind (Typ) = E_Anonymous_Access_Type then
2837            DDT := Directly_Designated_Type (Typ);
2838
2839            if Has_Non_Limited_View (DDT) then
2840               DDT := Non_Limited_View (DDT);
2841            end if;
2842
2843            return Is_Class_Wide_Type (DDT) and then Is_Interface (DDT);
2844         else
2845            return Is_Class_Wide_Type (Typ) and then Is_Interface (Typ);
2846         end if;
2847      end Is_Class_Wide_Interface_Type;
2848
2849      -------------------------
2850      -- Is_Direct_Deep_Call --
2851      -------------------------
2852
2853      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2854      begin
2855         if Is_TSS (Subp, TSS_Deep_Adjust)
2856           or else Is_TSS (Subp, TSS_Deep_Finalize)
2857           or else Is_TSS (Subp, TSS_Deep_Initialize)
2858         then
2859            declare
2860               Actual : Node_Id;
2861               Formal : Node_Id;
2862
2863            begin
2864               Actual := First (Parameter_Associations (N));
2865               Formal := First_Formal (Subp);
2866               while Present (Actual)
2867                 and then Present (Formal)
2868               loop
2869                  if Nkind (Actual) = N_Identifier
2870                    and then Is_Controlling_Actual (Actual)
2871                    and then Etype (Actual) = Etype (Formal)
2872                  then
2873                     return True;
2874                  end if;
2875
2876                  Next (Actual);
2877                  Next_Formal (Formal);
2878               end loop;
2879            end;
2880         end if;
2881
2882         return False;
2883      end Is_Direct_Deep_Call;
2884
2885      ---------------
2886      -- New_Value --
2887      ---------------
2888
2889      function New_Value (From : Node_Id) return Node_Id is
2890         Res : constant Node_Id := Duplicate_Subexpr (From);
2891      begin
2892         if Is_Access_Type (Etype (From)) then
2893            return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2894         else
2895            return Res;
2896         end if;
2897      end New_Value;
2898
2899      --  Local variables
2900
2901      Remote        : constant Boolean := Is_Remote_Call (Call_Node);
2902      Actual        : Node_Id;
2903      Formal        : Entity_Id;
2904      Orig_Subp     : Entity_Id := Empty;
2905      Param_Count   : Natural := 0;
2906      Parent_Formal : Entity_Id;
2907      Parent_Subp   : Entity_Id;
2908      Pref_Entity   : Entity_Id;
2909      Scop          : Entity_Id;
2910      Subp          : Entity_Id;
2911
2912      Prev_Orig : Node_Id;
2913      --  Original node for an actual, which may have been rewritten. If the
2914      --  actual is a function call that has been transformed from a selected
2915      --  component, the original node is unanalyzed. Otherwise, it carries
2916      --  semantic information used to generate additional actuals.
2917
2918      CW_Interface_Formals_Present : Boolean := False;
2919
2920   --  Start of processing for Expand_Call_Helper
2921
2922   begin
2923      Post_Call := New_List;
2924
2925      --  Expand the function or procedure call if the first actual has a
2926      --  declared dimension aspect, and the subprogram is declared in one
2927      --  of the dimension I/O packages.
2928
2929      if Ada_Version >= Ada_2012
2930        and then
2931           Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2932        and then Present (Parameter_Associations (Call_Node))
2933      then
2934         Expand_Put_Call_With_Symbol (Call_Node);
2935      end if;
2936
2937      --  Ignore if previous error
2938
2939      if Nkind (Call_Node) in N_Has_Etype
2940        and then Etype (Call_Node) = Any_Type
2941      then
2942         return;
2943      end if;
2944
2945      --  Call using access to subprogram with explicit dereference
2946
2947      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2948         Subp        := Etype (Name (Call_Node));
2949         Parent_Subp := Empty;
2950
2951      --  Case of call to simple entry, where the Name is a selected component
2952      --  whose prefix is the task, and whose selector name is the entry name
2953
2954      elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2955         Subp        := Entity (Selector_Name (Name (Call_Node)));
2956         Parent_Subp := Empty;
2957
2958      --  Case of call to member of entry family, where Name is an indexed
2959      --  component, with the prefix being a selected component giving the
2960      --  task and entry family name, and the index being the entry index.
2961
2962      elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2963         Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
2964         Parent_Subp := Empty;
2965
2966      --  Normal case
2967
2968      else
2969         Subp        := Entity (Name (Call_Node));
2970         Parent_Subp := Alias (Subp);
2971
2972         --  Replace call to Raise_Exception by call to Raise_Exception_Always
2973         --  if we can tell that the first parameter cannot possibly be null.
2974         --  This improves efficiency by avoiding a run-time test.
2975
2976         --  We do not do this if Raise_Exception_Always does not exist, which
2977         --  can happen in configurable run time profiles which provide only a
2978         --  Raise_Exception.
2979
2980         if Is_RTE (Subp, RE_Raise_Exception)
2981           and then RTE_Available (RE_Raise_Exception_Always)
2982         then
2983            declare
2984               FA : constant Node_Id :=
2985                      Original_Node (First_Actual (Call_Node));
2986
2987            begin
2988               --  The case we catch is where the first argument is obtained
2989               --  using the Identity attribute (which must always be
2990               --  non-null).
2991
2992               if Nkind (FA) = N_Attribute_Reference
2993                 and then Attribute_Name (FA) = Name_Identity
2994               then
2995                  Subp := RTE (RE_Raise_Exception_Always);
2996                  Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2997               end if;
2998            end;
2999         end if;
3000
3001         if Ekind (Subp) = E_Entry then
3002            Parent_Subp := Empty;
3003         end if;
3004      end if;
3005
3006      --  Ada 2005 (AI-345): We have a procedure call as a triggering
3007      --  alternative in an asynchronous select or as an entry call in
3008      --  a conditional or timed select. Check whether the procedure call
3009      --  is a renaming of an entry and rewrite it as an entry call.
3010
3011      if Ada_Version >= Ada_2005
3012        and then Nkind (Call_Node) = N_Procedure_Call_Statement
3013        and then
3014           ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
3015              and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
3016          or else
3017            (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
3018              and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
3019      then
3020         declare
3021            Ren_Decl : Node_Id;
3022            Ren_Root : Entity_Id := Subp;
3023
3024         begin
3025            --  This may be a chain of renamings, find the root
3026
3027            if Present (Alias (Ren_Root)) then
3028               Ren_Root := Alias (Ren_Root);
3029            end if;
3030
3031            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
3032               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
3033
3034               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
3035                  Rewrite (Call_Node,
3036                    Make_Entry_Call_Statement (Loc,
3037                      Name =>
3038                        New_Copy_Tree (Name (Ren_Decl)),
3039                      Parameter_Associations =>
3040                        New_Copy_List_Tree
3041                          (Parameter_Associations (Call_Node))));
3042
3043                  return;
3044               end if;
3045            end if;
3046         end;
3047      end if;
3048
3049      --  if this is a call to a predicate function, try to constant
3050      --  fold it.
3051
3052      if Nkind (Call_Node) = N_Function_Call
3053        and then Is_Entity_Name (Name (Call_Node))
3054        and then Is_Predicate_Function (Subp)
3055        and then Can_Fold_Predicate_Call (Subp)
3056      then
3057         return;
3058      end if;
3059
3060      if Modify_Tree_For_C
3061        and then Nkind (Call_Node) = N_Function_Call
3062        and then Is_Entity_Name (Name (Call_Node))
3063      then
3064         declare
3065            Func_Id : constant Entity_Id :=
3066                        Ultimate_Alias (Entity (Name (Call_Node)));
3067         begin
3068            --  When generating C code, transform a function call that returns
3069            --  a constrained array type into procedure form.
3070
3071            if Rewritten_For_C (Func_Id) then
3072
3073               --  For internally generated calls ensure that they reference
3074               --  the entity of the spec of the called function (needed since
3075               --  the expander may generate calls using the entity of their
3076               --  body). See for example Expand_Boolean_Operator().
3077
3078               if not (Comes_From_Source (Call_Node))
3079                 and then Nkind (Unit_Declaration_Node (Func_Id)) =
3080                            N_Subprogram_Body
3081               then
3082                  Set_Entity (Name (Call_Node),
3083                    Corresponding_Function
3084                      (Corresponding_Procedure (Func_Id)));
3085               end if;
3086
3087               Rewrite_Function_Call_For_C (Call_Node);
3088               return;
3089
3090            --  Also introduce a temporary for functions that return a record
3091            --  called within another procedure or function call, since records
3092            --  are passed by pointer in the generated C code, and we cannot
3093            --  take a pointer from a subprogram call.
3094
3095            elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
3096              and then Is_Record_Type (Etype (Func_Id))
3097            then
3098               declare
3099                  Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
3100                  Decl    : Node_Id;
3101
3102               begin
3103                  --  Generate:
3104                  --    Temp : ... := Func_Call (...);
3105
3106                  Decl :=
3107                    Make_Object_Declaration (Loc,
3108                      Defining_Identifier => Temp_Id,
3109                      Object_Definition   =>
3110                        New_Occurrence_Of (Etype (Func_Id), Loc),
3111                      Expression          =>
3112                        Make_Function_Call (Loc,
3113                          Name                   =>
3114                            New_Occurrence_Of (Func_Id, Loc),
3115                          Parameter_Associations =>
3116                            Parameter_Associations (Call_Node)));
3117
3118                  Insert_Action (Parent (Call_Node), Decl);
3119                  Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
3120                  return;
3121               end;
3122            end if;
3123         end;
3124      end if;
3125
3126      --  First step, compute extra actuals, corresponding to any Extra_Formals
3127      --  present. Note that we do not access Extra_Formals directly, instead
3128      --  we simply note the presence of the extra formals as we process the
3129      --  regular formals collecting corresponding actuals in Extra_Actuals.
3130
3131      --  We also generate any required range checks for actuals for in formals
3132      --  as we go through the loop, since this is a convenient place to do it.
3133      --  (Though it seems that this would be better done in Expand_Actuals???)
3134
3135      --  Special case: Thunks must not compute the extra actuals; they must
3136      --  just propagate to the target primitive their extra actuals.
3137
3138      if Is_Thunk (Current_Scope)
3139        and then Thunk_Entity (Current_Scope) = Subp
3140        and then Present (Extra_Formals (Subp))
3141      then
3142         pragma Assert (Present (Extra_Formals (Current_Scope)));
3143
3144         declare
3145            Target_Formal : Entity_Id;
3146            Thunk_Formal  : Entity_Id;
3147
3148         begin
3149            Target_Formal := Extra_Formals (Subp);
3150            Thunk_Formal  := Extra_Formals (Current_Scope);
3151            while Present (Target_Formal) loop
3152               Add_Extra_Actual
3153                 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
3154                  EF   => Thunk_Formal);
3155
3156               Target_Formal := Extra_Formal (Target_Formal);
3157               Thunk_Formal  := Extra_Formal (Thunk_Formal);
3158            end loop;
3159
3160            while Is_Non_Empty_List (Extra_Actuals) loop
3161               Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3162            end loop;
3163
3164            Expand_Actuals (Call_Node, Subp, Post_Call);
3165            pragma Assert (Is_Empty_List (Post_Call));
3166            return;
3167         end;
3168      end if;
3169
3170      Formal := First_Formal (Subp);
3171      Actual := First_Actual (Call_Node);
3172      Param_Count := 1;
3173      while Present (Formal) loop
3174         --  Prepare to examine current entry
3175
3176         Prev := Actual;
3177         Prev_Orig := Original_Node (Prev);
3178
3179         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
3180         --  to expand it in a further round.
3181
3182         CW_Interface_Formals_Present :=
3183           CW_Interface_Formals_Present
3184             or else Is_Class_Wide_Interface_Type (Etype (Formal));
3185
3186         --  Create possible extra actual for constrained case. Usually, the
3187         --  extra actual is of the form actual'constrained, but since this
3188         --  attribute is only available for unconstrained records, TRUE is
3189         --  expanded if the type of the formal happens to be constrained (for
3190         --  instance when this procedure is inherited from an unconstrained
3191         --  record to a constrained one) or if the actual has no discriminant
3192         --  (its type is constrained). An exception to this is the case of a
3193         --  private type without discriminants. In this case we pass FALSE
3194         --  because the object has underlying discriminants with defaults.
3195
3196         if Present (Extra_Constrained (Formal)) then
3197            if Ekind (Etype (Prev)) in Private_Kind
3198              and then not Has_Discriminants (Base_Type (Etype (Prev)))
3199            then
3200               Add_Extra_Actual
3201                 (Expr => New_Occurrence_Of (Standard_False, Loc),
3202                  EF   => Extra_Constrained (Formal));
3203
3204            elsif Is_Constrained (Etype (Formal))
3205              or else not Has_Discriminants (Etype (Prev))
3206            then
3207               Add_Extra_Actual
3208                 (Expr => New_Occurrence_Of (Standard_True, Loc),
3209                  EF   => Extra_Constrained (Formal));
3210
3211            --  Do not produce extra actuals for Unchecked_Union parameters.
3212            --  Jump directly to the end of the loop.
3213
3214            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
3215               goto Skip_Extra_Actual_Generation;
3216
3217            else
3218               --  If the actual is a type conversion, then the constrained
3219               --  test applies to the actual, not the target type.
3220
3221               declare
3222                  Act_Prev : Node_Id;
3223
3224               begin
3225                  --  Test for unchecked conversions as well, which can occur
3226                  --  as out parameter actuals on calls to stream procedures.
3227
3228                  Act_Prev := Prev;
3229                  while Nkind_In (Act_Prev, N_Type_Conversion,
3230                                            N_Unchecked_Type_Conversion)
3231                  loop
3232                     Act_Prev := Expression (Act_Prev);
3233                  end loop;
3234
3235                  --  If the expression is a conversion of a dereference, this
3236                  --  is internally generated code that manipulates addresses,
3237                  --  e.g. when building interface tables. No check should
3238                  --  occur in this case, and the discriminated object is not
3239                  --  directly a hand.
3240
3241                  if not Comes_From_Source (Actual)
3242                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
3243                    and then Nkind (Act_Prev) = N_Explicit_Dereference
3244                  then
3245                     Add_Extra_Actual
3246                       (Expr => New_Occurrence_Of (Standard_False, Loc),
3247                        EF   => Extra_Constrained (Formal));
3248
3249                  else
3250                     Add_Extra_Actual
3251                       (Expr =>
3252                          Make_Attribute_Reference (Sloc (Prev),
3253                            Prefix         =>
3254                              Duplicate_Subexpr_No_Checks
3255                                (Act_Prev, Name_Req => True),
3256                            Attribute_Name => Name_Constrained),
3257                        EF   => Extra_Constrained (Formal));
3258                  end if;
3259               end;
3260            end if;
3261         end if;
3262
3263         --  Create possible extra actual for accessibility level
3264
3265         if Present (Get_Accessibility (Formal)) then
3266
3267            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
3268            --  attribute, then the original actual may be an aliased object
3269            --  occurring as the prefix in a call using "Object.Operation"
3270            --  notation. In that case we must pass the level of the object,
3271            --  so Prev_Orig is reset to Prev and the attribute will be
3272            --  processed by the code for Access attributes further below.
3273
3274            if Prev_Orig /= Prev
3275              and then Nkind (Prev) = N_Attribute_Reference
3276              and then Get_Attribute_Id (Attribute_Name (Prev)) =
3277                         Attribute_Access
3278              and then Is_Aliased_View (Prev_Orig)
3279            then
3280               Prev_Orig := Prev;
3281
3282            --  A class-wide precondition generates a test in which formals of
3283            --  the subprogram are replaced by actuals that came from source.
3284            --  In that case as well, the accessiblity comes from the actual.
3285            --  This is the one case in which there are references to formals
3286            --  outside of their subprogram.
3287
3288            elsif Prev_Orig /= Prev
3289              and then Is_Entity_Name (Prev_Orig)
3290              and then Present (Entity (Prev_Orig))
3291              and then Is_Formal (Entity (Prev_Orig))
3292              and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3293            then
3294               Prev_Orig := Prev;
3295
3296            --  If the actual is a formal of an enclosing subprogram it is
3297            --  the right entity, even if it is a rewriting. This happens
3298            --  when the call is within an inherited condition or predicate.
3299
3300            elsif Is_Entity_Name (Actual)
3301              and then Is_Formal (Entity (Actual))
3302              and then In_Open_Scopes (Scope (Entity (Actual)))
3303            then
3304               Prev_Orig := Prev;
3305
3306            elsif Nkind (Prev_Orig) = N_Type_Conversion then
3307               Prev_Orig := Expression (Prev_Orig);
3308            end if;
3309
3310            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3311            --  accessibility levels.
3312
3313            if Is_Thunk (Current_Scope) then
3314               declare
3315                  Parm_Ent : Entity_Id;
3316
3317               begin
3318                  if Is_Controlling_Actual (Actual) then
3319
3320                     --  Find the corresponding actual of the thunk
3321
3322                     Parm_Ent := First_Entity (Current_Scope);
3323                     for J in 2 .. Param_Count loop
3324                        Next_Entity (Parm_Ent);
3325                     end loop;
3326
3327                  --  Handle unchecked conversion of access types generated
3328                  --  in thunks (cf. Expand_Interface_Thunk).
3329
3330                  elsif Is_Access_Type (Etype (Actual))
3331                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
3332                  then
3333                     Parm_Ent := Entity (Expression (Actual));
3334
3335                  else pragma Assert (Is_Entity_Name (Actual));
3336                     Parm_Ent := Entity (Actual);
3337                  end if;
3338
3339                  Add_Extra_Actual
3340                    (Expr =>
3341                       New_Occurrence_Of (Get_Accessibility (Parm_Ent), Loc),
3342                     EF   => Get_Accessibility (Formal));
3343               end;
3344
3345            elsif Is_Entity_Name (Prev_Orig) then
3346
3347               --  When passing an access parameter, or a renaming of an access
3348               --  parameter, as the actual to another access parameter we need
3349               --  to pass along the actual's own access level parameter. This
3350               --  is done if we are within the scope of the formal access
3351               --  parameter (if this is an inlined body the extra formal is
3352               --  irrelevant).
3353
3354               if (Is_Formal (Entity (Prev_Orig))
3355                    or else
3356                      (Present (Renamed_Object (Entity (Prev_Orig)))
3357                        and then
3358                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3359                        and then
3360                          Is_Formal
3361                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
3362                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3363                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3364               then
3365                  declare
3366                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3367
3368                  begin
3369                     pragma Assert (Present (Parm_Ent));
3370
3371                     if Present (Get_Accessibility (Parm_Ent)) then
3372                        Add_Extra_Actual
3373                          (Expr =>
3374                             New_Occurrence_Of
3375                               (Get_Accessibility (Parm_Ent), Loc),
3376                           EF   => Get_Accessibility (Formal));
3377
3378                     --  If the actual access parameter does not have an
3379                     --  associated extra formal providing its scope level,
3380                     --  then treat the actual as having library-level
3381                     --  accessibility.
3382
3383                     else
3384                        Add_Extra_Actual
3385                          (Expr =>
3386                             Make_Integer_Literal (Loc,
3387                               Intval => Scope_Depth (Standard_Standard)),
3388                           EF   => Get_Accessibility (Formal));
3389                     end if;
3390                  end;
3391
3392               --  The actual is a normal access value, so just pass the level
3393               --  of the actual's access type.
3394
3395               else
3396                  Add_Extra_Actual
3397                    (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3398                     EF   => Get_Accessibility (Formal));
3399               end if;
3400
3401            --  If the actual is an access discriminant, then pass the level
3402            --  of the enclosing object (RM05-3.10.2(12.4/2)).
3403
3404            elsif Nkind (Prev_Orig) = N_Selected_Component
3405              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3406                                                       E_Discriminant
3407              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3408                                                       E_Anonymous_Access_Type
3409            then
3410               Add_Extra_Actual
3411                 (Expr =>
3412                    Make_Integer_Literal (Loc,
3413                      Intval => Object_Access_Level (Prefix (Prev_Orig))),
3414                  EF   => Get_Accessibility (Formal));
3415
3416            --  All other cases
3417
3418            else
3419               case Nkind (Prev_Orig) is
3420                  when N_Attribute_Reference =>
3421                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3422                        --  Ignore 'Result, 'Loop_Entry, and 'Old as they can
3423                        --  be used to identify access objects and do not have
3424                        --  an effect on accessibility level.
3425
3426                        when Attribute_Loop_Entry
3427                           | Attribute_Old
3428                           | Attribute_Result
3429                        =>
3430                           null;
3431
3432                        --  For X'Access, pass on the level of the prefix X
3433
3434                        when Attribute_Access =>
3435
3436                           --  Accessibility level of S'Access is that of A
3437
3438                           Prev_Orig := Prefix (Prev_Orig);
3439
3440                           --  If the expression is a view conversion, the
3441                           --  accessibility level is that of the expression.
3442
3443                           if Nkind (Original_Node (Prev_Orig)) =
3444                                N_Type_Conversion
3445                             and then
3446                               Nkind (Expression (Original_Node (Prev_Orig))) =
3447                                 N_Explicit_Dereference
3448                           then
3449                              Prev_Orig :=
3450                                Expression (Original_Node (Prev_Orig));
3451                           end if;
3452
3453                           --  If this is an Access attribute applied to the
3454                           --  the current instance object passed to a type
3455                           --  initialization procedure, then use the level
3456                           --  of the type itself. This is not really correct,
3457                           --  as there should be an extra level parameter
3458                           --  passed in with _init formals (only in the case
3459                           --  where the type is immutably limited), but we
3460                           --  don't have an easy way currently to create such
3461                           --  an extra formal (init procs aren't ever frozen).
3462                           --  For now we just use the level of the type,
3463                           --  which may be too shallow, but that works better
3464                           --  than passing Object_Access_Level of the type,
3465                           --  which can be one level too deep in some cases.
3466                           --  ???
3467
3468                           --  A further case that requires special handling
3469                           --  is the common idiom E.all'access. If E is a
3470                           --  formal of the enclosing subprogram, the
3471                           --  accessibility of the expression is that of E.
3472
3473                           if Is_Entity_Name (Prev_Orig) then
3474                              Pref_Entity := Entity (Prev_Orig);
3475
3476                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3477                             and then Is_Entity_Name (Prefix (Prev_Orig))
3478                           then
3479                              Pref_Entity := Entity (Prefix ((Prev_Orig)));
3480
3481                           else
3482                              Pref_Entity := Empty;
3483                           end if;
3484
3485                           if Is_Entity_Name (Prev_Orig)
3486                             and then Is_Type (Entity (Prev_Orig))
3487                           then
3488                              Add_Extra_Actual
3489                                (Expr =>
3490                                   Make_Integer_Literal (Loc,
3491                                     Intval =>
3492                                       Type_Access_Level (Pref_Entity)),
3493                                 EF   => Get_Accessibility (Formal));
3494
3495                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3496                             and then Present (Pref_Entity)
3497                             and then Is_Formal (Pref_Entity)
3498                             and then Present
3499                                        (Get_Accessibility (Pref_Entity))
3500                           then
3501                              Add_Extra_Actual
3502                                (Expr =>
3503                                   New_Occurrence_Of
3504                                     (Get_Accessibility (Pref_Entity), Loc),
3505                                 EF   => Get_Accessibility (Formal));
3506
3507                           else
3508                              Add_Extra_Actual
3509                                (Expr =>
3510                                   Make_Integer_Literal (Loc,
3511                                     Intval =>
3512                                       Object_Access_Level (Prev_Orig)),
3513                                 EF   => Get_Accessibility (Formal));
3514                           end if;
3515
3516                        --  Treat the unchecked attributes as library-level
3517
3518                        when Attribute_Unchecked_Access
3519                           | Attribute_Unrestricted_Access
3520                        =>
3521                           Add_Extra_Actual
3522                             (Expr =>
3523                                Make_Integer_Literal (Loc,
3524                                  Intval => Scope_Depth (Standard_Standard)),
3525                              EF   => Get_Accessibility (Formal));
3526
3527                        --  No other cases of attributes returning access
3528                        --  values that can be passed to access parameters.
3529
3530                        when others =>
3531                           raise Program_Error;
3532
3533                     end case;
3534
3535                  --  For allocators we pass the level of the execution of the
3536                  --  called subprogram, which is one greater than the current
3537                  --  scope level. However, according to RM 3.10.2(14/3) this
3538                  --  is wrong since for an anonymous allocator defining the
3539                  --  value of an access parameter, the accessibility level is
3540                  --  that of the innermost master of the call???
3541
3542                  when N_Allocator =>
3543                     Add_Extra_Actual
3544                       (Expr =>
3545                          Make_Integer_Literal (Loc,
3546                            Intval => Scope_Depth (Current_Scope) + 1),
3547                        EF   => Get_Accessibility (Formal));
3548
3549                  --  For most other cases we simply pass the level of the
3550                  --  actual's access type. The type is retrieved from
3551                  --  Prev rather than Prev_Orig, because in some cases
3552                  --  Prev_Orig denotes an original expression that has
3553                  --  not been analyzed.
3554
3555                  when others =>
3556                     Add_Extra_Actual
3557                       (Expr => Dynamic_Accessibility_Level (Prev),
3558                        EF   => Get_Accessibility (Formal));
3559               end case;
3560            end if;
3561         end if;
3562
3563         --  Perform the check of 4.6(49) that prevents a null value from being
3564         --  passed as an actual to an access parameter. Note that the check
3565         --  is elided in the common cases of passing an access attribute or
3566         --  access parameter as an actual. Also, we currently don't enforce
3567         --  this check for expander-generated actuals and when -gnatdj is set.
3568
3569         if Ada_Version >= Ada_2005 then
3570
3571            --  Ada 2005 (AI-231): Check null-excluding access types. Note that
3572            --  the intent of 6.4.1(13) is that null-exclusion checks should
3573            --  not be done for 'out' parameters, even though it refers only
3574            --  to constraint checks, and a null_exclusion is not a constraint.
3575            --  Note that AI05-0196-1 corrects this mistake in the RM.
3576
3577            if Is_Access_Type (Etype (Formal))
3578              and then Can_Never_Be_Null (Etype (Formal))
3579              and then Ekind (Formal) /= E_Out_Parameter
3580              and then Nkind (Prev) /= N_Raise_Constraint_Error
3581              and then (Known_Null (Prev)
3582                         or else not Can_Never_Be_Null (Etype (Prev)))
3583            then
3584               Install_Null_Excluding_Check (Prev);
3585            end if;
3586
3587         --  Ada_Version < Ada_2005
3588
3589         else
3590            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3591              or else Access_Checks_Suppressed (Subp)
3592            then
3593               null;
3594
3595            elsif Debug_Flag_J then
3596               null;
3597
3598            elsif not Comes_From_Source (Prev) then
3599               null;
3600
3601            elsif Is_Entity_Name (Prev)
3602              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3603            then
3604               null;
3605
3606            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3607               null;
3608
3609            else
3610               Install_Null_Excluding_Check (Prev);
3611            end if;
3612         end if;
3613
3614         --  Perform appropriate validity checks on parameters that
3615         --  are entities.
3616
3617         if Validity_Checks_On then
3618            if  (Ekind (Formal) = E_In_Parameter
3619                  and then Validity_Check_In_Params)
3620              or else
3621                (Ekind (Formal) = E_In_Out_Parameter
3622                  and then Validity_Check_In_Out_Params)
3623            then
3624               --  If the actual is an indexed component of a packed type (or
3625               --  is an indexed or selected component whose prefix recursively
3626               --  meets this condition), it has not been expanded yet. It will
3627               --  be copied in the validity code that follows, and has to be
3628               --  expanded appropriately, so reanalyze it.
3629
3630               --  What we do is just to unset analyzed bits on prefixes till
3631               --  we reach something that does not have a prefix.
3632
3633               declare
3634                  Nod : Node_Id;
3635
3636               begin
3637                  Nod := Actual;
3638                  while Nkind_In (Nod, N_Indexed_Component,
3639                                       N_Selected_Component)
3640                  loop
3641                     Set_Analyzed (Nod, False);
3642                     Nod := Prefix (Nod);
3643                  end loop;
3644               end;
3645
3646               Ensure_Valid (Actual);
3647            end if;
3648         end if;
3649
3650         --  For IN OUT and OUT parameters, ensure that subscripts are valid
3651         --  since this is a left side reference. We only do this for calls
3652         --  from the source program since we assume that compiler generated
3653         --  calls explicitly generate any required checks. We also need it
3654         --  only if we are doing standard validity checks, since clearly it is
3655         --  not needed if validity checks are off, and in subscript validity
3656         --  checking mode, all indexed components are checked with a call
3657         --  directly from Expand_N_Indexed_Component.
3658
3659         if Comes_From_Source (Call_Node)
3660           and then Ekind (Formal) /= E_In_Parameter
3661           and then Validity_Checks_On
3662           and then Validity_Check_Default
3663           and then not Validity_Check_Subscripts
3664         then
3665            Check_Valid_Lvalue_Subscripts (Actual);
3666         end if;
3667
3668         --  Mark any scalar OUT parameter that is a simple variable as no
3669         --  longer known to be valid (unless the type is always valid). This
3670         --  reflects the fact that if an OUT parameter is never set in a
3671         --  procedure, then it can become invalid on the procedure return.
3672
3673         if Ekind (Formal) = E_Out_Parameter
3674           and then Is_Entity_Name (Actual)
3675           and then Ekind (Entity (Actual)) = E_Variable
3676           and then not Is_Known_Valid (Etype (Actual))
3677         then
3678            Set_Is_Known_Valid (Entity (Actual), False);
3679         end if;
3680
3681         --  For an OUT or IN OUT parameter, if the actual is an entity, then
3682         --  clear current values, since they can be clobbered. We are probably
3683         --  doing this in more places than we need to, but better safe than
3684         --  sorry when it comes to retaining bad current values.
3685
3686         if Ekind (Formal) /= E_In_Parameter
3687           and then Is_Entity_Name (Actual)
3688           and then Present (Entity (Actual))
3689         then
3690            declare
3691               Ent : constant Entity_Id := Entity (Actual);
3692               Sav : Node_Id;
3693
3694            begin
3695               --  For an OUT or IN OUT parameter that is an assignable entity,
3696               --  we do not want to clobber the Last_Assignment field, since
3697               --  if it is set, it was precisely because it is indeed an OUT
3698               --  or IN OUT parameter. We do reset the Is_Known_Valid flag
3699               --  since the subprogram could have returned in invalid value.
3700
3701               if Is_Assignable (Ent) then
3702                  Sav := Last_Assignment (Ent);
3703                  Kill_Current_Values (Ent);
3704                  Set_Last_Assignment (Ent, Sav);
3705                  Set_Is_Known_Valid (Ent, False);
3706                  Set_Is_True_Constant (Ent, False);
3707
3708               --  For all other cases, just kill the current values
3709
3710               else
3711                  Kill_Current_Values (Ent);
3712               end if;
3713            end;
3714         end if;
3715
3716         --  If the formal is class wide and the actual is an aggregate, force
3717         --  evaluation so that the back end who does not know about class-wide
3718         --  type, does not generate a temporary of the wrong size.
