1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--    A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S   --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 2004-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- This specification is derived from the Ada Reference Manual for use with --
12-- GNAT. The copyright notice above, and the license provisions that follow --
13-- apply solely to the  contents of the part following the private keyword. --
14--                                                                          --
15-- GNAT is free software;  you can  redistribute it  and/or modify it under --
16-- terms of the  GNU General Public License as published  by the Free Soft- --
17-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
18-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
19-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
20-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
21--                                                                          --
22-- As a special exception under Section 7 of GPL version 3, you are granted --
23-- additional permissions described in the GCC Runtime Library Exception,   --
24-- version 3.1, as published by the Free Software Foundation.               --
25--                                                                          --
26-- You should have received a copy of the GNU General Public License and    --
27-- a copy of the GCC Runtime Library Exception along with this program;     --
28-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
29-- <http://www.gnu.org/licenses/>.                                          --
30--                                                                          --
31-- This unit was originally developed by Matthew J Heaney.                  --
32------------------------------------------------------------------------------
33
34with Ada.Iterator_Interfaces;
35
36private with Ada.Containers.Hash_Tables;
37with Ada.Containers.Helpers;
38private with Ada.Streams;
39private with Ada.Finalization; use Ada.Finalization;
40
41generic
42   type Element_Type is private;
43
44   with function Hash (Element : Element_Type) return Hash_Type;
45
46   with function Equivalent_Elements
47          (Left, Right : Element_Type) return Boolean;
48
49   with function "=" (Left, Right : Element_Type) return Boolean is <>;
50
51package Ada.Containers.Bounded_Hashed_Sets is
52   pragma Annotate (CodePeer, Skip_Analysis);
53   pragma Pure;
54   pragma Remote_Types;
55
56   type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
57     with Constant_Indexing => Constant_Reference,
58          Default_Iterator  => Iterate,
59          Iterator_Element  => Element_Type;
60
61   pragma Preelaborable_Initialization (Set);
62
63   type Cursor is private;
64   pragma Preelaborable_Initialization (Cursor);
65
66   Empty_Set : constant Set;
67   --  Set objects declared without an initialization expression are
68   --  initialized to the value Empty_Set.
69
70   No_Element : constant Cursor;
71   --  Cursor objects declared without an initialization expression are
72   --  initialized to the value No_Element.
73
74   function Has_Element (Position : Cursor) return Boolean;
75   --  Equivalent to Position /= No_Element
76
77   package Set_Iterator_Interfaces is new
78     Ada.Iterator_Interfaces (Cursor, Has_Element);
79
80   function "=" (Left, Right : Set) return Boolean;
81   --  For each element in Left, set equality attempts to find the equal
82   --  element in Right; if a search fails, then set equality immediately
83   --  returns False. The search works by calling Hash to find the bucket in
84   --  the Right set that corresponds to the Left element. If the bucket is
85   --  non-empty, the search calls the generic formal element equality operator
86   --  to compare the element (in Left) to the element of each node in the
87   --  bucket (in Right); the search terminates when a matching node in the
88   --  bucket is found, or the nodes in the bucket are exhausted. (Note that
89   --  element equality is called here, not Equivalent_Elements. Set equality
90   --  is the only operation in which element equality is used. Compare set
91   --  equality to Equivalent_Sets, which does call Equivalent_Elements.)
92
93   function Equivalent_Sets (Left, Right : Set) return Boolean;
94   --  Similar to set equality, with the difference that the element in Left is
95   --  compared to the elements in Right using the generic formal
96   --  Equivalent_Elements operation instead of element equality.
97
98   function To_Set (New_Item : Element_Type) return Set;
99   --  Constructs a singleton set comprising New_Element. To_Set calls Hash to
100   --  determine the bucket for New_Item.
101
102   function Capacity (Container : Set) return Count_Type;
103   --  Returns the current capacity of the set. Capacity is the maximum length
104   --  before which rehashing in guaranteed not to occur.
