1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* 128-bit floating point precision values.  */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37 
38 /* Definitions for the object file format.  These are set at
39    compile-time.  */
40 
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44 
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48 
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52 
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56 
57 /* Turn off TOC support if pc-relative addressing is used.  */
58 #define TARGET_TOC             (TARGET_HAS_TOC && !TARGET_PCREL)
59 
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61    ADDIS/ADDI to load up the address of a symbol.  */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63 
64 /* Control whether function entry points use a "dot" symbol when
65    ABI_AIX.  */
66 #define DOT_SYMBOLS 1
67 
68 /* Default string to use for cpu if not specified.  */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72 
73 /* If configured for PPC405, support PPC405CR Erratum77.  */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79 
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83 
84 /* Only for use in the testsuite: -mdejagnu-cpu= simply overrides -mcpu=.
85    With older versions of Dejagnu the command line arguments you set in
86    RUNTESTFLAGS override those set in the testcases; with this option,
87    the testcase will always win.  Ditto for -mdejagnu-tune=.  */
88 #define DRIVER_SELF_SPECS \
89   "%{mdejagnu-cpu=*: %<mcpu=* -mcpu=%*}", \
90   "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
91   "%{mdejagnu-*: %<mdejagnu-*}", \
92    SUBTARGET_DRIVER_SELF_SPECS
93 
94 #if CHECKING_P
95 #define ASM_OPT_ANY ""
96 #else
97 #define ASM_OPT_ANY " -many"
98 #endif
99 
100 /* Common ASM definitions used by ASM_SPEC among the various targets for
101    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
102    provide the default assembler options if the user uses -mcpu=native, so if
103    you make changes here, make them also there.  PR63177: Do not pass -mpower8
104    to the assembler if -mpower9-vector was also used.  */
105 #define ASM_CPU_SPEC \
106 "%{mcpu=native: %(asm_cpu_native); \
107   mcpu=power10: -mpower10; \
108   mcpu=power9: -mpower9; \
109   mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
110   mcpu=power7: -mpower7; \
111   mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
112   mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
113   mcpu=power5+: -mpower5; \
114   mcpu=power5: -mpower5; \
115   mcpu=power4: -mpower4; \
116   mcpu=power3: -mppc64; \
117   mcpu=powerpc: -mppc; \
118   mcpu=powerpc64: -mppc64; \
119   mcpu=a2: -ma2; \
120   mcpu=cell: -mcell; \
121   mcpu=rs64: -mppc64; \
122   mcpu=401: -mppc; \
123   mcpu=403: -m403; \
124   mcpu=405: -m405; \
125   mcpu=405fp: -m405; \
126   mcpu=440: -m440; \
127   mcpu=440fp: -m440; \
128   mcpu=464: -m440; \
129   mcpu=464fp: -m440; \
130   mcpu=476: -m476; \
131   mcpu=476fp: -m476; \
132   mcpu=505: -mppc; \
133   mcpu=601: -m601; \
134   mcpu=602: -mppc; \
135   mcpu=603: -mppc; \
136   mcpu=603e: -mppc; \
137   mcpu=ec603e: -mppc; \
138   mcpu=604: -mppc; \
139   mcpu=604e: -mppc; \
140   mcpu=620: -mppc64; \
141   mcpu=630: -mppc64; \
142   mcpu=740: -mppc; \
143   mcpu=750: -mppc; \
144   mcpu=G3: -mppc; \
145   mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
146   mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
147   mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
148   mcpu=801: -mppc; \
149   mcpu=821: -mppc; \
150   mcpu=823: -mppc; \
151   mcpu=860: -mppc; \
152   mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
153   mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
154   mcpu=8540: -me500; \
155   mcpu=8548: -me500; \
156   mcpu=e300c2: -me300; \
157   mcpu=e300c3: -me300; \
158   mcpu=e500mc: -me500mc; \
159   mcpu=e500mc64: -me500mc64; \
160   mcpu=e5500: -me5500; \
161   mcpu=e6500: -me6500; \
162   mcpu=titan: -mtitan; \
163   !mcpu*: %{mpower9-vector: -mpower9; \
164 	    mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
165 	    mvsx: -mpower7; \
166 	    mpowerpc64: -mppc64;: %(asm_default)}; \
167   :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
168 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
169 ASM_OPT_ANY
170 
171 #define CPP_DEFAULT_SPEC ""
172 
173 #define ASM_DEFAULT_SPEC ""
174 #define ASM_DEFAULT_EXTRA ""
175 
176 /* This macro defines names of additional specifications to put in the specs
177    that can be used in various specifications like CC1_SPEC.  Its definition
178    is an initializer with a subgrouping for each command option.
179 
180    Each subgrouping contains a string constant, that defines the
181    specification name, and a string constant that used by the GCC driver
182    program.
183 
184    Do not define this macro if it does not need to do anything.  */
185 
186 #define SUBTARGET_EXTRA_SPECS
187 
188 #define EXTRA_SPECS							\
189   { "cpp_default",		CPP_DEFAULT_SPEC },			\
190   { "asm_cpu",			ASM_CPU_SPEC },				\
191   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
192   { "asm_default",		ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA },	\
193   { "cc1_cpu",			CC1_CPU_SPEC },				\
194   SUBTARGET_EXTRA_SPECS
195 
196 /* -mcpu=native handling only makes sense with compiler running on
197    an PowerPC chip.  If changing this condition, also change
198    the condition in driver-rs6000.c.  */
199 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
200 /* In driver-rs6000.c.  */
201 extern const char *host_detect_local_cpu (int argc, const char **argv);
202 #define EXTRA_SPEC_FUNCTIONS \
203   { "local_cpu_detect", host_detect_local_cpu },
204 #define HAVE_LOCAL_CPU_DETECT
205 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
206 
207 #else
208 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
209 #endif
210 
211 #ifndef CC1_CPU_SPEC
212 #ifdef HAVE_LOCAL_CPU_DETECT
213 #define CC1_CPU_SPEC \
214 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
215  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
216 #else
217 #define CC1_CPU_SPEC ""
218 #endif
219 #endif
220 
221 /* Architecture type.  */
222 
223 /* Define TARGET_MFCRF if the target assembler does not support the
224    optional field operand for mfcr.  */
225 
226 #ifndef HAVE_AS_MFCRF
227 #undef  TARGET_MFCRF
228 #define TARGET_MFCRF 0
229 #endif
230 
231 #ifndef TARGET_SECURE_PLT
232 #define TARGET_SECURE_PLT 0
233 #endif
234 
235 #ifndef TARGET_CMODEL
236 #define TARGET_CMODEL CMODEL_SMALL
237 #endif
238 
239 #define TARGET_32BIT		(! TARGET_64BIT)
240 
241 #ifndef HAVE_AS_TLS
242 #define HAVE_AS_TLS 0
243 #endif
244 
245 #ifndef HAVE_AS_PLTSEQ
246 #define HAVE_AS_PLTSEQ 0
247 #endif
248 
249 #ifndef TARGET_PLTSEQ
250 #define TARGET_PLTSEQ 0
251 #endif
252 
253 #ifndef TARGET_LINK_STACK
254 #define TARGET_LINK_STACK 0
255 #endif
256 
257 #ifndef SET_TARGET_LINK_STACK
258 #define SET_TARGET_LINK_STACK(X) do { } while (0)
259 #endif
260 
261 #ifndef TARGET_FLOAT128_ENABLE_TYPE
262 #define TARGET_FLOAT128_ENABLE_TYPE 0
263 #endif
264 
265 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
266 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
267   (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
268 
269 #ifdef IN_LIBGCC2
270 /* For libgcc2 we make sure this is a compile time constant */
271 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
272 #undef TARGET_POWERPC64
273 #define TARGET_POWERPC64	1
274 #else
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64	0
277 #endif
278 #else
279     /* The option machinery will define this.  */
280 #endif
281 
282 #define TARGET_DEFAULT (MASK_MULTIPLE)
283 
284 /* Define generic processor types based upon current deployment.  */
285 #define PROCESSOR_COMMON    PROCESSOR_PPC601
286 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
287 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
288 
289 /* Define the default processor.  This is overridden by other tm.h files.  */
290 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
291 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
292 
293 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
294    starting with GCC 4.8, i.e. just one dialect, but for backwards
295    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
296    defined.  */
297 #define ASSEMBLER_DIALECT 1
298 
299 /* Debug support */
300 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
301 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
302 #define MASK_DEBUG_REG		0x04	/* debug register handling */
303 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
304 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
305 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
306 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
307 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
308 				 | MASK_DEBUG_ARG \
309 				 | MASK_DEBUG_REG \
310 				 | MASK_DEBUG_ADDR \
311 				 | MASK_DEBUG_COST \
312 				 | MASK_DEBUG_TARGET \
313 				 | MASK_DEBUG_BUILTIN)
314 
315 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
316 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
317 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
318 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
319 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
320 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
321 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
322 
323 /* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
324    long double format that uses a pair of doubles, or IEEE 128-bit floating
325    point.  KFmode was added as a way to represent IEEE 128-bit floating point,
326    even if the default for long double is the IBM long double format.