3719
3720         if not Is_Class_Wide_Type (Etype (Formal)) then
3721            null;
3722
3723         elsif Nkind (Actual) = N_Aggregate
3724           or else (Nkind (Actual) = N_Qualified_Expression
3725                     and then Nkind (Expression (Actual)) = N_Aggregate)
3726         then
3727            Force_Evaluation (Actual);
3728         end if;
3729
3730         --  In a remote call, if the formal is of a class-wide type, check
3731         --  that the actual meets the requirements described in E.4(18).
3732
3733         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3734            Insert_Action (Actual,
3735              Make_Transportable_Check (Loc,
3736                Duplicate_Subexpr_Move_Checks (Actual)));
3737         end if;
3738
3739         --  Perform invariant checks for all intermediate types in a view
3740         --  conversion after successful return from a call that passes the
3741         --  view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3742         --  13/3, 14/3)). Consider only source conversion in order to avoid
3743         --  generating spurious checks on complex expansion such as object
3744         --  initialization through an extension aggregate.
3745
3746         if Comes_From_Source (N)
3747           and then Ekind (Formal) /= E_In_Parameter
3748           and then Nkind (Actual) = N_Type_Conversion
3749         then
3750            Add_View_Conversion_Invariants (Formal, Actual);
3751         end if;
3752
3753         --  Generating C the initialization of an allocator is performed by
3754         --  means of individual statements, and hence it must be done before
3755         --  the call.
3756
3757         if Modify_Tree_For_C
3758           and then Nkind (Actual) = N_Allocator
3759           and then Nkind (Expression (Actual)) = N_Qualified_Expression
3760         then
3761            Remove_Side_Effects (Actual);
3762         end if;
3763
3764         --  This label is required when skipping extra actual generation for
3765         --  Unchecked_Union parameters.
3766
3767         <<Skip_Extra_Actual_Generation>>
3768
3769         Param_Count := Param_Count + 1;
3770         Next_Actual (Actual);
3771         Next_Formal (Formal);
3772      end loop;
3773
3774      --  If we are calling an Ada 2012 function which needs to have the
3775      --  "accessibility level determined by the point of call" (AI05-0234)
3776      --  passed in to it, then pass it in.
3777
3778      if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3779        and then
3780          Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3781      then
3782         declare
3783            Ancestor : Node_Id := Parent (Call_Node);
3784            Level    : Node_Id := Empty;
3785            Defer    : Boolean := False;
3786
3787         begin
3788            --  Unimplemented: if Subp returns an anonymous access type, then
3789
3790            --    a) if the call is the operand of an explict conversion, then
3791            --       the target type of the conversion (a named access type)
3792            --       determines the accessibility level pass in;
3793
3794            --    b) if the call defines an access discriminant of an object
3795            --       (e.g., the discriminant of an object being created by an
3796            --       allocator, or the discriminant of a function result),
3797            --       then the accessibility level to pass in is that of the
3798            --       discriminated object being initialized).
3799
3800            --  ???
3801
3802            while Nkind (Ancestor) = N_Qualified_Expression
3803            loop
3804               Ancestor := Parent (Ancestor);
3805            end loop;
3806
3807            case Nkind (Ancestor) is
3808               when N_Allocator =>
3809
3810                  --  At this point, we'd like to assign
3811
3812                  --    Level := Dynamic_Accessibility_Level (Ancestor);
3813
3814                  --  but Etype of Ancestor may not have been set yet,
3815                  --  so that doesn't work.
3816
3817                  --  Handle this later in Expand_Allocator_Expression.
3818
3819                  Defer := True;
3820
3821               when N_Object_Declaration
3822                  | N_Object_Renaming_Declaration
3823               =>
3824                  declare
3825                     Def_Id : constant Entity_Id :=
3826                                Defining_Identifier (Ancestor);
3827
3828                  begin
3829                     if Is_Return_Object (Def_Id) then
3830                        if Present (Extra_Accessibility_Of_Result
3831                                     (Return_Applies_To (Scope (Def_Id))))
3832                        then
3833                           --  Pass along value that was passed in if the
3834                           --  routine we are returning from also has an
3835                           --  Accessibility_Of_Result formal.
3836
3837                           Level :=
3838                             New_Occurrence_Of
3839                              (Extra_Accessibility_Of_Result
3840                                (Return_Applies_To (Scope (Def_Id))), Loc);
3841                        end if;
3842                     else
3843                        Level :=
3844                          Make_Integer_Literal (Loc,
3845                            Intval => Object_Access_Level (Def_Id));
3846                     end if;
3847                  end;
3848
3849               when N_Simple_Return_Statement =>
3850                  if Present (Extra_Accessibility_Of_Result
3851                               (Return_Applies_To
3852                                 (Return_Statement_Entity (Ancestor))))
3853                  then
3854                     --  Pass along value that was passed in if the returned
3855                     --  routine also has an Accessibility_Of_Result formal.
3856
3857                     Level :=
3858                       New_Occurrence_Of
3859                         (Extra_Accessibility_Of_Result
3860                           (Return_Applies_To
3861                             (Return_Statement_Entity (Ancestor))), Loc);
3862                  end if;
3863
3864               when others =>
3865                  null;
3866            end case;
3867
3868            if not Defer then
3869               if not Present (Level) then
3870
3871                  --  The "innermost master that evaluates the function call".
3872
3873                  --  ??? - Should we use Integer'Last here instead in order
3874                  --  to deal with (some of) the problems associated with
3875                  --  calls to subps whose enclosing scope is unknown (e.g.,
3876                  --  Anon_Access_To_Subp_Param.all)?
3877
3878                  Level :=
3879                    Make_Integer_Literal (Loc,
3880                      Intval => Scope_Depth (Current_Scope) + 1);
3881               end if;
3882
3883               Add_Extra_Actual
3884                 (Expr => Level,
3885                  EF   =>
3886                    Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3887            end if;
3888         end;
3889      end if;
3890
3891      --  If we are expanding the RHS of an assignment we need to check if tag
3892      --  propagation is needed. You might expect this processing to be in
3893      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
3894      --  assignment might be transformed to a declaration for an unconstrained
3895      --  value if the expression is classwide.
3896
3897      if Nkind (Call_Node) = N_Function_Call
3898        and then Is_Tag_Indeterminate (Call_Node)
3899        and then Is_Entity_Name (Name (Call_Node))
3900      then
3901         declare
3902            Ass : Node_Id := Empty;
3903
3904         begin
3905            if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3906               Ass := Parent (Call_Node);
3907
3908            elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3909              and then Nkind (Parent (Parent (Call_Node))) =
3910                                                  N_Assignment_Statement
3911            then
3912               Ass := Parent (Parent (Call_Node));
3913
3914            elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3915              and then Nkind (Parent (Parent (Call_Node))) =
3916                                                  N_Assignment_Statement
3917            then
3918               Ass := Parent (Parent (Call_Node));
3919            end if;
3920
3921            if Present (Ass)
3922              and then Is_Class_Wide_Type (Etype (Name (Ass)))
3923            then
3924               if Is_Access_Type (Etype (Call_Node)) then
3925                  if Designated_Type (Etype (Call_Node)) /=
3926                    Root_Type (Etype (Name (Ass)))
3927                  then
3928                     Error_Msg_NE
3929                       ("tag-indeterminate expression must have designated "
3930                        & "type& (RM 5.2 (6))",
3931                         Call_Node, Root_Type (Etype (Name (Ass))));
3932                  else
3933                     Propagate_Tag (Name (Ass), Call_Node);
3934                  end if;
3935
3936               elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3937                  Error_Msg_NE
3938                    ("tag-indeterminate expression must have type & "
3939                     & "(RM 5.2 (6))",
3940                     Call_Node, Root_Type (Etype (Name (Ass))));
3941
3942               else
3943                  Propagate_Tag (Name (Ass), Call_Node);
3944               end if;
3945
3946               --  The call will be rewritten as a dispatching call, and
3947               --  expanded as such.
3948
3949               return;
3950            end if;
3951         end;
3952      end if;
3953
3954      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3955      --  it to point to the correct secondary virtual table
3956
3957      if Nkind (Call_Node) in N_Subprogram_Call
3958        and then CW_Interface_Formals_Present
3959      then
3960         Expand_Interface_Actuals (Call_Node);
3961      end if;
3962
3963      --  Deals with Dispatch_Call if we still have a call, before expanding
3964      --  extra actuals since this will be done on the re-analysis of the
3965      --  dispatching call. Note that we do not try to shorten the actual list
3966      --  for a dispatching call, it would not make sense to do so. Expansion
3967      --  of dispatching calls is suppressed for VM targets, because the VM
3968      --  back-ends directly handle the generation of dispatching calls and
3969      --  would have to undo any expansion to an indirect call.
3970
3971      if Nkind (Call_Node) in N_Subprogram_Call
3972        and then Present (Controlling_Argument (Call_Node))
3973      then
3974         declare
3975            Call_Typ   : constant Entity_Id := Etype (Call_Node);
3976            Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
3977            Eq_Prim_Op : Entity_Id := Empty;
3978            New_Call   : Node_Id;
3979            Param      : Node_Id;
3980            Prev_Call  : Node_Id;
3981
3982         begin
3983            if not Is_Limited_Type (Typ) then
3984               Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3985            end if;
3986
3987            if Tagged_Type_Expansion then
3988               Expand_Dispatching_Call (Call_Node);
3989
3990               --  The following return is worrisome. Is it really OK to skip
3991               --  all remaining processing in this procedure ???
3992
3993               return;
3994
3995            --  VM targets
3996
3997            else
3998               Apply_Tag_Checks (Call_Node);
3999
4000               --  If this is a dispatching "=", we must first compare the
4001               --  tags so we generate: x.tag = y.tag and then x = y
4002
4003               if Subp = Eq_Prim_Op then
4004
4005                  --  Mark the node as analyzed to avoid reanalyzing this
4006                  --  dispatching call (which would cause a never-ending loop)
4007
4008                  Prev_Call := Relocate_Node (Call_Node);
4009                  Set_Analyzed (Prev_Call);
4010
4011                  Param := First_Actual (Call_Node);
4012                  New_Call :=
4013                    Make_And_Then (Loc,
4014                      Left_Opnd =>
4015                           Make_Op_Eq (Loc,
4016                             Left_Opnd =>
4017                               Make_Selected_Component (Loc,
4018                                 Prefix        => New_Value (Param),
4019                                 Selector_Name =>
4020                                   New_Occurrence_Of
4021                                     (First_Tag_Component (Typ), Loc)),
4022
4023                             Right_Opnd =>
4024                               Make_Selected_Component (Loc,
4025                                 Prefix        =>
4026                                   Unchecked_Convert_To (Typ,
4027                                     New_Value (Next_Actual (Param))),
4028                                 Selector_Name =>
4029                                   New_Occurrence_Of
4030                                     (First_Tag_Component (Typ), Loc))),
4031                      Right_Opnd => Prev_Call);
4032
4033                  Rewrite (Call_Node, New_Call);
4034
4035                  Analyze_And_Resolve
4036                    (Call_Node, Call_Typ, Suppress => All_Checks);
4037               end if;
4038
4039               --  Expansion of a dispatching call results in an indirect call,
4040               --  which in turn causes current values to be killed (see
4041               --  Resolve_Call), so on VM targets we do the call here to
4042               --  ensure consistent warnings between VM and non-VM targets.
4043
4044               Kill_Current_Values;
4045            end if;
4046
4047            --  If this is a dispatching "=" then we must update the reference
4048            --  to the call node because we generated:
4049            --     x.tag = y.tag and then x = y
4050
4051            if Subp = Eq_Prim_Op then
4052               Call_Node := Right_Opnd (Call_Node);
4053            end if;
4054         end;
4055      end if;
4056
4057      --  Similarly, expand calls to RCI subprograms on which pragma
4058      --  All_Calls_Remote applies. The rewriting will be reanalyzed
4059      --  later. Do this only when the call comes from source since we
4060      --  do not want such a rewriting to occur in expanded code.
4061
4062      if Is_All_Remote_Call (Call_Node) then
4063         Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
4064
4065      --  Similarly, do not add extra actuals for an entry call whose entity
4066      --  is a protected procedure, or for an internal protected subprogram
4067      --  call, because it will be rewritten as a protected subprogram call
4068      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
4069
4070      elsif Is_Protected_Type (Scope (Subp))
4071         and then (Ekind (Subp) = E_Procedure
4072                    or else Ekind (Subp) = E_Function)
4073      then
4074         null;
4075
4076      --  During that loop we gathered the extra actuals (the ones that
4077      --  correspond to Extra_Formals), so now they can be appended.
4078
4079      else
4080         while Is_Non_Empty_List (Extra_Actuals) loop
4081            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4082         end loop;
4083      end if;
4084
4085      --  At this point we have all the actuals, so this is the point at which
4086      --  the various expansion activities for actuals is carried out.
4087
4088      Expand_Actuals (Call_Node, Subp, Post_Call);
4089
4090      --  Verify that the actuals do not share storage. This check must be done
4091      --  on the caller side rather that inside the subprogram to avoid issues
4092      --  of parameter passing.
4093
4094      if Check_Aliasing_Of_Parameters then
4095         Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
4096      end if;
4097
4098      --  If the subprogram is a renaming, or if it is inherited, replace it in
4099      --  the call with the name of the actual subprogram being called. If this
4100      --  is a dispatching call, the run-time decides what to call. The Alias
4101      --  attribute does not apply to entries.
4102
4103      if Nkind (Call_Node) /= N_Entry_Call_Statement
4104        and then No (Controlling_Argument (Call_Node))
4105        and then Present (Parent_Subp)
4106        and then not Is_Direct_Deep_Call (Subp)
4107      then
4108         if Present (Inherited_From_Formal (Subp)) then
4109            Parent_Subp := Inherited_From_Formal (Subp);
4110         else
4111            Parent_Subp := Ultimate_Alias (Parent_Subp);
4112         end if;
4113
4114         --  The below setting of Entity is suspect, see F109-018 discussion???
4115
4116         Set_Entity (Name (Call_Node), Parent_Subp);
4117
4118         if Is_Abstract_Subprogram (Parent_Subp)
4119           and then not In_Instance
4120         then
4121            Error_Msg_NE
4122              ("cannot call abstract subprogram &!",
4123               Name (Call_Node), Parent_Subp);
4124         end if;
4125
4126         --  Inspect all formals of derived subprogram Subp. Compare parameter
4127         --  types with the parent subprogram and check whether an actual may
4128         --  need a type conversion to the corresponding formal of the parent
4129         --  subprogram.
4130
4131         --  Not clear whether intrinsic subprograms need such conversions. ???
4132
4133         if not Is_Intrinsic_Subprogram (Parent_Subp)
4134           or else Is_Generic_Instance (Parent_Subp)
4135         then
4136            declare
4137               procedure Convert (Act : Node_Id; Typ : Entity_Id);
4138               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
4139               --  and resolve the newly generated construct.
4140
4141               -------------
4142               -- Convert --
4143               -------------
4144
4145               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
4146               begin
4147                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
4148                  Analyze (Act);
4149                  Resolve (Act, Typ);
4150               end Convert;
4151
4152               --  Local variables
4153
4154               Actual_Typ : Entity_Id;
4155               Formal_Typ : Entity_Id;
4156               Parent_Typ : Entity_Id;
4157
4158            begin
4159               Actual := First_Actual (Call_Node);
4160               Formal := First_Formal (Subp);
4161               Parent_Formal := First_Formal (Parent_Subp);
4162               while Present (Formal) loop
4163                  Actual_Typ := Etype (Actual);
4164                  Formal_Typ := Etype (Formal);
4165                  Parent_Typ := Etype (Parent_Formal);
4166
4167                  --  For an IN parameter of a scalar type, the parent formal
4168                  --  type and derived formal type differ or the parent formal
4169                  --  type and actual type do not match statically.
4170
4171                  if Is_Scalar_Type (Formal_Typ)
4172                    and then Ekind (Formal) = E_In_Parameter
4173                    and then Formal_Typ /= Parent_Typ
4174                    and then
4175                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
4176                    and then not Raises_Constraint_Error (Actual)
4177                  then
4178                     Convert (Actual, Parent_Typ);
4179                     Enable_Range_Check (Actual);
4180
4181                     --  If the actual has been marked as requiring a range
4182                     --  check, then generate it here.
4183
4184                     if Do_Range_Check (Actual) then
4185                        Generate_Range_Check
4186                          (Actual, Etype (Formal), CE_Range_Check_Failed);
4187                     end if;
4188
4189                  --  For access types, the parent formal type and actual type
4190                  --  differ.
4191
4192                  elsif Is_Access_Type (Formal_Typ)
4193                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
4194                  then
4195                     if Ekind (Formal) /= E_In_Parameter then
4196                        Convert (Actual, Parent_Typ);
4197
4198                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
4199                       and then Designated_Type (Parent_Typ) /=
4200                                Designated_Type (Actual_Typ)
4201                       and then not Is_Controlling_Formal (Formal)
4202                     then
4203                        --  This unchecked conversion is not necessary unless
4204                        --  inlining is enabled, because in that case the type
4205                        --  mismatch may become visible in the body about to be
4206                        --  inlined.
4207
4208                        Rewrite (Actual,
4209                          Unchecked_Convert_To (Parent_Typ,
4210                            Relocate_Node (Actual)));
4211                        Analyze (Actual);
4212                        Resolve (Actual, Parent_Typ);
4213                     end if;
4214
4215                  --  If there is a change of representation, then generate a
4216                  --  warning, and do the change of representation.
4217
4218                  elsif not Same_Representation (Formal_Typ, Parent_Typ) then
4219                     Error_Msg_N
4220                       ("??change of representation required", Actual);
4221                     Convert (Actual, Parent_Typ);
4222
4223                  --  For array and record types, the parent formal type and
4224                  --  derived formal type have different sizes or pragma Pack
4225                  --  status.
4226
4227                  elsif ((Is_Array_Type (Formal_Typ)
4228                           and then Is_Array_Type (Parent_Typ))
4229                       or else
4230                         (Is_Record_Type (Formal_Typ)
4231                           and then Is_Record_Type (Parent_Typ)))
4232                    and then
4233                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
4234                        or else Has_Pragma_Pack (Formal_Typ) /=
4235                                Has_Pragma_Pack (Parent_Typ))
4236                  then
4237                     Convert (Actual, Parent_Typ);
4238                  end if;
4239
4240                  Next_Actual (Actual);
4241                  Next_Formal (Formal);
4242                  Next_Formal (Parent_Formal);
4243               end loop;
4244            end;
4245         end if;
4246
4247         Orig_Subp := Subp;
4248         Subp := Parent_Subp;
4249      end if;
4250
4251      --  Deal with case where call is an explicit dereference
4252
4253      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
4254
4255      --  Handle case of access to protected subprogram type
4256
4257         if Is_Access_Protected_Subprogram_Type
4258              (Base_Type (Etype (Prefix (Name (Call_Node)))))
4259         then
4260            --  If this is a call through an access to protected operation, the
4261            --  prefix has the form (object'address, operation'access). Rewrite
4262            --  as a for other protected calls: the object is the 1st parameter
4263            --  of the list of actuals.
4264
4265            declare
4266               Call : Node_Id;
4267               Parm : List_Id;
4268               Nam  : Node_Id;
4269               Obj  : Node_Id;
4270               Ptr  : constant Node_Id := Prefix (Name (Call_Node));
4271
4272               T : constant Entity_Id :=
4273                     Equivalent_Type (Base_Type (Etype (Ptr)));
4274
4275               D_T : constant Entity_Id :=
4276                       Designated_Type (Base_Type (Etype (Ptr)));
4277
4278            begin
4279               Obj :=
4280                 Make_Selected_Component (Loc,
4281                   Prefix        => Unchecked_Convert_To (T, Ptr),
4282                   Selector_Name =>
4283                     New_Occurrence_Of (First_Entity (T), Loc));
4284
4285               Nam :=
4286                 Make_Selected_Component (Loc,
4287                   Prefix        => Unchecked_Convert_To (T, Ptr),
4288                   Selector_Name =>
4289                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4290
4291               Nam :=
4292                 Make_Explicit_Dereference (Loc,
4293                   Prefix => Nam);
4294
4295               if Present (Parameter_Associations (Call_Node)) then
4296                  Parm := Parameter_Associations (Call_Node);
4297               else
4298                  Parm := New_List;
4299               end if;
4300
4301               Prepend (Obj, Parm);
4302
4303               if Etype (D_T) = Standard_Void_Type then
4304                  Call :=
4305                    Make_Procedure_Call_Statement (Loc,
4306                      Name                   => Nam,
4307                      Parameter_Associations => Parm);
4308               else
4309                  Call :=
4310                    Make_Function_Call (Loc,
4311                      Name                   => Nam,
4312                      Parameter_Associations => Parm);
4313               end if;
4314
4315               Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4316               Set_Etype (Call, Etype (D_T));
4317
4318               --  We do not re-analyze the call to avoid infinite recursion.
4319               --  We analyze separately the prefix and the object, and set
4320               --  the checks on the prefix that would otherwise be emitted
4321               --  when resolving a call.
4322
4323               Rewrite (Call_Node, Call);
4324               Analyze (Nam);
4325               Apply_Access_Check (Nam);
4326               Analyze (Obj);
4327               return;
4328            end;
4329         end if;
4330      end if;
4331
4332      --  If this is a call to an intrinsic subprogram, then perform the
4333      --  appropriate expansion to the corresponding tree node and we
4334      --  are all done (since after that the call is gone).
4335
4336      --  In the case where the intrinsic is to be processed by the back end,
4337      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
4338      --  since the idea in this case is to pass the call unchanged. If the
4339      --  intrinsic is an inherited unchecked conversion, and the derived type
4340      --  is the target type of the conversion, we must retain it as the return
4341      --  type of the expression. Otherwise the expansion below, which uses the
4342      --  parent operation, will yield the wrong type.
4343
4344      if Is_Intrinsic_Subprogram (Subp) then
4345         Expand_Intrinsic_Call (Call_Node, Subp);
4346
4347         if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4348           and then Parent_Subp /= Orig_Subp
4349           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4350         then
4351            Set_Etype (Call_Node, Etype (Orig_Subp));
4352         end if;
4353
4354         return;
4355      end if;
4356
4357      if Ekind_In (Subp, E_Function, E_Procedure) then
4358
4359         --  We perform a simple optimization on calls for To_Address by
4360         --  replacing them with an unchecked conversion. Not only is this
4361         --  efficient, but it also avoids order of elaboration problems when
4362         --  address clauses are inlined (address expression elaborated at the
4363         --  wrong point).
4364
4365         --  We perform this optimization regardless of whether we are in the
4366         --  main unit or in a unit in the context of the main unit, to ensure
4367         --  that the generated tree is the same in both cases, for CodePeer
4368         --  use.
4369
4370         if Is_RTE (Subp, RE_To_Address) then
4371            Rewrite (Call_Node,
4372              Unchecked_Convert_To
4373                (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4374            return;
4375
4376         --  A call to a null procedure is replaced by a null statement, but we
4377         --  are not allowed to ignore possible side effects of the call, so we
4378         --  make sure that actuals are evaluated.
4379         --  We also suppress this optimization for GNATCoverage.
4380
4381         elsif Is_Null_Procedure (Subp)
4382           and then not Opt.Suppress_Control_Flow_Optimizations
4383         then
4384            Actual := First_Actual (Call_Node);
4385            while Present (Actual) loop
4386               Remove_Side_Effects (Actual);
4387               Next_Actual (Actual);
4388            end loop;
4389
4390            Rewrite (Call_Node, Make_Null_Statement (Loc));
4391            return;
4392         end if;
4393
4394         --  Handle inlining. No action needed if the subprogram is not inlined
4395
4396         if not Is_Inlined (Subp) then
4397            null;
4398
4399         --  Front-end inlining of expression functions (performed also when
4400         --  back-end inlining is enabled).
4401
4402         elsif Is_Inlinable_Expression_Function (Subp) then
4403            Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4404            Analyze (N);
4405            return;
4406
4407         --  Handle front-end inlining
4408
4409         elsif not Back_End_Inlining then
4410            Inlined_Subprogram : declare
4411               Bod         : Node_Id;
4412               Must_Inline : Boolean := False;
4413               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
4414
4415            begin
4416               --  Verify that the body to inline has already been seen, and
4417               --  that if the body is in the current unit the inlining does
4418               --  not occur earlier. This avoids order-of-elaboration problems
4419               --  in the back end.
4420
4421               --  This should be documented in sinfo/einfo ???
4422
4423               if No (Spec)
4424                 or else Nkind (Spec) /= N_Subprogram_Declaration
4425                 or else No (Body_To_Inline (Spec))
4426               then
4427                  Must_Inline := False;
4428
4429               --  If this an inherited function that returns a private type,
4430               --  do not inline if the full view is an unconstrained array,
4431               --  because such calls cannot be inlined.
4432
4433               elsif Present (Orig_Subp)
4434                 and then Is_Array_Type (Etype (Orig_Subp))
4435                 and then not Is_Constrained (Etype (Orig_Subp))
4436               then
4437                  Must_Inline := False;
4438
4439               elsif In_Unfrozen_Instance (Scope (Subp)) then
4440                  Must_Inline := False;
4441
4442               else
4443                  Bod := Body_To_Inline (Spec);
4444
4445                  if (In_Extended_Main_Code_Unit (Call_Node)
4446                        or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4447                        or else Has_Pragma_Inline_Always (Subp))
4448                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4449                               or else
4450                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4451                  then
4452                     Must_Inline := True;
4453
4454                  --  If we are compiling a package body that is not the main
4455                  --  unit, it must be for inlining/instantiation purposes,
4456                  --  in which case we inline the call to insure that the same
4457                  --  temporaries are generated when compiling the body by
4458                  --  itself. Otherwise link errors can occur.
4459
4460                  --  If the function being called is itself in the main unit,
4461                  --  we cannot inline, because there is a risk of double
4462                  --  elaboration and/or circularity: the inlining can make
4463                  --  visible a private entity in the body of the main unit,
4464                  --  that gigi will see before its sees its proper definition.
4465
4466                  elsif not (In_Extended_Main_Code_Unit (Call_Node))
4467                    and then In_Package_Body
4468                  then
4469                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4470
4471                  --  Inline calls to _postconditions when generating C code
4472
4473                  elsif Modify_Tree_For_C
4474                    and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4475                    and then Chars (Name (N)) = Name_uPostconditions
4476                  then
4477                     Must_Inline := True;
4478                  end if;
4479               end if;
4480
4481               if Must_Inline then
4482                  Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4483
4484               else
4485                  --  Let the back end handle it
4486
4487                  Add_Inlined_Body (Subp, Call_Node);
4488
4489                  if Front_End_Inlining
4490                    and then Nkind (Spec) = N_Subprogram_Declaration
4491                    and then (In_Extended_Main_Code_Unit (Call_Node))
4492                    and then No (Body_To_Inline (Spec))
4493                    and then not Has_Completion (Subp)
4494                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4495                  then
4496                     Cannot_Inline
4497                       ("cannot inline& (body not seen yet)?",
4498                        Call_Node, Subp);
4499                  end if;
4500               end if;
4501            end Inlined_Subprogram;
4502
4503         --  Front-end expansion of simple functions returning unconstrained
4504         --  types (see Check_And_Split_Unconstrained_Function). Note that the
4505         --  case of a simple renaming (Body_To_Inline in N_Entity below, see
4506         --  also Build_Renamed_Body) cannot be expanded here because this may
4507         --  give rise to order-of-elaboration issues for the types of the
4508         --  parameters of the subprogram, if any.
4509
4510         elsif Present (Unit_Declaration_Node (Subp))
4511           and then Nkind (Unit_Declaration_Node (Subp)) =
4512                                                       N_Subprogram_Declaration
4513           and then Present (Body_To_Inline (Unit_Declaration_Node (Subp)))
4514           and then
4515             Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) not in
4516                                                                       N_Entity
4517         then
4518            Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4519
4520         --  Back-end inlining either if optimization is enabled or the call is
4521         --  required to be inlined.
4522
4523         elsif Optimization_Level > 0
4524           or else Has_Pragma_Inline_Always (Subp)
4525         then
4526            Add_Inlined_Body (Subp, Call_Node);
4527         end if;
4528      end if;
4529
4530      --  Check for protected subprogram. This is either an intra-object call,
4531      --  or a protected function call. Protected procedure calls are rewritten
4532      --  as entry calls and handled accordingly.
4533
4534      --  In Ada 2005, this may be an indirect call to an access parameter that
4535      --  is an access_to_subprogram. In that case the anonymous type has a
4536      --  scope that is a protected operation, but the call is a regular one.
4537      --  In either case do not expand call if subprogram is eliminated.
4538
4539      Scop := Scope (Subp);
4540
4541      if Nkind (Call_Node) /= N_Entry_Call_Statement
4542        and then Is_Protected_Type (Scop)
4543        and then Ekind (Subp) /= E_Subprogram_Type
4544        and then not Is_Eliminated (Subp)
4545      then
4546         --  If the call is an internal one, it is rewritten as a call to the
4547         --  corresponding unprotected subprogram.
4548
4549         Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4550      end if;
4551
4552      --  Functions returning controlled objects need special attention. If
4553      --  the return type is limited, then the context is initialization and
4554      --  different processing applies. If the call is to a protected function,
4555      --  the expansion above will call Expand_Call recursively. Otherwise the
4556      --  function call is transformed into a temporary which obtains the
4557      --  result from the secondary stack.
4558
4559      if Needs_Finalization (Etype (Subp)) then
4560         if not Is_Build_In_Place_Function_Call (Call_Node)
4561           and then
4562             (No (First_Formal (Subp))
4563               or else
4564                 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4565         then
4566            Expand_Ctrl_Function_Call (Call_Node);
4567
4568         --  Build-in-place function calls which appear in anonymous contexts
4569         --  need a transient scope to ensure the proper finalization of the
4570         --  intermediate result after its use.
4571
4572         elsif Is_Build_In_Place_Function_Call (Call_Node)
4573           and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4574                              N_Attribute_Reference,
4575                              N_Function_Call,
4576                              N_Indexed_Component,
4577                              N_Object_Renaming_Declaration,
4578                              N_Procedure_Call_Statement,
4579                              N_Selected_Component,
4580                              N_Slice)
4581           and then
4582             (Ekind (Current_Scope) /= E_Loop
4583               or else Nkind (Parent (N)) /= N_Function_Call
4584               or else not Is_Build_In_Place_Function_Call (Parent (N)))
4585         then
4586            Establish_Transient_Scope (Call_Node, Manage_Sec_Stack => True);
4587         end if;
4588      end if;
4589   end Expand_Call_Helper;
4590
4591   -------------------------------
4592   -- Expand_Ctrl_Function_Call --
4593   -------------------------------
4594
4595   procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4596      function Is_Element_Reference (N : Node_Id) return Boolean;
4597      --  Determine whether node N denotes a reference to an Ada 2012 container
4598      --  element.