105
106   procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
107   --  If the value of the Capacity actual parameter is less or equal to
108   --  Container.Capacity, then the operation has no effect.  Otherwise it
109   --  raises Capacity_Error (as no expansion of capacity is possible for a
110   --  bounded form).
111
112   function Default_Modulus (Capacity : Count_Type) return Hash_Type;
113   --  Returns a modulus value (hash table size) which is optimal for the
114   --  specified capacity (which corresponds to the maximum number of items).
115
116   function Length (Container : Set) return Count_Type;
117   --  Returns the number of items in the set
118
119   function Is_Empty (Container : Set) return Boolean;
120   --  Equivalent to Length (Container) = 0
121
122   procedure Clear (Container : in out Set);
123   --  Removes all of the items from the set. This will deallocate all memory
124   --  associated with this set.
125
126   function Element (Position : Cursor) return Element_Type;
127   --  Returns the element of the node designated by the cursor
128
129   procedure Replace_Element
130     (Container : in out Set;
131      Position  : Cursor;
132      New_Item  : Element_Type);
133   --  If New_Item is equivalent (as determined by calling Equivalent_Elements)
134   --  to the element of the node designated by Position, then New_Element is
135   --  assigned to that element. Otherwise, it calls Hash to determine the
136   --  bucket for New_Item. If the bucket is not empty, then it calls
137   --  Equivalent_Elements for each node in that bucket to determine whether
138   --  New_Item is equivalent to an element in that bucket. If
139   --  Equivalent_Elements returns True then Program_Error is raised (because
140   --  an element may appear only once in the set); otherwise, New_Item is
141   --  assigned to the node designated by Position, and the node is moved to
142   --  its new bucket.
143
144   procedure Query_Element
145     (Position : Cursor;
146      Process  : not null access procedure (Element : Element_Type));
147   --  Calls Process with the element (having only a constant view) of the node
148   --  designated by the cursor.
149
150   type Constant_Reference_Type
151     (Element : not null access constant Element_Type) is private
152        with Implicit_Dereference => Element;
153
154   function Constant_Reference
155     (Container : aliased Set;
156      Position  : Cursor) return Constant_Reference_Type;
157
158   procedure Assign (Target : in out Set; Source : Set);
159   --  If Target denotes the same object as Source, then the operation has no
160   --  effect. If the Target capacity is less than the Source length, then
161   --  Assign raises Capacity_Error.  Otherwise, Assign clears Target and then
162   --  copies the (active) elements from Source to Target.
163
164   function Copy
165     (Source   : Set;
166      Capacity : Count_Type := 0;
167      Modulus  : Hash_Type := 0) return Set;
168   --  Constructs a new set object whose elements correspond to Source.  If the
169   --  Capacity parameter is 0, then the capacity of the result is the same as
170   --  the length of Source. If the Capacity parameter is equal or greater than
171   --  the length of Source, then the capacity of the result is the specified
172   --  value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
173   --  is 0, then the modulus of the result is the value returned by a call to
174   --  Default_Modulus with the capacity parameter determined as above;
175   --  otherwise the modulus of the result is the specified value.
176
177   procedure Move (Target : in out Set; Source : in out Set);
178   --  Clears Target (if it's not empty), and then moves (not copies) the
179   --  buckets array and nodes from Source to Target.
180
181   procedure Insert
182     (Container : in out Set;
183      New_Item  : Element_Type;
184      Position  : out Cursor;
185      Inserted  : out Boolean);
186   --  Conditionally inserts New_Item into the set. If New_Item is already in
187   --  the set, then Inserted returns False and Position designates the node
188   --  containing the existing element (which is not modified). If New_Item is
189   --  not already in the set, then Inserted returns True and Position
190   --  designates the newly-inserted node containing New_Item. The search for
191   --  an existing element works as follows. Hash is called to determine
192   --  New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
193   --  is called to compare New_Item to the element of each node in that
194   --  bucket. If the bucket is empty, or there were no equivalent elements in
195   --  the bucket, the search "fails" and the New_Item is inserted in the set
196   --  (and Inserted returns True); otherwise, the search "succeeds" (and
197   --  Inserted returns False).