327    Similarly IFmode is the IBM long double format even if the default is IEEE
328    128-bit.  Don't allow IFmode if -msoft-float.  */
329 #define FLOAT128_IEEE_P(MODE)						\
330   ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
331     && ((MODE) == TFmode || (MODE) == TCmode))				\
332    || ((MODE) == KFmode) || ((MODE) == KCmode))
333 
334 #define FLOAT128_IBM_P(MODE)						\
335   ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
336     && ((MODE) == TFmode || (MODE) == TCmode))				\
337    || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
338 
339 /* Helper macros to say whether a 128-bit floating point type can go in a
340    single vector register, or whether it needs paired scalar values.  */
341 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
342 
343 #define FLOAT128_2REG_P(MODE)						\
344   (FLOAT128_IBM_P (MODE)						\
345    || ((MODE) == TDmode)						\
346    || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
347 
348 /* Return true for floating point that does not use a vector register.  */
349 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
350   (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
351 
352 /* Describe the vector unit used for arithmetic operations.  */
353 extern enum rs6000_vector rs6000_vector_unit[];
354 
355 #define VECTOR_UNIT_NONE_P(MODE)			\
356   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
357 
358 #define VECTOR_UNIT_VSX_P(MODE)				\
359   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
360 
361 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
362   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
363 
364 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
365   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
366 
367 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
368   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
369 	     (int)VECTOR_VSX,				\
370 	     (int)VECTOR_P8_VECTOR))
371 
372 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
373    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
374    compatible, so allow it as well, rather than changing all of the uses of the
375    macro.  */
376 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
377   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
378 	     (int)VECTOR_ALTIVEC,			\
379 	     (int)VECTOR_P8_VECTOR))
380 
381 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
382    same unit as the vector unit we are using, but we may want to migrate to
383    using VSX style loads even for types handled by altivec.  */
384 extern enum rs6000_vector rs6000_vector_mem[];
385 
386 #define VECTOR_MEM_NONE_P(MODE)				\
387   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
388 
389 #define VECTOR_MEM_VSX_P(MODE)				\
390   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
391 
392 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
393   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394 
395 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
396   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
397 
398 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
399   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
400 	     (int)VECTOR_VSX,				\
401 	     (int)VECTOR_P8_VECTOR))
402 
403 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
404   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
405 	     (int)VECTOR_ALTIVEC,			\
406 	     (int)VECTOR_P8_VECTOR))
407 
408 /* Return the alignment of a given vector type, which is set based on the
409    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
410    without problems, while Altivec requires 128-bit aligned vectors.  */
411 extern int rs6000_vector_align[];
412 
413 #define VECTOR_ALIGN(MODE)						\
414   ((rs6000_vector_align[(MODE)] != 0)					\
415    ? rs6000_vector_align[(MODE)]					\
416    : (int)GET_MODE_BITSIZE ((MODE)))
417 
418 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
419    with scalar instructions.  */
420 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
421 
422 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
423    with the ISA 3.0 MFVSRLD instructions.  */
424 #define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
425 
426 /* Alignment options for fields in structures for sub-targets following
427    AIX-like ABI.
428    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
429    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
430 
431    Override the macro definitions when compiling libobjc to avoid undefined
432    reference to rs6000_alignment_flags due to library's use of GCC alignment
433    macros which use the macros below.  */
434 
435 #ifndef IN_TARGET_LIBS
436 #define MASK_ALIGN_POWER   0x00000000
437 #define MASK_ALIGN_NATURAL 0x00000001
438 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
439 #else
440 #define TARGET_ALIGN_NATURAL 0
441 #endif
442 
443 /* We use values 126..128 to pick the appropriate long double type (IFmode,
444    KFmode, TFmode).  */
445 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
446 #define TARGET_IEEEQUAD rs6000_ieeequad
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
449 
450 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
451    Enable 32-bit fcfid's on any of the switches for newer ISA machines.  */
452 #define TARGET_FCFID	(TARGET_POWERPC64				\
453 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
454 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
455 			 || TARGET_CMPB		/* ISA 2.05 */		\
456 			 || TARGET_POPCNTD)	/* ISA 2.06 */
457 
458 #define TARGET_FCTIDZ	TARGET_FCFID
459 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
460 #define TARGET_LFIWAX	TARGET_CMPB
461 #define TARGET_LFIWZX	TARGET_POPCNTD
462 #define TARGET_FCFIDS	TARGET_POPCNTD
463 #define TARGET_FCFIDU	TARGET_POPCNTD
464 #define TARGET_FCFIDUS	TARGET_POPCNTD
465 #define TARGET_FCTIDUZ	TARGET_POPCNTD
466 #define TARGET_FCTIWUZ	TARGET_POPCNTD
467 #define TARGET_CTZ	TARGET_MODULO
468 #define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
469 #define TARGET_MADDLD	TARGET_MODULO
470 
471 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
472 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
473 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
474 #define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
475 				 && TARGET_POWERPC64)
476 #define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
477 				 && TARGET_POWERPC64)
478 
479 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
480 #define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
481 #define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
482 
483 /* This wants to be set for p8 and newer.  On p7, overlapping unaligned
484    loads are slow. */
485 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
486 
487 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
488    in power7, so conditionalize them on p8 features.  TImode syncs need quad
489    memory support.  */
490 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
491 				 || TARGET_QUAD_MEMORY_ATOMIC		\
492 				 || TARGET_DIRECT_MOVE)
493 
494 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
495 
496 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
497    to allocate the SDmode stack slot to get the value into the proper location
498    in the register.  */
499 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
500 
501 /* ISA 3.0 has new min/max functions that don't need fast math that are being
502    phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
503    answers if the arguments are not in the normal range.  */
504 #define TARGET_MINMAX	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT		\
505 			 && (TARGET_P9_MINMAX || !flag_trapping_math))
506 
507 /* In switching from using target_flags to using rs6000_isa_flags, the options
508    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
509    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
510 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
511 #define MASK_CMPB			OPTION_MASK_CMPB
512 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
513 #define MASK_DFP			OPTION_MASK_DFP
514 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
515 #define MASK_DLMZB			OPTION_MASK_DLMZB
516 #define MASK_EABI			OPTION_MASK_EABI
517 #define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
518 #define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
519 #define MASK_FPRND			OPTION_MASK_FPRND
520 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
521 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
522 #define MASK_HTM			OPTION_MASK_HTM
523 #define MASK_ISEL			OPTION_MASK_ISEL
524 #define MASK_MFCRF			OPTION_MASK_MFCRF
525 #define MASK_MMA			OPTION_MASK_MMA
526 #define MASK_MULHW			OPTION_MASK_MULHW
527 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
528 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
529 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
530 #define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
531 #define MASK_P9_MISC			OPTION_MASK_P9_MISC
532 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
533 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
534 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
535 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
536 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
537 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
538 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
539 #define MASK_UPDATE			OPTION_MASK_UPDATE
540 #define MASK_VSX			OPTION_MASK_VSX
541 #define MASK_POWER10			OPTION_MASK_POWER10
542 
543 #ifndef IN_LIBGCC2
544 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
545 #endif
546 
547 #ifdef TARGET_64BIT
548 #define MASK_64BIT			OPTION_MASK_64BIT
549 #endif
550 
551 #ifdef TARGET_LITTLE_ENDIAN
552 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
553 #endif
554 
555 #ifdef TARGET_REGNAMES
556 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
557 #endif
558 
559 #ifdef TARGET_PROTOTYPE
560 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
561 #endif
562 
563 #ifdef TARGET_MODULO
564 #define RS6000_BTM_MODULO		OPTION_MASK_MODULO
565 #endif
566 
567 
568 /* For power systems, we want to enable Altivec and VSX builtins even if the
569    user did not use -maltivec or -mvsx to allow the builtins to be used inside