4599
4600      --------------------------
4601      -- Is_Element_Reference --
4602      --------------------------
4603
4604      function Is_Element_Reference (N : Node_Id) return Boolean is
4605         Ref : constant Node_Id := Original_Node (N);
4606
4607      begin
4608         --  Analysis marks an element reference by setting the generalized
4609         --  indexing attribute of an indexed component before the component
4610         --  is rewritten into a function call.
4611
4612         return
4613           Nkind (Ref) = N_Indexed_Component
4614             and then Present (Generalized_Indexing (Ref));
4615      end Is_Element_Reference;
4616
4617   --  Start of processing for Expand_Ctrl_Function_Call
4618
4619   begin
4620      --  Optimization, if the returned value (which is on the sec-stack) is
4621      --  returned again, no need to copy/readjust/finalize, we can just pass
4622      --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
4623      --  attachment is needed
4624
4625      if Nkind (Parent (N)) = N_Simple_Return_Statement then
4626         return;
4627      end if;
4628
4629      --  Resolution is now finished, make sure we don't start analysis again
4630      --  because of the duplication.
4631
4632      Set_Analyzed (N);
4633
4634      --  A function which returns a controlled object uses the secondary
4635      --  stack. Rewrite the call into a temporary which obtains the result of
4636      --  the function using 'reference.
4637
4638      Remove_Side_Effects (N);
4639
4640      --  The side effect removal of the function call produced a temporary.
4641      --  When the context is a case expression, if expression, or expression
4642      --  with actions, the lifetime of the temporary must be extended to match
4643      --  that of the context. Otherwise the function result will be finalized
4644      --  too early and affect the result of the expression. To prevent this
4645      --  unwanted effect, the temporary should not be considered for clean up
4646      --  actions by the general finalization machinery.
4647
4648      --  Exception to this rule are references to Ada 2012 container elements.
4649      --  Such references must be finalized at the end of each iteration of the
4650      --  related quantified expression, otherwise the container will remain
4651      --  busy.
4652
4653      if Nkind (N) = N_Explicit_Dereference
4654        and then Within_Case_Or_If_Expression (N)
4655        and then not Is_Element_Reference (N)
4656      then
4657         Set_Is_Ignored_Transient (Entity (Prefix (N)));
4658      end if;
4659   end Expand_Ctrl_Function_Call;
4660
4661   ----------------------------------------
4662   -- Expand_N_Extended_Return_Statement --
4663   ----------------------------------------
4664
4665   --  If there is a Handled_Statement_Sequence, we rewrite this:
4666
4667   --     return Result : T := <expression> do
4668   --        <handled_seq_of_stms>
4669   --     end return;
4670
4671   --  to be:
4672
4673   --     declare
4674   --        Result : T := <expression>;
4675   --     begin
4676   --        <handled_seq_of_stms>
4677   --        return Result;
4678   --     end;
4679
4680   --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
4681
4682   --     return Result : T := <expression>;
4683
4684   --  to be:
4685
4686   --     return <expression>;
4687
4688   --  unless it's build-in-place or there's no <expression>, in which case
4689   --  we generate:
4690
4691   --     declare
4692   --        Result : T := <expression>;
4693   --     begin
4694   --        return Result;
4695   --     end;
4696
4697   --  Note that this case could have been written by the user as an extended
4698   --  return statement, or could have been transformed to this from a simple
4699   --  return statement.
4700
4701   --  That is, we need to have a reified return object if there are statements
4702   --  (which might refer to it) or if we're doing build-in-place (so we can
4703   --  set its address to the final resting place or if there is no expression
4704   --  (in which case default initial values might need to be set)).
4705
4706   procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4707      Loc : constant Source_Ptr := Sloc (N);
4708
4709      function Build_Heap_Or_Pool_Allocator
4710        (Temp_Id    : Entity_Id;
4711         Temp_Typ   : Entity_Id;
4712         Func_Id    : Entity_Id;
4713         Ret_Typ    : Entity_Id;
4714         Alloc_Expr : Node_Id) return Node_Id;
4715      --  Create the statements necessary to allocate a return object on the
4716      --  heap or user-defined storage pool. The object may need finalization
4717      --  actions depending on the return type.
4718      --
4719      --    * Controlled case
4720      --
4721      --       if BIPfinalizationmaster = null then
4722      --          Temp_Id := <Alloc_Expr>;
4723      --       else
4724      --          declare
4725      --             type Ptr_Typ is access Ret_Typ;
4726      --             for Ptr_Typ'Storage_Pool use
4727      --                   Base_Pool (BIPfinalizationmaster.all).all;
4728      --             Local : Ptr_Typ;
4729      --
4730      --          begin
4731      --             procedure Allocate (...) is
4732      --             begin
4733      --                System.Storage_Pools.Subpools.Allocate_Any (...);
4734      --             end Allocate;
4735      --
4736      --             Local := <Alloc_Expr>;
4737      --             Temp_Id := Temp_Typ (Local);
4738      --          end;
4739      --       end if;
4740      --
4741      --    * Non-controlled case
4742      --
4743      --       Temp_Id := <Alloc_Expr>;
4744      --
4745      --  Temp_Id is the temporary which is used to reference the internally
4746      --  created object in all allocation forms. Temp_Typ is the type of the
4747      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
4748      --  type of Func_Id. Alloc_Expr is the actual allocator.
4749
4750      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4751      --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
4752      --  with parameters:
4753      --    From         current activation chain
4754      --    To           activation chain passed in by the caller
4755      --    New_Master   master passed in by the caller
4756      --
4757      --  Func_Id is the entity of the function where the extended return
4758      --  statement appears.
4759
4760      ----------------------------------
4761      -- Build_Heap_Or_Pool_Allocator --
4762      ----------------------------------
4763
4764      function Build_Heap_Or_Pool_Allocator
4765        (Temp_Id    : Entity_Id;
4766         Temp_Typ   : Entity_Id;
4767         Func_Id    : Entity_Id;
4768         Ret_Typ    : Entity_Id;
4769         Alloc_Expr : Node_Id) return Node_Id
4770      is
4771      begin
4772         pragma Assert (Is_Build_In_Place_Function (Func_Id));
4773
4774         --  Processing for objects that require finalization actions
4775
4776         if Needs_Finalization (Ret_Typ) then
4777            declare
4778               Decls      : constant List_Id := New_List;
4779               Fin_Mas_Id : constant Entity_Id :=
4780                              Build_In_Place_Formal
4781                                (Func_Id, BIP_Finalization_Master);
4782               Orig_Expr  : constant Node_Id :=
4783                              New_Copy_Tree
4784                                (Source           => Alloc_Expr,
4785                                 Scopes_In_EWA_OK => True);
4786               Stmts      : constant List_Id := New_List;
4787               Desig_Typ  : Entity_Id;
4788               Local_Id   : Entity_Id;
4789               Pool_Id    : Entity_Id;
4790               Ptr_Typ    : Entity_Id;
4791
4792            begin
4793               --  Generate:
4794               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4795
4796               Pool_Id := Make_Temporary (Loc, 'P');
4797
4798               Append_To (Decls,
4799                 Make_Object_Renaming_Declaration (Loc,
4800                   Defining_Identifier => Pool_Id,
4801                   Subtype_Mark        =>
4802                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4803                   Name                =>
4804                     Make_Explicit_Dereference (Loc,
4805                       Prefix =>
4806                         Make_Function_Call (Loc,
4807                           Name                   =>
4808                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4809                           Parameter_Associations => New_List (
4810                             Make_Explicit_Dereference (Loc,
4811                               Prefix =>
4812                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4813
4814               --  Create an access type which uses the storage pool of the
4815               --  caller's master. This additional type is necessary because
4816               --  the finalization master cannot be associated with the type
4817               --  of the temporary. Otherwise the secondary stack allocation
4818               --  will fail.
4819
4820               Desig_Typ := Ret_Typ;
4821
4822               --  Ensure that the build-in-place machinery uses a fat pointer
4823               --  when allocating an unconstrained array on the heap. In this
4824               --  case the result object type is a constrained array type even
4825               --  though the function type is unconstrained.
4826
4827               if Ekind (Desig_Typ) = E_Array_Subtype then
4828                  Desig_Typ := Base_Type (Desig_Typ);
4829               end if;
4830
4831               --  Generate:
4832               --    type Ptr_Typ is access Desig_Typ;
4833
4834               Ptr_Typ := Make_Temporary (Loc, 'P');
4835
4836               Append_To (Decls,
4837                 Make_Full_Type_Declaration (Loc,
4838                   Defining_Identifier => Ptr_Typ,
4839                   Type_Definition     =>
4840                     Make_Access_To_Object_Definition (Loc,
4841                       Subtype_Indication =>
4842                         New_Occurrence_Of (Desig_Typ, Loc))));
4843
4844               --  Perform minor decoration in order to set the master and the
4845               --  storage pool attributes.
4846
4847               Set_Ekind                   (Ptr_Typ, E_Access_Type);
4848               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
4849               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4850
4851               --  Create the temporary, generate:
4852               --    Local_Id : Ptr_Typ;
4853
4854               Local_Id := Make_Temporary (Loc, 'T');
4855
4856               Append_To (Decls,
4857                 Make_Object_Declaration (Loc,
4858                   Defining_Identifier => Local_Id,
4859                   Object_Definition   =>
4860                     New_Occurrence_Of (Ptr_Typ, Loc)));
4861
4862               --  Allocate the object, generate:
4863               --    Local_Id := <Alloc_Expr>;
4864
4865               Append_To (Stmts,
4866                 Make_Assignment_Statement (Loc,
4867                   Name       => New_Occurrence_Of (Local_Id, Loc),
4868                   Expression => Alloc_Expr));
4869
4870               --  Generate:
4871               --    Temp_Id := Temp_Typ (Local_Id);
4872
4873               Append_To (Stmts,
4874                 Make_Assignment_Statement (Loc,
4875                   Name       => New_Occurrence_Of (Temp_Id, Loc),
4876                   Expression =>
4877                     Unchecked_Convert_To (Temp_Typ,
4878                       New_Occurrence_Of (Local_Id, Loc))));
4879
4880               --  Wrap the allocation in a block. This is further conditioned
4881               --  by checking the caller finalization master at runtime. A
4882               --  null value indicates a non-existent master, most likely due
4883               --  to a Finalize_Storage_Only allocation.
4884
4885               --  Generate:
4886               --    if BIPfinalizationmaster = null then
4887               --       Temp_Id := <Orig_Expr>;
4888               --    else
4889               --       declare
4890               --          <Decls>
4891               --       begin
4892               --          <Stmts>
4893               --       end;
4894               --    end if;
4895
4896               return
4897                 Make_If_Statement (Loc,
4898                   Condition       =>
4899                     Make_Op_Eq (Loc,
4900                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
4901                       Right_Opnd => Make_Null (Loc)),
4902
4903                   Then_Statements => New_List (
4904                     Make_Assignment_Statement (Loc,
4905                       Name       => New_Occurrence_Of (Temp_Id, Loc),
4906                       Expression => Orig_Expr)),
4907
4908                   Else_Statements => New_List (
4909                     Make_Block_Statement (Loc,
4910                       Declarations               => Decls,
4911                       Handled_Statement_Sequence =>
4912                         Make_Handled_Sequence_Of_Statements (Loc,
4913                           Statements => Stmts))));
4914            end;
4915
4916         --  For all other cases, generate:
4917         --    Temp_Id := <Alloc_Expr>;
4918
4919         else
4920            return
4921              Make_Assignment_Statement (Loc,
4922                Name       => New_Occurrence_Of (Temp_Id, Loc),
4923                Expression => Alloc_Expr);
4924         end if;
4925      end Build_Heap_Or_Pool_Allocator;
4926
4927      ---------------------------
4928      -- Move_Activation_Chain --
4929      ---------------------------
4930
4931      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4932      begin
4933         return
4934           Make_Procedure_Call_Statement (Loc,
4935             Name                   =>
4936               New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4937
4938             Parameter_Associations => New_List (
4939
4940               --  Source chain
4941
4942               Make_Attribute_Reference (Loc,
4943                 Prefix         => Make_Identifier (Loc, Name_uChain),
4944                 Attribute_Name => Name_Unrestricted_Access),
4945
4946               --  Destination chain
4947
4948               New_Occurrence_Of
4949                 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4950
4951               --  New master
4952
4953               New_Occurrence_Of
4954                 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4955      end Move_Activation_Chain;
4956
4957      --  Local variables
4958
4959      Func_Id      : constant Entity_Id :=
4960                       Return_Applies_To (Return_Statement_Entity (N));
4961      Is_BIP_Func  : constant Boolean   :=
4962                       Is_Build_In_Place_Function (Func_Id);
4963      Ret_Obj_Id   : constant Entity_Id :=
4964                       First_Entity (Return_Statement_Entity (N));
4965      Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
4966      Ret_Typ      : constant Entity_Id := Etype (Func_Id);
4967
4968      Exp         : Node_Id;
4969      HSS         : Node_Id;
4970      Result      : Node_Id;
4971      Stmts       : List_Id;
4972
4973      Return_Stmt : Node_Id := Empty;
4974      --  Force initialization to facilitate static analysis
4975
4976   --  Start of processing for Expand_N_Extended_Return_Statement
4977
4978   begin
4979      --  Given that functionality of interface thunks is simple (just displace
4980      --  the pointer to the object) they are always handled by means of
4981      --  simple return statements.
4982
4983      pragma Assert (not Is_Thunk (Current_Subprogram));
4984
4985      if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4986         Exp := Expression (Ret_Obj_Decl);
4987
4988         --  Assert that if F says "return R : T := G(...) do..."
4989         --  then F and G are both b-i-p, or neither b-i-p.
4990
4991         if Nkind (Exp) = N_Function_Call then
4992            pragma Assert (Ekind (Current_Subprogram) = E_Function);
4993            pragma Assert
4994              (Is_Build_In_Place_Function (Current_Subprogram) =
4995               Is_Build_In_Place_Function_Call (Exp));
4996            null;
4997         end if;
4998      else
4999         Exp := Empty;
5000      end if;
5001
5002      HSS := Handled_Statement_Sequence (N);
5003
5004      --  If the returned object needs finalization actions, the function must
5005      --  perform the appropriate cleanup should it fail to return. The state
5006      --  of the function itself is tracked through a flag which is coupled
5007      --  with the scope finalizer. There is one flag per each return object
5008      --  in case of multiple returns.
5009
5010      if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
5011         declare
5012            Flag_Decl : Node_Id;
5013            Flag_Id   : Entity_Id;
5014            Func_Bod  : Node_Id;
5015
5016         begin
5017            --  Recover the function body
5018
5019            Func_Bod := Unit_Declaration_Node (Func_Id);
5020
5021            if Nkind (Func_Bod) = N_Subprogram_Declaration then
5022               Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
5023            end if;
5024
5025            if Nkind (Func_Bod) = N_Function_Specification then
5026               Func_Bod := Parent (Func_Bod); -- one more level for child units
5027            end if;
5028
5029            pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
5030
5031            --  Create a flag to track the function state
5032
5033            Flag_Id := Make_Temporary (Loc, 'F');
5034            Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
5035
5036            --  Insert the flag at the beginning of the function declarations,
5037            --  generate:
5038            --    Fnn : Boolean := False;
5039
5040            Flag_Decl :=
5041              Make_Object_Declaration (Loc,
5042                Defining_Identifier => Flag_Id,
5043                  Object_Definition =>
5044                    New_Occurrence_Of (Standard_Boolean, Loc),
5045                  Expression        =>
5046                    New_Occurrence_Of (Standard_False, Loc));
5047
5048            Prepend_To (Declarations (Func_Bod), Flag_Decl);
5049            Analyze (Flag_Decl);
5050         end;
5051      end if;
5052
5053      --  Build a simple_return_statement that returns the return object when
5054      --  there is a statement sequence, or no expression, or the result will
5055      --  be built in place. Note however that we currently do this for all
5056      --  composite cases, even though not all are built in place.
5057
5058      if Present (HSS)
5059        or else Is_Composite_Type (Ret_Typ)
5060        or else No (Exp)
5061      then
5062         if No (HSS) then
5063            Stmts := New_List;
5064
5065         --  If the extended return has a handled statement sequence, then wrap
5066         --  it in a block and use the block as the first statement.
5067
5068         else
5069            Stmts := New_List (
5070              Make_Block_Statement (Loc,
5071                Declarations               => New_List,
5072                Handled_Statement_Sequence => HSS));
5073         end if;
5074
5075         --  If the result type contains tasks, we call Move_Activation_Chain.
5076         --  Later, the cleanup code will call Complete_Master, which will
5077         --  terminate any unactivated tasks belonging to the return statement
5078         --  master. But Move_Activation_Chain updates their master to be that
5079         --  of the caller, so they will not be terminated unless the return
5080         --  statement completes unsuccessfully due to exception, abort, goto,
5081         --  or exit. As a formality, we test whether the function requires the
5082         --  result to be built in place, though that's necessarily true for
5083         --  the case of result types with task parts.
5084
5085         if Is_BIP_Func and then Has_Task (Ret_Typ) then
5086
5087            --  The return expression is an aggregate for a complex type which
5088            --  contains tasks. This particular case is left unexpanded since
5089            --  the regular expansion would insert all temporaries and
5090            --  initialization code in the wrong block.
5091
5092            if Nkind (Exp) = N_Aggregate then
5093               Expand_N_Aggregate (Exp);
5094            end if;
5095
5096            --  Do not move the activation chain if the return object does not
5097            --  contain tasks.
5098
5099            if Has_Task (Etype (Ret_Obj_Id)) then
5100               Append_To (Stmts, Move_Activation_Chain (Func_Id));
5101            end if;
5102         end if;
5103
5104         --  Update the state of the function right before the object is
5105         --  returned.
5106
5107         if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
5108            declare
5109               Flag_Id : constant Entity_Id :=
5110                           Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
5111
5112            begin
5113               --  Generate:
5114               --    Fnn := True;
5115
5116               Append_To (Stmts,
5117                 Make_Assignment_Statement (Loc,
5118                   Name       => New_Occurrence_Of (Flag_Id, Loc),
5119                   Expression => New_Occurrence_Of (Standard_True, Loc)));
5120            end;
5121         end if;
5122
5123         --  Build a simple_return_statement that returns the return object
5124
5125         Return_Stmt :=
5126           Make_Simple_Return_Statement (Loc,
5127             Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
5128         Append_To (Stmts, Return_Stmt);
5129
5130         HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
5131      end if;
5132
5133      --  Case where we build a return statement block
5134
5135      if Present (HSS) then
5136         Result :=
5137           Make_Block_Statement (Loc,
5138             Declarations               => Return_Object_Declarations (N),
5139             Handled_Statement_Sequence => HSS);
5140
5141         --  We set the entity of the new block statement to be that of the
5142         --  return statement. This is necessary so that various fields, such
5143         --  as Finalization_Chain_Entity carry over from the return statement
5144         --  to the block. Note that this block is unusual, in that its entity
5145         --  is an E_Return_Statement rather than an E_Block.
5146
5147         Set_Identifier
5148           (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
5149
5150         --  If the object decl was already rewritten as a renaming, then we
5151         --  don't want to do the object allocation and transformation of
5152         --  the return object declaration to a renaming. This case occurs
5153         --  when the return object is initialized by a call to another
5154         --  build-in-place function, and that function is responsible for
5155         --  the allocation of the return object.
5156
5157         if Is_BIP_Func
5158           and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
5159         then
5160            pragma Assert
5161              (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
5162                and then
5163
5164                  --  It is a regular BIP object declaration
5165
5166                  (Is_Build_In_Place_Function_Call
5167                     (Expression (Original_Node (Ret_Obj_Decl)))
5168
5169                  --  It is a BIP object declaration that displaces the pointer
5170                  --  to the object to reference a convered interface type.
5171
5172                  or else
5173                    Present (Unqual_BIP_Iface_Function_Call
5174                              (Expression (Original_Node (Ret_Obj_Decl))))));
5175
5176            --  Return the build-in-place result by reference
5177
5178            Set_By_Ref (Return_Stmt);
5179
5180         elsif Is_BIP_Func then
5181
5182            --  Locate the implicit access parameter associated with the
5183            --  caller-supplied return object and convert the return
5184            --  statement's return object declaration to a renaming of a
5185            --  dereference of the access parameter. If the return object's
5186            --  declaration includes an expression that has not already been
5187            --  expanded as separate assignments, then add an assignment
5188            --  statement to ensure the return object gets initialized.
5189
5190            --    declare
5191            --       Result : T [:= <expression>];
5192            --    begin
5193            --       ...
5194
5195            --  is converted to
5196
5197            --    declare
5198            --       Result : T renames FuncRA.all;
5199            --       [Result := <expression;]
5200            --    begin
5201            --       ...
5202
5203            declare
5204               Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
5205               Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
5206
5207               Init_Assignment  : Node_Id := Empty;
5208               Obj_Acc_Formal   : Entity_Id;
5209               Obj_Acc_Deref    : Node_Id;
5210               Obj_Alloc_Formal : Entity_Id;
5211
5212            begin
5213               --  Build-in-place results must be returned by reference
5214
5215               Set_By_Ref (Return_Stmt);
5216
5217               --  Retrieve the implicit access parameter passed by the caller
5218
5219               Obj_Acc_Formal :=
5220                 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
5221
5222               --  If the return object's declaration includes an expression
5223               --  and the declaration isn't marked as No_Initialization, then
5224               --  we need to generate an assignment to the object and insert
5225               --  it after the declaration before rewriting it as a renaming
5226               --  (otherwise we'll lose the initialization). The case where
5227               --  the result type is an interface (or class-wide interface)
5228               --  is also excluded because the context of the function call
5229               --  must be unconstrained, so the initialization will always
5230               --  be done as part of an allocator evaluation (storage pool
5231               --  or secondary stack), never to a constrained target object
5232               --  passed in by the caller. Besides the assignment being
5233               --  unneeded in this case, it avoids problems with trying to
5234               --  generate a dispatching assignment when the return expression
5235               --  is a nonlimited descendant of a limited interface (the
5236               --  interface has no assignment operation).
5237
5238               if Present (Ret_Obj_Expr)
5239                 and then not No_Initialization (Ret_Obj_Decl)
5240                 and then not Is_Interface (Ret_Obj_Typ)
5241               then
5242                  Init_Assignment :=
5243                    Make_Assignment_Statement (Loc,
5244                      Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
5245                      Expression =>
5246                        New_Copy_Tree
5247                          (Source           => Ret_Obj_Expr,
5248                           Scopes_In_EWA_OK => True));
5249
5250                  Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5251                  Set_Assignment_OK (Name (Init_Assignment));
5252                  Set_No_Ctrl_Actions (Init_Assignment);
5253
5254                  Set_Parent (Name (Init_Assignment), Init_Assignment);
5255                  Set_Parent (Expression (Init_Assignment), Init_Assignment);
5256
5257                  Set_Expression (Ret_Obj_Decl, Empty);
5258
5259                  if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
5260                    and then not Is_Class_Wide_Type
5261                                   (Etype (Expression (Init_Assignment)))
5262                  then
5263                     Rewrite (Expression (Init_Assignment),
5264                       Make_Type_Conversion (Loc,
5265                         Subtype_Mark =>
5266                           New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5267                         Expression   =>
5268                           Relocate_Node (Expression (Init_Assignment))));
5269                  end if;
5270
5271                  --  In the case of functions where the calling context can
5272                  --  determine the form of allocation needed, initialization
5273                  --  is done with each part of the if statement that handles
5274                  --  the different forms of allocation (this is true for
5275                  --  unconstrained, tagged, and controlled result subtypes).
5276
5277                  if not Needs_BIP_Alloc_Form (Func_Id) then
5278                     Insert_After (Ret_Obj_Decl, Init_Assignment);
5279                  end if;
5280               end if;
5281
5282               --  When the function's subtype is unconstrained, a run-time
5283               --  test may be needed to decide the form of allocation to use
5284               --  for the return object. The function has an implicit formal
5285               --  parameter indicating this. If the BIP_Alloc_Form formal has
5286               --  the value one, then the caller has passed access to an
5287               --  existing object for use as the return object. If the value
5288               --  is two, then the return object must be allocated on the
5289               --  secondary stack. Otherwise, the object must be allocated in
5290               --  a storage pool. We generate an if statement to test the
5291               --  implicit allocation formal and initialize a local access
5292               --  value appropriately, creating allocators in the secondary
5293               --  stack and global heap cases. The special formal also exists
5294               --  and must be tested when the function has a tagged result,
5295               --  even when the result subtype is constrained, because in
5296               --  general such functions can be called in dispatching contexts
5297               --  and must be handled similarly to functions with a class-wide
5298               --  result.
5299
5300               if Needs_BIP_Alloc_Form (Func_Id) then
5301                  Obj_Alloc_Formal :=
5302                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5303
5304                  declare
5305                     Pool_Id        : constant Entity_Id :=
5306                                        Make_Temporary (Loc, 'P');
5307                     Alloc_Obj_Id   : Entity_Id;
5308                     Alloc_Obj_Decl : Node_Id;
5309                     Alloc_If_Stmt  : Node_Id;
5310                     Guard_Except   : Node_Id;
5311                     Heap_Allocator : Node_Id;
5312                     Pool_Decl      : Node_Id;
5313                     Pool_Allocator : Node_Id;
5314                     Ptr_Type_Decl  : Node_Id;
5315                     Ref_Type       : Entity_Id;
5316                     SS_Allocator   : Node_Id;
5317
5318                  begin
5319                     --  Create an access type designating the function's
5320                     --  result subtype.
5321
5322                     Ref_Type := Make_Temporary (Loc, 'A');
5323
5324                     Ptr_Type_Decl :=
5325                       Make_Full_Type_Declaration (Loc,
5326                         Defining_Identifier => Ref_Type,
5327                         Type_Definition     =>
5328                           Make_Access_To_Object_Definition (Loc,
5329                             All_Present        => True,
5330                             Subtype_Indication =>
5331                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5332
5333                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5334
5335                     --  Create an access object that will be initialized to an
5336                     --  access value denoting the return object, either coming
5337                     --  from an implicit access value passed in by the caller
5338                     --  or from the result of an allocator.
5339
5340                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5341                     Set_Etype (Alloc_Obj_Id, Ref_Type);
5342
5343                     Alloc_Obj_Decl :=
5344                       Make_Object_Declaration (Loc,
5345                         Defining_Identifier => Alloc_Obj_Id,
5346                         Object_Definition   =>
5347                           New_Occurrence_Of (Ref_Type, Loc));
5348
5349                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5350
5351                     --  Create allocators for both the secondary stack and
5352                     --  global heap. If there's an initialization expression,
5353                     --  then create these as initialized allocators.
5354
5355                     if Present (Ret_Obj_Expr)
5356                       and then not No_Initialization (Ret_Obj_Decl)
5357                     then
5358                        --  Always use the type of the expression for the
5359                        --  qualified expression, rather than the result type.
5360                        --  In general we cannot always use the result type
5361                        --  for the allocator, because the expression might be
5362                        --  of a specific type, such as in the case of an
5363                        --  aggregate or even a nonlimited object when the
5364                        --  result type is a limited class-wide interface type.
5365
5366                        Heap_Allocator :=
5367                          Make_Allocator (Loc,
5368                            Expression =>
5369                              Make_Qualified_Expression (Loc,
5370                                Subtype_Mark =>
5371                                  New_Occurrence_Of
5372                                    (Etype (Ret_Obj_Expr), Loc),
5373                                Expression   =>
5374                                  New_Copy_Tree
5375                                    (Source           => Ret_Obj_Expr,
5376                                     Scopes_In_EWA_OK => True)));
5377
5378                     else
5379                        --  If the function returns a class-wide type we cannot
5380                        --  use the return type for the allocator. Instead we
5381                        --  use the type of the expression, which must be an
5382                        --  aggregate of a definite type.
5383
5384                        if Is_Class_Wide_Type (Ret_Obj_Typ) then
5385                           Heap_Allocator :=
5386                             Make_Allocator (Loc,
5387                               Expression =>
5388                                 New_Occurrence_Of
5389                                   (Etype (Ret_Obj_Expr), Loc));
5390                        else
5391                           Heap_Allocator :=
5392                             Make_Allocator (Loc,
5393                               Expression =>
5394                                 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5395                        end if;
5396
5397                        --  If the object requires default initialization then
5398                        --  that will happen later following the elaboration of
5399                        --  the object renaming. If we don't turn it off here
5400                        --  then the object will be default initialized twice.
5401
5402                        Set_No_Initialization (Heap_Allocator);
5403                     end if;
5404
5405                     --  Set the flag indicating that the allocator came from
5406                     --  a build-in-place return statement, so we can avoid
5407                     --  adjusting the allocated object. Note that this flag
5408                     --  will be inherited by the copies made below.
5409
5410                     Set_Alloc_For_BIP_Return (Heap_Allocator);
5411
5412                     --  The Pool_Allocator is just like the Heap_Allocator,
5413                     --  except we set Storage_Pool and Procedure_To_Call so
5414                     --  it will use the user-defined storage pool.
5415
5416                     Pool_Allocator :=
5417                       New_Copy_Tree
5418                         (Source           => Heap_Allocator,
5419                          Scopes_In_EWA_OK => True);
5420
5421                     pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5422
5423                     --  Do not generate the renaming of the build-in-place
5424                     --  pool parameter on ZFP because the parameter is not
5425                     --  created in the first place.
5426
5427                     if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5428                        Pool_Decl :=
5429                          Make_Object_Renaming_Declaration (Loc,
5430                            Defining_Identifier => Pool_Id,
5431                            Subtype_Mark        =>
5432                              New_Occurrence_Of
5433                                (RTE (RE_Root_Storage_Pool), Loc),
5434                            Name                =>
5435                              Make_Explicit_Dereference (Loc,
5436                                New_Occurrence_Of
5437                                  (Build_In_Place_Formal
5438                                     (Func_Id, BIP_Storage_Pool), Loc)));
5439                        Set_Storage_Pool (Pool_Allocator, Pool_Id);
5440                        Set_Procedure_To_Call
5441                          (Pool_Allocator, RTE (RE_Allocate_Any));
5442                     else
5443                        Pool_Decl := Make_Null_Statement (Loc);
5444                     end if;
5445
5446                     --  If the No_Allocators restriction is active, then only
5447                     --  an allocator for secondary stack allocation is needed.
5448                     --  It's OK for such allocators to have Comes_From_Source
5449                     --  set to False, because gigi knows not to flag them as
5450                     --  being a violation of No_Implicit_Heap_Allocations.
5451
5452                     if Restriction_Active (No_Allocators) then
5453                        SS_Allocator   := Heap_Allocator;
5454                        Heap_Allocator := Make_Null (Loc);
5455                        Pool_Allocator := Make_Null (Loc);
5456
5457                     --  Otherwise the heap and pool allocators may be needed,
5458                     --  so we make another allocator for secondary stack
5459                     --  allocation.