198
199   procedure Insert  (Container : in out Set; New_Item : Element_Type);
200   --  Attempts to insert New_Item into the set, performing the usual insertion
201   --  search (which involves calling both Hash and Equivalent_Elements); if
202   --  the search succeeds (New_Item is equivalent to an element already in the
203   --  set, and so was not inserted), then this operation raises
204   --  Constraint_Error. (This version of Insert is similar to Replace, but
205   --  having the opposite exception behavior. It is intended for use when you
206   --  want to assert that the item is not already in the set.)
207
208   procedure Include (Container : in out Set; New_Item : Element_Type);
209   --  Attempts to insert New_Item into the set. If an element equivalent to
210   --  New_Item is already in the set (the insertion search succeeded, and
211   --  hence New_Item was not inserted), then the value of New_Item is assigned
212   --  to the existing element. (This insertion operation only raises an
213   --  exception if cursor tampering occurs. It is intended for use when you
214   --  want to insert the item in the set, and you don't care whether an
215   --  equivalent element is already present.)
216
217   procedure Replace (Container : in out Set; New_Item : Element_Type);
218   --  Searches for New_Item in the set; if the search fails (because an
219   --  equivalent element was not in the set), then it raises
220   --  Constraint_Error. Otherwise, the existing element is assigned the value
221   --  New_Item. (This is similar to Insert, but with the opposite exception
222   --  behavior. It is intended for use when you want to assert that the item
223   --  is already in the set.)
224
225   procedure Exclude (Container : in out Set; Item : Element_Type);
226   --  Searches for Item in the set, and if found, removes its node from the
227   --  set and then deallocates it. The search works as follows. The operation
228   --  calls Hash to determine the item's bucket; if the bucket is not empty,
229   --  it calls Equivalent_Elements to compare Item to the element of each node
230   --  in the bucket. (This is the deletion analog of Include. It is intended
231   --  for use when you want to remove the item from the set, but don't care
232   --  whether the item is already in the set.)
233
234   procedure Delete  (Container : in out Set; Item : Element_Type);
235   --  Searches for Item in the set (which involves calling both Hash and
236   --  Equivalent_Elements). If the search fails, then the operation raises
237   --  Constraint_Error. Otherwise it removes the node from the set and then
238   --  deallocates it. (This is the deletion analog of non-conditional
239   --  Insert. It is intended for use when you want to assert that the item is
240   --  already in the set.)
241
242   procedure Delete (Container : in out Set; Position : in out Cursor);
243   --  Removes the node designated by Position from the set, and then
244   --  deallocates the node. The operation calls Hash to determine the bucket,
245   --  and then compares Position to each node in the bucket until there's a
246   --  match (it does not call Equivalent_Elements).
247
248   procedure Union (Target : in out Set; Source : Set);
249   --  Iterates over the Source set, and conditionally inserts each element
250   --  into Target.
251
252   function Union (Left, Right : Set) return Set;
253   --  The operation first copies the Left set to the result, and then iterates
254   --  over the Right set to conditionally insert each element into the result.
255
256   function "or" (Left, Right : Set) return Set renames Union;
257
258   procedure Intersection (Target : in out Set; Source : Set);
259   --  Iterates over the Target set (calling First and Next), calling Find to
260   --  determine whether the element is in Source. If an equivalent element is
261   --  not found in Source, the element is deleted from Target.
262
263   function Intersection (Left, Right : Set) return Set;
264   --  Iterates over the Left set, calling Find to determine whether the
265   --  element is in Right. If an equivalent element is found, it is inserted
266   --  into the result set.
267
268   function "and" (Left, Right : Set) return Set renames Intersection;
269
270   procedure Difference (Target : in out Set; Source : Set);
271   --  Iterates over the Source (calling First and Next), calling Find to
272   --  determine whether the element is in Target. If an equivalent element is
273   --  found, it is deleted from Target.
274
275   function Difference (Left, Right : Set) return Set;
276   --  Iterates over the Left set, calling Find to determine whether the
277   --  element is in the Right set. If an equivalent element is not found, the
278   --  element is inserted into the result set.