570    of #pragma GCC target or the target attribute to change the code level for a
571    given system.  */
572 
573 #define TARGET_EXTRA_BUILTINS	(TARGET_POWERPC64			 \
574 				 || TARGET_PPC_GPOPT /* 970/power4 */	 \
575 				 || TARGET_POPCNTB   /* ISA 2.02 */	 \
576 				 || TARGET_CMPB      /* ISA 2.05 */	 \
577 				 || TARGET_POPCNTD   /* ISA 2.06 */	 \
578 				 || TARGET_ALTIVEC			 \
579 				 || TARGET_VSX				 \
580 				 || TARGET_HARD_FLOAT)
581 
582 /* E500 cores only support plain "sync", not lwsync.  */
583 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
584 			  || rs6000_cpu == PROCESSOR_PPC8548)
585 
586 
587 /* Which machine supports the various reciprocal estimate instructions.  */
588 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
589 
590 #define TARGET_FRE	(TARGET_HARD_FLOAT \
591 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
592 
593 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
594 			 && TARGET_PPC_GFXOPT)
595 
596 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT \
597 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
598 
599 /* Macro to say whether we can do optimizations where we need to do parts of
600    the calculation in 64-bit GPRs and then is transfered to the vector
601    registers.  */
602 #define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
603 					 && TARGET_P8_VECTOR		\
604 					 && TARGET_POWERPC64)
605 
606 /* Whether the various reciprocal divide/square root estimate instructions
607    exist, and whether we should automatically generate code for the instruction
608    by default.  */
609 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
610 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
611 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
612 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
613 
614 extern unsigned char rs6000_recip_bits[];
615 
616 #define RS6000_RECIP_HAVE_RE_P(MODE) \
617   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
618 
619 #define RS6000_RECIP_AUTO_RE_P(MODE) \
620   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
621 
622 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
623   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
624 
625 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
626   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
627 
628 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
629 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
630 
631 /* Target pragma.  */
632 #define REGISTER_TARGET_PRAGMAS() do {				\
633   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
634   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
635   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
636   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
637 } while (0)
638 
639 /* Target #defines.  */
640 #define TARGET_CPU_CPP_BUILTINS() \
641   rs6000_cpu_cpp_builtins (pfile)
642 
643 /* Target CPU versions for D.  */
644 #define TARGET_D_CPU_VERSIONS rs6000_d_target_versions
645 
646 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
647    we're compiling for.  Some configurations may need to override it.  */
648 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
649   do						\
650     {						\
651       if (BYTES_BIG_ENDIAN)			\
652 	{					\
653 	  builtin_define ("__BIG_ENDIAN__");	\
654 	  builtin_define ("_BIG_ENDIAN");	\
655 	  builtin_assert ("machine=bigendian");	\
656 	}					\
657       else					\
658 	{					\
659 	  builtin_define ("__LITTLE_ENDIAN__");	\
660 	  builtin_define ("_LITTLE_ENDIAN");	\
661 	  builtin_assert ("machine=littleendian"); \
662 	}					\
663     }						\
664   while (0)
665 
666 /* Target machine storage layout.  */
667 
668 /* Define this macro if it is advisable to hold scalars in registers
669    in a wider mode than that declared by the program.  In such cases,
670    the value is constrained to be within the bounds of the declared
671    type, but kept valid in the wider mode.  The signedness of the
672    extension may differ from that of the type.  */
673 
674 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
675   if (GET_MODE_CLASS (MODE) == MODE_INT		\
676       && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
677     (MODE) = TARGET_32BIT ? SImode : DImode;
678 
679 /* Define this if most significant bit is lowest numbered
680    in instructions that operate on numbered bit-fields.  */
681 /* That is true on RS/6000.  */
682 #define BITS_BIG_ENDIAN 1
683 
684 /* Define this if most significant byte of a word is the lowest numbered.  */
685 /* That is true on RS/6000.  */
686 #define BYTES_BIG_ENDIAN 1
687 
688 /* Define this if most significant word of a multiword number is lowest
689    numbered.
690 
691    For RS/6000 we can decide arbitrarily since there are no machine
692    instructions for them.  Might as well be consistent with bits and bytes.  */
693 #define WORDS_BIG_ENDIAN 1
694 
695 /* This says that for the IBM long double the larger magnitude double
696    comes first.  It's really a two element double array, and arrays
697    don't index differently between little- and big-endian.  */
698 #define LONG_DOUBLE_LARGE_FIRST 1
699 
700 #define MAX_BITS_PER_WORD 64
701 
702 /* Width of a word, in units (bytes).  */
703 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
704 #ifdef IN_LIBGCC2
705 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
706 #else
707 #define MIN_UNITS_PER_WORD 4
708 #endif
709 #define UNITS_PER_FP_WORD 8
710 #define UNITS_PER_ALTIVEC_WORD 16
711 #define UNITS_PER_VSX_WORD 16
712 
713 /* Type used for ptrdiff_t, as a string used in a declaration.  */
714 #define PTRDIFF_TYPE "int"
715 
716 /* Type used for size_t, as a string used in a declaration.  */
717 #define SIZE_TYPE "long unsigned int"
718 
719 /* Type used for wchar_t, as a string used in a declaration.  */
720 #define WCHAR_TYPE "short unsigned int"
721 
722 /* Width of wchar_t in bits.  */
723 #define WCHAR_TYPE_SIZE 16
724 
725 /* A C expression for the size in bits of the type `short' on the
726    target machine.  If you don't define this, the default is half a
727    word.  (If this would be less than one storage unit, it is
728    rounded up to one unit.)  */
729 #define SHORT_TYPE_SIZE 16
730 
731 /* A C expression for the size in bits of the type `int' on the
732    target machine.  If you don't define this, the default is one
733    word.  */
734 #define INT_TYPE_SIZE 32
735 
736 /* A C expression for the size in bits of the type `long' on the
737    target machine.  If you don't define this, the default is one
738    word.  */
739 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
740 
741 /* A C expression for the size in bits of the type `long long' on the
742    target machine.  If you don't define this, the default is two
743    words.  */
744 #define LONG_LONG_TYPE_SIZE 64
745 
746 /* A C expression for the size in bits of the type `float' on the
747    target machine.  If you don't define this, the default is one
748    word.  */
749 #define FLOAT_TYPE_SIZE 32
750 
751 /* A C expression for the size in bits of the type `double' on the
752    target machine.  If you don't define this, the default is two
753    words.  */
754 #define DOUBLE_TYPE_SIZE 64
755 
756 /* A C expression for the size in bits of the type `long double' on the target
757    machine.  If you don't define this, the default is two words.  */
758 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
759 
760 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
761 #define WIDEST_HARDWARE_FP_SIZE 64
762 
763 /* Width in bits of a pointer.
764    See also the macro `Pmode' defined below.  */
765 extern unsigned rs6000_pointer_size;
766 #define POINTER_SIZE rs6000_pointer_size
767 
768 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
769 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
770 
771 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
772 #define STACK_BOUNDARY	\
773   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
774     ? 64 : 128)
775 
776 /* Allocation boundary (in *bits*) for the code of a function.  */
777 #define FUNCTION_BOUNDARY 32
778 
779 /* No data type is required to be aligned rounder than this.  Warning, if
780    BIGGEST_ALIGNMENT is changed, then this may be an ABI break.  An example
781    of where this can break an ABI is in GLIBC's struct _Unwind_Exception.  */
782 #define BIGGEST_ALIGNMENT 128
783 
784 /* Alignment of field after `int : 0' in a structure.  */
785 #define EMPTY_FIELD_BOUNDARY 32
786 
787 /* Every structure's size must be a multiple of this.  */
788 #define STRUCTURE_SIZE_BOUNDARY 8
789 
790 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
791 #define PCC_BITFIELD_TYPE_MATTERS 1
792 
793 enum data_align { align_abi, align_opt, align_both };
794 
795 /* A C expression to compute the alignment for a variables in the
796    local store.  TYPE is the data type, and ALIGN is the alignment
797    that the object would ordinarily have.  */
798 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
799   rs6000_data_alignment (TYPE, ALIGN, align_both)
800 
801 /* Make arrays of chars word-aligned for the same reasons.  */
802 #define DATA_ALIGNMENT(TYPE, ALIGN) \
803   rs6000_data_alignment (TYPE, ALIGN, align_opt)
804 
805 /* Align vectors to 128 bits.  */
806 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
807   rs6000_data_alignment (TYPE, ALIGN, align_abi)
808 
809 /* Nonzero if move instructions will actually fail to work
810    when given unaligned data.  */
811 #define STRICT_ALIGNMENT 0
812 
813 /* Standard register usage.  */
814 
815 /* Number of actual hardware registers.
816    The hardware registers are assigned numbers for the compiler
817    from 0 to just below FIRST_PSEUDO_REGISTER.
818    All registers that the compiler knows about must be given numbers,
819    even those that are not normally considered general registers.
820 
821    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
822    a count register, a link register, and 8 condition register fields,
823    which we view here as separate registers.  AltiVec adds 32 vector
824    registers and a VRsave register.
825 
826    In addition, the difference between the frame and argument pointers is
827    a function of the number of registers saved, so we need to have a
828    register for AP that will later be eliminated in favor of SP or FP.