5460
5461                     else
5462                        SS_Allocator :=
5463                          New_Copy_Tree
5464                            (Source           => Heap_Allocator,
5465                             Scopes_In_EWA_OK => True);
5466
5467                        pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5468
5469                        --  The heap and pool allocators are marked as
5470                        --  Comes_From_Source since they correspond to an
5471                        --  explicit user-written allocator (that is, it will
5472                        --  only be executed on behalf of callers that call the
5473                        --  function as initialization for such an allocator).
5474                        --  Prevents errors when No_Implicit_Heap_Allocations
5475                        --  is in force.
5476
5477                        Set_Comes_From_Source (Heap_Allocator, True);
5478                        Set_Comes_From_Source (Pool_Allocator, True);
5479                     end if;
5480
5481                     --  The allocator is returned on the secondary stack
5482
5483                     Check_Restriction (No_Secondary_Stack, N);
5484                     Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5485                     Set_Procedure_To_Call
5486                       (SS_Allocator, RTE (RE_SS_Allocate));
5487
5488                     --  The allocator is returned on the secondary stack,
5489                     --  so indicate that the function return, as well as
5490                     --  all blocks that encloses the allocator, must not
5491                     --  release it. The flags must be set now because
5492                     --  the decision to use the secondary stack is done
5493                     --  very late in the course of expanding the return
5494                     --  statement, past the point where these flags are
5495                     --  normally set.
5496
5497                     Set_Uses_Sec_Stack (Func_Id);
5498                     Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5499                     Set_Sec_Stack_Needed_For_Return
5500                       (Return_Statement_Entity (N));
5501                     Set_Enclosing_Sec_Stack_Return (N);
5502
5503                     --  Guard against poor expansion on the caller side by
5504                     --  using a raise statement to catch out-of-range values
5505                     --  of formal parameter BIP_Alloc_Form.
5506
5507                     if Exceptions_OK then
5508                        Guard_Except :=
5509                          Make_Raise_Program_Error (Loc,
5510                            Reason => PE_Build_In_Place_Mismatch);
5511                     else
5512                        Guard_Except := Make_Null_Statement (Loc);
5513                     end if;
5514
5515                     --  Create an if statement to test the BIP_Alloc_Form
5516                     --  formal and initialize the access object to either the
5517                     --  BIP_Object_Access formal (BIP_Alloc_Form =
5518                     --  Caller_Allocation), the result of allocating the
5519                     --  object in the secondary stack (BIP_Alloc_Form =
5520                     --  Secondary_Stack), or else an allocator to create the
5521                     --  return object in the heap or user-defined pool
5522                     --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5523
5524                     --  ??? An unchecked type conversion must be made in the
5525                     --  case of assigning the access object formal to the
5526                     --  local access object, because a normal conversion would
5527                     --  be illegal in some cases (such as converting access-
5528                     --  to-unconstrained to access-to-constrained), but the
5529                     --  the unchecked conversion will presumably fail to work
5530                     --  right in just such cases. It's not clear at all how to
5531                     --  handle this. ???
5532
5533                     Alloc_If_Stmt :=
5534                       Make_If_Statement (Loc,
5535                         Condition =>
5536                           Make_Op_Eq (Loc,
5537                             Left_Opnd  =>
5538                               New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5539                             Right_Opnd =>
5540                               Make_Integer_Literal (Loc,
5541                                 UI_From_Int (BIP_Allocation_Form'Pos
5542                                                (Caller_Allocation)))),
5543
5544                         Then_Statements => New_List (
5545                           Make_Assignment_Statement (Loc,
5546                             Name       =>
5547                               New_Occurrence_Of (Alloc_Obj_Id, Loc),
5548                             Expression =>
5549                               Make_Unchecked_Type_Conversion (Loc,
5550                                 Subtype_Mark =>
5551                                   New_Occurrence_Of (Ref_Type, Loc),
5552                                 Expression   =>
5553                                   New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5554
5555                         Elsif_Parts => New_List (
5556                           Make_Elsif_Part (Loc,
5557                             Condition =>
5558                               Make_Op_Eq (Loc,
5559                                 Left_Opnd  =>
5560                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5561                                 Right_Opnd =>
5562                                   Make_Integer_Literal (Loc,
5563                                     UI_From_Int (BIP_Allocation_Form'Pos
5564                                                    (Secondary_Stack)))),
5565
5566                             Then_Statements => New_List (
5567                               Make_Assignment_Statement (Loc,
5568                                 Name       =>
5569                                   New_Occurrence_Of (Alloc_Obj_Id, Loc),
5570                                 Expression => SS_Allocator))),
5571
5572                           Make_Elsif_Part (Loc,
5573                             Condition =>
5574                               Make_Op_Eq (Loc,
5575                                 Left_Opnd  =>
5576                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5577                                 Right_Opnd =>
5578                                   Make_Integer_Literal (Loc,
5579                                     UI_From_Int (BIP_Allocation_Form'Pos
5580                                                    (Global_Heap)))),
5581
5582                             Then_Statements => New_List (
5583                               Build_Heap_Or_Pool_Allocator
5584                                 (Temp_Id    => Alloc_Obj_Id,
5585                                  Temp_Typ   => Ref_Type,
5586                                  Func_Id    => Func_Id,
5587                                  Ret_Typ    => Ret_Obj_Typ,
5588                                  Alloc_Expr => Heap_Allocator))),
5589
5590                           --  ???If all is well, we can put the following
5591                           --  'elsif' in the 'else', but this is a useful
5592                           --  self-check in case caller and callee don't agree
5593                           --  on whether BIPAlloc and so on should be passed.
5594
5595                           Make_Elsif_Part (Loc,
5596                             Condition =>
5597                               Make_Op_Eq (Loc,
5598                                 Left_Opnd  =>
5599                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5600                                 Right_Opnd =>
5601                                   Make_Integer_Literal (Loc,
5602                                     UI_From_Int (BIP_Allocation_Form'Pos
5603                                                    (User_Storage_Pool)))),
5604
5605                             Then_Statements => New_List (
5606                               Pool_Decl,
5607                               Build_Heap_Or_Pool_Allocator
5608                                 (Temp_Id    => Alloc_Obj_Id,
5609                                  Temp_Typ   => Ref_Type,
5610                                  Func_Id    => Func_Id,
5611                                  Ret_Typ    => Ret_Obj_Typ,
5612                                  Alloc_Expr => Pool_Allocator)))),
5613
5614                         --  Raise Program_Error if it's none of the above;
5615                         --  this is a compiler bug.
5616
5617                         Else_Statements => New_List (Guard_Except));
5618
5619                     --  If a separate initialization assignment was created
5620                     --  earlier, append that following the assignment of the
5621                     --  implicit access formal to the access object, to ensure
5622                     --  that the return object is initialized in that case. In
5623                     --  this situation, the target of the assignment must be
5624                     --  rewritten to denote a dereference of the access to the
5625                     --  return object passed in by the caller.
5626
5627                     if Present (Init_Assignment) then
5628                        Rewrite (Name (Init_Assignment),
5629                          Make_Explicit_Dereference (Loc,
5630                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5631                        pragma Assert
5632                          (Assignment_OK
5633                             (Original_Node (Name (Init_Assignment))));
5634                        Set_Assignment_OK (Name (Init_Assignment));
5635
5636                        Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5637
5638                        Append_To
5639                          (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5640                     end if;
5641
5642                     Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5643
5644                     --  Remember the local access object for use in the
5645                     --  dereference of the renaming created below.
5646
5647                     Obj_Acc_Formal := Alloc_Obj_Id;
5648                  end;
5649
5650               --  When the function's subtype is unconstrained and a run-time
5651               --  test is not needed, we nevertheless need to build the return
5652               --  using the function's result subtype.
5653
5654               elsif not Is_Constrained (Underlying_Type (Etype (Func_Id)))
5655               then
5656                  declare
5657                     Alloc_Obj_Id   : Entity_Id;
5658                     Alloc_Obj_Decl : Node_Id;
5659                     Ptr_Type_Decl  : Node_Id;
5660                     Ref_Type       : Entity_Id;
5661
5662                  begin
5663                     --  Create an access type designating the function's
5664                     --  result subtype.
5665
5666                     Ref_Type := Make_Temporary (Loc, 'A');
5667
5668                     Ptr_Type_Decl :=
5669                       Make_Full_Type_Declaration (Loc,
5670                         Defining_Identifier => Ref_Type,
5671                         Type_Definition     =>
5672                           Make_Access_To_Object_Definition (Loc,
5673                             All_Present        => True,
5674                             Subtype_Indication =>
5675                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5676
5677                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5678
5679                     --  Create an access object initialized to the conversion
5680                     --  of the implicit access value passed in by the caller.
5681
5682                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5683                     Set_Etype (Alloc_Obj_Id, Ref_Type);
5684
5685                     --  See the ??? comment a few lines above about the use of
5686                     --  an unchecked conversion here.
5687
5688                     Alloc_Obj_Decl :=
5689                       Make_Object_Declaration (Loc,
5690                         Defining_Identifier => Alloc_Obj_Id,
5691                         Object_Definition   =>
5692                           New_Occurrence_Of (Ref_Type, Loc),
5693                         Expression =>
5694                           Make_Unchecked_Type_Conversion (Loc,
5695                             Subtype_Mark =>
5696                               New_Occurrence_Of (Ref_Type, Loc),
5697                             Expression   =>
5698                               New_Occurrence_Of (Obj_Acc_Formal, Loc)));
5699
5700                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5701
5702                     --  Remember the local access object for use in the
5703                     --  dereference of the renaming created below.
5704
5705                     Obj_Acc_Formal := Alloc_Obj_Id;
5706                  end;
5707               end if;
5708
5709               --  Replace the return object declaration with a renaming of a
5710               --  dereference of the access value designating the return
5711               --  object.
5712
5713               Obj_Acc_Deref :=
5714                 Make_Explicit_Dereference (Loc,
5715                   Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5716
5717               Rewrite (Ret_Obj_Decl,
5718                 Make_Object_Renaming_Declaration (Loc,
5719                   Defining_Identifier => Ret_Obj_Id,
5720                   Access_Definition   => Empty,
5721                   Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5722                   Name                => Obj_Acc_Deref));
5723
5724               Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5725            end;
5726         end if;
5727
5728      --  Case where we do not build a block
5729
5730      else
5731         --  We're about to drop Return_Object_Declarations on the floor, so
5732         --  we need to insert it, in case it got expanded into useful code.
5733         --  Remove side effects from expression, which may be duplicated in
5734         --  subsequent checks (see Expand_Simple_Function_Return).
5735
5736         Insert_List_Before (N, Return_Object_Declarations (N));
5737         Remove_Side_Effects (Exp);
5738
5739         --  Build simple_return_statement that returns the expression directly
5740
5741         Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5742         Result := Return_Stmt;
5743      end if;
5744
5745      --  Set the flag to prevent infinite recursion
5746
5747      Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5748
5749      Rewrite (N, Result);
5750      Analyze (N, Suppress => All_Checks);
5751   end Expand_N_Extended_Return_Statement;
5752
5753   ----------------------------
5754   -- Expand_N_Function_Call --
5755   ----------------------------
5756
5757   procedure Expand_N_Function_Call (N : Node_Id) is
5758   begin
5759      Expand_Call (N);
5760   end Expand_N_Function_Call;
5761
5762   ---------------------------------------
5763   -- Expand_N_Procedure_Call_Statement --
5764   ---------------------------------------
5765
5766   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5767   begin
5768      Expand_Call (N);
5769   end Expand_N_Procedure_Call_Statement;
5770
5771   --------------------------------------
5772   -- Expand_N_Simple_Return_Statement --
5773   --------------------------------------
5774
5775   procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5776   begin
5777      --  Defend against previous errors (i.e. the return statement calls a
5778      --  function that is not available in configurable runtime).
5779
5780      if Present (Expression (N))
5781        and then Nkind (Expression (N)) = N_Empty
5782      then
5783         Check_Error_Detected;
5784         return;
5785      end if;
5786
5787      --  Distinguish the function and non-function cases:
5788
5789      case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5790         when E_Function
5791            | E_Generic_Function
5792         =>
5793            Expand_Simple_Function_Return (N);
5794
5795         when E_Entry
5796            | E_Entry_Family
5797            | E_Generic_Procedure
5798            | E_Procedure
5799            | E_Return_Statement
5800         =>
5801            Expand_Non_Function_Return (N);
5802
5803         when others =>
5804            raise Program_Error;
5805      end case;
5806
5807   exception
5808      when RE_Not_Available =>
5809         return;
5810   end Expand_N_Simple_Return_Statement;
5811
5812   ------------------------------
5813   -- Expand_N_Subprogram_Body --
5814   ------------------------------
5815
5816   --  Add poll call if ATC polling is enabled, unless the body will be inlined
5817   --  by the back-end.
5818
5819   --  Add dummy push/pop label nodes at start and end to clear any local
5820   --  exception indications if local-exception-to-goto optimization is active.
5821
5822   --  Add return statement if last statement in body is not a return statement
5823   --  (this makes things easier on Gigi which does not want to have to handle
5824   --  a missing return).
5825
5826   --  Add call to Activate_Tasks if body is a task activator
5827
5828   --  Deal with possible detection of infinite recursion
5829
5830   --  Eliminate body completely if convention stubbed
5831
5832   --  Encode entity names within body, since we will not need to reference
5833   --  these entities any longer in the front end.
5834
5835   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
5836
5837   --  Reset Pure indication if any parameter has root type System.Address
5838   --  or has any parameters of limited types, where limited means that the
5839   --  run-time view is limited (i.e. the full type is limited).
5840
5841   --  Wrap thread body
5842
5843   procedure Expand_N_Subprogram_Body (N : Node_Id) is
5844      Body_Id  : constant Entity_Id  := Defining_Entity (N);
5845      HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
5846      Loc      : constant Source_Ptr := Sloc (N);
5847
5848      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5849      --  Append a return statement to the statement sequence Stmts if the last
5850      --  statement is not already a return or a goto statement. Note that the
5851      --  latter test is not critical, it does not matter if we add a few extra
5852      --  returns, since they get eliminated anyway later on. Spec_Id denotes
5853      --  the corresponding spec of the subprogram body.
5854
5855      ----------------
5856      -- Add_Return --
5857      ----------------
5858
5859      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5860         Last_Stmt : Node_Id;
5861         Loc       : Source_Ptr;
5862         Stmt      : Node_Id;
5863
5864      begin
5865         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
5866         --  not relevant in this context since they are not executable.
5867
5868         Last_Stmt := Last (Stmts);
5869         while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5870            Prev (Last_Stmt);
5871         end loop;
5872
5873         --  Now insert return unless last statement is a transfer
5874
5875         if not Is_Transfer (Last_Stmt) then
5876
5877            --  The source location for the return is the end label of the
5878            --  procedure if present. Otherwise use the sloc of the last
5879            --  statement in the list. If the list comes from a generated
5880            --  exception handler and we are not debugging generated code,
5881            --  all the statements within the handler are made invisible
5882            --  to the debugger.
5883
5884            if Nkind (Parent (Stmts)) = N_Exception_Handler
5885              and then not Comes_From_Source (Parent (Stmts))
5886            then
5887               Loc := Sloc (Last_Stmt);
5888            elsif Present (End_Label (HSS)) then
5889               Loc := Sloc (End_Label (HSS));
5890            else
5891               Loc := Sloc (Last_Stmt);
5892            end if;
5893
5894            --  Append return statement, and set analyzed manually. We can't
5895            --  call Analyze on this return since the scope is wrong.
5896
5897            --  Note: it almost works to push the scope and then do the Analyze
5898            --  call, but something goes wrong in some weird cases and it is
5899            --  not worth worrying about ???
5900
5901            Stmt := Make_Simple_Return_Statement (Loc);
5902
5903            --  The return statement is handled properly, and the call to the
5904            --  postcondition, inserted below, does not require information
5905            --  from the body either. However, that call is analyzed in the
5906            --  enclosing scope, and an elaboration check might improperly be
5907            --  added to it. A guard in Sem_Elab is needed to prevent that
5908            --  spurious check, see Check_Elab_Call.
5909
5910            Append_To (Stmts, Stmt);
5911            Set_Analyzed (Stmt);
5912
5913            --  Call the _Postconditions procedure if the related subprogram
5914            --  has contract assertions that need to be verified on exit.
5915
5916            if Ekind (Spec_Id) = E_Procedure
5917              and then Present (Postconditions_Proc (Spec_Id))
5918            then
5919               Insert_Action (Stmt,
5920                 Make_Procedure_Call_Statement (Loc,
5921                   Name =>
5922                     New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5923            end if;
5924         end if;
5925      end Add_Return;
5926
5927      --  Local variables
5928
5929      Except_H : Node_Id;
5930      L        : List_Id;
5931      Spec_Id  : Entity_Id;
5932
5933   --  Start of processing for Expand_N_Subprogram_Body
5934
5935   begin
5936      if Present (Corresponding_Spec (N)) then
5937         Spec_Id := Corresponding_Spec (N);
5938      else
5939         Spec_Id := Body_Id;
5940      end if;
5941
5942      --  If this is a Pure function which has any parameters whose root type
5943      --  is System.Address, reset the Pure indication.
5944      --  This check is also performed when the subprogram is frozen, but we
5945      --  repeat it on the body so that the indication is consistent, and so
5946      --  it applies as well to bodies without separate specifications.
5947
5948      if Is_Pure (Spec_Id)
5949        and then Is_Subprogram (Spec_Id)
5950        and then not Has_Pragma_Pure_Function (Spec_Id)
5951      then
5952         Check_Function_With_Address_Parameter (Spec_Id);
5953
5954         if Spec_Id /= Body_Id then
5955            Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5956         end if;
5957      end if;
5958
5959      --  Set L to either the list of declarations if present, or to the list
5960      --  of statements if no declarations are present. This is used to insert
5961      --  new stuff at the start.
5962
5963      if Is_Non_Empty_List (Declarations (N)) then
5964         L := Declarations (N);
5965      else
5966         L := Statements (HSS);
5967      end if;
5968
5969      --  If local-exception-to-goto optimization active, insert dummy push
5970      --  statements at start, and dummy pop statements at end, but inhibit
5971      --  this if we have No_Exception_Handlers, since they are useless and
5972      --  interfere with analysis, e.g. by CodePeer. We also don't need these
5973      --  if we're unnesting subprograms because the only purpose of these
5974      --  nodes is to ensure we don't set a label in one subprogram and branch
5975      --  to it in another.
5976
5977      if (Debug_Flag_Dot_G
5978           or else Restriction_Active (No_Exception_Propagation))
5979        and then not Restriction_Active (No_Exception_Handlers)
5980        and then not CodePeer_Mode
5981        and then not Unnest_Subprogram_Mode
5982        and then Is_Non_Empty_List (L)
5983      then
5984         declare
5985            FS  : constant Node_Id    := First (L);
5986            FL  : constant Source_Ptr := Sloc (FS);
5987            LS  : Node_Id;
5988            LL  : Source_Ptr;
5989
5990         begin
5991            --  LS points to either last statement, if statements are present
5992            --  or to the last declaration if there are no statements present.
5993            --  It is the node after which the pop's are generated.
5994
5995            if Is_Non_Empty_List (Statements (HSS)) then
5996               LS := Last (Statements (HSS));
5997            else
5998               LS := Last (L);
5999            end if;
6000
6001            LL := Sloc (LS);
6002
6003            Insert_List_Before_And_Analyze (FS, New_List (
6004              Make_Push_Constraint_Error_Label (FL),
6005              Make_Push_Program_Error_Label    (FL),
6006              Make_Push_Storage_Error_Label    (FL)));
6007
6008            Insert_List_After_And_Analyze (LS, New_List (
6009              Make_Pop_Constraint_Error_Label  (LL),
6010              Make_Pop_Program_Error_Label     (LL),
6011              Make_Pop_Storage_Error_Label     (LL)));
6012         end;
6013      end if;
6014
6015      --  Need poll on entry to subprogram if polling enabled. We only do this
6016      --  for non-empty subprograms, since it does not seem necessary to poll
6017      --  for a dummy null subprogram.
6018
6019      if Is_Non_Empty_List (L) then
6020
6021         --  Do not add a polling call if the subprogram is to be inlined by
6022         --  the back-end, to avoid repeated calls with multiple inlinings.
6023
6024         if Is_Inlined (Spec_Id)
6025           and then Front_End_Inlining
6026           and then Optimization_Level > 1
6027         then
6028            null;
6029         else
6030            Generate_Poll_Call (First (L));
6031         end if;
6032      end if;
6033
6034      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
6035
6036      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
6037         declare
6038            F : Entity_Id;
6039            A : Node_Id;
6040
6041         begin
6042            --  Loop through formals
6043
6044            F := First_Formal (Spec_Id);
6045            while Present (F) loop
6046               if Is_Scalar_Type (Etype (F))
6047                 and then Ekind (F) = E_Out_Parameter
6048               then
6049                  Check_Restriction (No_Default_Initialization, F);
6050
6051                  --  Insert the initialization. We turn off validity checks
6052                  --  for this assignment, since we do not want any check on
6053                  --  the initial value itself (which may well be invalid).
6054                  --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
6055
6056                  A :=
6057                    Make_Assignment_Statement (Loc,
6058                      Name       => New_Occurrence_Of (F, Loc),
6059                      Expression => Get_Simple_Init_Val (Etype (F), N));
6060                  Set_Suppress_Assignment_Checks (A);
6061
6062                  Insert_Before_And_Analyze (First (L),
6063                    A, Suppress => Validity_Check);
6064               end if;
6065
6066               Next_Formal (F);
6067            end loop;
6068         end;
6069      end if;
6070
6071      --  Clear out statement list for stubbed procedure
6072
6073      if Present (Corresponding_Spec (N)) then
6074         Set_Elaboration_Flag (N, Spec_Id);
6075
6076         if Convention (Spec_Id) = Convention_Stubbed
6077           or else Is_Eliminated (Spec_Id)
6078         then
6079            Set_Declarations (N, Empty_List);
6080            Set_Handled_Statement_Sequence (N,
6081              Make_Handled_Sequence_Of_Statements (Loc,
6082                Statements => New_List (Make_Null_Statement (Loc))));
6083
6084            return;
6085         end if;
6086      end if;
6087
6088      --  Create a set of discriminals for the next protected subprogram body
6089
6090      if Is_List_Member (N)
6091        and then Present (Parent (List_Containing (N)))
6092        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6093        and then Present (Next_Protected_Operation (N))
6094      then
6095         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
6096      end if;
6097
6098      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
6099      --  subprograms with no specs are not frozen.
6100
6101      declare
6102         Typ  : constant Entity_Id := Etype (Spec_Id);
6103         Utyp : constant Entity_Id := Underlying_Type (Typ);
6104
6105      begin
6106         if Is_Limited_View (Typ) then
6107            Set_Returns_By_Ref (Spec_Id);
6108
6109         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6110            Set_Returns_By_Ref (Spec_Id);
6111         end if;
6112      end;
6113
6114      --  For a procedure, we add a return for all possible syntactic ends of
6115      --  the subprogram.
6116
6117      if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
6118         Add_Return (Spec_Id, Statements (HSS));
6119
6120         if Present (Exception_Handlers (HSS)) then
6121            Except_H := First_Non_Pragma (Exception_Handlers (HSS));
6122            while Present (Except_H) loop
6123               Add_Return (Spec_Id, Statements (Except_H));
6124               Next_Non_Pragma (Except_H);
6125            end loop;
6126         end if;
6127
6128      --  For a function, we must deal with the case where there is at least
6129      --  one missing return. What we do is to wrap the entire body of the
6130      --  function in a block:
6131
6132      --    begin
6133      --      ...
6134      --    end;
6135
6136      --  becomes
6137
6138      --    begin
6139      --       begin
6140      --          ...
6141      --       end;
6142
6143      --       raise Program_Error;
6144      --    end;
6145
6146      --  This approach is necessary because the raise must be signalled to the
6147      --  caller, not handled by any local handler (RM 6.4(11)).
6148
6149      --  Note: we do not need to analyze the constructed sequence here, since
6150      --  it has no handler, and an attempt to analyze the handled statement
6151      --  sequence twice is risky in various ways (e.g. the issue of expanding
6152      --  cleanup actions twice).
6153
6154      elsif Has_Missing_Return (Spec_Id) then
6155         declare
6156            Hloc : constant Source_Ptr := Sloc (HSS);
6157            Blok : constant Node_Id    :=
6158                     Make_Block_Statement (Hloc,
6159                       Handled_Statement_Sequence => HSS);
6160            Rais : constant Node_Id    :=
6161                     Make_Raise_Program_Error (Hloc,
6162                       Reason => PE_Missing_Return);
6163
6164         begin
6165            Set_Handled_Statement_Sequence (N,
6166              Make_Handled_Sequence_Of_Statements (Hloc,
6167                Statements => New_List (Blok, Rais)));
6168
6169            Push_Scope (Spec_Id);
6170            Analyze (Blok);
6171            Analyze (Rais);
6172            Pop_Scope;
6173         end;
6174      end if;
6175
6176      --  If subprogram contains a parameterless recursive call, then we may
6177      --  have an infinite recursion, so see if we can generate code to check
6178      --  for this possibility if storage checks are not suppressed.
6179
6180      if Ekind (Spec_Id) = E_Procedure
6181        and then Has_Recursive_Call (Spec_Id)
6182        and then not Storage_Checks_Suppressed (Spec_Id)
6183      then
6184         Detect_Infinite_Recursion (N, Spec_Id);
6185      end if;
6186
6187      --  Set to encode entity names in package body before gigi is called
6188
6189      Qualify_Entity_Names (N);
6190
6191      --  If the body belongs to a nonabstract library-level source primitive
6192      --  of a tagged type, install an elaboration check which ensures that a
6193      --  dispatching call targeting the primitive will not execute the body
6194      --  without it being previously elaborated.
6195
6196      Install_Primitive_Elaboration_Check (N);
6197   end Expand_N_Subprogram_Body;
6198
6199   -----------------------------------
6200   -- Expand_N_Subprogram_Body_Stub --
6201   -----------------------------------
6202
6203   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
6204      Bod : Node_Id;
6205
6206   begin
6207      if Present (Corresponding_Body (N)) then
6208         Bod := Unit_Declaration_Node (Corresponding_Body (N));
6209
6210         --  The body may have been expanded already when it is analyzed
6211         --  through the subunit node. Do no expand again: it interferes
6212         --  with the construction of unnesting tables when generating C.
6213
6214         if not Analyzed (Bod) then
6215            Expand_N_Subprogram_Body (Bod);
6216         end if;
6217
6218         --  Add full qualification to entities that may be created late
6219         --  during unnesting.
6220
6221         Qualify_Entity_Names (N);
6222      end if;
6223   end Expand_N_Subprogram_Body_Stub;
6224
6225   -------------------------------------
6226   -- Expand_N_Subprogram_Declaration --
6227   -------------------------------------
6228
6229   --  If the declaration appears within a protected body, it is a private
6230   --  operation of the protected type. We must create the corresponding
6231   --  protected subprogram an associated formals. For a normal protected
6232   --  operation, this is done when expanding the protected type declaration.
6233
6234   --  If the declaration is for a null procedure, emit null body
6235
6236   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
6237      Loc  : constant Source_Ptr := Sloc (N);
6238      Subp : constant Entity_Id  := Defining_Entity (N);
6239
6240      --  Local variables
6241
6242      Scop      : constant Entity_Id  := Scope (Subp);
6243      Prot_Bod  : Node_Id;
6244      Prot_Decl : Node_Id;
6245      Prot_Id   : Entity_Id;
6246
6247   --  Start of processing for Expand_N_Subprogram_Declaration
6248
6249   begin
6250      --  In SPARK, subprogram declarations are only allowed in package
6251      --  specifications.
6252
6253      if Nkind (Parent (N)) /= N_Package_Specification then
6254         if Nkind (Parent (N)) = N_Compilation_Unit then
6255            Check_SPARK_05_Restriction
6256              ("subprogram declaration is not a library item", N);
6257
6258         elsif Present (Next (N))
6259           and then Nkind (Next (N)) = N_Pragma
6260           and then Get_Pragma_Id (Next (N)) = Pragma_Import
6261         then
6262            --  In SPARK, subprogram declarations are also permitted in
6263            --  declarative parts when immediately followed by a corresponding
6264            --  pragma Import. We only check here that there is some pragma
6265            --  Import.
6266
6267            null;
6268         else
6269            Check_SPARK_05_Restriction
6270              ("subprogram declaration is not allowed here", N);
6271         end if;
6272      end if;
6273
6274      --  Deal with case of protected subprogram. Do not generate protected
6275      --  operation if operation is flagged as eliminated.
6276
6277      if Is_List_Member (N)
6278        and then Present (Parent (List_Containing (N)))
6279        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6280        and then Is_Protected_Type (Scop)
6281      then
6282         if No (Protected_Body_Subprogram (Subp))
6283           and then not Is_Eliminated (Subp)
6284         then
6285            Prot_Decl :=
6286              Make_Subprogram_Declaration (Loc,
6287                Specification =>
6288                  Build_Protected_Sub_Specification
6289                    (N, Scop, Unprotected_Mode));
6290
6291            --  The protected subprogram is declared outside of the protected
6292            --  body. Given that the body has frozen all entities so far, we
6293            --  analyze the subprogram and perform freezing actions explicitly.
6294            --  including the generation of an explicit freeze node, to ensure
6295            --  that gigi has the proper order of elaboration.
6296            --  If the body is a subunit, the insertion point is before the
6297            --  stub in the parent.
6298
6299            Prot_Bod := Parent (List_Containing (N));
6300
6301            if Nkind (Parent (Prot_Bod)) = N_Subunit then
6302               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6303            end if;
6304
6305            Insert_Before (Prot_Bod, Prot_Decl);
6306            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
6307            Set_Has_Delayed_Freeze (Prot_Id);
6308
6309            Push_Scope (Scope (Scop));
6310            Analyze (Prot_Decl);
6311            Freeze_Before (N, Prot_Id);
6312            Set_Protected_Body_Subprogram (Subp, Prot_Id);
6313
6314            --  Create protected operation as well. Even though the operation
6315            --  is only accessible within the body, it is possible to make it
6316            --  available outside of the protected object by using 'Access to
6317            --  provide a callback, so build protected version in all cases.
6318
6319            Prot_Decl :=
6320              Make_Subprogram_Declaration (Loc,
6321                Specification =>
6322                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
6323            Insert_Before (Prot_Bod, Prot_Decl);
6324            Analyze (Prot_Decl);
6325
6326            Pop_Scope;
6327         end if;
6328
6329      --  Ada 2005 (AI-348): Generate body for a null procedure. In most
6330      --  cases this is superfluous because calls to it will be automatically
6331      --  inlined, but we definitely need the body if preconditions for the
6332      --  procedure are present, or if performing coverage analysis.
6333
6334      elsif Nkind (Specification (N)) = N_Procedure_Specification
6335        and then Null_Present (Specification (N))
6336      then
6337         declare
6338            Bod : constant Node_Id := Body_To_Inline (N);
6339
6340         begin
6341            Set_Has_Completion (Subp, False);
6342            Append_Freeze_Action (Subp, Bod);
6343
6344            --  The body now contains raise statements, so calls to it will
6345            --  not be inlined.