279
280   function "-" (Left, Right : Set) return Set renames Difference;
281
282   procedure Symmetric_Difference (Target : in out Set; Source : Set);
283   --  The operation iterates over the Source set, searching for the element
284   --  in Target (calling Hash and Equivalent_Elements). If an equivalent
285   --  element is found, it is removed from Target; otherwise it is inserted
286   --  into Target.
287
288   function Symmetric_Difference (Left, Right : Set) return Set;
289   --  The operation first iterates over the Left set. It calls Find to
290   --  determine whether the element is in the Right set. If no equivalent
291   --  element is found, the element from Left is inserted into the result. The
292   --  operation then iterates over the Right set, to determine whether the
293   --  element is in the Left set. If no equivalent element is found, the Right
294   --  element is inserted into the result.
295
296   function "xor" (Left, Right : Set) return Set
297     renames Symmetric_Difference;
298
299   function Overlap (Left, Right : Set) return Boolean;
300   --  Iterates over the Left set (calling First and Next), calling Find to
301   --  determine whether the element is in the Right set. If an equivalent
302   --  element is found, the operation immediately returns True. The operation
303   --  returns False if the iteration over Left terminates without finding any
304   --  equivalent element in Right.
305
306   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
307   --  Iterates over Subset (calling First and Next), calling Find to determine
308   --  whether the element is in Of_Set. If no equivalent element is found in
309   --  Of_Set, the operation immediately returns False. The operation returns
310   --  True if the iteration over Subset terminates without finding an element
311   --  not in Of_Set (that is, every element in Subset is equivalent to an
312   --  element in Of_Set).
313
314   function First (Container : Set) return Cursor;
315   --  Returns a cursor that designates the first non-empty bucket, by
316   --  searching from the beginning of the buckets array.
317
318   function Next (Position : Cursor) return Cursor;
319   --  Returns a cursor that designates the node that follows the current one
320   --  designated by Position. If Position designates the last node in its
321   --  bucket, the operation calls Hash to compute the index of this bucket,
322   --  and searches the buckets array for the first non-empty bucket, starting
323   --  from that index; otherwise, it simply follows the link to the next node
324   --  in the same bucket.
325
326   procedure Next (Position : in out Cursor);
327   --  Equivalent to Position := Next (Position)
328
329   function Find
330     (Container : Set;
331      Item      : Element_Type) return Cursor;
332   --  Searches for Item in the set. Find calls Hash to determine the item's
333   --  bucket; if the bucket is not empty, it calls Equivalent_Elements to
334   --  compare Item to each element in the bucket. If the search succeeds, Find
335   --  returns a cursor designating the node containing the equivalent element;
336   --  otherwise, it returns No_Element.
337
338   function Contains (Container : Set; Item : Element_Type) return Boolean;
339   --  Equivalent to Find (Container, Item) /= No_Element
340
341   function Equivalent_Elements (Left, Right : Cursor) return Boolean;
342   --  Returns the result of calling Equivalent_Elements with the elements of
343   --  the nodes designated by cursors Left and Right.
344
345   function Equivalent_Elements
346     (Left  : Cursor;
347      Right : Element_Type) return Boolean;
348   --  Returns the result of calling Equivalent_Elements with element of the
349   --  node designated by Left and element Right.
350
351   function Equivalent_Elements
352     (Left  : Element_Type;
353      Right : Cursor) return Boolean;
354   --  Returns the result of calling Equivalent_Elements with element Left and
355   --  the element of the node designated by Right.
356
357   procedure Iterate
358     (Container : Set;
359      Process   : not null access procedure (Position : Cursor));
360   --  Calls Process for each node in the set
361
362   function Iterate
363     (Container : Set)
364      return Set_Iterator_Interfaces.Forward_Iterator'Class;
365
366   generic
367      type Key_Type (<>) is private;
368
369      with function Key (Element : Element_Type) return Key_Type;
370
371      with function Hash (Key : Key_Type) return Hash_Type;
372
373      with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
374
375   package Generic_Keys is
376
377      function Key (Position : Cursor) return Key_Type;
378      --  Applies generic formal operation Key to the element of the node
379      --  designated by Position.