829    This is a normal register, but it is fixed.
830 
831    We also create a pseudo register for float/int conversions, that will
832    really represent the memory location used.  It is represented here as
833    a register, in order to work around problems in allocating stack storage
834    in inline functions.
835 
836    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
837    pointer, which is eventually eliminated in favor of SP or FP.  */
838 
839 #define FIRST_PSEUDO_REGISTER 111
840 
841 /* Use standard DWARF numbering for DWARF debugging information.  */
842 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
843 
844 /* Use gcc hard register numbering for eh_frame.  */
845 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
846 
847 /* Map register numbers held in the call frame info that gcc has
848    collected using DWARF_FRAME_REGNUM to those that should be output in
849    .debug_frame and .eh_frame.  */
850 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
851   rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
852 
853 /* 1 for registers that have pervasive standard uses
854    and are not available for the register allocator.
855 
856    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
857    as a local register; for all other OS's r2 is the TOC pointer.
858 
859    On System V implementations, r13 is fixed and not available for use.  */
860 
861 #define FIXED_REGISTERS  \
862   {/* GPRs */					   \
863    0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
864    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865    /* FPRs */					   \
866    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
868    /* VRs */					   \
869    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
871    /* lr ctr ca ap */				   \
872    0, 0, 1, 1,					   \
873    /* cr0..cr7 */				   \
874    0, 0, 0, 0, 0, 0, 0, 0,			   \
875    /* vrsave vscr sfp */			   \
876    1, 1, 1					   \
877 }
878 
879 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
880    the entire set of `FIXED_REGISTERS' be included.
881    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
882    This macro is optional.  If not specified, it defaults to the value
883    of `CALL_USED_REGISTERS'.  */
884 
885 #define CALL_REALLY_USED_REGISTERS  \
886   {/* GPRs */					   \
887    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
888    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889    /* FPRs */					   \
890    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
891    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
892    /* VRs */					   \
893    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
894    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
895    /* lr ctr ca ap */				   \
896    1, 1, 1, 1,					   \
897    /* cr0..cr7 */				   \
898    1, 1, 0, 0, 0, 1, 1, 1,			   \
899    /* vrsave vscr sfp */			   \
900    0, 0, 0					   \
901 }
902 
903 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
904 
905 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
906 #define FIRST_SAVED_FP_REGNO	  (14+32)
907 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
908 
909 /* List the order in which to allocate registers.  Each register must be
910    listed once, even those in FIXED_REGISTERS.
911 
912    We allocate in the following order:
913 	fp0		(not saved or used for anything)
914 	fp13 - fp2	(not saved; incoming fp arg registers)
915 	fp1		(not saved; return value)
916 	fp31 - fp14	(saved; order given to save least number)
917 	cr7, cr5	(not saved or special)
918 	cr6		(not saved, but used for vector operations)
919 	cr1		(not saved, but used for FP operations)
920 	cr0		(not saved, but used for arithmetic operations)
921 	cr4, cr3, cr2	(saved)
922 	r9		(not saved; best for TImode)
923 	r10, r8-r4	(not saved; highest first for less conflict with params)
924 	r3		(not saved; return value register)
925 	r11		(not saved; later alloc to help shrink-wrap)
926 	r0		(not saved; cannot be base reg)
927 	r31 - r13	(saved; order given to save least number)
928 	r12		(not saved; if used for DImode or DFmode would use r13)
929 	ctr		(not saved; when we have the choice ctr is better)
930 	lr		(saved)
931 	r1, r2, ap, ca	(fixed)
932 	v0 - v1		(not saved or used for anything)
933 	v13 - v3	(not saved; incoming vector arg registers)
934 	v2		(not saved; incoming vector arg reg; return value)
935 	v19 - v14	(not saved or used for anything)
936 	v31 - v20	(saved; order given to save least number)
937 	vrsave, vscr	(fixed)
938 	sfp		(fixed)
939 */
940 
941 #if FIXED_R2 == 1
942 #define MAYBE_R2_AVAILABLE
943 #define MAYBE_R2_FIXED 2,
944 #else
945 #define MAYBE_R2_AVAILABLE 2,
946 #define MAYBE_R2_FIXED
947 #endif
948 
949 #if FIXED_R13 == 1
950 #define EARLY_R12 12,
951 #define LATE_R12
952 #else
953 #define EARLY_R12
954 #define LATE_R12 12,
955 #endif
956 
957 #define REG_ALLOC_ORDER						\
958   {32,								\
959    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
960    /* not use fr14 which is a saved register.  */		\
961    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
962    33,								\
963    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
964    50, 49, 48, 47, 46,						\
965    100, 107, 105, 106, 101, 104, 103, 102,			\
966    MAYBE_R2_AVAILABLE						\
967    9, 10, 8, 7, 6, 5, 4,					\
968    3, EARLY_R12 11, 0,						\
969    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
970    18, 17, 16, 15, 14, 13, LATE_R12				\
971    97, 96,							\
972    1, MAYBE_R2_FIXED 99, 98,					\
973    /* AltiVec registers.  */					\
974    64, 65,							\
975    77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67,			\
976    66,								\
977    83, 82, 81, 80, 79, 78,					\
978    95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84,		\
979    108, 109,							\
980    110								\
981 }
982 
983 /* True if register is floating-point.  */
984 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
985 
986 /* True if register is a condition register.  */
987 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
988 
989 /* True if register is a condition register, but not cr0.  */
990 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
991 
992 /* True if register is an integer register.  */
993 #define INT_REGNO_P(N) \
994   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
995 
996 /* True if register is the CA register.  */
997 #define CA_REGNO_P(N) ((N) == CA_REGNO)
998 
999 /* True if register is an AltiVec register.  */
1000 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1001 
1002 /* True if register is a VSX register.  */
1003 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1004 
1005 /* Alternate name for any vector register supporting floating point, no matter
1006    which instruction set(s) are available.  */
1007 #define VFLOAT_REGNO_P(N) \
1008   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1009 
1010 /* Alternate name for any vector register supporting integer, no matter which
1011    instruction set(s) are available.  */
1012 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1013 
1014 /* Alternate name for any vector register supporting logical operations, no
1015    matter which instruction set(s) are available.  Allow GPRs as well as the
1016    vector registers.  */
1017 #define VLOGICAL_REGNO_P(N)						\
1018   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1019    || (TARGET_VSX && FP_REGNO_P (N)))					\
1020 
1021 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1022    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1023    should not use VSX instructions to do a caller save. */
1024 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1025   ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1026    ? (MODE)								\
1027    : TARGET_VSX								\
1028      && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1029      && FP_REGNO_P (REGNO)						\
1030    ? V2DFmode								\
1031    : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1032    ? DFmode								\
1033    : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1034    ? DImode								\
1035    : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1036 
1037 #define VSX_VECTOR_MODE(MODE)		\
1038 	 ((MODE) == V4SFmode		\
1039 	  || (MODE) == V2DFmode)	\
1040 
1041 /* Modes that are not vectors, but require vector alignment.  Treat these like
1042    vectors in terms of loads and stores.  */
1043 #define VECTOR_ALIGNMENT_P(MODE)					\
1044   (FLOAT128_VECTOR_P (MODE) || (MODE) == POImode || (MODE) == PXImode)
1045 
1046 #define ALTIVEC_VECTOR_MODE(MODE)					\
1047   ((MODE) == V16QImode							\
1048    || (MODE) == V8HImode						\
1049    || (MODE) == V4SFmode						\
1050    || (MODE) == V4SImode						\
1051    || VECTOR_ALIGNMENT_P (MODE))
1052 
1053 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1054   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1055    || (MODE) == V2DImode || (MODE) == V1TImode)
1056 
1057 /* Post-reload, we can't use any new AltiVec registers, as we already
1058    emitted the vrsave mask.  */
1059 
1060 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1061   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1062 
1063 /* Specify the cost of a branch insn; roughly the number of extra insns that
1064    should be added to avoid a branch.
1065 
1066    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1067    unscheduled conditional branch.  */
1068 
1069 #define BRANCH_COST(speed_p, predictable_p) 3
1070 
1071 /* Override BRANCH_COST heuristic which empirically produces worse
1072    performance for removing short circuiting from the logical ops.  */
1073 
1074 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1075 
1076 /* Specify the registers used for certain standard purposes.