6346
6347            Set_Is_Inlined (Subp, False);
6348         end;
6349      end if;
6350
6351      --  When generating C code, transform a function that returns a
6352      --  constrained array type into a procedure with an out parameter
6353      --  that carries the return value.
6354
6355      --  We skip this transformation for unchecked conversions, since they
6356      --  are not needed by the C generator (and this also produces cleaner
6357      --  output).
6358
6359      if Modify_Tree_For_C
6360        and then Nkind (Specification (N)) = N_Function_Specification
6361        and then Is_Array_Type (Etype (Subp))
6362        and then Is_Constrained (Etype (Subp))
6363        and then not Is_Unchecked_Conversion_Instance (Subp)
6364      then
6365         Build_Procedure_Form (N);
6366      end if;
6367   end Expand_N_Subprogram_Declaration;
6368
6369   --------------------------------
6370   -- Expand_Non_Function_Return --
6371   --------------------------------
6372
6373   procedure Expand_Non_Function_Return (N : Node_Id) is
6374      pragma Assert (No (Expression (N)));
6375
6376      Loc       : constant Source_Ptr := Sloc (N);
6377      Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6378      Kind      : constant Entity_Kind := Ekind (Scope_Id);
6379      Call      : Node_Id;
6380      Acc_Stat  : Node_Id;
6381      Goto_Stat : Node_Id;
6382      Lab_Node  : Node_Id;
6383
6384   begin
6385      --  Call the _Postconditions procedure if the related subprogram has
6386      --  contract assertions that need to be verified on exit.
6387
6388      if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6389        and then Present (Postconditions_Proc (Scope_Id))
6390      then
6391         Insert_Action (N,
6392           Make_Procedure_Call_Statement (Loc,
6393             Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6394      end if;
6395
6396      --  If it is a return from a procedure do no extra steps
6397
6398      if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6399         return;
6400
6401      --  If it is a nested return within an extended one, replace it with a
6402      --  return of the previously declared return object.
6403
6404      elsif Kind = E_Return_Statement then
6405         Rewrite (N,
6406           Make_Simple_Return_Statement (Loc,
6407             Expression =>
6408               New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6409         Set_Comes_From_Extended_Return_Statement (N);
6410         Set_Return_Statement_Entity (N, Scope_Id);
6411         Expand_Simple_Function_Return (N);
6412         return;
6413      end if;
6414
6415      pragma Assert (Is_Entry (Scope_Id));
6416
6417      --  Look at the enclosing block to see whether the return is from an
6418      --  accept statement or an entry body.
6419
6420      for J in reverse 0 .. Scope_Stack.Last loop
6421         Scope_Id := Scope_Stack.Table (J).Entity;
6422         exit when Is_Concurrent_Type (Scope_Id);
6423      end loop;
6424
6425      --  If it is a return from accept statement it is expanded as call to
6426      --  RTS Complete_Rendezvous and a goto to the end of the accept body.
6427
6428      --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6429      --  Expand_N_Accept_Alternative in exp_ch9.adb)
6430
6431      if Is_Task_Type (Scope_Id) then
6432
6433         Call :=
6434           Make_Procedure_Call_Statement (Loc,
6435             Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6436         Insert_Before (N, Call);
6437         --  why not insert actions here???
6438         Analyze (Call);
6439
6440         Acc_Stat := Parent (N);
6441         while Nkind (Acc_Stat) /= N_Accept_Statement loop
6442            Acc_Stat := Parent (Acc_Stat);
6443         end loop;
6444
6445         Lab_Node := Last (Statements
6446           (Handled_Statement_Sequence (Acc_Stat)));
6447
6448         Goto_Stat := Make_Goto_Statement (Loc,
6449           Name => New_Occurrence_Of
6450             (Entity (Identifier (Lab_Node)), Loc));
6451
6452         Set_Analyzed (Goto_Stat);
6453
6454         Rewrite (N, Goto_Stat);
6455         Analyze (N);
6456
6457      --  If it is a return from an entry body, put a Complete_Entry_Body call
6458      --  in front of the return.
6459
6460      elsif Is_Protected_Type (Scope_Id) then
6461         Call :=
6462           Make_Procedure_Call_Statement (Loc,
6463             Name =>
6464               New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6465             Parameter_Associations => New_List (
6466               Make_Attribute_Reference (Loc,
6467                 Prefix         =>
6468                   New_Occurrence_Of
6469                     (Find_Protection_Object (Current_Scope), Loc),
6470                 Attribute_Name => Name_Unchecked_Access)));
6471
6472         Insert_Before (N, Call);
6473         Analyze (Call);
6474      end if;
6475   end Expand_Non_Function_Return;
6476
6477   ---------------------------------------
6478   -- Expand_Protected_Object_Reference --
6479   ---------------------------------------
6480
6481   function Expand_Protected_Object_Reference
6482     (N    : Node_Id;
6483      Scop : Entity_Id) return Node_Id
6484   is
6485      Loc   : constant Source_Ptr := Sloc (N);
6486      Corr  : Entity_Id;
6487      Rec   : Node_Id;
6488      Param : Entity_Id;
6489      Proc  : Entity_Id;
6490
6491   begin
6492      Rec := Make_Identifier (Loc, Name_uObject);
6493      Set_Etype (Rec, Corresponding_Record_Type (Scop));
6494
6495      --  Find enclosing protected operation, and retrieve its first parameter,
6496      --  which denotes the enclosing protected object. If the enclosing
6497      --  operation is an entry, we are immediately within the protected body,
6498      --  and we can retrieve the object from the service entries procedure. A
6499      --  barrier function has the same signature as an entry. A barrier
6500      --  function is compiled within the protected object, but unlike
6501      --  protected operations its never needs locks, so that its protected
6502      --  body subprogram points to itself.
6503
6504      Proc := Current_Scope;
6505      while Present (Proc)
6506        and then Scope (Proc) /= Scop
6507      loop
6508         Proc := Scope (Proc);
6509      end loop;
6510
6511      Corr := Protected_Body_Subprogram (Proc);
6512
6513      if No (Corr) then
6514
6515         --  Previous error left expansion incomplete.
6516         --  Nothing to do on this call.
6517
6518         return Empty;
6519      end if;
6520
6521      Param :=
6522        Defining_Identifier
6523          (First (Parameter_Specifications (Parent (Corr))));
6524
6525      if Is_Subprogram (Proc) and then Proc /= Corr then
6526
6527         --  Protected function or procedure
6528
6529         Set_Entity (Rec, Param);
6530
6531         --  Rec is a reference to an entity which will not be in scope when
6532         --  the call is reanalyzed, and needs no further analysis.
6533
6534         Set_Analyzed (Rec);
6535
6536      else
6537         --  Entry or barrier function for entry body. The first parameter of
6538         --  the entry body procedure is pointer to the object. We create a
6539         --  local variable of the proper type, duplicating what is done to
6540         --  define _object later on.
6541
6542         declare
6543            Decls   : List_Id;
6544            Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6545
6546         begin
6547            Decls := New_List (
6548              Make_Full_Type_Declaration (Loc,
6549                Defining_Identifier => Obj_Ptr,
6550                  Type_Definition   =>
6551                     Make_Access_To_Object_Definition (Loc,
6552                       Subtype_Indication =>
6553                         New_Occurrence_Of
6554                           (Corresponding_Record_Type (Scop), Loc))));
6555
6556            Insert_Actions (N, Decls);
6557            Freeze_Before (N, Obj_Ptr);
6558
6559            Rec :=
6560              Make_Explicit_Dereference (Loc,
6561                Prefix =>
6562                  Unchecked_Convert_To (Obj_Ptr,
6563                    New_Occurrence_Of (Param, Loc)));
6564
6565            --  Analyze new actual. Other actuals in calls are already analyzed
6566            --  and the list of actuals is not reanalyzed after rewriting.
6567
6568            Set_Parent (Rec, N);
6569            Analyze (Rec);
6570         end;
6571      end if;
6572
6573      return Rec;
6574   end Expand_Protected_Object_Reference;
6575
6576   --------------------------------------
6577   -- Expand_Protected_Subprogram_Call --
6578   --------------------------------------
6579
6580   procedure Expand_Protected_Subprogram_Call
6581     (N    : Node_Id;
6582      Subp : Entity_Id;
6583      Scop : Entity_Id)
6584   is
6585      Rec : Node_Id;
6586
6587      procedure Expand_Internal_Init_Call;
6588      --  A call to an operation of the type may occur in the initialization
6589      --  of a private component. In that case the prefix of the call is an
6590      --  entity name and the call is treated as internal even though it
6591      --  appears in code outside of the protected type.
6592
6593      procedure Freeze_Called_Function;
6594      --  If it is a function call it can appear in elaboration code and
6595      --  the called entity must be frozen before the call. This must be
6596      --  done before the call is expanded, as the expansion may rewrite it
6597      --  to something other than a call (e.g. a temporary initialized in a
6598      --  transient block).
6599
6600      -------------------------------
6601      -- Expand_Internal_Init_Call --
6602      -------------------------------
6603
6604      procedure Expand_Internal_Init_Call is
6605      begin
6606         --  If the context is a protected object (rather than a protected
6607         --  type) the call itself is bound to raise program_error because
6608         --  the protected body will not have been elaborated yet. This is
6609         --  diagnosed subsequently in Sem_Elab.
6610
6611         Freeze_Called_Function;
6612
6613         --  The target of the internal call is the first formal of the
6614         --  enclosing initialization procedure.
6615
6616         Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6617         Build_Protected_Subprogram_Call (N,
6618           Name     => Name (N),
6619           Rec      => Rec,
6620           External => False);
6621         Analyze (N);
6622         Resolve (N, Etype (Subp));
6623      end Expand_Internal_Init_Call;
6624
6625      ----------------------------
6626      -- Freeze_Called_Function --
6627      ----------------------------
6628
6629      procedure Freeze_Called_Function is
6630      begin
6631         if Ekind (Subp) = E_Function then
6632            Freeze_Expression (Name (N));
6633         end if;
6634      end Freeze_Called_Function;
6635
6636   --  Start of processing for Expand_Protected_Subprogram_Call
6637
6638   begin
6639      --  If the protected object is not an enclosing scope, this is an inter-
6640      --  object function call. Inter-object procedure calls are expanded by
6641      --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6642      --  subprogram being called is in the protected body being compiled, and
6643      --  if the protected object in the call is statically the enclosing type.
6644      --  The object may be a component of some other data structure, in which
6645      --  case this must be handled as an inter-object call.
6646
6647      if not In_Open_Scopes (Scop)
6648        or else Is_Entry_Wrapper (Current_Scope)
6649        or else not Is_Entity_Name (Name (N))
6650      then
6651         if Nkind (Name (N)) = N_Selected_Component then
6652            Rec := Prefix (Name (N));
6653
6654         elsif Nkind (Name (N)) = N_Indexed_Component then
6655            Rec := Prefix (Prefix (Name (N)));
6656
6657         --  If this is a call within an entry wrapper, it appears within a
6658         --  precondition that calls another primitive of the synchronized
6659         --  type. The target object of the call is the first actual on the
6660         --  wrapper. Note that this is an external call, because the wrapper
6661         --  is called outside of the synchronized object. This means that
6662         --  an entry call to an entry with preconditions involves two
6663         --  synchronized operations.
6664
6665         elsif Ekind (Current_Scope) = E_Procedure
6666           and then Is_Entry_Wrapper (Current_Scope)
6667         then
6668            Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6669
6670         --  A default parameter of a protected operation may be a call to
6671         --  a protected function of the type. This appears as an internal
6672         --  call in the profile of the operation, but if the context is an
6673         --  external call we must convert the call into an external one,
6674         --  using the protected object that is the target, so that:
6675
6676         --     Prot.P (F)
6677         --  is transformed into
6678         --     Prot.P (Prot.F)
6679
6680         elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6681           and then Nkind (Name (Parent (N))) = N_Selected_Component
6682           and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6683           and then Is_Entity_Name (Name (N))
6684           and then Scope (Entity (Name (N))) =
6685                      Etype (Prefix (Name (Parent (N))))
6686         then
6687            Rewrite (Name (N),
6688              Make_Selected_Component (Sloc (N),
6689                Prefix        => New_Copy_Tree (Prefix (Name (Parent (N)))),
6690                Selector_Name => Relocate_Node (Name (N))));
6691
6692            Analyze_And_Resolve (N);
6693            return;
6694
6695         else
6696            --  If the context is the initialization procedure for a protected
6697            --  type, the call is legal because the called entity must be a
6698            --  function of that enclosing type, and this is treated as an
6699            --  internal call.
6700
6701            pragma Assert
6702              (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6703
6704            Expand_Internal_Init_Call;
6705            return;
6706         end if;
6707
6708         Freeze_Called_Function;
6709         Build_Protected_Subprogram_Call (N,
6710           Name     => New_Occurrence_Of (Subp, Sloc (N)),
6711           Rec      => Convert_Concurrent (Rec, Etype (Rec)),
6712           External => True);
6713
6714      else
6715         Rec := Expand_Protected_Object_Reference (N, Scop);
6716
6717         if No (Rec) then
6718            return;
6719         end if;
6720
6721         Freeze_Called_Function;
6722         Build_Protected_Subprogram_Call (N,
6723           Name     => Name (N),
6724           Rec      => Rec,
6725           External => False);
6726      end if;
6727
6728      --  Analyze and resolve the new call. The actuals have already been
6729      --  resolved, but expansion of a function call will add extra actuals
6730      --  if needed. Analysis of a procedure call already includes resolution.
6731
6732      Analyze (N);
6733
6734      if Ekind (Subp) = E_Function then
6735         Resolve (N, Etype (Subp));
6736      end if;
6737   end Expand_Protected_Subprogram_Call;
6738
6739   -----------------------------------
6740   -- Expand_Simple_Function_Return --
6741   -----------------------------------
6742
6743   --  The "simple" comes from the syntax rule simple_return_statement. The
6744   --  semantics are not at all simple.
6745
6746   procedure Expand_Simple_Function_Return (N : Node_Id) is
6747      Loc : constant Source_Ptr := Sloc (N);
6748
6749      Scope_Id : constant Entity_Id :=
6750                   Return_Applies_To (Return_Statement_Entity (N));
6751      --  The function we are returning from
6752
6753      R_Type : constant Entity_Id := Etype (Scope_Id);
6754      --  The result type of the function
6755
6756      Utyp : constant Entity_Id := Underlying_Type (R_Type);
6757
6758      Exp : Node_Id := Expression (N);
6759      pragma Assert (Present (Exp));
6760
6761      Exptyp : constant Entity_Id := Etype (Exp);
6762      --  The type of the expression (not necessarily the same as R_Type)
6763
6764      Subtype_Ind : Node_Id;
6765      --  If the result type of the function is class-wide and the expression
6766      --  has a specific type, then we use the expression's type as the type of
6767      --  the return object. In cases where the expression is an aggregate that
6768      --  is built in place, this avoids the need for an expensive conversion
6769      --  of the return object to the specific type on assignments to the
6770      --  individual components.
6771
6772   begin
6773      if Is_Class_Wide_Type (R_Type)
6774        and then not Is_Class_Wide_Type (Exptyp)
6775        and then Nkind (Exp) /= N_Type_Conversion
6776      then
6777         Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6778      else
6779         Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6780
6781         --  If the result type is class-wide and the expression is a view
6782         --  conversion, the conversion plays no role in the expansion because
6783         --  it does not modify the tag of the object. Remove the conversion
6784         --  altogether to prevent tag overwriting.
6785
6786         if Is_Class_Wide_Type (R_Type)
6787           and then not Is_Class_Wide_Type (Exptyp)
6788           and then Nkind (Exp) = N_Type_Conversion
6789         then
6790            Exp := Expression (Exp);
6791         end if;
6792      end if;
6793
6794      --  Assert that if F says "return G(...);"
6795      --  then F and G are both b-i-p, or neither b-i-p.
6796
6797      if Nkind (Exp) = N_Function_Call then
6798         pragma Assert (Ekind (Scope_Id) = E_Function);
6799         pragma Assert
6800           (Is_Build_In_Place_Function (Scope_Id) =
6801            Is_Build_In_Place_Function_Call (Exp));
6802         null;
6803      end if;
6804
6805      --  For the case of a simple return that does not come from an
6806      --  extended return, in the case of build-in-place, we rewrite
6807      --  "return <expression>;" to be:
6808
6809      --    return _anon_ : <return_subtype> := <expression>
6810
6811      --  The expansion produced by Expand_N_Extended_Return_Statement will
6812      --  contain simple return statements (for example, a block containing
6813      --  simple return of the return object), which brings us back here with
6814      --  Comes_From_Extended_Return_Statement set. The reason for the barrier
6815      --  checking for a simple return that does not come from an extended
6816      --  return is to avoid this infinite recursion.
6817
6818      --  The reason for this design is that for Ada 2005 limited returns, we
6819      --  need to reify the return object, so we can build it "in place", and
6820      --  we need a block statement to hang finalization and tasking stuff.
6821
6822      --  ??? In order to avoid disruption, we avoid translating to extended
6823      --  return except in the cases where we really need to (Ada 2005 for
6824      --  inherently limited). We might prefer to do this translation in all
6825      --  cases (except perhaps for the case of Ada 95 inherently limited),
6826      --  in order to fully exercise the Expand_N_Extended_Return_Statement
6827      --  code. This would also allow us to do the build-in-place optimization
6828      --  for efficiency even in cases where it is semantically not required.
6829
6830      --  As before, we check the type of the return expression rather than the
6831      --  return type of the function, because the latter may be a limited
6832      --  class-wide interface type, which is not a limited type, even though
6833      --  the type of the expression may be.
6834
6835      pragma Assert
6836        (Comes_From_Extended_Return_Statement (N)
6837          or else not Is_Build_In_Place_Function_Call (Exp)
6838          or else Is_Build_In_Place_Function (Scope_Id));
6839
6840      if not Comes_From_Extended_Return_Statement (N)
6841        and then Is_Build_In_Place_Function (Scope_Id)
6842        and then not Debug_Flag_Dot_L
6843
6844         --  The functionality of interface thunks is simple and it is always
6845         --  handled by means of simple return statements. This leaves their
6846         --  expansion simple and clean.
6847
6848        and then not Is_Thunk (Current_Scope)
6849      then
6850         declare
6851            Return_Object_Entity : constant Entity_Id :=
6852                                     Make_Temporary (Loc, 'R', Exp);
6853
6854            Obj_Decl : constant Node_Id :=
6855                         Make_Object_Declaration (Loc,
6856                           Defining_Identifier => Return_Object_Entity,
6857                           Object_Definition   => Subtype_Ind,
6858                           Expression          => Exp);
6859
6860            Ext : constant Node_Id :=
6861                    Make_Extended_Return_Statement (Loc,
6862                      Return_Object_Declarations => New_List (Obj_Decl));
6863            --  Do not perform this high-level optimization if the result type
6864            --  is an interface because the "this" pointer must be displaced.
6865
6866         begin
6867            Rewrite (N, Ext);
6868            Analyze (N);
6869            return;
6870         end;
6871      end if;
6872
6873      --  Here we have a simple return statement that is part of the expansion
6874      --  of an extended return statement (either written by the user, or
6875      --  generated by the above code).
6876
6877      --  Always normalize C/Fortran boolean result. This is not always needed,
6878      --  but it seems a good idea to minimize the passing around of non-
6879      --  normalized values, and in any case this handles the processing of
6880      --  barrier functions for protected types, which turn the condition into
6881      --  a return statement.
6882
6883      if Is_Boolean_Type (Exptyp)
6884        and then Nonzero_Is_True (Exptyp)
6885      then
6886         Adjust_Condition (Exp);
6887         Adjust_Result_Type (Exp, Exptyp);
6888      end if;
6889
6890      --  Do validity check if enabled for returns
6891
6892      if Validity_Checks_On
6893        and then Validity_Check_Returns
6894      then
6895         Ensure_Valid (Exp);
6896      end if;
6897
6898      --  Check the result expression of a scalar function against the subtype
6899      --  of the function by inserting a conversion. This conversion must
6900      --  eventually be performed for other classes of types, but for now it's
6901      --  only done for scalars.
6902      --  ???
6903
6904      if Is_Scalar_Type (Exptyp) then
6905         Rewrite (Exp, Convert_To (R_Type, Exp));
6906
6907         --  The expression is resolved to ensure that the conversion gets
6908         --  expanded to generate a possible constraint check.
6909
6910         Analyze_And_Resolve (Exp, R_Type);
6911      end if;
6912
6913      --  Deal with returning variable length objects and controlled types
6914
6915      --  Nothing to do if we are returning by reference, or this is not a
6916      --  type that requires special processing (indicated by the fact that
6917      --  it requires a cleanup scope for the secondary stack case).
6918
6919      if Is_Build_In_Place_Function (Scope_Id)
6920        or else Is_Limited_Interface (Exptyp)
6921      then
6922         null;
6923
6924      --  No copy needed for thunks returning interface type objects since
6925      --  the object is returned by reference and the maximum functionality
6926      --  required is just to displace the pointer.
6927
6928      elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6929         null;
6930
6931      --  If the call is within a thunk and the type is a limited view, the
6932      --  backend will eventually see the non-limited view of the type.
6933
6934      elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6935         return;
6936
6937      --  A return statement from an ignored Ghost function does not use the
6938      --  secondary stack (or any other one).
6939
6940      elsif not Requires_Transient_Scope (R_Type)
6941        or else Is_Ignored_Ghost_Entity (Scope_Id)
6942      then
6943
6944         --  Mutable records with variable-length components are not returned
6945         --  on the sec-stack, so we need to make sure that the back end will
6946         --  only copy back the size of the actual value, and not the maximum
6947         --  size. We create an actual subtype for this purpose. However we
6948         --  need not do it if the expression is a function call since this
6949         --  will be done in the called function and doing it here too would
6950         --  cause a temporary with maximum size to be created.
6951
6952         declare
6953            Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6954            Decl : Node_Id;
6955            Ent  : Entity_Id;
6956         begin
6957            if Nkind (Exp) /= N_Function_Call
6958              and then Has_Discriminants (Ubt)
6959              and then not Is_Constrained (Ubt)
6960              and then not Has_Unchecked_Union (Ubt)
6961            then
6962               Decl := Build_Actual_Subtype (Ubt, Exp);
6963               Ent := Defining_Identifier (Decl);
6964               Insert_Action (Exp, Decl);
6965               Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6966               Analyze_And_Resolve (Exp);
6967            end if;
6968         end;
6969
6970      --  Here if secondary stack is used
6971
6972      else
6973         --  Prevent the reclamation of the secondary stack by all enclosing
6974         --  blocks and loops as well as the related function; otherwise the
6975         --  result would be reclaimed too early.
6976
6977         Set_Enclosing_Sec_Stack_Return (N);
6978
6979         --  Optimize the case where the result is a function call. In this
6980         --  case either the result is already on the secondary stack, or is
6981         --  already being returned with the stack pointer depressed and no
6982         --  further processing is required except to set the By_Ref flag
6983         --  to ensure that gigi does not attempt an extra unnecessary copy.
6984         --  (actually not just unnecessary but harmfully wrong in the case
6985         --  of a controlled type, where gigi does not know how to do a copy).
6986         --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6987         --  for array types if the constrained status of the target type is
6988         --  different from that of the expression.
6989
6990         if Requires_Transient_Scope (Exptyp)
6991           and then
6992              (not Is_Array_Type (Exptyp)
6993                or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6994                or else CW_Or_Has_Controlled_Part (Utyp))
6995           and then Nkind (Exp) = N_Function_Call
6996         then
6997            Set_By_Ref (N);
6998
6999            --  Remove side effects from the expression now so that other parts
7000            --  of the expander do not have to reanalyze this node without this
7001            --  optimization
7002
7003            Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
7004
7005            --  Ada 2005 (AI-251): If the type of the returned object is
7006            --  an interface then add an implicit type conversion to force
7007            --  displacement of the "this" pointer.
7008
7009            if Is_Interface (R_Type) then
7010               Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7011            end if;
7012
7013            Analyze_And_Resolve (Exp, R_Type);
7014
7015         --  For controlled types, do the allocation on the secondary stack
7016         --  manually in order to call adjust at the right time:
7017
7018         --    type Anon1 is access R_Type;
7019         --    for Anon1'Storage_pool use ss_pool;
7020         --    Anon2 : anon1 := new R_Type'(expr);
7021         --    return Anon2.all;
7022
7023         --  We do the same for classwide types that are not potentially
7024         --  controlled (by the virtue of restriction No_Finalization) because
7025         --  gigi is not able to properly allocate class-wide types.
7026
7027         elsif CW_Or_Has_Controlled_Part (Utyp) then
7028            declare
7029               Loc        : constant Source_Ptr := Sloc (N);
7030               Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
7031               Alloc_Node : Node_Id;
7032               Temp       : Entity_Id;
7033
7034            begin
7035               Set_Ekind (Acc_Typ, E_Access_Type);
7036
7037               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
7038
7039               --  This is an allocator for the secondary stack, and it's fine
7040               --  to have Comes_From_Source set False on it, as gigi knows not
7041               --  to flag it as a violation of No_Implicit_Heap_Allocations.
7042
7043               Alloc_Node :=
7044                 Make_Allocator (Loc,
7045                   Expression =>
7046                     Make_Qualified_Expression (Loc,
7047                       Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
7048                       Expression   => Relocate_Node (Exp)));
7049
7050               --  We do not want discriminant checks on the declaration,
7051               --  given that it gets its value from the allocator.
7052
7053               Set_No_Initialization (Alloc_Node);
7054
7055               Temp := Make_Temporary (Loc, 'R', Alloc_Node);
7056
7057               Insert_List_Before_And_Analyze (N, New_List (
7058                 Make_Full_Type_Declaration (Loc,
7059                   Defining_Identifier => Acc_Typ,
7060                   Type_Definition     =>
7061                     Make_Access_To_Object_Definition (Loc,
7062                       Subtype_Indication => Subtype_Ind)),
7063
7064                 Make_Object_Declaration (Loc,
7065                   Defining_Identifier => Temp,
7066                   Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
7067                   Expression          => Alloc_Node)));
7068
7069               Rewrite (Exp,
7070                 Make_Explicit_Dereference (Loc,
7071                 Prefix => New_Occurrence_Of (Temp, Loc)));
7072
7073               --  Ada 2005 (AI-251): If the type of the returned object is
7074               --  an interface then add an implicit type conversion to force
7075               --  displacement of the "this" pointer.
7076
7077               if Is_Interface (R_Type) then
7078                  Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7079               end if;
7080
7081               Analyze_And_Resolve (Exp, R_Type);
7082            end;
7083
7084         --  Otherwise use the gigi mechanism to allocate result on the
7085         --  secondary stack.
7086
7087         else
7088            Check_Restriction (No_Secondary_Stack, N);
7089            Set_Storage_Pool (N, RTE (RE_SS_Pool));
7090            Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
7091         end if;
7092      end if;
7093
7094      --  Implement the rules of 6.5(8-10), which require a tag check in
7095      --  the case of a limited tagged return type, and tag reassignment for
7096      --  nonlimited tagged results. These actions are needed when the return
7097      --  type is a specific tagged type and the result expression is a
7098      --  conversion or a formal parameter, because in that case the tag of
7099      --  the expression might differ from the tag of the specific result type.
7100
7101      --  We must also verify an underlying type exists for the return type in
7102      --  case it is incomplete - in which case is not necessary to generate a
7103      --  check anyway since an incomplete limited tagged return type would
7104      --  qualify as a premature usage.
7105
7106      if Present (Utyp)
7107        and then Is_Tagged_Type (Utyp)
7108        and then not Is_Class_Wide_Type (Utyp)
7109        and then (Nkind_In (Exp, N_Type_Conversion,
7110                                 N_Unchecked_Type_Conversion)
7111                    or else (Is_Entity_Name (Exp)
7112                               and then Is_Formal (Entity (Exp))))
7113      then
7114         --  When the return type is limited, perform a check that the tag of
7115         --  the result is the same as the tag of the return type.
7116
7117         if Is_Limited_Type (R_Type) then
7118            Insert_Action (Exp,
7119              Make_Raise_Constraint_Error (Loc,
7120                Condition =>
7121                  Make_Op_Ne (Loc,
7122                    Left_Opnd  =>
7123                      Make_Selected_Component (Loc,
7124                        Prefix        => Duplicate_Subexpr (Exp),
7125                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
7126                    Right_Opnd =>
7127                      Make_Attribute_Reference (Loc,
7128                        Prefix         =>
7129                          New_Occurrence_Of (Base_Type (Utyp), Loc),
7130                        Attribute_Name => Name_Tag)),
7131                Reason    => CE_Tag_Check_Failed));
7132
7133         --  If the result type is a specific nonlimited tagged type, then we
7134         --  have to ensure that the tag of the result is that of the result
7135         --  type. This is handled by making a copy of the expression in
7136         --  the case where it might have a different tag, namely when the
7137         --  expression is a conversion or a formal parameter. We create a new
7138         --  object of the result type and initialize it from the expression,
7139         --  which will implicitly force the tag to be set appropriately.
7140
7141         else
7142            declare
7143               ExpR       : constant Node_Id   := Relocate_Node (Exp);
7144               Result_Id  : constant Entity_Id :=
7145                              Make_Temporary (Loc, 'R', ExpR);
7146               Result_Exp : constant Node_Id   :=
7147                              New_Occurrence_Of (Result_Id, Loc);
7148               Result_Obj : constant Node_Id   :=
7149                              Make_Object_Declaration (Loc,
7150                                Defining_Identifier => Result_Id,
7151                                Object_Definition   =>
7152                                  New_Occurrence_Of (R_Type, Loc),
7153                                Constant_Present    => True,
7154                                Expression          => ExpR);
7155
7156            begin
7157               Set_Assignment_OK (Result_Obj);
7158               Insert_Action (Exp, Result_Obj);
7159
7160               Rewrite (Exp, Result_Exp);
7161               Analyze_And_Resolve (Exp, R_Type);
7162            end;
7163         end if;
7164
7165      --  Ada 2005 (AI-344): If the result type is class-wide, then insert
7166      --  a check that the level of the return expression's underlying type
7167      --  is not deeper than the level of the master enclosing the function.
7168      --  Always generate the check when the type of the return expression
7169      --  is class-wide, when it's a type conversion, or when it's a formal
7170      --  parameter. Otherwise, suppress the check in the case where the
7171      --  return expression has a specific type whose level is known not to
7172      --  be statically deeper than the function's result type.
7173
7174      --  No runtime check needed in interface thunks since it is performed
7175      --  by the target primitive associated with the thunk.
7176
7177      --  Note: accessibility check is skipped in the VM case, since there
7178      --  does not seem to be any practical way to implement this check.