380
381      function Element (Container : Set; Key : Key_Type) return Element_Type;
382      --  Searches (as per the key-based Find) for the node containing Key, and
383      --  returns the associated element.
384
385      procedure Replace
386        (Container : in out Set;
387         Key       : Key_Type;
388         New_Item  : Element_Type);
389      --  Searches (as per the key-based Find) for the node containing Key, and
390      --  then replaces the element of that node (as per the element-based
391      --  Replace_Element).
392
393      procedure Exclude (Container : in out Set; Key : Key_Type);
394      --  Searches for Key in the set, and if found, removes its node from the
395      --  set and then deallocates it. The search works by first calling Hash
396      --  (on Key) to determine the bucket; if the bucket is not empty, it
397      --  calls Equivalent_Keys to compare parameter Key to the value of
398      --  generic formal operation Key applied to element of each node in the
399      --  bucket.
400
401      procedure Delete (Container : in out Set; Key : Key_Type);
402      --  Deletes the node containing Key as per Exclude, with the difference
403      --  that Constraint_Error is raised if Key is not found.
404
405      function Find (Container : Set; Key : Key_Type) return Cursor;
406      --  Searches for the node containing Key, and returns a cursor
407      --  designating the node. The search works by first calling Hash (on Key)
408      --  to determine the bucket. If the bucket is not empty, the search
409      --  compares Key to the element of each node in the bucket, and returns
410      --  the matching node. The comparison itself works by applying the
411      --  generic formal Key operation to the element of the node, and then
412      --  calling generic formal operation Equivalent_Keys.
413
414      function Contains (Container : Set; Key : Key_Type) return Boolean;
415      --  Equivalent to Find (Container, Key) /= No_Element
416
417      procedure Update_Element_Preserving_Key
418        (Container : in out Set;
419         Position  : Cursor;
420         Process   : not null access
421                       procedure (Element : in out Element_Type));
422      --  Calls Process with the element of the node designated by Position,
423      --  but with the restriction that the key-value of the element is not
424      --  modified. The operation first makes a copy of the value returned by
425      --  applying generic formal operation Key on the element of the node, and
426      --  then calls Process with the element. The operation verifies that the
427      --  key-part has not been modified by calling generic formal operation
428      --  Equivalent_Keys to compare the saved key-value to the value returned
429      --  by applying generic formal operation Key to the post-Process value of
430      --  element. If the key values compare equal then the operation
431      --  completes. Otherwise, the node is removed from the map and
432      --  Program_Error is raised.
433
434      type Reference_Type (Element : not null access Element_Type) is private
435        with Implicit_Dereference => Element;
436
437      function Reference_Preserving_Key
438        (Container : aliased in out Set;
439         Position  : Cursor) return Reference_Type;
440
441      function Constant_Reference
442        (Container : aliased Set;
443         Key       : Key_Type) return Constant_Reference_Type;
444
445      function Reference_Preserving_Key
446        (Container : aliased in out Set;
447         Key       : Key_Type) return Reference_Type;
448
449   private
450      type Set_Access is access all Set;
451      for Set_Access'Storage_Size use 0;
452
453      package Impl is new Helpers.Generic_Implementation;
454
455      type Reference_Control_Type is
456         new Impl.Reference_Control_Type with
457      record
458         Container : Set_Access;
459         Index     : Hash_Type;
460         Old_Pos   : Cursor;
461         Old_Hash  : Hash_Type;
462      end record;
463
464      overriding procedure Finalize (Control : in out Reference_Control_Type);
465      pragma Inline (Finalize);
466
467      type Reference_Type (Element : not null access Element_Type) is record
468         Control  : Reference_Control_Type;
469      end record;
470
471      use Ada.Streams;
472
473      procedure Read
474        (Stream : not null access Root_Stream_Type'Class;
475         Item   : out Reference_Type);
476
477      for Reference_Type'Read use Read;
478
479      procedure Write
480        (Stream : not null access Root_Stream_Type'Class;
481         Item   : Reference_Type);
482
483      for Reference_Type'Write use Write;
484
485   end Generic_Keys;
486
487private
488   pragma Inline (Next);
489
490   type Node_Type is record
491      Element : aliased Element_Type;
492      Next    : Count_Type;
493   end record;
494
495   package HT_Types is
496     new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
497
498   type Set (Capacity : Count_Type; Modulus : Hash_Type) is
499     new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
500
501   use HT_Types, HT_Types.Implementation;
502   use Ada.Streams;
503
504   procedure Write
505     (Stream    : not null access Root_Stream_Type'Class;
506      Container : Set);
507
508   for Set'Write use Write;
509
510   procedure Read
511     (Stream    : not null access Root_Stream_Type'Class;
512      Container : out Set);
513
514   for Set'Read use Read;
515
516   type Set_Access is access all Set;
517   for Set_Access'Storage_Size use 0;
518
519   --  Note: If a Cursor object has no explicit initialization expression,
520   --  it must default initialize to the same value as constant No_Element.