1077    The values of these macros are register numbers.  */
1078 
1079 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1080 /* #define PC_REGNUM  */
1081 
1082 /* Register to use for pushing function arguments.  */
1083 #define STACK_POINTER_REGNUM 1
1084 
1085 /* Base register for access to local variables of the function.  */
1086 #define HARD_FRAME_POINTER_REGNUM 31
1087 
1088 /* Base register for access to local variables of the function.  */
1089 #define FRAME_POINTER_REGNUM 110
1090 
1091 /* Base register for access to arguments of the function.  */
1092 #define ARG_POINTER_REGNUM 99
1093 
1094 /* Place to put static chain when calling a function that requires it.  */
1095 #define STATIC_CHAIN_REGNUM 11
1096 
1097 /* Base register for access to thread local storage variables.  */
1098 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1099 
1100 
1101 /* Define the classes of registers for register constraints in the
1102    machine description.  Also define ranges of constants.
1103 
1104    One of the classes must always be named ALL_REGS and include all hard regs.
1105    If there is more than one class, another class must be named NO_REGS
1106    and contain no registers.
1107 
1108    The name GENERAL_REGS must be the name of a class (or an alias for
1109    another name such as ALL_REGS).  This is the class of registers
1110    that is allowed by "g" or "r" in a register constraint.
1111    Also, registers outside this class are allocated only when
1112    instructions express preferences for them.
1113 
1114    The classes must be numbered in nondecreasing order; that is,
1115    a larger-numbered class must never be contained completely
1116    in a smaller-numbered class.
1117 
1118    For any two classes, it is very desirable that there be another
1119    class that represents their union.  */
1120 
1121 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1122    condition registers, plus three special registers, CTR, and the link
1123    register.  AltiVec adds a vector register class.  VSX registers overlap the
1124    FPR registers and the Altivec registers.
1125 
1126    However, r0 is special in that it cannot be used as a base register.
1127    So make a class for registers valid as base registers.
1128 
1129    Also, cr0 is the only condition code register that can be used in
1130    arithmetic insns, so make a separate class for it.  */
1131 
1132 enum reg_class
1133 {
1134   NO_REGS,
1135   BASE_REGS,
1136   GENERAL_REGS,
1137   FLOAT_REGS,
1138   ALTIVEC_REGS,
1139   VSX_REGS,
1140   VRSAVE_REGS,
1141   VSCR_REGS,
1142   GEN_OR_FLOAT_REGS,
1143   GEN_OR_VSX_REGS,
1144   LINK_REGS,
1145   CTR_REGS,
1146   LINK_OR_CTR_REGS,
1147   SPECIAL_REGS,
1148   SPEC_OR_GEN_REGS,
1149   CR0_REGS,
1150   CR_REGS,
1151   NON_FLOAT_REGS,
1152   CA_REGS,
1153   ALL_REGS,
1154   LIM_REG_CLASSES
1155 };
1156 
1157 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1158 
1159 /* Give names of register classes as strings for dump file.  */
1160 
1161 #define REG_CLASS_NAMES							\
1162 {									\
1163   "NO_REGS",								\
1164   "BASE_REGS",								\
1165   "GENERAL_REGS",							\
1166   "FLOAT_REGS",								\
1167   "ALTIVEC_REGS",							\
1168   "VSX_REGS",								\
1169   "VRSAVE_REGS",							\
1170   "VSCR_REGS",								\
1171   "GEN_OR_FLOAT_REGS",							\
1172   "GEN_OR_VSX_REGS",							\
1173   "LINK_REGS",								\
1174   "CTR_REGS",								\
1175   "LINK_OR_CTR_REGS",							\
1176   "SPECIAL_REGS",							\
1177   "SPEC_OR_GEN_REGS",							\
1178   "CR0_REGS",								\
1179   "CR_REGS",								\
1180   "NON_FLOAT_REGS",							\
1181   "CA_REGS",								\
1182   "ALL_REGS"								\
1183 }
1184 
1185 /* Define which registers fit in which classes.
1186    This is an initializer for a vector of HARD_REG_SET
1187    of length N_REG_CLASSES.  */
1188 
1189 #define REG_CLASS_CONTENTS						\
1190 {									\
1191   /* NO_REGS.  */							\
1192   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1193   /* BASE_REGS.  */							\
1194   { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 },			\
1195   /* GENERAL_REGS.  */							\
1196   { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 },			\
1197   /* FLOAT_REGS.  */							\
1198   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1199   /* ALTIVEC_REGS.  */							\
1200   { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 },			\
1201   /* VSX_REGS.  */							\
1202   { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },			\
1203   /* VRSAVE_REGS.  */							\
1204   { 0x00000000, 0x00000000, 0x00000000, 0x00001000 },			\
1205   /* VSCR_REGS.  */							\
1206   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1207   /* GEN_OR_FLOAT_REGS.  */						\
1208   { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 },			\
1209   /* GEN_OR_VSX_REGS.  */						\
1210   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 },			\
1211   /* LINK_REGS.  */							\
1212   { 0x00000000, 0x00000000, 0x00000000, 0x00000001 },			\
1213   /* CTR_REGS.  */							\
1214   { 0x00000000, 0x00000000, 0x00000000, 0x00000002 },			\
1215   /* LINK_OR_CTR_REGS.  */						\
1216   { 0x00000000, 0x00000000, 0x00000000, 0x00000003 },			\
1217   /* SPECIAL_REGS.  */							\
1218   { 0x00000000, 0x00000000, 0x00000000, 0x00001003 },			\
1219   /* SPEC_OR_GEN_REGS.  */						\
1220   { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b },			\
1221   /* CR0_REGS.  */							\
1222   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 },			\
1223   /* CR_REGS.  */							\
1224   { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 },			\
1225   /* NON_FLOAT_REGS.  */						\
1226   { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb },			\
1227   /* CA_REGS.  */							\
1228   { 0x00000000, 0x00000000, 0x00000000, 0x00000004 },			\
1229   /* ALL_REGS.  */							\
1230   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff }			\
1231 }
1232 
1233 /* The same information, inverted:
1234    Return the class number of the smallest class containing
1235    reg number REGNO.  This could be a conditional expression
1236    or could index an array.  */
1237 
1238 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1239 
1240 #define REGNO_REG_CLASS(REGNO) 						\
1241   (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1242    rs6000_regno_regclass[(REGNO)])
1243 
1244 /* Register classes for various constraints that are based on the target
1245    switches.  */
1246 enum r6000_reg_class_enum {
1247   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1248   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1249   RS6000_CONSTRAINT_v,		/* Altivec registers */
1250   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1251   RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1252   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1253   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1254   RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1255   RS6000_CONSTRAINT_MAX
1256 };
1257 
1258 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1259 
1260 /* The class value for index registers, and the one for base regs.  */
1261 #define INDEX_REG_CLASS GENERAL_REGS
1262 #define BASE_REG_CLASS BASE_REGS
1263 
1264 /* Return whether a given register class can hold VSX objects.  */
1265 #define VSX_REG_CLASS_P(CLASS)			\
1266   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1267 
1268 /* Return whether a given register class targets general purpose registers.  */
1269 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1270 
1271 /* Given an rtx X being reloaded into a reg required to be
1272    in class CLASS, return the class of reg to actually use.
1273    In general this is just CLASS; but on some machines
1274    in some cases it is preferable to use a more restrictive class.
1275 
1276    On the RS/6000, we have to return NO_REGS when we want to reload a
1277    floating-point CONST_DOUBLE to force it to be copied to memory.
1278 
1279    We also don't want to reload integer values into floating-point
1280    registers if we can at all help it.  In fact, this can
1281    cause reload to die, if it tries to generate a reload of CTR
1282    into a FP register and discovers it doesn't have the memory location
1283    required.
1284 
1285    ??? Would it be a good idea to have reload do the converse, that is
1286    try to reload floating modes into FP registers if possible?
1287  */
1288 
1289 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1290   rs6000_preferred_reload_class_ptr (X, CLASS)
1291 
1292 /* Return the register class of a scratch register needed to copy IN into
1293    or out of a register in CLASS in MODE.  If it can be done directly,
1294    NO_REGS is returned.  */
1295 
1296 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1297   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1298 
1299 /* Return the maximum number of consecutive registers
1300    needed to represent mode MODE in a register of class CLASS.
1301 
1302    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1303    a single reg is enough for two words, unless we have VSX, where the FP
1304    registers can hold 128 bits.  */
1305 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1306 
1307 /* Stack layout; function entry, exit and calling.  */
1308 
1309 /* Define this if pushing a word on the stack
1310    makes the stack pointer a smaller address.  */
1311 #define STACK_GROWS_DOWNWARD 1
1312 
1313 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1314 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1315 
1316 /* Define this to nonzero if the nominal address of the stack frame
1317    is at the high-address end of the local variables;
1318    that is, each additional local variable allocated
1319    goes at a more negative offset in the frame.