7179
7180      elsif Ada_Version >= Ada_2005
7181        and then Tagged_Type_Expansion
7182        and then Is_Class_Wide_Type (R_Type)
7183        and then not Is_Thunk (Current_Scope)
7184        and then not Scope_Suppress.Suppress (Accessibility_Check)
7185        and then
7186          (Is_Class_Wide_Type (Etype (Exp))
7187            or else Nkind_In (Exp, N_Type_Conversion,
7188                                   N_Unchecked_Type_Conversion)
7189            or else (Is_Entity_Name (Exp)
7190                      and then Is_Formal (Entity (Exp)))
7191            or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
7192                      Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
7193      then
7194         declare
7195            Tag_Node : Node_Id;
7196
7197         begin
7198            --  Ada 2005 (AI-251): In class-wide interface objects we displace
7199            --  "this" to reference the base of the object. This is required to
7200            --  get access to the TSD of the object.
7201
7202            if Is_Class_Wide_Type (Etype (Exp))
7203              and then Is_Interface (Etype (Exp))
7204            then
7205               --  If the expression is an explicit dereference then we can
7206               --  directly displace the pointer to reference the base of
7207               --  the object.
7208
7209               if Nkind (Exp) = N_Explicit_Dereference then
7210                  Tag_Node :=
7211                    Make_Explicit_Dereference (Loc,
7212                      Prefix =>
7213                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7214                          Make_Function_Call (Loc,
7215                            Name                   =>
7216                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7217                            Parameter_Associations => New_List (
7218                              Unchecked_Convert_To (RTE (RE_Address),
7219                                Duplicate_Subexpr (Prefix (Exp)))))));
7220
7221               --  Similar case to the previous one but the expression is a
7222               --  renaming of an explicit dereference.
7223
7224               elsif Nkind (Exp) = N_Identifier
7225                 and then Present (Renamed_Object (Entity (Exp)))
7226                 and then Nkind (Renamed_Object (Entity (Exp)))
7227                            = N_Explicit_Dereference
7228               then
7229                  Tag_Node :=
7230                    Make_Explicit_Dereference (Loc,
7231                      Prefix =>
7232                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7233                          Make_Function_Call (Loc,
7234                            Name                   =>
7235                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7236                            Parameter_Associations => New_List (
7237                              Unchecked_Convert_To (RTE (RE_Address),
7238                                Duplicate_Subexpr
7239                                  (Prefix
7240                                    (Renamed_Object (Entity (Exp)))))))));
7241
7242               --  Common case: obtain the address of the actual object and
7243               --  displace the pointer to reference the base of the object.
7244
7245               else
7246                  Tag_Node :=
7247                    Make_Explicit_Dereference (Loc,
7248                      Prefix =>
7249                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7250                          Make_Function_Call (Loc,
7251                            Name               =>
7252                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7253                            Parameter_Associations => New_List (
7254                              Make_Attribute_Reference (Loc,
7255                                Prefix         => Duplicate_Subexpr (Exp),
7256                                Attribute_Name => Name_Address)))));
7257               end if;
7258            else
7259               Tag_Node :=
7260                 Make_Attribute_Reference (Loc,
7261                   Prefix         => Duplicate_Subexpr (Exp),
7262                   Attribute_Name => Name_Tag);
7263            end if;
7264
7265            --  CodePeer does not do anything useful with
7266            --  Ada.Tags.Type_Specific_Data components.
7267
7268            if not CodePeer_Mode then
7269               Insert_Action (Exp,
7270                 Make_Raise_Program_Error (Loc,
7271                   Condition =>
7272                     Make_Op_Gt (Loc,
7273                       Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
7274                       Right_Opnd =>
7275                         Make_Integer_Literal (Loc,
7276                           Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
7277                   Reason    => PE_Accessibility_Check_Failed));
7278            end if;
7279         end;
7280
7281      --  AI05-0073: If function has a controlling access result, check that
7282      --  the tag of the return value, if it is not null, matches designated
7283      --  type of return type.
7284
7285      --  The return expression is referenced twice in the code below, so it
7286      --  must be made free of side effects. Given that different compilers
7287      --  may evaluate these parameters in different order, both occurrences
7288      --  perform a copy.
7289
7290      elsif Ekind (R_Type) = E_Anonymous_Access_Type
7291        and then Has_Controlling_Result (Scope_Id)
7292      then
7293         Insert_Action (N,
7294           Make_Raise_Constraint_Error (Loc,
7295             Condition =>
7296               Make_And_Then (Loc,
7297                 Left_Opnd  =>
7298                   Make_Op_Ne (Loc,
7299                     Left_Opnd  => Duplicate_Subexpr (Exp),
7300                     Right_Opnd => Make_Null (Loc)),
7301
7302                 Right_Opnd => Make_Op_Ne (Loc,
7303                   Left_Opnd  =>
7304                     Make_Selected_Component (Loc,
7305                       Prefix        => Duplicate_Subexpr (Exp),
7306                       Selector_Name => Make_Identifier (Loc, Name_uTag)),
7307
7308                   Right_Opnd =>
7309                     Make_Attribute_Reference (Loc,
7310                       Prefix         =>
7311                         New_Occurrence_Of (Designated_Type (R_Type), Loc),
7312                       Attribute_Name => Name_Tag))),
7313
7314             Reason    => CE_Tag_Check_Failed),
7315             Suppress  => All_Checks);
7316      end if;
7317
7318      --  AI05-0234: RM 6.5(21/3). Check access discriminants to
7319      --  ensure that the function result does not outlive an
7320      --  object designated by one of it discriminants.
7321
7322      if Present (Extra_Accessibility_Of_Result (Scope_Id))
7323        and then Has_Unconstrained_Access_Discriminants (R_Type)
7324      then
7325         declare
7326            Discrim_Source : Node_Id;
7327
7328            procedure Check_Against_Result_Level (Level : Node_Id);
7329            --  Check the given accessibility level against the level
7330            --  determined by the point of call. (AI05-0234).
7331
7332            --------------------------------
7333            -- Check_Against_Result_Level --
7334            --------------------------------
7335
7336            procedure Check_Against_Result_Level (Level : Node_Id) is
7337            begin
7338               Insert_Action (N,
7339                 Make_Raise_Program_Error (Loc,
7340                   Condition =>
7341                     Make_Op_Gt (Loc,
7342                       Left_Opnd  => Level,
7343                       Right_Opnd =>
7344                         New_Occurrence_Of
7345                           (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7346                       Reason => PE_Accessibility_Check_Failed));
7347            end Check_Against_Result_Level;
7348
7349         begin
7350            Discrim_Source := Exp;
7351            while Nkind (Discrim_Source) = N_Qualified_Expression loop
7352               Discrim_Source := Expression (Discrim_Source);
7353            end loop;
7354
7355            if Nkind (Discrim_Source) = N_Identifier
7356              and then Is_Return_Object (Entity (Discrim_Source))
7357            then
7358               Discrim_Source := Entity (Discrim_Source);
7359
7360               if Is_Constrained (Etype (Discrim_Source)) then
7361                  Discrim_Source := Etype (Discrim_Source);
7362               else
7363                  Discrim_Source := Expression (Parent (Discrim_Source));
7364               end if;
7365
7366            elsif Nkind (Discrim_Source) = N_Identifier
7367              and then Nkind_In (Original_Node (Discrim_Source),
7368                                 N_Aggregate, N_Extension_Aggregate)
7369            then
7370               Discrim_Source := Original_Node (Discrim_Source);
7371
7372            elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7373              Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7374            then
7375               Discrim_Source := Original_Node (Discrim_Source);
7376            end if;
7377
7378            Discrim_Source := Unqual_Conv (Discrim_Source);
7379
7380            case Nkind (Discrim_Source) is
7381               when N_Defining_Identifier =>
7382                  pragma Assert (Is_Composite_Type (Discrim_Source)
7383                                  and then Has_Discriminants (Discrim_Source)
7384                                  and then Is_Constrained (Discrim_Source));
7385
7386                  declare
7387                     Discrim   : Entity_Id :=
7388                                   First_Discriminant (Base_Type (R_Type));
7389                     Disc_Elmt : Elmt_Id   :=
7390                                   First_Elmt (Discriminant_Constraint
7391                                                 (Discrim_Source));
7392                  begin
7393                     loop
7394                        if Ekind (Etype (Discrim)) =
7395                             E_Anonymous_Access_Type
7396                        then
7397                           Check_Against_Result_Level
7398                             (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7399                        end if;
7400
7401                        Next_Elmt (Disc_Elmt);
7402                        Next_Discriminant (Discrim);
7403                        exit when not Present (Discrim);
7404                     end loop;
7405                  end;
7406
7407               when N_Aggregate
7408                  | N_Extension_Aggregate
7409               =>
7410                  --  Unimplemented: extension aggregate case where discrims
7411                  --  come from ancestor part, not extension part.
7412
7413                  declare
7414                     Discrim  : Entity_Id :=
7415                                  First_Discriminant (Base_Type (R_Type));
7416
7417                     Disc_Exp : Node_Id   := Empty;
7418
7419                     Positionals_Exhausted
7420                              : Boolean   := not Present (Expressions
7421                                                            (Discrim_Source));
7422
7423                     function Associated_Expr
7424                       (Comp_Id : Entity_Id;
7425                        Associations : List_Id) return Node_Id;
7426
7427                     --  Given a component and a component associations list,
7428                     --  locate the expression for that component; returns
7429                     --  Empty if no such expression is found.
7430
7431                     ---------------------
7432                     -- Associated_Expr --
7433                     ---------------------
7434
7435                     function Associated_Expr
7436                       (Comp_Id : Entity_Id;
7437                        Associations : List_Id) return Node_Id
7438                     is
7439                        Assoc  : Node_Id;
7440                        Choice : Node_Id;
7441
7442                     begin
7443                        --  Simple linear search seems ok here
7444
7445                        Assoc := First (Associations);
7446                        while Present (Assoc) loop
7447                           Choice := First (Choices (Assoc));
7448                           while Present (Choice) loop
7449                              if (Nkind (Choice) = N_Identifier
7450                                   and then Chars (Choice) = Chars (Comp_Id))
7451                                or else (Nkind (Choice) = N_Others_Choice)
7452                              then
7453                                 return Expression (Assoc);
7454                              end if;
7455
7456                              Next (Choice);
7457                           end loop;
7458
7459                           Next (Assoc);
7460                        end loop;
7461
7462                        return Empty;
7463                     end Associated_Expr;
7464
7465                  begin
7466                     if not Positionals_Exhausted then
7467                        Disc_Exp := First (Expressions (Discrim_Source));
7468                     end if;
7469
7470                     loop
7471                        if Positionals_Exhausted then
7472                           Disc_Exp :=
7473                             Associated_Expr
7474                               (Discrim,
7475                                Component_Associations (Discrim_Source));
7476                        end if;
7477
7478                        if Ekind (Etype (Discrim)) =
7479                             E_Anonymous_Access_Type
7480                        then
7481                           Check_Against_Result_Level
7482                             (Dynamic_Accessibility_Level (Disc_Exp));
7483                        end if;
7484
7485                        Next_Discriminant (Discrim);
7486                        exit when not Present (Discrim);
7487
7488                        if not Positionals_Exhausted then
7489                           Next (Disc_Exp);
7490                           Positionals_Exhausted := not Present (Disc_Exp);
7491                        end if;
7492                     end loop;
7493                  end;
7494
7495               when N_Function_Call =>
7496
7497                  --  No check needed (check performed by callee)
7498
7499                  null;
7500
7501               when others =>
7502                  declare
7503                     Level : constant Node_Id :=
7504                               Make_Integer_Literal (Loc,
7505                                 Object_Access_Level (Discrim_Source));
7506
7507                  begin
7508                     --  Unimplemented: check for name prefix that includes
7509                     --  a dereference of an access value with a dynamic
7510                     --  accessibility level (e.g., an access param or a
7511                     --  saooaaat) and use dynamic level in that case. For
7512                     --  example:
7513                     --    return Access_Param.all(Some_Index).Some_Component;
7514                     --  ???
7515
7516                     Set_Etype (Level, Standard_Natural);
7517                     Check_Against_Result_Level (Level);
7518                  end;
7519            end case;
7520         end;
7521      end if;
7522
7523      --  If we are returning a nonscalar object that is possibly unaligned,
7524      --  then copy the value into a temporary first. This copy may need to
7525      --  expand to a loop of component operations.
7526
7527      if Is_Possibly_Unaligned_Slice (Exp)
7528        or else (Is_Possibly_Unaligned_Object (Exp)
7529                  and then not Represented_As_Scalar (Etype (Exp)))
7530      then
7531         declare
7532            ExpR : constant Node_Id   := Relocate_Node (Exp);
7533            Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7534         begin
7535            Insert_Action (Exp,
7536              Make_Object_Declaration (Loc,
7537                Defining_Identifier => Tnn,
7538                Constant_Present    => True,
7539                Object_Definition   => New_Occurrence_Of (R_Type, Loc),
7540                Expression          => ExpR),
7541              Suppress => All_Checks);
7542            Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7543         end;
7544      end if;
7545
7546      --  Call the _Postconditions procedure if the related function has
7547      --  contract assertions that need to be verified on exit.
7548
7549      if Ekind (Scope_Id) = E_Function
7550        and then Present (Postconditions_Proc (Scope_Id))
7551      then
7552         --  In the case of discriminated objects, we have created a
7553         --  constrained subtype above, and used the underlying type. This
7554         --  transformation is post-analysis and harmless, except that now the
7555         --  call to the post-condition will be analyzed and the type kinds
7556         --  have to match.
7557
7558         if Nkind (Exp) = N_Unchecked_Type_Conversion
7559           and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7560         then
7561            Rewrite (Exp, Expression (Relocate_Node (Exp)));
7562         end if;
7563
7564         --  We are going to reference the returned value twice in this case,
7565         --  once in the call to _Postconditions, and once in the actual return
7566         --  statement, but we can't have side effects happening twice.
7567
7568         Force_Evaluation (Exp, Mode => Strict);
7569
7570         --  Generate call to _Postconditions
7571
7572         Insert_Action (Exp,
7573           Make_Procedure_Call_Statement (Loc,
7574             Name                   =>
7575               New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7576             Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7577      end if;
7578
7579      --  Ada 2005 (AI-251): If this return statement corresponds with an
7580      --  simple return statement associated with an extended return statement
7581      --  and the type of the returned object is an interface then generate an
7582      --  implicit conversion to force displacement of the "this" pointer.
7583
7584      if Ada_Version >= Ada_2005
7585        and then Comes_From_Extended_Return_Statement (N)
7586        and then Nkind (Expression (N)) = N_Identifier
7587        and then Is_Interface (Utyp)
7588        and then Utyp /= Underlying_Type (Exptyp)
7589      then
7590         Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7591         Analyze_And_Resolve (Exp);
7592      end if;
7593   end Expand_Simple_Function_Return;
7594
7595   -----------------------
7596   -- Freeze_Subprogram --
7597   -----------------------
7598
7599   procedure Freeze_Subprogram (N : Node_Id) is
7600      Loc : constant Source_Ptr := Sloc (N);
7601
7602      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7603      --  (Ada 2005): Register a predefined primitive in all the secondary
7604      --  dispatch tables of its primitive type.
7605
7606      ----------------------------------
7607      -- Register_Predefined_DT_Entry --
7608      ----------------------------------
7609
7610      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7611         Iface_DT_Ptr : Elmt_Id;
7612         Tagged_Typ   : Entity_Id;
7613         Thunk_Id     : Entity_Id;
7614         Thunk_Code   : Node_Id;
7615
7616      begin
7617         Tagged_Typ := Find_Dispatching_Type (Prim);
7618
7619         if No (Access_Disp_Table (Tagged_Typ))
7620           or else not Has_Interfaces (Tagged_Typ)
7621           or else not RTE_Available (RE_Interface_Tag)
7622           or else Restriction_Active (No_Dispatching_Calls)
7623         then
7624            return;
7625         end if;
7626
7627         --  Skip the first two access-to-dispatch-table pointers since they
7628         --  leads to the primary dispatch table (predefined DT and user
7629         --  defined DT). We are only concerned with the secondary dispatch
7630         --  table pointers. Note that the access-to- dispatch-table pointer
7631         --  corresponds to the first implemented interface retrieved below.
7632
7633         Iface_DT_Ptr :=
7634           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7635
7636         while Present (Iface_DT_Ptr)
7637           and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7638         loop
7639            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7640            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code,
7641              Iface => Related_Type (Node (Iface_DT_Ptr)));
7642
7643            if Present (Thunk_Code) then
7644               Insert_Actions_After (N, New_List (
7645                 Thunk_Code,
7646
7647                 Build_Set_Predefined_Prim_Op_Address (Loc,
7648                   Tag_Node     =>
7649                     New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7650                   Position     => DT_Position (Prim),
7651                   Address_Node =>
7652                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7653                       Make_Attribute_Reference (Loc,
7654                         Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
7655                         Attribute_Name => Name_Unrestricted_Access))),
7656
7657                 Build_Set_Predefined_Prim_Op_Address (Loc,
7658                   Tag_Node     =>
7659                     New_Occurrence_Of
7660                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7661                       Loc),
7662                   Position     => DT_Position (Prim),
7663                   Address_Node =>
7664                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7665                       Make_Attribute_Reference (Loc,
7666                         Prefix         => New_Occurrence_Of (Prim, Loc),
7667                         Attribute_Name => Name_Unrestricted_Access)))));
7668            end if;
7669
7670            --  Skip the tag of the predefined primitives dispatch table
7671
7672            Next_Elmt (Iface_DT_Ptr);
7673            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7674
7675            --  Skip tag of the no-thunks dispatch table
7676
7677            Next_Elmt (Iface_DT_Ptr);
7678            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7679
7680            --  Skip tag of predefined primitives no-thunks dispatch table
7681
7682            Next_Elmt (Iface_DT_Ptr);
7683            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7684
7685            Next_Elmt (Iface_DT_Ptr);
7686         end loop;
7687      end Register_Predefined_DT_Entry;
7688
7689      --  Local variables
7690
7691      Subp : constant Entity_Id  := Entity (N);
7692
7693   --  Start of processing for Freeze_Subprogram
7694
7695   begin
7696      --  We suppress the initialization of the dispatch table entry when
7697      --  not Tagged_Type_Expansion because the dispatching mechanism is
7698      --  handled internally by the target.
7699
7700      if Is_Dispatching_Operation (Subp)
7701        and then not Is_Abstract_Subprogram (Subp)
7702        and then Present (DTC_Entity (Subp))
7703        and then Present (Scope (DTC_Entity (Subp)))
7704        and then Tagged_Type_Expansion
7705        and then not Restriction_Active (No_Dispatching_Calls)
7706        and then RTE_Available (RE_Tag)
7707      then
7708         declare
7709            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7710
7711         begin
7712            --  Handle private overridden primitives
7713
7714            if not Is_CPP_Class (Typ) then
7715               Check_Overriding_Operation (Subp);
7716            end if;
7717
7718            --  We assume that imported CPP primitives correspond with objects
7719            --  whose constructor is in the CPP side; therefore we don't need
7720            --  to generate code to register them in the dispatch table.
7721
7722            if Is_CPP_Class (Typ) then
7723               null;
7724
7725            --  Handle CPP primitives found in derivations of CPP_Class types.
7726            --  These primitives must have been inherited from some parent, and
7727            --  there is no need to register them in the dispatch table because
7728            --  Build_Inherit_Prims takes care of initializing these slots.
7729
7730            elsif Is_Imported (Subp)
7731               and then (Convention (Subp) = Convention_CPP
7732                           or else Convention (Subp) = Convention_C)
7733            then
7734               null;
7735
7736            --  Generate code to register the primitive in non statically
7737            --  allocated dispatch tables
7738
7739            elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7740
7741               --  When a primitive is frozen, enter its name in its dispatch
7742               --  table slot.
7743
7744               if not Is_Interface (Typ)
7745                 or else Present (Interface_Alias (Subp))
7746               then
7747                  if Is_Predefined_Dispatching_Operation (Subp) then
7748                     Register_Predefined_DT_Entry (Subp);
7749                  end if;
7750
7751                  Insert_Actions_After (N,
7752                    Register_Primitive (Loc, Prim => Subp));
7753               end if;
7754            end if;
7755         end;
7756      end if;
7757
7758      --  Mark functions that return by reference. Note that it cannot be part
7759      --  of the normal semantic analysis of the spec since the underlying
7760      --  returned type may not be known yet (for private types).
7761
7762      declare
7763         Typ  : constant Entity_Id := Etype (Subp);
7764         Utyp : constant Entity_Id := Underlying_Type (Typ);
7765
7766      begin
7767         if Is_Limited_View (Typ) then
7768            Set_Returns_By_Ref (Subp);
7769
7770         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7771            Set_Returns_By_Ref (Subp);
7772         end if;
7773      end;
7774
7775      --  Wnen freezing a null procedure, analyze its delayed aspects now
7776      --  because we may not have reached the end of the declarative list when
7777      --  delayed aspects are normally analyzed. This ensures that dispatching
7778      --  calls are properly rewritten when the generated _Postcondition
7779      --  procedure is analyzed in the null procedure body.
7780
7781      if Nkind (Parent (Subp)) = N_Procedure_Specification
7782        and then Null_Present (Parent (Subp))
7783      then
7784         Analyze_Entry_Or_Subprogram_Contract (Subp);
7785      end if;
7786   end Freeze_Subprogram;
7787
7788   --------------------------------------------
7789   -- Has_Unconstrained_Access_Discriminants --
7790   --------------------------------------------
7791
7792   function Has_Unconstrained_Access_Discriminants
7793     (Subtyp : Entity_Id) return Boolean
7794   is
7795      Discr : Entity_Id;
7796
7797   begin
7798      if Has_Discriminants (Subtyp)
7799        and then not Is_Constrained (Subtyp)
7800      then
7801         Discr := First_Discriminant (Subtyp);
7802         while Present (Discr) loop
7803            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7804               return True;
7805            end if;
7806
7807            Next_Discriminant (Discr);
7808         end loop;
7809      end if;
7810
7811      return False;
7812   end Has_Unconstrained_Access_Discriminants;
7813
7814   ------------------------------
7815   -- Insert_Post_Call_Actions --
7816   ------------------------------
7817
7818   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7819      Context : constant Node_Id := Parent (N);
7820
7821   begin
7822      if Is_Empty_List (Post_Call) then
7823         return;
7824      end if;
7825
7826      --  Cases where the call is not a member of a statement list. This
7827      --  includes the case where the call is an actual in another function
7828      --  call or indexing, i.e. an expression context as well.
7829
7830      if not Is_List_Member (N)
7831        or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7832      then
7833         --  In Ada 2012 the call may be a function call in an expression
7834         --  (since OUT and IN OUT parameters are now allowed for such calls).
7835         --  The write-back of (in)-out parameters is handled by the back-end,
7836         --  but the constraint checks generated when subtypes of formal and
7837         --  actual don't match must be inserted in the form of assignments.
7838
7839         if Nkind (Original_Node (N)) = N_Function_Call then
7840            pragma Assert (Ada_Version >= Ada_2012);
7841            --  Functions with '[in] out' parameters are only allowed in Ada
7842            --  2012.
7843
7844            --  We used to handle this by climbing up parents to a
7845            --  non-statement/declaration and then simply making a call to
7846            --  Insert_Actions_After (P, Post_Call), but that doesn't work
7847            --  for Ada 2012. If we are in the middle of an expression, e.g.
7848            --  the condition of an IF, this call would insert after the IF
7849            --  statement, which is much too late to be doing the write back.
7850            --  For example:
7851
7852            --     if Clobber (X) then
7853            --        Put_Line (X'Img);
7854            --     else
7855            --        goto Junk
7856            --     end if;
7857
7858            --  Now assume Clobber changes X, if we put the write back after
7859            --  the IF, the Put_Line gets the wrong value and the goto causes
7860            --  the write back to be skipped completely.
7861
7862            --  To deal with this, we replace the call by
7863
7864            --    do
7865            --       Tnnn : constant function-result-type := function-call;
7866            --       Post_Call actions
7867            --    in
7868            --       Tnnn;
7869            --    end;
7870
7871            declare
7872               Loc   : constant Source_Ptr := Sloc (N);
7873               Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
7874               FRTyp : constant Entity_Id := Etype (N);
7875               Name  : constant Node_Id   := Relocate_Node (N);
7876
7877            begin
7878               Prepend_To (Post_Call,
7879                 Make_Object_Declaration (Loc,
7880                   Defining_Identifier => Tnnn,
7881                   Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
7882                   Constant_Present    => True,
7883                   Expression          => Name));
7884
7885               Rewrite (N,
7886                 Make_Expression_With_Actions (Loc,
7887                   Actions    => Post_Call,
7888                   Expression => New_Occurrence_Of (Tnnn, Loc)));
7889
7890               --  We don't want to just blindly call Analyze_And_Resolve
7891               --  because that would cause unwanted recursion on the call.
7892               --  So for a moment set the call as analyzed to prevent that
7893               --  recursion, and get the rest analyzed properly, then reset
7894               --  the analyzed flag, so our caller can continue.
7895
7896               Set_Analyzed (Name, True);
7897               Analyze_And_Resolve (N, FRTyp);
7898               Set_Analyzed (Name, False);
7899            end;
7900
7901         --  If not the special Ada 2012 case of a function call, then we must
7902         --  have the triggering statement of a triggering alternative or an
7903         --  entry call alternative, and we can add the post call stuff to the
7904         --  corresponding statement list.
7905
7906         else
7907            pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7908                                              N_Triggering_Alternative));
7909
7910            if Is_Non_Empty_List (Statements (Context)) then
7911               Insert_List_Before_And_Analyze
7912                 (First (Statements (Context)), Post_Call);
7913            else
7914               Set_Statements (Context, Post_Call);
7915            end if;
7916         end if;
7917
7918      --  A procedure call is always part of a declarative or statement list,
7919      --  however a function call may appear nested within a construct. Most
7920      --  cases of function call nesting are handled in the special case above.
7921      --  The only exception is when the function call acts as an actual in a
7922      --  procedure call. In this case the function call is in a list, but the
7923      --  post-call actions must be inserted after the procedure call.
7924
7925      elsif Nkind (Context) = N_Procedure_Call_Statement then
7926         Insert_Actions_After (Context, Post_Call);
7927
7928      --  Otherwise, normal case where N is in a statement sequence, just put
7929      --  the post-call stuff after the call statement.
7930
7931      else
7932         Insert_Actions_After (N, Post_Call);
7933      end if;
7934   end Insert_Post_Call_Actions;
7935
7936   -----------------------------------
7937   -- Is_Build_In_Place_Result_Type --
7938   -----------------------------------
7939
7940   function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7941   begin
7942      if not Expander_Active then
7943         return False;
7944      end if;
7945
7946      --  In Ada 2005 all functions with an inherently limited return type
7947      --  must be handled using a build-in-place profile, including the case
7948      --  of a function with a limited interface result, where the function
7949      --  may return objects of nonlimited descendants.
7950
7951      if Is_Limited_View (Typ) then
7952         return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7953
7954      else
7955         if Debug_Flag_Dot_9 then
7956            return False;
7957         end if;
7958
7959         if Has_Interfaces (Typ) then
7960            return False;
7961         end if;
7962
7963         declare
7964            T : Entity_Id := Typ;
7965         begin
7966            --  For T'Class, return True if it's True for T. This is necessary
7967            --  because a class-wide function might say "return F (...)", where
7968            --  F returns the corresponding specific type. We need a loop in
7969            --  case T is a subtype of a class-wide type.
7970
7971            while Is_Class_Wide_Type (T) loop
7972               T := Etype (T);
7973            end loop;
7974
7975            --  If this is a generic formal type in an instance, return True if
7976            --  it's True for the generic actual type.
7977
7978            if Nkind (Parent (T)) = N_Subtype_Declaration
7979              and then Present (Generic_Parent_Type (Parent (T)))
7980            then
7981               T := Entity (Subtype_Indication (Parent (T)));
7982
7983               if Present (Full_View (T)) then
7984                  T := Full_View (T);
7985               end if;
7986            end if;
7987
7988            if Present (Underlying_Type (T)) then
7989               T := Underlying_Type (T);
7990            end if;
7991
7992            declare
7993               Result : Boolean;
7994               --  So we can stop here in the debugger
7995            begin
7996               --  ???For now, enable build-in-place for a very narrow set of
7997               --  controlled types. Change "if True" to "if False" to
7998               --  experiment with more controlled types. Eventually, we might
7999               --  like to enable build-in-place for all tagged types, all
8000               --  types that need finalization, and all caller-unknown-size
8001               --  types.
8002
8003               if True then
8004                  Result := Is_Controlled (T)
8005                    and then Present (Enclosing_Subprogram (T))
8006                    and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
8007                    and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
8008               else
8009                  Result := Is_Controlled (T);
8010               end if;
8011
8012               return Result;
8013            end;
8014         end;
8015      end if;
8016   end Is_Build_In_Place_Result_Type;
8017
8018   --------------------------------
8019   -- Is_Build_In_Place_Function --
8020   --------------------------------
8021
8022   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
8023   begin
8024      --  This function is called from Expand_Subtype_From_Expr during
8025      --  semantic analysis, even when expansion is off. In those cases
8026      --  the build_in_place expansion will not take place.
8027
8028      if not Expander_Active then
8029         return False;
8030      end if;
8031
8032      --  For now we test whether E denotes a function or access-to-function
8033      --  type whose result subtype is inherently limited. Later this test
8034      --  may be revised to allow composite nonlimited types.
8035
8036      if Ekind_In (E, E_Function, E_Generic_Function)
8037        or else (Ekind (E) = E_Subprogram_Type
8038                  and then Etype (E) /= Standard_Void_Type)
8039      then
8040         --  If the function is imported from a foreign language, we don't do
8041         --  build-in-place. Note that Import (Ada) functions can do
8042         --  build-in-place. Note that it is OK for a build-in-place function
8043         --  to return a type with a foreign convention; the build-in-place
8044         --  machinery will ensure there is no copying.
8045
8046         return Is_Build_In_Place_Result_Type (Etype (E))
8047           and then not (Has_Foreign_Convention (E) and then Is_Imported (E))
8048           and then not Debug_Flag_Dot_L;
8049      else
8050         return False;
8051      end if;
8052   end Is_Build_In_Place_Function;
8053
8054   -------------------------------------
8055   -- Is_Build_In_Place_Function_Call --
8056   -------------------------------------
8057
8058   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8059      Exp_Node    : constant Node_Id := Unqual_Conv (N);
8060      Function_Id : Entity_Id;
8061
8062   begin
8063      --  Return False if the expander is currently inactive, since awareness
8064      --  of build-in-place treatment is only relevant during expansion. Note
8065      --  that Is_Build_In_Place_Function, which is called as part of this
8066      --  function, is also conditioned this way, but we need to check here as
8067      --  well to avoid blowing up on processing protected calls when expansion
8068      --  is disabled (such as with -gnatc) since those would trip over the
8069      --  raise of Program_Error below.
8070
8071      --  In SPARK mode, build-in-place calls are not expanded, so that we
8072      --  may end up with a call that is neither resolved to an entity, nor
8073      --  an indirect call.