521   --  The Node component of type Cursor has scalar type Count_Type, so it
522   --  requires an explicit initialization expression of its own declaration,
523   --  in order for objects of record type Cursor to properly initialize.
524
525   type Cursor is record
526      Container : Set_Access;
527      Node      : Count_Type := 0;
528   end record;
529
530   procedure Write
531     (Stream : not null access Root_Stream_Type'Class;
532      Item   : Cursor);
533
534   for Cursor'Write use Write;
535
536   procedure Read
537     (Stream : not null access Root_Stream_Type'Class;
538      Item   : out Cursor);
539
540   for Cursor'Read use Read;
541
542   subtype Reference_Control_Type is Implementation.Reference_Control_Type;
543   --  It is necessary to rename this here, so that the compiler can find it
544
545   type Constant_Reference_Type
546     (Element : not null access constant Element_Type) is
547      record
548         Control : Reference_Control_Type :=
549           raise Program_Error with "uninitialized reference";
550         --  The RM says, "The default initialization of an object of
551         --  type Constant_Reference_Type or Reference_Type propagates
552         --  Program_Error."
553      end record;
554
555   procedure Read
556     (Stream : not null access Root_Stream_Type'Class;
557      Item   : out Constant_Reference_Type);
558
559   for Constant_Reference_Type'Read use Read;
560
561   procedure Write
562     (Stream : not null access Root_Stream_Type'Class;
563      Item   : Constant_Reference_Type);
564
565   for Constant_Reference_Type'Write use Write;
566
567   --  Three operations are used to optimize in the expansion of "for ... of"
568   --  loops: the Next(Cursor) procedure in the visible part, and the following
569   --  Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
570   --  details.
571
572   function Pseudo_Reference
573     (Container : aliased Set'Class) return Reference_Control_Type;
574   pragma Inline (Pseudo_Reference);
575   --  Creates an object of type Reference_Control_Type pointing to the
576   --  container, and increments the Lock. Finalization of this object will
577   --  decrement the Lock.
578
579   type Element_Access is access all Element_Type with
580     Storage_Size => 0;
581
582   function Get_Element_Access
583     (Position : Cursor) return not null Element_Access;
584   --  Returns a pointer to the element designated by Position.
585
586   Empty_Set : constant Set :=
587                 (Hash_Table_Type with Capacity => 0, Modulus => 0);
588
589   No_Element : constant Cursor := (Container => null, Node => 0);
590
591   type Iterator is new Limited_Controlled and
592     Set_Iterator_Interfaces.Forward_Iterator with
593   record
594      Container : Set_Access;
595   end record
596     with Disable_Controlled => not T_Check;
597
598   overriding procedure Finalize (Object : in out Iterator);
599
600   overriding function First (Object : Iterator) return Cursor;
601
602   overriding function Next
603     (Object   : Iterator;
604      Position : Cursor) return Cursor;
605
606end Ada.Containers.Bounded_Hashed_Sets;
607