1320 
1321    On the RS/6000, we grow upwards, from the area after the outgoing
1322    arguments.  */
1323 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1324 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1325 
1326 /* Size of the fixed area on the stack */
1327 #define RS6000_SAVE_AREA \
1328   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1329    << (TARGET_64BIT ? 1 : 0))
1330 
1331 /* Stack offset for toc save slot.  */
1332 #define RS6000_TOC_SAVE_SLOT \
1333   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1334 
1335 /* Align an address */
1336 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1337 
1338 /* Offset within stack frame to start allocating local variables at.
1339    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1340    first local allocated.  Otherwise, it is the offset to the BEGINNING
1341    of the first local allocated.
1342 
1343    On the RS/6000, the frame pointer is the same as the stack pointer,
1344    except for dynamic allocations.  So we start after the fixed area and
1345    outgoing parameter area.
1346 
1347    If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1348    space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1349    sizes of the fixed area and the parameter area must be a multiple of
1350    STACK_BOUNDARY.  */
1351 
1352 #define RS6000_STARTING_FRAME_OFFSET					\
1353   (cfun->calls_alloca							\
1354    ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1355 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1356    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1357 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1358       + RS6000_SAVE_AREA))
1359 
1360 /* Offset from the stack pointer register to an item dynamically
1361    allocated on the stack, e.g., by `alloca'.
1362 
1363    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1364    length of the outgoing arguments.  The default is correct for most
1365    machines.  See `function.c' for details.
1366 
1367    This value must be a multiple of STACK_BOUNDARY (hard coded in
1368    `emit-rtl.c').  */
1369 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1370   RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1371 		+ STACK_POINTER_OFFSET,					\
1372 		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1373 
1374 /* If we generate an insn to push BYTES bytes,
1375    this says how many the stack pointer really advances by.
1376    On RS/6000, don't define this because there are no push insns.  */
1377 /*  #define PUSH_ROUNDING(BYTES) */
1378 
1379 /* Offset of first parameter from the argument pointer register value.
1380    On the RS/6000, we define the argument pointer to the start of the fixed
1381    area.  */
1382 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1383 
1384 /* Offset from the argument pointer register value to the top of
1385    stack.  This is different from FIRST_PARM_OFFSET because of the
1386    register save area.  */
1387 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1388 
1389 /* Define this if stack space is still allocated for a parameter passed
1390    in a register.  The value is the number of bytes allocated to this
1391    area.  */
1392 #define REG_PARM_STACK_SPACE(FNDECL) \
1393   rs6000_reg_parm_stack_space ((FNDECL), false)
1394 
1395 /* Define this macro if space guaranteed when compiling a function body
1396    is different to space required when making a call, a situation that
1397    can arise with K&R style function definitions.  */
1398 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1399   rs6000_reg_parm_stack_space ((FNDECL), true)
1400 
1401 /* Define this if the above stack space is to be considered part of the
1402    space allocated by the caller.  */
1403 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1404 
1405 /* This is the difference between the logical top of stack and the actual sp.
1406 
1407    For the RS/6000, sp points past the fixed area.  */
1408 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1409 
1410 /* Define this if the maximum size of all the outgoing args is to be
1411    accumulated and pushed during the prologue.  The amount can be
1412    found in the variable crtl->outgoing_args_size.  */
1413 #define ACCUMULATE_OUTGOING_ARGS 1
1414 
1415 /* Define how to find the value returned by a library function
1416    assuming the value has mode MODE.  */
1417 
1418 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1419 
1420 /* DRAFT_V4_STRUCT_RET defaults off.  */
1421 #define DRAFT_V4_STRUCT_RET 0
1422 
1423 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1424 #define DEFAULT_PCC_STRUCT_RETURN 0
1425 
1426 /* Mode of stack savearea.
1427    FUNCTION is VOIDmode because calling convention maintains SP.
1428    BLOCK needs Pmode for SP.
1429    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1430 #define STACK_SAVEAREA_MODE(LEVEL)	\
1431   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1432   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1433 
1434 /* Minimum and maximum general purpose registers used to hold arguments.  */
1435 #define GP_ARG_MIN_REG 3
1436 #define GP_ARG_MAX_REG 10
1437 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1438 
1439 /* Minimum and maximum floating point registers used to hold arguments.  */
1440 #define FP_ARG_MIN_REG 33
1441 #define	FP_ARG_AIX_MAX_REG 45
1442 #define	FP_ARG_V4_MAX_REG  40
1443 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1444 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1445 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1446 
1447 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1448 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1449 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1450 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1451 
1452 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1453 #define AGGR_ARG_NUM_REG 8
1454 
1455 /* Return registers */
1456 #define GP_ARG_RETURN GP_ARG_MIN_REG
1457 #define FP_ARG_RETURN FP_ARG_MIN_REG
1458 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1459 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1460 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1461 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1462 				? (ALTIVEC_ARG_RETURN			\
1463 				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1464 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1465 
1466 /* Flags for the call/call_value rtl operations set up by function_arg */
1467 #define CALL_NORMAL		0x00000000	/* no special processing */
1468 /* Bits in 0x00000001 are unused.  */
1469 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1470 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1471 #define CALL_LONG		0x00000008	/* always call indirect */
1472 #define CALL_LIBCALL		0x00000010	/* libcall */
1473 
1474 /* Identify PLT sequence for rs6000_pltseq_template.  */
1475 enum rs6000_pltseq_enum {
1476   RS6000_PLTSEQ_TOCSAVE,
1477   RS6000_PLTSEQ_PLT16_HA,
1478   RS6000_PLTSEQ_PLT16_LO,
1479   RS6000_PLTSEQ_MTCTR,
1480   RS6000_PLTSEQ_PLT_PCREL34
1481 };
1482 
1483 #define IS_V4_FP_ARGS(OP) \
1484   ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1485 
1486 /* We don't have prologue and epilogue functions to save/restore
1487    everything for most ABIs.  */
1488 #define WORLD_SAVE_P(INFO) 0
1489 
1490 /* 1 if N is a possible register number for a function value
1491    as seen by the caller.
1492 
1493    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1494 #define FUNCTION_VALUE_REGNO_P(N)					\
1495   ((N) == GP_ARG_RETURN							\
1496    || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1497        && TARGET_HARD_FLOAT)						\
1498    || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1499        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1500 
1501 /* 1 if N is a possible register number for function argument passing.
1502    On RS/6000, these are r3-r10 and fp1-fp13.
1503    On AltiVec, v2 - v13 are used for passing vectors.  */
1504 #define FUNCTION_ARG_REGNO_P(N)						\
1505   (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1506    || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1507        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1508    || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1509        && TARGET_HARD_FLOAT))
1510 
1511 /* Define a data type for recording info about an argument list
1512    during the scan of that argument list.  This data type should
1513    hold all necessary information about the function itself
1514    and about the args processed so far, enough to enable macros
1515    such as FUNCTION_ARG to determine where the next arg should go.
1516 
1517    On the RS/6000, this is a structure.  The first element is the number of
1518    total argument words, the second is used to store the next
1519    floating-point register number, and the third says how many more args we
1520    have prototype types for.
1521 
1522    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1523    the next available GP register, `fregno' is the next available FP
1524    register, and `words' is the number of words used on the stack.
1525 
1526    The varargs/stdarg support requires that this structure's size
1527    be a multiple of sizeof(int).  */
1528 
1529 typedef struct rs6000_args
1530 {
1531   int words;			/* # words used for passing GP registers */
1532   int fregno;			/* next available FP register */
1533   int vregno;			/* next available AltiVec register */
1534   int nargs_prototype;		/* # args left in the current prototype */
1535   int prototype;		/* Whether a prototype was defined */
1536   int stdarg;			/* Whether function is a stdarg function.  */
1537   int call_cookie;		/* Do special things for this call */
1538   int sysv_gregno;		/* next available GP register */
1539   int intoffset;		/* running offset in struct (darwin64) */
1540   int use_stack;		/* any part of struct on stack (darwin64) */
1541   int floats_in_gpr;		/* count of SFmode floats taking up
1542 				   GPR space (darwin64) */
1543   int named;			/* false for varargs params */
1544   int escapes;			/* if function visible outside tu */
1545   int libcall;			/* If this is a compiler generated call.  */
1546 } CUMULATIVE_ARGS;
1547 
1548 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1549    for a call to a function whose data type is FNTYPE.
1550    For a library call, FNTYPE is 0.  */
1551 
1552 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1553   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1554 			N_NAMED_ARGS, FNDECL, VOIDmode)
1555 
1556 /* Similar, but when scanning the definition of a procedure.  We always
1557    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1558 
1559 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1560   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1561 			1000, current_function_decl, VOIDmode)
1562 
1563 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1564 
1565 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1566   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1567 			0, NULL_TREE, MODE)
1568 
1569 #define PAD_VARARGS_DOWN \
1570   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1571 
1572 /* Output assembler code to FILE to increment profiler label # LABELNO
1573    for profiling a function entry.  */
1574 
1575 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1576   output_function_profiler ((FILE), (LABELNO));
1577 
1578 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1579    the stack pointer does not matter. No definition is equivalent to
1580    always zero.