8074
8075      if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
8076         return False;
8077      end if;
8078
8079      if Is_Entity_Name (Name (Exp_Node)) then
8080         Function_Id := Entity (Name (Exp_Node));
8081
8082      --  In the case of an explicitly dereferenced call, use the subprogram
8083      --  type generated for the dereference.
8084
8085      elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8086         Function_Id := Etype (Name (Exp_Node));
8087
8088      --  This may be a call to a protected function.
8089
8090      elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8091         Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8092
8093      else
8094         raise Program_Error;
8095      end if;
8096
8097      declare
8098         Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
8099         --  So we can stop here in the debugger
8100      begin
8101         return Result;
8102      end;
8103   end Is_Build_In_Place_Function_Call;
8104
8105   -----------------------
8106   -- Is_Null_Procedure --
8107   -----------------------
8108
8109   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8110      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8111
8112   begin
8113      if Ekind (Subp) /= E_Procedure then
8114         return False;
8115
8116      --  Check if this is a declared null procedure
8117
8118      elsif Nkind (Decl) = N_Subprogram_Declaration then
8119         if not Null_Present (Specification (Decl)) then
8120            return False;
8121
8122         elsif No (Body_To_Inline (Decl)) then
8123            return False;
8124
8125         --  Check if the body contains only a null statement, followed by
8126         --  the return statement added during expansion.
8127
8128         else
8129            declare
8130               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8131
8132               Stat  : Node_Id;
8133               Stat2 : Node_Id;
8134
8135            begin
8136               if Nkind (Orig_Bod) /= N_Subprogram_Body then
8137                  return False;
8138               else
8139                  --  We must skip SCIL nodes because they are currently
8140                  --  implemented as special N_Null_Statement nodes.
8141
8142                  Stat :=
8143                     First_Non_SCIL_Node
8144                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
8145                  Stat2 := Next_Non_SCIL_Node (Stat);
8146
8147                  return
8148                     Is_Empty_List (Declarations (Orig_Bod))
8149                       and then Nkind (Stat) = N_Null_Statement
8150                       and then
8151                        (No (Stat2)
8152                          or else
8153                            (Nkind (Stat2) = N_Simple_Return_Statement
8154                              and then No (Next (Stat2))));
8155               end if;
8156            end;
8157         end if;
8158
8159      else
8160         return False;
8161      end if;
8162   end Is_Null_Procedure;
8163
8164   -------------------------------------------
8165   -- Make_Build_In_Place_Call_In_Allocator --
8166   -------------------------------------------
8167
8168   procedure Make_Build_In_Place_Call_In_Allocator
8169     (Allocator     : Node_Id;
8170      Function_Call : Node_Id)
8171   is
8172      Acc_Type          : constant Entity_Id := Etype (Allocator);
8173      Loc               : constant Source_Ptr := Sloc (Function_Call);
8174      Func_Call         : Node_Id := Function_Call;
8175      Ref_Func_Call     : Node_Id;
8176      Function_Id       : Entity_Id;
8177      Result_Subt       : Entity_Id;
8178      New_Allocator     : Node_Id;
8179      Return_Obj_Access : Entity_Id; -- temp for function result
8180      Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
8181      Alloc_Form        : BIP_Allocation_Form;
8182      Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8183      Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8184      Chain             : Entity_Id; -- activation chain, in case of tasks
8185
8186   begin
8187      --  Step past qualification or unchecked conversion (the latter can occur
8188      --  in cases of calls to 'Input).
8189
8190      if Nkind_In (Func_Call, N_Qualified_Expression,
8191                              N_Type_Conversion,
8192                              N_Unchecked_Type_Conversion)
8193      then
8194         Func_Call := Expression (Func_Call);
8195      end if;
8196
8197      --  Mark the call as processed as a build-in-place call
8198
8199      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8200      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8201
8202      if Is_Entity_Name (Name (Func_Call)) then
8203         Function_Id := Entity (Name (Func_Call));
8204
8205      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8206         Function_Id := Etype (Name (Func_Call));
8207
8208      else
8209         raise Program_Error;
8210      end if;
8211
8212      Result_Subt := Available_View (Etype (Function_Id));
8213
8214      --  Create a temp for the function result. In the caller-allocates case,
8215      --  this will be initialized to the result of a new uninitialized
8216      --  allocator. Note: we do not use Allocator as the Related_Node of
8217      --  Return_Obj_Access in call to Make_Temporary below as this would
8218      --  create a sort of infinite "recursion".
8219
8220      Return_Obj_Access := Make_Temporary (Loc, 'R');
8221      Set_Etype (Return_Obj_Access, Acc_Type);
8222      Set_Can_Never_Be_Null (Acc_Type, False);
8223      --  It gets initialized to null, so we can't have that
8224
8225      --  When the result subtype is constrained, the return object is created
8226      --  on the caller side, and access to it is passed to the function. This
8227      --  optimization is disabled when the result subtype needs finalization
8228      --  actions because the caller side allocation may result in undesirable
8229      --  finalization. Consider the following example:
8230      --
8231      --    function Make_Lim_Ctrl return Lim_Ctrl is
8232      --    begin
8233      --       return Result : Lim_Ctrl := raise Program_Error do
8234      --          null;
8235      --       end return;
8236      --    end Make_Lim_Ctrl;
8237      --
8238      --    Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
8239      --
8240      --  Even though the size of limited controlled type Lim_Ctrl is known,
8241      --  allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
8242      --  finalization master. The subsequent call to Make_Lim_Ctrl will fail
8243      --  during the initialization actions for Result, which implies that
8244      --  Result (and Obj by extension) should not be finalized. However Obj
8245      --  will be finalized when access type Lim_Ctrl_Ptr goes out of scope
8246      --  since it is already attached on the related finalization master.
8247
8248      --  Here and in related routines, we must examine the full view of the
8249      --  type, because the view at the point of call may differ from the
8250      --  one in the function body, and the expansion mechanism depends on
8251      --  the characteristics of the full view.
8252
8253      if Needs_BIP_Alloc_Form (Function_Id) then
8254         Temp_Init := Empty;
8255
8256         --  Case of a user-defined storage pool. Pass an allocation parameter
8257         --  indicating that the function should allocate its result in the
8258         --  pool, and pass the pool. Use 'Unrestricted_Access because the
8259         --  pool may not be aliased.
8260
8261         if Present (Associated_Storage_Pool (Acc_Type)) then
8262            Alloc_Form := User_Storage_Pool;
8263            Pool :=
8264              Make_Attribute_Reference (Loc,
8265                Prefix         =>
8266                  New_Occurrence_Of
8267                    (Associated_Storage_Pool (Acc_Type), Loc),
8268                Attribute_Name => Name_Unrestricted_Access);
8269
8270         --  No user-defined pool; pass an allocation parameter indicating that
8271         --  the function should allocate its result on the heap.
8272
8273         else
8274            Alloc_Form := Global_Heap;
8275            Pool := Make_Null (No_Location);
8276         end if;
8277
8278         --  The caller does not provide the return object in this case, so we
8279         --  have to pass null for the object access actual.
8280
8281         Return_Obj_Actual := Empty;
8282
8283      else
8284         --  Replace the initialized allocator of form "new T'(Func (...))"
8285         --  with an uninitialized allocator of form "new T", where T is the
8286         --  result subtype of the called function. The call to the function
8287         --  is handled separately further below.
8288
8289         New_Allocator :=
8290           Make_Allocator (Loc,
8291             Expression => New_Occurrence_Of (Result_Subt, Loc));
8292         Set_No_Initialization (New_Allocator);
8293
8294         --  Copy attributes to new allocator. Note that the new allocator
8295         --  logically comes from source if the original one did, so copy the
8296         --  relevant flag. This ensures proper treatment of the restriction
8297         --  No_Implicit_Heap_Allocations in this case.
8298
8299         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
8300         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8301         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8302
8303         Rewrite (Allocator, New_Allocator);
8304
8305         --  Initial value of the temp is the result of the uninitialized
8306         --  allocator. Unchecked_Convert is needed for T'Input where T is
8307         --  derived from a controlled type.
8308
8309         Temp_Init := Relocate_Node (Allocator);
8310
8311         if Nkind_In (Function_Call, N_Type_Conversion,
8312                                     N_Unchecked_Type_Conversion)
8313         then
8314            Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8315         end if;
8316
8317         --  Indicate that caller allocates, and pass in the return object
8318
8319         Alloc_Form := Caller_Allocation;
8320         Pool := Make_Null (No_Location);
8321         Return_Obj_Actual :=
8322           Make_Unchecked_Type_Conversion (Loc,
8323             Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8324             Expression   =>
8325               Make_Explicit_Dereference (Loc,
8326                 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8327
8328      --  When the result subtype is unconstrained, the function itself must
8329      --  perform the allocation of the return object, so we pass parameters
8330      --  indicating that.
8331
8332      end if;
8333
8334      --  Declare the temp object
8335
8336      Insert_Action (Allocator,
8337        Make_Object_Declaration (Loc,
8338          Defining_Identifier => Return_Obj_Access,
8339          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
8340          Expression          => Temp_Init));
8341
8342      Ref_Func_Call := Make_Reference (Loc, Func_Call);
8343
8344      --  Ada 2005 (AI-251): If the type of the allocator is an interface
8345      --  then generate an implicit conversion to force displacement of the
8346      --  "this" pointer.
8347
8348      if Is_Interface (Designated_Type (Acc_Type)) then
8349         Rewrite
8350           (Ref_Func_Call,
8351            OK_Convert_To (Acc_Type, Ref_Func_Call));
8352
8353      --  If the types are incompatible, we need an unchecked conversion. Note
8354      --  that the full types will be compatible, but the types not visibly
8355      --  compatible.
8356
8357      elsif Nkind_In (Function_Call, N_Type_Conversion,
8358                                     N_Unchecked_Type_Conversion)
8359      then
8360         Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
8361      end if;
8362
8363      declare
8364         Assign : constant Node_Id :=
8365                    Make_Assignment_Statement (Loc,
8366                      Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
8367                      Expression => Ref_Func_Call);
8368         --  Assign the result of the function call into the temp. In the
8369         --  caller-allocates case, this is overwriting the temp with its
8370         --  initial value, which has no effect. In the callee-allocates case,
8371         --  this is setting the temp to point to the object allocated by the
8372         --  callee. Unchecked_Convert is needed for T'Input where T is derived
8373         --  from a controlled type.
8374
8375         Actions : List_Id;
8376         --  Actions to be inserted. If there are no tasks, this is just the
8377         --  assignment statement. If the allocated object has tasks, we need
8378         --  to wrap the assignment in a block that activates them. The
8379         --  activation chain of that block must be passed to the function,
8380         --  rather than some outer chain.
8381
8382      begin
8383         if Has_Task (Result_Subt) then
8384            Actions := New_List;
8385            Build_Task_Allocate_Block_With_Init_Stmts
8386              (Actions, Allocator, Init_Stmts => New_List (Assign));
8387            Chain := Activation_Chain_Entity (Last (Actions));
8388         else
8389            Actions := New_List (Assign);
8390            Chain   := Empty;
8391         end if;
8392
8393         Insert_Actions (Allocator, Actions);
8394      end;
8395
8396      --  When the function has a controlling result, an allocation-form
8397      --  parameter must be passed indicating that the caller is allocating
8398      --  the result object. This is needed because such a function can be
8399      --  called as a dispatching operation and must be treated similarly
8400      --  to functions with unconstrained result subtypes.
8401
8402      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8403        (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8404
8405      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8406        (Func_Call, Function_Id, Acc_Type);
8407
8408      Add_Task_Actuals_To_Build_In_Place_Call
8409        (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8410         Chain => Chain);
8411
8412      --  Add an implicit actual to the function call that provides access
8413      --  to the allocated object. An unchecked conversion to the (specific)
8414      --  result subtype of the function is inserted to handle cases where
8415      --  the access type of the allocator has a class-wide designated type.
8416
8417      Add_Access_Actual_To_Build_In_Place_Call
8418        (Func_Call, Function_Id, Return_Obj_Actual);
8419
8420      --  Finally, replace the allocator node with a reference to the temp
8421
8422      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8423
8424      Analyze_And_Resolve (Allocator, Acc_Type);
8425      pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8426   end Make_Build_In_Place_Call_In_Allocator;
8427
8428   ---------------------------------------------------
8429   -- Make_Build_In_Place_Call_In_Anonymous_Context --
8430   ---------------------------------------------------
8431
8432   procedure Make_Build_In_Place_Call_In_Anonymous_Context
8433     (Function_Call : Node_Id)
8434   is
8435      Loc             : constant Source_Ptr := Sloc (Function_Call);
8436      Func_Call       : constant Node_Id := Unqual_Conv (Function_Call);
8437      Function_Id     : Entity_Id;
8438      Result_Subt     : Entity_Id;
8439      Return_Obj_Id   : Entity_Id;
8440      Return_Obj_Decl : Entity_Id;
8441
8442   begin
8443      --  If the call has already been processed to add build-in-place actuals
8444      --  then return. One place this can occur is for calls to build-in-place
8445      --  functions that occur within a call to a protected operation, where
8446      --  due to rewriting and expansion of the protected call there can be
8447      --  more than one call to Expand_Actuals for the same set of actuals.
8448
8449      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8450         return;
8451      end if;
8452
8453      --  Mark the call as processed as a build-in-place call
8454
8455      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8456
8457      if Is_Entity_Name (Name (Func_Call)) then
8458         Function_Id := Entity (Name (Func_Call));
8459
8460      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8461         Function_Id := Etype (Name (Func_Call));
8462
8463      else
8464         raise Program_Error;
8465      end if;
8466
8467      Result_Subt := Etype (Function_Id);
8468
8469      --  If the build-in-place function returns a controlled object, then the
8470      --  object needs to be finalized immediately after the context. Since
8471      --  this case produces a transient scope, the servicing finalizer needs
8472      --  to name the returned object. Create a temporary which is initialized
8473      --  with the function call:
8474      --
8475      --    Temp_Id : Func_Type := BIP_Func_Call;
8476      --
8477      --  The initialization expression of the temporary will be rewritten by
8478      --  the expander using the appropriate mechanism in Make_Build_In_Place_
8479      --  Call_In_Object_Declaration.
8480
8481      if Needs_Finalization (Result_Subt) then
8482         declare
8483            Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
8484            Temp_Decl : Node_Id;
8485
8486         begin
8487            --  Reset the guard on the function call since the following does
8488            --  not perform actual call expansion.
8489
8490            Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8491
8492            Temp_Decl :=
8493              Make_Object_Declaration (Loc,
8494                Defining_Identifier => Temp_Id,
8495                Object_Definition =>
8496                  New_Occurrence_Of (Result_Subt, Loc),
8497                Expression =>
8498                  New_Copy_Tree (Function_Call));
8499
8500            Insert_Action (Function_Call, Temp_Decl);
8501
8502            Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8503            Analyze (Function_Call);
8504         end;
8505
8506      --  When the result subtype is definite, an object of the subtype is
8507      --  declared and an access value designating it is passed as an actual.
8508
8509      elsif Caller_Known_Size (Func_Call, Result_Subt) then
8510
8511         --  Create a temporary object to hold the function result
8512
8513         Return_Obj_Id := Make_Temporary (Loc, 'R');
8514         Set_Etype (Return_Obj_Id, Result_Subt);
8515
8516         Return_Obj_Decl :=
8517           Make_Object_Declaration (Loc,
8518             Defining_Identifier => Return_Obj_Id,
8519             Aliased_Present     => True,
8520             Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
8521
8522         Set_No_Initialization (Return_Obj_Decl);
8523
8524         Insert_Action (Func_Call, Return_Obj_Decl);
8525
8526         --  When the function has a controlling result, an allocation-form
8527         --  parameter must be passed indicating that the caller is allocating
8528         --  the result object. This is needed because such a function can be
8529         --  called as a dispatching operation and must be treated similarly
8530         --  to functions with unconstrained result subtypes.
8531
8532         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8533           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8534
8535         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8536           (Func_Call, Function_Id);
8537
8538         Add_Task_Actuals_To_Build_In_Place_Call
8539           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8540
8541         --  Add an implicit actual to the function call that provides access
8542         --  to the caller's return object.
8543
8544         Add_Access_Actual_To_Build_In_Place_Call
8545           (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8546
8547         pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8548
8549      --  When the result subtype is unconstrained, the function must allocate
8550      --  the return object in the secondary stack, so appropriate implicit
8551      --  parameters are added to the call to indicate that. A transient
8552      --  scope is established to ensure eventual cleanup of the result.
8553
8554      else
8555         --  Pass an allocation parameter indicating that the function should
8556         --  allocate its result on the secondary stack.
8557
8558         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8559           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8560
8561         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8562           (Func_Call, Function_Id);
8563
8564         Add_Task_Actuals_To_Build_In_Place_Call
8565           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8566
8567         --  Pass a null value to the function since no return object is
8568         --  available on the caller side.
8569
8570         Add_Access_Actual_To_Build_In_Place_Call
8571           (Func_Call, Function_Id, Empty);
8572
8573         pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8574      end if;
8575   end Make_Build_In_Place_Call_In_Anonymous_Context;
8576
8577   --------------------------------------------
8578   -- Make_Build_In_Place_Call_In_Assignment --
8579   --------------------------------------------
8580
8581   procedure Make_Build_In_Place_Call_In_Assignment
8582     (Assign        : Node_Id;
8583      Function_Call : Node_Id)
8584   is
8585      Func_Call    : constant Node_Id    := Unqual_Conv (Function_Call);
8586      Lhs          : constant Node_Id    := Name (Assign);
8587      Loc          : constant Source_Ptr := Sloc (Function_Call);
8588      Func_Id      : Entity_Id;
8589      Obj_Decl     : Node_Id;
8590      Obj_Id       : Entity_Id;
8591      Ptr_Typ      : Entity_Id;
8592      Ptr_Typ_Decl : Node_Id;
8593      New_Expr     : Node_Id;
8594      Result_Subt  : Entity_Id;
8595
8596   begin
8597      --  Mark the call as processed as a build-in-place call
8598
8599      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8600      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8601
8602      if Is_Entity_Name (Name (Func_Call)) then
8603         Func_Id := Entity (Name (Func_Call));
8604
8605      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8606         Func_Id := Etype (Name (Func_Call));
8607
8608      else
8609         raise Program_Error;
8610      end if;
8611
8612      Result_Subt := Etype (Func_Id);
8613
8614      --  When the result subtype is unconstrained, an additional actual must
8615      --  be passed to indicate that the caller is providing the return object.
8616      --  This parameter must also be passed when the called function has a
8617      --  controlling result, because dispatching calls to the function needs
8618      --  to be treated effectively the same as calls to class-wide functions.
8619
8620      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8621        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8622
8623      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8624        (Func_Call, Func_Id);
8625
8626      Add_Task_Actuals_To_Build_In_Place_Call
8627        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8628
8629      --  Add an implicit actual to the function call that provides access to
8630      --  the caller's return object.
8631
8632      Add_Access_Actual_To_Build_In_Place_Call
8633        (Func_Call,
8634         Func_Id,
8635         Make_Unchecked_Type_Conversion (Loc,
8636           Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8637           Expression   => Relocate_Node (Lhs)));
8638
8639      --  Create an access type designating the function's result subtype
8640
8641      Ptr_Typ := Make_Temporary (Loc, 'A');
8642
8643      Ptr_Typ_Decl :=
8644        Make_Full_Type_Declaration (Loc,
8645          Defining_Identifier => Ptr_Typ,
8646          Type_Definition     =>
8647            Make_Access_To_Object_Definition (Loc,
8648              All_Present        => True,
8649              Subtype_Indication =>
8650                New_Occurrence_Of (Result_Subt, Loc)));
8651      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8652
8653      --  Finally, create an access object initialized to a reference to the
8654      --  function call. We know this access value is non-null, so mark the
8655      --  entity accordingly to suppress junk access checks.
8656
8657      New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8658
8659      --  Add a conversion if it's the wrong type
8660
8661      if Etype (New_Expr) /= Ptr_Typ then
8662         New_Expr :=
8663           Make_Unchecked_Type_Conversion (Loc,
8664             New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8665      end if;
8666
8667      Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8668      Set_Etype (Obj_Id, Ptr_Typ);
8669      Set_Is_Known_Non_Null (Obj_Id);
8670
8671      Obj_Decl :=
8672        Make_Object_Declaration (Loc,
8673          Defining_Identifier => Obj_Id,
8674          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8675          Expression          => New_Expr);
8676      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8677
8678      Rewrite (Assign, Make_Null_Statement (Loc));
8679      pragma Assert (Check_Number_Of_Actuals (Func_Call, Func_Id));
8680   end Make_Build_In_Place_Call_In_Assignment;
8681
8682   ----------------------------------------------------
8683   -- Make_Build_In_Place_Call_In_Object_Declaration --
8684   ----------------------------------------------------
8685
8686   procedure Make_Build_In_Place_Call_In_Object_Declaration
8687     (Obj_Decl      : Node_Id;
8688      Function_Call : Node_Id)
8689   is
8690      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8691      --  Get the value of Function_Id, below
8692
8693      ---------------------
8694      -- Get_Function_Id --
8695      ---------------------
8696
8697      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8698      begin
8699         if Is_Entity_Name (Name (Func_Call)) then
8700            return Entity (Name (Func_Call));
8701
8702         elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8703            return Etype (Name (Func_Call));
8704
8705         else
8706            raise Program_Error;
8707         end if;
8708      end Get_Function_Id;
8709
8710      --  Local variables
8711
8712      Func_Call   : constant Node_Id    := Unqual_Conv (Function_Call);
8713      Function_Id : constant Entity_Id  := Get_Function_Id (Func_Call);
8714      Loc         : constant Source_Ptr := Sloc (Function_Call);
8715      Obj_Loc     : constant Source_Ptr := Sloc (Obj_Decl);
8716      Obj_Def_Id  : constant Entity_Id  := Defining_Identifier (Obj_Decl);
8717      Obj_Typ     : constant Entity_Id  := Etype (Obj_Def_Id);
8718      Encl_Func   : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
8719      Result_Subt : constant Entity_Id  := Etype (Function_Id);
8720
8721      Call_Deref      : Node_Id;
8722      Caller_Object   : Node_Id;
8723      Def_Id          : Entity_Id;
8724      Designated_Type : Entity_Id;
8725      Fmaster_Actual  : Node_Id := Empty;
8726      Pool_Actual     : Node_Id;
8727      Ptr_Typ         : Entity_Id;
8728      Ptr_Typ_Decl    : Node_Id;
8729      Pass_Caller_Acc : Boolean := False;
8730      Res_Decl        : Node_Id;
8731
8732      Definite : constant Boolean :=
8733                   Caller_Known_Size (Func_Call, Result_Subt)
8734                     and then not Is_Class_Wide_Type (Obj_Typ);
8735      --  In the case of "X : T'Class := F(...);", where F returns a
8736      --  Caller_Known_Size (specific) tagged type, we treat it as
8737      --  indefinite, because the code for the Definite case below sets the
8738      --  initialization expression of the object to Empty, which would be
8739      --  illegal Ada, and would cause gigi to misallocate X.
8740
8741   --  Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8742
8743   begin
8744      --  If the call has already been processed to add build-in-place actuals
8745      --  then return.
8746
8747      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8748         return;
8749      end if;
8750
8751      --  Mark the call as processed as a build-in-place call
8752
8753      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8754
8755      --  Create an access type designating the function's result subtype.
8756      --  We use the type of the original call because it may be a call to an
8757      --  inherited operation, which the expansion has replaced with the parent
8758      --  operation that yields the parent type. Note that this access type
8759      --  must be declared before we establish a transient scope, so that it
8760      --  receives the proper accessibility level.
8761
8762      if Is_Class_Wide_Type (Obj_Typ)
8763        and then not Is_Interface (Obj_Typ)
8764        and then not Is_Class_Wide_Type (Etype (Function_Call))
8765      then
8766         Designated_Type := Obj_Typ;
8767      else
8768         Designated_Type := Etype (Function_Call);
8769      end if;
8770
8771      Ptr_Typ := Make_Temporary (Loc, 'A');
8772      Ptr_Typ_Decl :=
8773        Make_Full_Type_Declaration (Loc,
8774          Defining_Identifier => Ptr_Typ,
8775          Type_Definition     =>
8776            Make_Access_To_Object_Definition (Loc,
8777              All_Present        => True,
8778              Subtype_Indication =>
8779                New_Occurrence_Of (Designated_Type, Loc)));
8780
8781      --  The access type and its accompanying object must be inserted after
8782      --  the object declaration in the constrained case, so that the function
8783      --  call can be passed access to the object. In the indefinite case, or
8784      --  if the object declaration is for a return object, the access type and
8785      --  object must be inserted before the object, since the object
8786      --  declaration is rewritten to be a renaming of a dereference of the
8787      --  access object. Note: we need to freeze Ptr_Typ explicitly, because
8788      --  the result object is in a different (transient) scope, so won't cause
8789      --  freezing.
8790
8791      if Definite and then not Is_Return_Object (Obj_Def_Id) then
8792
8793         --  The presence of an address clause complicates the build-in-place
8794         --  expansion because the indicated address must be processed before
8795         --  the indirect call is generated (including the definition of a
8796         --  local pointer to the object). The address clause may come from
8797         --  an aspect specification or from an explicit attribute
8798         --  specification appearing after the object declaration. These two
8799         --  cases require different processing.
8800
8801         if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8802
8803            --  Skip non-delayed pragmas that correspond to other aspects, if
8804            --  any, to find proper insertion point for freeze node of object.
8805
8806            declare
8807               D : Node_Id := Obj_Decl;
8808               N : Node_Id := Next (D);
8809
8810            begin
8811               while Present (N)
8812                 and then Nkind_In (N, N_Attribute_Reference, N_Pragma)
8813               loop
8814                  Analyze (N);
8815                  D := N;
8816                  Next (N);
8817               end loop;
8818
8819               Insert_After (D, Ptr_Typ_Decl);
8820
8821               --  Freeze object before pointer declaration, to ensure that
8822               --  generated attribute for address is inserted at the proper
8823               --  place.
8824
8825               Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8826            end;
8827
8828            Analyze (Ptr_Typ_Decl);
8829
8830         elsif Present (Following_Address_Clause (Obj_Decl)) then
8831
8832            --  Locate explicit address clause, which may also follow pragmas
8833            --  generated by other aspect specifications.
8834
8835            declare
8836               Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8837               D    : Node_Id := Next (Obj_Decl);
8838
8839            begin
8840               while Present (D) loop
8841                  Analyze (D);
8842                  exit when D = Addr;
8843                  Next (D);
8844               end loop;
8845
8846               Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8847            end;
8848
8849         else
8850            Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8851         end if;
8852      else
8853         Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8854      end if;
8855
8856      --  Force immediate freezing of Ptr_Typ because Res_Decl will be
8857      --  elaborated in an inner (transient) scope and thus won't cause
8858      --  freezing by itself. It's not an itype, but it needs to be frozen
8859      --  inside the current subprogram (see Freeze_Outside in freeze.adb).
8860
8861      Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8862
8863      --  If the object is a return object of an enclosing build-in-place
8864      --  function, then the implicit build-in-place parameters of the
8865      --  enclosing function are simply passed along to the called function.
8866      --  (Unfortunately, this won't cover the case of extension aggregates
8867      --  where the ancestor part is a build-in-place indefinite function
8868      --  call that should be passed along the caller's parameters.
8869      --  Currently those get mishandled by reassigning the result of the
8870      --  call to the aggregate return object, when the call result should
8871      --  really be directly built in place in the aggregate and not in a
8872      --  temporary. ???)
8873
8874      if Is_Return_Object (Obj_Def_Id) then
8875         Pass_Caller_Acc := True;
8876
8877         --  When the enclosing function has a BIP_Alloc_Form formal then we
8878         --  pass it along to the callee (such as when the enclosing function
8879         --  has an unconstrained or tagged result type).
8880
8881         if Needs_BIP_Alloc_Form (Encl_Func) then
8882            if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8883               Pool_Actual :=
8884                 New_Occurrence_Of
8885                   (Build_In_Place_Formal
8886                     (Encl_Func, BIP_Storage_Pool), Loc);
8887
8888            --  The build-in-place pool formal is not built on e.g. ZFP
8889
8890            else
8891               Pool_Actual := Empty;
8892            end if;
8893
8894            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8895              (Function_Call  => Func_Call,
8896               Function_Id    => Function_Id,
8897               Alloc_Form_Exp =>
8898                 New_Occurrence_Of
8899                   (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8900               Pool_Actual    => Pool_Actual);
8901
8902         --  Otherwise, if enclosing function has a definite result subtype,
8903         --  then caller allocation will be used.
8904
8905         else
8906            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8907              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8908         end if;
8909
8910         if Needs_BIP_Finalization_Master (Encl_Func) then
8911            Fmaster_Actual :=
8912              New_Occurrence_Of
8913                (Build_In_Place_Formal
8914                   (Encl_Func, BIP_Finalization_Master), Loc);
8915         end if;
8916
8917         --  Retrieve the BIPacc formal from the enclosing function and convert
8918         --  it to the access type of the callee's BIP_Object_Access formal.
8919
8920         Caller_Object :=
8921           Make_Unchecked_Type_Conversion (Loc,
8922             Subtype_Mark =>
8923               New_Occurrence_Of
8924                 (Etype (Build_In_Place_Formal
8925                    (Function_Id, BIP_Object_Access)),
8926                  Loc),
8927             Expression   =>
8928               New_Occurrence_Of
8929                 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8930                  Loc));
8931
8932      --  In the definite case, add an implicit actual to the function call
8933      --  that provides access to the declared object. An unchecked conversion
8934      --  to the (specific) result type of the function is inserted to handle
8935      --  the case where the object is declared with a class-wide type.
8936
8937      elsif Definite then
8938         Caller_Object :=
8939            Make_Unchecked_Type_Conversion (Loc,
8940              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8941              Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
8942
8943         --  When the function has a controlling result, an allocation-form
8944         --  parameter must be passed indicating that the caller is allocating
8945         --  the result object. This is needed because such a function can be
8946         --  called as a dispatching operation and must be treated similarly to
8947         --  functions with indefinite result subtypes.
8948
8949         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8950           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8951
8952      --  The allocation for indefinite library-level objects occurs on the
8953      --  heap as opposed to the secondary stack. This accommodates DLLs where
8954      --  the secondary stack is destroyed after each library unload. This is a
8955      --  hybrid mechanism where a stack-allocated object lives on the heap.
8956
8957      elsif Is_Library_Level_Entity (Obj_Def_Id)
8958        and then not Restriction_Active (No_Implicit_Heap_Allocations)
8959      then
8960         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8961           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8962         Caller_Object := Empty;
8963
8964         --  Create a finalization master for the access result type to ensure
8965         --  that the heap allocation can properly chain the object and later
8966         --  finalize it when the library unit goes out of scope.