1581 
1582    On the RS/6000, this is nonzero because we can restore the stack from
1583    its backpointer, which we maintain.  */
1584 #define EXIT_IGNORE_STACK	1
1585 
1586 /* Define this macro as a C expression that is nonzero for registers
1587    that are used by the epilogue or the return' pattern.  The stack
1588    and frame pointer registers are already be assumed to be used as
1589    needed.  */
1590 
1591 #define	EPILOGUE_USES(REGNO)					\
1592   ((reload_completed && (REGNO) == LR_REGNO)			\
1593    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1594    || (crtl->calls_eh_return					\
1595        && TARGET_AIX						\
1596        && (REGNO) == 2))
1597 
1598 
1599 /* Length in units of the trampoline for entering a nested function.  */
1600 
1601 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1602 
1603 /* Definitions for __builtin_return_address and __builtin_frame_address.
1604    __builtin_return_address (0) should give link register (LR_REGNO), enable
1605    this.  */
1606 /* This should be uncommented, so that the link register is used, but
1607    currently this would result in unmatched insns and spilling fixed
1608    registers so we'll leave it for another day.  When these problems are
1609    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1610    (mrs) */
1611 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1612 
1613 /* Number of bytes into the frame return addresses can be found.  See
1614    rs6000_stack_info in rs6000.c for more information on how the different
1615    abi's store the return address.  */
1616 #define RETURN_ADDRESS_OFFSET \
1617   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1618 
1619 /* The current return address is in the link register.  The return address
1620    of anything farther back is accessed normally at an offset of 8 from the
1621    frame pointer.  */
1622 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1623   (rs6000_return_addr (COUNT, FRAME))
1624 
1625 
1626 /* Definitions for register eliminations.
1627 
1628    We have two registers that can be eliminated on the RS/6000.  First, the
1629    frame pointer register can often be eliminated in favor of the stack
1630    pointer register.  Secondly, the argument pointer register can always be
1631    eliminated; it is replaced with either the stack or frame pointer.
1632 
1633    In addition, we use the elimination mechanism to see if r30 is needed
1634    Initially we assume that it isn't.  If it is, we spill it.  This is done
1635    by making it an eliminable register.  We replace it with itself so that
1636    if it isn't needed, then existing uses won't be modified.  */
1637 
1638 /* This is an array of structures.  Each structure initializes one pair
1639    of eliminable registers.  The "from" register number is given first,
1640    followed by "to".  Eliminations of the same "from" register are listed
1641    in order of preference.  */
1642 #define ELIMINABLE_REGS					\
1643 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1644  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1645  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1646  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1647  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1648  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1649 
1650 /* Define the offset between two registers, one to be eliminated, and the other
1651    its replacement, at the start of a routine.  */
1652 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1653   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1654 
1655 /* Addressing modes, and classification of registers for them.  */
1656 
1657 #define HAVE_PRE_DECREMENT 1
1658 #define HAVE_PRE_INCREMENT 1
1659 #define HAVE_PRE_MODIFY_DISP 1
1660 #define HAVE_PRE_MODIFY_REG 1
1661 
1662 /* Macros to check register numbers against specific register classes.  */
1663 
1664 /* These assume that REGNO is a hard or pseudo reg number.
1665    They give nonzero only if REGNO is a hard reg of the suitable class
1666    or a pseudo reg currently allocated to a suitable hard reg.
1667    Since they use reg_renumber, they are safe only once reg_renumber
1668    has been allocated, which happens in reginfo.c during register
1669    allocation.  */
1670 
1671 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1672 (HARD_REGISTER_NUM_P (REGNO)					\
1673  ? (REGNO) <= 31						\
1674    || (REGNO) == ARG_POINTER_REGNUM				\
1675    || (REGNO) == FRAME_POINTER_REGNUM				\
1676  : (reg_renumber[REGNO] >= 0					\
1677     && (reg_renumber[REGNO] <= 31				\
1678 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1679 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1680 
1681 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1682 (HARD_REGISTER_NUM_P (REGNO)					\
1683  ? ((REGNO) > 0 && (REGNO) <= 31)				\
1684    || (REGNO) == ARG_POINTER_REGNUM				\
1685    || (REGNO) == FRAME_POINTER_REGNUM				\
1686  : (reg_renumber[REGNO] > 0					\
1687     && (reg_renumber[REGNO] <= 31				\
1688 	|| reg_renumber[REGNO] == ARG_POINTER_REGNUM		\
1689 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1690 
1691 /* Nonzero if X is a hard reg that can be used as an index
1692    or if it is a pseudo reg in the non-strict case.  */
1693 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1694   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1695    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1696 
1697 /* Nonzero if X is a hard reg that can be used as a base reg
1698    or if it is a pseudo reg in the non-strict case.  */
1699 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1700   ((!(STRICT) && !HARD_REGISTER_P (X))				\
1701    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1702 
1703 
1704 /* Maximum number of registers that can appear in a valid memory address.  */
1705 
1706 #define MAX_REGS_PER_ADDRESS 2
1707 
1708 /* Recognize any constant value that is a valid address.  */
1709 
1710 #define CONSTANT_ADDRESS_P(X)   \
1711   (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X)			\
1712    || CONST_INT_P (X) || GET_CODE (X) == CONST				\
1713    || GET_CODE (X) == HIGH)
1714 
1715 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1716 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1717 				    && EASY_VECTOR_15((n) >> 1) \
1718 				    && ((n) & 1) == 0)
1719 
1720 #define EASY_VECTOR_MSB(n,mode)						\
1721   ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1722    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1723 
1724 
1725 #define FIND_BASE_TERM rs6000_find_base_term
1726 
1727 /* The register number of the register used to address a table of
1728    static data addresses in memory.  In some cases this register is
1729    defined by a processor's "application binary interface" (ABI).
1730    When this macro is defined, RTL is generated for this register
1731    once, as with the stack pointer and frame pointer registers.  If
1732    this macro is not defined, it is up to the machine-dependent files
1733    to allocate such a register (if necessary).  */
1734 
1735 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1736 #define PIC_OFFSET_TABLE_REGNUM \
1737   (TARGET_TOC ? TOC_REGISTER			\
1738    : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1739    : INVALID_REGNUM)
1740 
1741 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1742 
1743 /* Define this macro if the register defined by
1744    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1745    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1746 
1747 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1748 
1749 /* A C expression that is nonzero if X is a legitimate immediate
1750    operand on the target machine when generating position independent
1751    code.  You can assume that X satisfies `CONSTANT_P', so you need
1752    not check this.  You can also assume FLAG_PIC is true, so you need
1753    not check it either.  You need not define this macro if all
1754    constants (including `SYMBOL_REF') can be immediate operands when
1755    generating position independent code.  */
1756 
1757 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1758 
1759 /* Specify the machine mode that this machine uses
1760    for the index in the tablejump instruction.  */
1761 #define CASE_VECTOR_MODE SImode
1762 
1763 /* Define as C expression which evaluates to nonzero if the tablejump
1764    instruction expects the table to contain offsets from the address of the
1765    table.
1766    Do not define this if the table should contain absolute addresses.  */
1767 #define CASE_VECTOR_PC_RELATIVE 1
1768 
1769 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1770 #define DEFAULT_SIGNED_CHAR 0
1771 
1772 /* An integer expression for the size in bits of the largest integer machine
1773    mode that should actually be used.  */
1774 
1775 /* Allow pairs of registers to be used, which is the intent of the default.  */
1776 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1777 
1778 /* Max number of bytes we can move from memory to memory
1779    in one reasonably fast instruction.  */
1780 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1781 #define MAX_MOVE_MAX 8
1782 
1783 /* Nonzero if access to memory by bytes is no faster than for words.
1784    Also nonzero if doing byte operations (specifically shifts) in registers
1785    is undesirable.  */
1786 #define SLOW_BYTE_ACCESS 1
1787 
1788 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1789    will either zero-extend or sign-extend.  The value of this macro should
1790    be the code that says which one of the two operations is implicitly
1791    done, UNKNOWN if none.  */
1792 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1793 
1794 /* Define if loading short immediate values into registers sign extends.  */
1795 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1796 
1797 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1798 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1799   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1800 
1801 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1802    zero.  The hardware instructions added in Power9 and the sequences using
1803    popcount return 32 or 64.  */
1804 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
1805   (TARGET_CTZ || TARGET_POPCNTD						\
1806    ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
1807    : ((VALUE) = -1, 2))
1808 
1809 /* Specify the machine mode that pointers have.