8967
8968         if Needs_Finalization (Etype (Func_Call)) then
8969            Build_Finalization_Master
8970              (Typ            => Ptr_Typ,
8971               For_Lib_Level  => True,
8972               Insertion_Node => Ptr_Typ_Decl);
8973
8974            Fmaster_Actual :=
8975              Make_Attribute_Reference (Loc,
8976                Prefix         =>
8977                  New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8978                Attribute_Name => Name_Unrestricted_Access);
8979         end if;
8980
8981      --  In other indefinite cases, pass an indication to do the allocation
8982      --  on the secondary stack and set Caller_Object to Empty so that a null
8983      --  value will be passed for the caller's object address. A transient
8984      --  scope is established to ensure eventual cleanup of the result.
8985
8986      else
8987         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8988           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8989         Caller_Object := Empty;
8990
8991         Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
8992      end if;
8993
8994      --  Pass along any finalization master actual, which is needed in the
8995      --  case where the called function initializes a return object of an
8996      --  enclosing build-in-place function.
8997
8998      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8999        (Func_Call  => Func_Call,
9000         Func_Id    => Function_Id,
9001         Master_Exp => Fmaster_Actual);
9002
9003      if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
9004        and then Needs_BIP_Task_Actuals (Function_Id)
9005      then
9006         --  Here we're passing along the master that was passed in to this
9007         --  function.
9008
9009         Add_Task_Actuals_To_Build_In_Place_Call
9010           (Func_Call, Function_Id,
9011            Master_Actual =>
9012              New_Occurrence_Of
9013                (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
9014
9015      else
9016         Add_Task_Actuals_To_Build_In_Place_Call
9017           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9018      end if;
9019
9020      Add_Access_Actual_To_Build_In_Place_Call
9021        (Func_Call,
9022         Function_Id,
9023         Caller_Object,
9024         Is_Access => Pass_Caller_Acc);
9025
9026      --  Finally, create an access object initialized to a reference to the
9027      --  function call. We know this access value cannot be null, so mark the
9028      --  entity accordingly to suppress the access check.
9029
9030      Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9031      Set_Etype (Def_Id, Ptr_Typ);
9032      Set_Is_Known_Non_Null (Def_Id);
9033
9034      if Nkind_In (Function_Call, N_Type_Conversion,
9035                                  N_Unchecked_Type_Conversion)
9036      then
9037         Res_Decl :=
9038           Make_Object_Declaration (Loc,
9039             Defining_Identifier => Def_Id,
9040             Constant_Present    => True,
9041             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
9042             Expression          =>
9043               Make_Unchecked_Type_Conversion (Loc,
9044                 New_Occurrence_Of (Ptr_Typ, Loc),
9045                 Make_Reference (Loc, Relocate_Node (Func_Call))));
9046      else
9047         Res_Decl :=
9048           Make_Object_Declaration (Loc,
9049             Defining_Identifier => Def_Id,
9050             Constant_Present    => True,
9051             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
9052             Expression          =>
9053               Make_Reference (Loc, Relocate_Node (Func_Call)));
9054      end if;
9055
9056      Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
9057
9058      --  If the result subtype of the called function is definite and is not
9059      --  itself the return expression of an enclosing BIP function, then mark
9060      --  the object as having no initialization.
9061
9062      if Definite and then not Is_Return_Object (Obj_Def_Id) then
9063
9064         --  The related object declaration is encased in a transient block
9065         --  because the build-in-place function call contains at least one
9066         --  nested function call that produces a controlled transient
9067         --  temporary:
9068
9069         --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9070
9071         --  Since the build-in-place expansion decouples the call from the
9072         --  object declaration, the finalization machinery lacks the context
9073         --  which prompted the generation of the transient block. To resolve
9074         --  this scenario, store the build-in-place call.
9075
9076         if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
9077            Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9078         end if;
9079
9080         Set_Expression (Obj_Decl, Empty);
9081         Set_No_Initialization (Obj_Decl);
9082
9083      --  In case of an indefinite result subtype, or if the call is the
9084      --  return expression of an enclosing BIP function, rewrite the object
9085      --  declaration as an object renaming where the renamed object is a
9086      --  dereference of <function_Call>'reference:
9087      --
9088      --      Obj : Subt renames <function_call>'Ref.all;
9089
9090      else
9091         Call_Deref :=
9092           Make_Explicit_Dereference (Obj_Loc,
9093             Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
9094
9095         Rewrite (Obj_Decl,
9096           Make_Object_Renaming_Declaration (Obj_Loc,
9097             Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
9098             Subtype_Mark        =>
9099               New_Occurrence_Of (Designated_Type, Obj_Loc),
9100             Name                => Call_Deref));
9101
9102         --  At this point, Defining_Identifier (Obj_Decl) is no longer equal
9103         --  to Obj_Def_Id.
9104
9105         Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
9106
9107         --  If the original entity comes from source, then mark the new
9108         --  entity as needing debug information, even though it's defined
9109         --  by a generated renaming that does not come from source, so that
9110         --  the Materialize_Entity flag will be set on the entity when
9111         --  Debug_Renaming_Declaration is called during analysis.
9112
9113         if Comes_From_Source (Obj_Def_Id) then
9114            Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
9115         end if;
9116
9117         Analyze (Obj_Decl);
9118         Replace_Renaming_Declaration_Id
9119           (Obj_Decl, Original_Node (Obj_Decl));
9120      end if;
9121
9122      pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
9123   end Make_Build_In_Place_Call_In_Object_Declaration;
9124
9125   -------------------------------------------------
9126   -- Make_Build_In_Place_Iface_Call_In_Allocator --
9127   -------------------------------------------------
9128
9129   procedure Make_Build_In_Place_Iface_Call_In_Allocator
9130     (Allocator     : Node_Id;
9131      Function_Call : Node_Id)
9132   is
9133      BIP_Func_Call : constant Node_Id :=
9134                        Unqual_BIP_Iface_Function_Call (Function_Call);
9135      Loc           : constant Source_Ptr := Sloc (Function_Call);
9136
9137      Anon_Type : Entity_Id;
9138      Tmp_Decl  : Node_Id;
9139      Tmp_Id    : Entity_Id;
9140
9141   begin
9142      --  No action of the call has already been processed
9143
9144      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9145         return;
9146      end if;
9147
9148      Tmp_Id := Make_Temporary (Loc, 'D');
9149
9150      --  Insert a temporary before N initialized with the BIP function call
9151      --  without its enclosing type conversions and analyze it without its
9152      --  expansion. This temporary facilitates us reusing the BIP machinery,
9153      --  which takes care of adding the extra build-in-place actuals and
9154      --  transforms this object declaration into an object renaming
9155      --  declaration.
9156
9157      Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
9158      Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
9159      Set_Etype (Anon_Type, Anon_Type);
9160
9161      Tmp_Decl :=
9162        Make_Object_Declaration (Loc,
9163          Defining_Identifier => Tmp_Id,
9164          Object_Definition   => New_Occurrence_Of (Anon_Type, Loc),
9165          Expression          =>
9166            Make_Allocator (Loc,
9167              Expression =>
9168                Make_Qualified_Expression (Loc,
9169                  Subtype_Mark =>
9170                    New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9171                  Expression   => New_Copy_Tree (BIP_Func_Call))));
9172
9173      Expander_Mode_Save_And_Set (False);
9174      Insert_Action (Allocator, Tmp_Decl);
9175      Expander_Mode_Restore;
9176
9177      Make_Build_In_Place_Call_In_Allocator
9178        (Allocator     => Expression (Tmp_Decl),
9179         Function_Call => Expression (Expression (Tmp_Decl)));
9180
9181      Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
9182   end Make_Build_In_Place_Iface_Call_In_Allocator;
9183
9184   ---------------------------------------------------------
9185   -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
9186   ---------------------------------------------------------
9187
9188   procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
9189     (Function_Call : Node_Id)
9190   is
9191      BIP_Func_Call : constant Node_Id :=
9192                        Unqual_BIP_Iface_Function_Call (Function_Call);
9193      Loc           : constant Source_Ptr := Sloc (Function_Call);
9194
9195      Tmp_Decl : Node_Id;
9196      Tmp_Id   : Entity_Id;
9197
9198   begin
9199      --  No action of the call has already been processed
9200
9201      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9202         return;
9203      end if;
9204
9205      pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
9206
9207      --  Insert a temporary before the call initialized with function call to
9208      --  reuse the BIP machinery which takes care of adding the extra build-in
9209      --  place actuals and transforms this object declaration into an object
9210      --  renaming declaration.
9211
9212      Tmp_Id := Make_Temporary (Loc, 'D');
9213
9214      Tmp_Decl :=
9215        Make_Object_Declaration (Loc,
9216          Defining_Identifier => Tmp_Id,
9217          Object_Definition   =>
9218            New_Occurrence_Of (Etype (Function_Call), Loc),
9219          Expression          => Relocate_Node (Function_Call));
9220
9221      Expander_Mode_Save_And_Set (False);
9222      Insert_Action (Function_Call, Tmp_Decl);
9223      Expander_Mode_Restore;
9224
9225      Make_Build_In_Place_Iface_Call_In_Object_Declaration
9226        (Obj_Decl      => Tmp_Decl,
9227         Function_Call => Expression (Tmp_Decl));
9228   end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
9229
9230   ----------------------------------------------------------
9231   -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
9232   ----------------------------------------------------------
9233
9234   procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
9235     (Obj_Decl      : Node_Id;
9236      Function_Call : Node_Id)
9237   is
9238      BIP_Func_Call : constant Node_Id :=
9239                        Unqual_BIP_Iface_Function_Call (Function_Call);
9240      Loc           : constant Source_Ptr := Sloc (Function_Call);
9241      Obj_Id        : constant Entity_Id := Defining_Entity (Obj_Decl);
9242
9243      Tmp_Decl : Node_Id;
9244      Tmp_Id   : Entity_Id;
9245
9246   begin
9247      --  No action of the call has already been processed
9248
9249      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9250         return;
9251      end if;
9252
9253      Tmp_Id := Make_Temporary (Loc, 'D');
9254
9255      --  Insert a temporary before N initialized with the BIP function call
9256      --  without its enclosing type conversions and analyze it without its
9257      --  expansion. This temporary facilitates us reusing the BIP machinery,
9258      --  which takes care of adding the extra build-in-place actuals and
9259      --  transforms this object declaration into an object renaming
9260      --  declaration.
9261
9262      Tmp_Decl :=
9263        Make_Object_Declaration (Loc,
9264          Defining_Identifier => Tmp_Id,
9265          Object_Definition   =>
9266            New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9267          Expression          => New_Copy_Tree (BIP_Func_Call));
9268
9269      Expander_Mode_Save_And_Set (False);
9270      Insert_Action (Obj_Decl, Tmp_Decl);
9271      Expander_Mode_Restore;
9272
9273      Make_Build_In_Place_Call_In_Object_Declaration
9274        (Obj_Decl      => Tmp_Decl,
9275         Function_Call => Expression (Tmp_Decl));
9276
9277      pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
9278
9279      --  Replace the original build-in-place function call by a reference to
9280      --  the resulting temporary object renaming declaration. In this way,
9281      --  all the interface conversions performed in the original Function_Call
9282      --  on the build-in-place object are preserved.
9283
9284      Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9285
9286      --  Replace the original object declaration by an internal object
9287      --  renaming declaration. This leaves the generated code more clean (the
9288      --  build-in-place function call in an object renaming declaration and
9289      --  displacements of the pointer to the build-in-place object in another
9290      --  renaming declaration) and allows us to invoke the routine that takes
9291      --  care of replacing the identifier of the renaming declaration (routine
9292      --  originally developed for the regular build-in-place management).
9293
9294      Rewrite (Obj_Decl,
9295        Make_Object_Renaming_Declaration (Loc,
9296          Defining_Identifier => Make_Temporary (Loc, 'D'),
9297          Subtype_Mark        => New_Occurrence_Of (Etype (Obj_Id), Loc),
9298          Name                => Function_Call));
9299      Analyze (Obj_Decl);
9300
9301      Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9302   end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9303
9304   --------------------------------------------
9305   -- Make_CPP_Constructor_Call_In_Allocator --
9306   --------------------------------------------
9307
9308   procedure Make_CPP_Constructor_Call_In_Allocator
9309     (Allocator     : Node_Id;
9310      Function_Call : Node_Id)
9311   is
9312      Loc         : constant Source_Ptr := Sloc (Function_Call);
9313      Acc_Type    : constant Entity_Id := Etype (Allocator);
9314      Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9315      Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9316
9317      New_Allocator     : Node_Id;
9318      Return_Obj_Access : Entity_Id;
9319      Tmp_Obj           : Node_Id;
9320
9321   begin
9322      pragma Assert (Nkind (Allocator) = N_Allocator
9323                      and then Nkind (Function_Call) = N_Function_Call);
9324      pragma Assert (Convention (Function_Id) = Convention_CPP
9325                      and then Is_Constructor (Function_Id));
9326      pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9327
9328      --  Replace the initialized allocator of form "new T'(Func (...))" with
9329      --  an uninitialized allocator of form "new T", where T is the result
9330      --  subtype of the called function. The call to the function is handled
9331      --  separately further below.
9332
9333      New_Allocator :=
9334        Make_Allocator (Loc,
9335          Expression => New_Occurrence_Of (Result_Subt, Loc));
9336      Set_No_Initialization (New_Allocator);
9337
9338      --  Copy attributes to new allocator. Note that the new allocator
9339      --  logically comes from source if the original one did, so copy the
9340      --  relevant flag. This ensures proper treatment of the restriction
9341      --  No_Implicit_Heap_Allocations in this case.
9342
9343      Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
9344      Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9345      Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9346
9347      Rewrite (Allocator, New_Allocator);
9348
9349      --  Create a new access object and initialize it to the result of the
9350      --  new uninitialized allocator. Note: we do not use Allocator as the
9351      --  Related_Node of Return_Obj_Access in call to Make_Temporary below
9352      --  as this would create a sort of infinite "recursion".
9353
9354      Return_Obj_Access := Make_Temporary (Loc, 'R');
9355      Set_Etype (Return_Obj_Access, Acc_Type);
9356
9357      --  Generate:
9358      --    Rnnn : constant ptr_T := new (T);
9359      --    Init (Rnn.all,...);
9360
9361      Tmp_Obj :=
9362        Make_Object_Declaration (Loc,
9363          Defining_Identifier => Return_Obj_Access,
9364          Constant_Present    => True,
9365          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
9366          Expression          => Relocate_Node (Allocator));
9367      Insert_Action (Allocator, Tmp_Obj);
9368
9369      Insert_List_After_And_Analyze (Tmp_Obj,
9370        Build_Initialization_Call (Loc,
9371          Id_Ref =>
9372            Make_Explicit_Dereference (Loc,
9373              Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9374          Typ => Etype (Function_Id),
9375          Constructor_Ref => Function_Call));
9376
9377      --  Finally, replace the allocator node with a reference to the result of
9378      --  the function call itself (which will effectively be an access to the
9379      --  object created by the allocator).
9380
9381      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9382
9383      --  Ada 2005 (AI-251): If the type of the allocator is an interface then
9384      --  generate an implicit conversion to force displacement of the "this"
9385      --  pointer.
9386
9387      if Is_Interface (Designated_Type (Acc_Type)) then
9388         Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9389      end if;
9390
9391      Analyze_And_Resolve (Allocator, Acc_Type);
9392   end Make_CPP_Constructor_Call_In_Allocator;
9393
9394   ----------------------------
9395   -- Needs_BIP_Task_Actuals --
9396   ----------------------------
9397
9398   function Needs_BIP_Task_Actuals (Func_Id : Entity_Id) return Boolean is
9399      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9400      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9401   begin
9402      return Has_Task (Func_Typ);
9403   end Needs_BIP_Task_Actuals;
9404
9405   -----------------------------------
9406   -- Needs_BIP_Finalization_Master --
9407   -----------------------------------
9408
9409   function Needs_BIP_Finalization_Master
9410     (Func_Id : Entity_Id) return Boolean
9411   is
9412      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9413      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9414   begin
9415      --  A formal giving the finalization master is needed for build-in-place
9416      --  functions whose result type needs finalization or is a tagged type.
9417      --  Tagged primitive build-in-place functions need such a formal because
9418      --  they can be called by a dispatching call, and extensions may require
9419      --  finalization even if the root type doesn't. This means they're also
9420      --  needed for tagged nonprimitive build-in-place functions with tagged
9421      --  results, since such functions can be called via access-to-function
9422      --  types, and those can be used to call primitives, so masters have to
9423      --  be passed to all such build-in-place functions, primitive or not.
9424
9425      return
9426        not Restriction_Active (No_Finalization)
9427          and then (Needs_Finalization (Func_Typ)
9428                     or else Is_Tagged_Type (Func_Typ));
9429   end Needs_BIP_Finalization_Master;
9430
9431   --------------------------
9432   -- Needs_BIP_Alloc_Form --
9433   --------------------------
9434
9435   function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9436      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9437      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9438   begin
9439      return Requires_Transient_Scope (Func_Typ);
9440   end Needs_BIP_Alloc_Form;
9441
9442   --------------------------------------
9443   -- Needs_Result_Accessibility_Level --
9444   --------------------------------------
9445
9446   function Needs_Result_Accessibility_Level
9447     (Func_Id : Entity_Id) return Boolean
9448   is
9449      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9450
9451      function Has_Unconstrained_Access_Discriminant_Component
9452        (Comp_Typ : Entity_Id) return Boolean;
9453      --  Returns True if any component of the type has an unconstrained access
9454      --  discriminant.
9455
9456      -----------------------------------------------------
9457      -- Has_Unconstrained_Access_Discriminant_Component --
9458      -----------------------------------------------------
9459
9460      function Has_Unconstrained_Access_Discriminant_Component
9461        (Comp_Typ :  Entity_Id) return Boolean
9462      is
9463      begin
9464         if not Is_Limited_Type (Comp_Typ) then
9465            return False;
9466
9467            --  Only limited types can have access discriminants with
9468            --  defaults.
9469
9470         elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9471            return True;
9472
9473         elsif Is_Array_Type (Comp_Typ) then
9474            return Has_Unconstrained_Access_Discriminant_Component
9475                     (Underlying_Type (Component_Type (Comp_Typ)));
9476
9477         elsif Is_Record_Type (Comp_Typ) then
9478            declare
9479               Comp : Entity_Id;
9480
9481            begin
9482               Comp := First_Component (Comp_Typ);
9483               while Present (Comp) loop
9484                  if Has_Unconstrained_Access_Discriminant_Component
9485                       (Underlying_Type (Etype (Comp)))
9486                  then
9487                     return True;
9488                  end if;
9489
9490                  Next_Component (Comp);
9491               end loop;
9492            end;
9493         end if;
9494
9495         return False;
9496      end Has_Unconstrained_Access_Discriminant_Component;
9497
9498      Disable_Coextension_Cases : constant Boolean := True;
9499      --  Flag used to temporarily disable a "True" result for types with
9500      --  access discriminants and related coextension cases.
9501
9502   --  Start of processing for Needs_Result_Accessibility_Level
9503
9504   begin
9505      --  False if completion unavailable (how does this happen???)
9506
9507      if not Present (Func_Typ) then
9508         return False;
9509
9510      --  False if not a function, also handle enum-lit renames case
9511
9512      elsif Func_Typ = Standard_Void_Type
9513        or else Is_Scalar_Type (Func_Typ)
9514      then
9515         return False;
9516
9517      --  Handle a corner case, a cross-dialect subp renaming. For example,
9518      --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9519      --  an Ada 2005 (or earlier) unit references predefined run-time units.
9520
9521      elsif Present (Alias (Func_Id)) then
9522
9523         --  Unimplemented: a cross-dialect subp renaming which does not set
9524         --  the Alias attribute (e.g., a rename of a dereference of an access
9525         --  to subprogram value). ???
9526
9527         return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9528
9529      --  Remaining cases require Ada 2012 mode
9530
9531      elsif Ada_Version < Ada_2012 then
9532         return False;
9533
9534      --  Handle the situation where a result is an anonymous access type
9535      --  RM 3.10.2 (10.3/3).
9536
9537      elsif Ekind (Func_Typ) = E_Anonymous_Access_Type then
9538         return True;
9539
9540      --  The following cases are related to coextensions and do not fully
9541      --  cover everything mentioned in RM 3.10.2 (12) ???
9542
9543      --  Temporarily disabled ???
9544
9545      elsif Disable_Coextension_Cases then
9546         return False;
9547
9548      --  In the case of, say, a null tagged record result type, the need for
9549      --  this extra parameter might not be obvious so this function returns
9550      --  True for all tagged types for compatibility reasons.
9551
9552      --  A function with, say, a tagged null controlling result type might
9553      --  be overridden by a primitive of an extension having an access
9554      --  discriminant and the overrider and overridden must have compatible
9555      --  calling conventions (including implicitly declared parameters).
9556
9557      --  Similarly, values of one access-to-subprogram type might designate
9558      --  both a primitive subprogram of a given type and a function which is,
9559      --  for example, not a primitive subprogram of any type. Again, this
9560      --  requires calling convention compatibility. It might be possible to
9561      --  solve these issues by introducing wrappers, but that is not the
9562      --  approach that was chosen.
9563
9564      elsif Is_Tagged_Type (Func_Typ) then
9565         return True;
9566
9567      elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9568         return True;
9569
9570      elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9571         return True;
9572
9573      --  False for all other cases
9574
9575      else
9576         return False;
9577      end if;
9578   end Needs_Result_Accessibility_Level;
9579
9580   -------------------------------------
9581   -- Replace_Renaming_Declaration_Id --
9582   -------------------------------------
9583
9584   procedure Replace_Renaming_Declaration_Id
9585      (New_Decl  : Node_Id;
9586       Orig_Decl : Node_Id)
9587   is
9588      New_Id  : constant Entity_Id := Defining_Entity (New_Decl);
9589      Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9590
9591   begin
9592      Set_Chars (New_Id, Chars (Orig_Id));
9593
9594      --  Swap next entity links in preparation for exchanging entities
9595
9596      declare
9597         Next_Id : constant Entity_Id := Next_Entity (New_Id);
9598      begin
9599         Link_Entities (New_Id, Next_Entity (Orig_Id));
9600         Link_Entities (Orig_Id, Next_Id);
9601      end;
9602
9603      Set_Homonym (New_Id, Homonym (Orig_Id));
9604      Exchange_Entities (New_Id, Orig_Id);
9605
9606      --  Preserve source indication of original declaration, so that xref
9607      --  information is properly generated for the right entity.
9608
9609      Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9610      Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9611
9612      Set_Comes_From_Source (New_Id, False);
9613   end Replace_Renaming_Declaration_Id;
9614
9615   ---------------------------------
9616   -- Rewrite_Function_Call_For_C --
9617   ---------------------------------
9618
9619   procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9620      Orig_Func   : constant Entity_Id  := Entity (Name (N));
9621      Func_Id     : constant Entity_Id  := Ultimate_Alias (Orig_Func);
9622      Par         : constant Node_Id    := Parent (N);
9623      Proc_Id     : constant Entity_Id  := Corresponding_Procedure (Func_Id);
9624      Loc         : constant Source_Ptr := Sloc (Par);
9625      Actuals     : List_Id;
9626      Last_Actual : Node_Id;
9627      Last_Formal : Entity_Id;
9628
9629   --  Start of processing for Rewrite_Function_Call_For_C
9630
9631   begin
9632      --  The actuals may be given by named associations, so the added actual
9633      --  that is the target of the return value of the call must be a named
9634      --  association as well, so we retrieve the name of the generated
9635      --  out_formal.
9636
9637      Last_Formal := First_Formal (Proc_Id);
9638      while Present (Next_Formal (Last_Formal)) loop
9639         Last_Formal := Next_Formal (Last_Formal);
9640      end loop;
9641
9642      Actuals := Parameter_Associations (N);
9643
9644      --  The original function may lack parameters
9645
9646      if No (Actuals) then
9647         Actuals := New_List;
9648      end if;
9649
9650      --  If the function call is the expression of an assignment statement,
9651      --  transform the assignment into a procedure call. Generate:
9652
9653      --    LHS := Func_Call (...);
9654
9655      --    Proc_Call (..., LHS);
9656
9657      --  If function is inherited, a conversion may be necessary.
9658
9659      if Nkind (Par) = N_Assignment_Statement then
9660         Last_Actual :=  Name (Par);
9661
9662         if not Comes_From_Source (Orig_Func)
9663           and then Etype (Orig_Func) /= Etype (Func_Id)
9664         then
9665            Last_Actual :=
9666              Make_Type_Conversion (Loc,
9667                New_Occurrence_Of (Etype (Func_Id), Loc),
9668                Last_Actual);
9669         end if;
9670
9671         Append_To (Actuals,
9672           Make_Parameter_Association (Loc,
9673             Selector_Name             =>
9674               Make_Identifier (Loc, Chars (Last_Formal)),
9675             Explicit_Actual_Parameter => Last_Actual));
9676
9677         Rewrite (Par,
9678           Make_Procedure_Call_Statement (Loc,
9679             Name                   => New_Occurrence_Of (Proc_Id, Loc),
9680             Parameter_Associations => Actuals));
9681         Analyze (Par);
9682
9683      --  Otherwise the context is an expression. Generate a temporary and a
9684      --  procedure call to obtain the function result. Generate:
9685
9686      --    ... Func_Call (...) ...
9687
9688      --    Temp : ...;
9689      --    Proc_Call (..., Temp);
9690      --    ... Temp ...
9691
9692      else
9693         declare
9694            Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9695            Call    : Node_Id;
9696            Decl    : Node_Id;
9697
9698         begin
9699            --  Generate:
9700            --    Temp : ...;
9701
9702            Decl :=
9703              Make_Object_Declaration (Loc,
9704                Defining_Identifier => Temp_Id,
9705                Object_Definition   =>
9706                  New_Occurrence_Of (Etype (Func_Id), Loc));
9707
9708            --  Generate:
9709            --    Proc_Call (..., Temp);
9710
9711            Append_To (Actuals,
9712              Make_Parameter_Association (Loc,
9713                Selector_Name             =>
9714                  Make_Identifier (Loc, Chars (Last_Formal)),
9715                Explicit_Actual_Parameter =>
9716                  New_Occurrence_Of (Temp_Id, Loc)));
9717
9718            Call :=
9719              Make_Procedure_Call_Statement (Loc,
9720                Name                   => New_Occurrence_Of (Proc_Id, Loc),
9721                Parameter_Associations => Actuals);
9722
9723            Insert_Actions (Par, New_List (Decl, Call));
9724            Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9725         end;
9726      end if;
9727   end Rewrite_Function_Call_For_C;
9728
9729   ------------------------------------
9730   -- Set_Enclosing_Sec_Stack_Return --
9731   ------------------------------------
9732
9733   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9734      P : Node_Id := N;
9735
9736   begin
9737      --  Due to a possible mix of internally generated blocks, source blocks
9738      --  and loops, the scope stack may not be contiguous as all labels are
9739      --  inserted at the top level within the related function. Instead,
9740      --  perform a parent-based traversal and mark all appropriate constructs.
9741
9742      while Present (P) loop
9743
9744         --  Mark the label of a source or internally generated block or
9745         --  loop.
9746
9747         if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9748            Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9749
9750         --  Mark the enclosing function
9751
9752         elsif Nkind (P) = N_Subprogram_Body then
9753            if Present (Corresponding_Spec (P)) then
9754               Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9755            else
9756               Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9757            end if;
9758
9759            --  Do not go beyond the enclosing function
9760
9761            exit;
9762         end if;
9763
9764         P := Parent (P);
9765      end loop;
9766   end Set_Enclosing_Sec_Stack_Return;
9767
9768   ------------------------------------
9769   -- Unqual_BIP_Iface_Function_Call --
9770   ------------------------------------
9771
9772   function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9773      Has_Pointer_Displacement : Boolean := False;
9774      On_Object_Declaration    : Boolean := False;
9775      --  Remember if processing the renaming expressions on recursion we have
9776      --  traversed an object declaration, since we can traverse many object
9777      --  declaration renamings but just one regular object declaration.
9778
9779      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9780      --  Search for a build-in-place function call skipping any qualification
9781      --  including qualified expressions, type conversions, references, calls
9782      --  to displace the pointer to the object, and renamings. Return Empty if
9783      --  no build-in-place function call is found.
9784
9785      ------------------------------
9786      -- Unqual_BIP_Function_Call --
9787      ------------------------------
9788
9789      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9790      begin
9791         --  Recurse to handle case of multiple levels of qualification and/or
9792         --  conversion.
9793
9794         if Nkind_In (Expr, N_Qualified_Expression,
9795                            N_Type_Conversion,
9796                            N_Unchecked_Type_Conversion)
9797         then
9798            return Unqual_BIP_Function_Call (Expression (Expr));
9799
9800         --  Recurse to handle case of multiple levels of references and
9801         --  explicit dereferences.
9802
9803         elsif Nkind_In (Expr, N_Attribute_Reference,
9804                               N_Explicit_Dereference,
9805                               N_Reference)
9806         then
9807            return Unqual_BIP_Function_Call (Prefix (Expr));
9808
9809         --  Recurse on object renamings
9810
9811         elsif Nkind (Expr) = N_Identifier
9812           and then Present (Entity (Expr))
9813           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9814           and then Nkind (Parent (Entity (Expr))) =
9815                      N_Object_Renaming_Declaration
9816           and then Present (Renamed_Object (Entity (Expr)))
9817         then
9818            return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9819
9820         --  Recurse on the initializing expression of the first reference of
9821         --  an object declaration.
9822
9823         elsif not On_Object_Declaration
9824           and then Nkind (Expr) = N_Identifier
9825           and then Present (Entity (Expr))
9826           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9827           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9828           and then Present (Expression (Parent (Entity (Expr))))
9829         then
9830            On_Object_Declaration := True;
9831            return
9832              Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9833
9834         --  Recurse to handle calls to displace the pointer to the object to
9835         --  reference a secondary dispatch table.
9836
9837         elsif Nkind (Expr) = N_Function_Call
9838           and then Nkind (Name (Expr)) in N_Has_Entity
9839           and then Present (Entity (Name (Expr)))
9840           and then RTU_Loaded (Ada_Tags)
9841           and then RTE_Available (RE_Displace)
9842           and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9843         then
9844            Has_Pointer_Displacement := True;
9845            return
9846              Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9847
9848         --  Normal case: check if the inner expression is a BIP function call
9849         --  and the pointer to the object is displaced.
9850
9851         elsif Has_Pointer_Displacement
9852           and then Is_Build_In_Place_Function_Call (Expr)
9853         then
9854            return Expr;
9855
9856         else
9857            return Empty;
9858         end if;
9859      end Unqual_BIP_Function_Call;
9860
9861   --  Start of processing for Unqual_BIP_Iface_Function_Call
9862
9863   begin
9864      if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9865
9866         --  Can happen for X'Elab_Spec in the binder-generated file
9867
9868         return Empty;
9869      end if;
9870
9871      return Unqual_BIP_Function_Call (Expr);
9872   end Unqual_BIP_Iface_Function_Call;
9873
9874end Exp_Ch6;
9875