1810    After generation of rtl, the compiler makes no further distinction
1811    between pointers and any other objects of this machine mode.  */
1812 extern scalar_int_mode rs6000_pmode;
1813 #define Pmode rs6000_pmode
1814 
1815 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1816 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1817 
1818 /* Mode of a function address in a call instruction (for indexing purposes).
1819    Doesn't matter on RS/6000.  */
1820 #define FUNCTION_MODE SImode
1821 
1822 /* Define this if addresses of constant functions
1823    shouldn't be put through pseudo regs where they can be cse'd.
1824    Desirable on machines where ordinary constants are expensive
1825    but a CALL with constant address is cheap.  */
1826 #define NO_FUNCTION_CSE 1
1827 
1828 /* Define this to be nonzero if shift instructions ignore all but the low-order
1829    few bits.
1830 
1831    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1832    have been dropped from the PowerPC architecture.  */
1833 #define SHIFT_COUNT_TRUNCATED 0
1834 
1835 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1836    should be adjusted to reflect any required changes.  This macro is used when
1837    there is some systematic length adjustment required that would be difficult
1838    to express in the length attribute.
1839 
1840    In the PowerPC, we use this to adjust the length of an instruction if one or
1841    more prefixed instructions are generated, using the attribute
1842    num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
1843    hardware requires that a prefied instruciton does not cross a 64-byte
1844    boundary.  This means the compiler has to assume the length of the first
1845    prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
1846    already set for the non-prefixed instruction, we just need to udpate for the
1847    difference.  */
1848 
1849 #define ADJUST_INSN_LENGTH(INSN,LENGTH)					\
1850   (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1851 
1852 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1853    COMPARE, return the mode to be used for the comparison.  For
1854    floating-point, CCFPmode should be used.  CCUNSmode should be used
1855    for unsigned comparisons.  CCEQmode should be used when we are
1856    doing an inequality comparison on the result of a
1857    comparison.  CCmode should be used in all other cases.  */
1858 
1859 #define SELECT_CC_MODE(OP,X,Y) \
1860   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
1861    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1862    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
1863       ? CCEQmode : CCmode))
1864 
1865 /* Can the condition code MODE be safely reversed?  This is safe in
1866    all cases on this port, because at present it doesn't use the
1867    trapping FP comparisons (fcmpo).  */
1868 #define REVERSIBLE_CC_MODE(MODE) 1
1869 
1870 /* Given a condition code and a mode, return the inverse condition.  */
1871 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1872 
1873 
1874 /* Target cpu costs.  */
1875 
1876 struct processor_costs {
1877   const int mulsi;	  /* cost of SImode multiplication.  */
1878   const int mulsi_const;  /* cost of SImode multiplication by constant.  */
1879   const int mulsi_const9; /* cost of SImode mult by short constant.  */
1880   const int muldi;	  /* cost of DImode multiplication.  */
1881   const int divsi;	  /* cost of SImode division.  */
1882   const int divdi;	  /* cost of DImode division.  */
1883   const int fp;		  /* cost of simple SFmode and DFmode insns.  */
1884   const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
1885   const int sdiv;	  /* cost of SFmode division (fdivs).  */
1886   const int ddiv;	  /* cost of DFmode division (fdiv).  */
1887   const int cache_line_size;    /* cache line size in bytes. */
1888   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
1889   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
1890   const int simultaneous_prefetches; /* number of parallel prefetch
1891 					operations.  */
1892   const int sfdf_convert;	/* cost of SF->DF conversion.  */
1893 };
1894 
1895 extern const struct processor_costs *rs6000_cost;
1896 
1897 /* Control the assembler format that we output.  */
1898 
1899 /* A C string constant describing how to begin a comment in the target
1900    assembler language.  The compiler assumes that the comment will end at
1901    the end of the line.  */
1902 #define ASM_COMMENT_START " #"
1903 
1904 /* Flag to say the TOC is initialized */
1905 extern int toc_initialized;
1906 
1907 /* Macro to output a special constant pool entry.  Go to WIN if we output
1908    it.  Otherwise, it is written the usual way.
1909 
1910    On the RS/6000, toc entries are handled this way.  */
1911 
1912 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1913 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
1914     {									  \
1915       output_toc (FILE, X, LABELNO, MODE);				  \
1916       goto WIN;								  \
1917     }									  \
1918 }
1919 
1920 #ifdef HAVE_GAS_WEAK
1921 #define RS6000_WEAK 1
1922 #else
1923 #define RS6000_WEAK 0
1924 #endif
1925 
1926 #if RS6000_WEAK
1927 /* Used in lieu of ASM_WEAKEN_LABEL.  */
1928 #define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1929   rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1930 #endif
1931 
1932 #if HAVE_GAS_WEAKREF
1933 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
1934   do									\
1935     {									\
1936       fputs ("\t.weakref\t", (FILE));					\
1937       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
1938       fputs (", ", (FILE));						\
1939       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
1940       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
1941 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1942 	{								\
1943 	  fputs ("\n\t.weakref\t.", (FILE));				\
1944 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
1945 	  fputs (", .", (FILE));					\
1946 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
1947 	}								\
1948       fputc ('\n', (FILE));						\
1949     } while (0)
1950 #endif
1951 
1952 /* This implements the `alias' attribute.  */
1953 #undef	ASM_OUTPUT_DEF_FROM_DECLS
1954 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
1955   do									\
1956     {									\
1957       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
1958       const char *name = IDENTIFIER_POINTER (TARGET);			\
1959       if (TREE_CODE (DECL) == FUNCTION_DECL				\
1960 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
1961 	{								\
1962 	  if (TREE_PUBLIC (DECL))					\
1963 	    {								\
1964 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1965 		{							\
1966 		  fputs ("\t.globl\t.", FILE);				\
1967 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1968 		  putc ('\n', FILE);					\
1969 		}							\
1970 	    }								\
1971 	  else if (TARGET_XCOFF)					\
1972 	    {								\
1973 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
1974 		{							\
1975 		  fputs ("\t.lglobl\t.", FILE);				\
1976 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1977 		  putc ('\n', FILE);					\
1978 		  fputs ("\t.lglobl\t", FILE);				\
1979 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
1980 		  putc ('\n', FILE);					\
1981 		}							\
1982 	    }								\
1983 	  fputs ("\t.set\t.", FILE);					\
1984 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
1985 	  fputs (",.", FILE);						\
1986 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
1987 	  fputc ('\n', FILE);						\
1988 	}								\
1989       ASM_OUTPUT_DEF (FILE, alias, name);				\
1990     }									\
1991    while (0)
1992 
1993 #define TARGET_ASM_FILE_START rs6000_file_start
1994 
1995 /* Output to assembler file text saying following lines
1996    may contain character constants, extra white space, comments, etc.  */
1997 
1998 #define ASM_APP_ON ""
1999 
2000 /* Output to assembler file text saying following lines
2001    no longer contain unusual constructs.  */
2002 
2003 #define ASM_APP_OFF ""
2004 
2005 /* How to refer to registers in assembler output.
2006    This sequence is indexed by compiler's hard-register-number (see above).  */
2007 
2008 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2009 
2010 #define REGISTER_NAMES							\
2011 {									\
2012   &rs6000_reg_names[ 0][0],	/* r0   */				\
2013   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2014   &rs6000_reg_names[ 2][0],	/* r2	*/				\
2015   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2016   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2017   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2018   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2019   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2020   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2021   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2022   &rs6000_reg_names[10][0],	/* r10  */				\
2023   &rs6000_reg_names[11][0],	/* r11  */				\
2024   &rs6000_reg_names[12][0],	/* r12  */				\
2025   &rs6000_reg_names[13][0],	/* r13  */				\
2026   &rs6000_reg_names[14][0],	/* r14  */				\
2027   &rs6000_reg_names[15][0],	/* r15  */				\
2028   &rs6000_reg_names[16][0],	/* r16  */				\
2029   &rs6000_reg_names[17][0],	/* r17  */				\
2030   &rs6000_reg_names[18][0],	/* r18  */				\
2031   &rs6000_reg_names[19][0],	/* r19  */				\
2032   &rs6000_reg_names[20][0],	/* r20  */				\
2033   &rs6000_reg_names[21][0],	/* r21  */				\
2034   &rs6000_reg_names[22][0],	/* r22  */				\
2035   &rs6000_reg_names[23][0],	/* r23  */				\
2036   &rs6000_reg_names[24][0],	/* r24  */				\
2037   &rs6000_reg_names[25][0],	/* r25  */				\
2038   &rs6000_reg_names[26][0],	/* r26  */				\
2039   &rs6000_reg_names[27][0],	/* r27  */				\
2040   &rs6000_reg_names[28][0],	/* r28  */				\
2041   &rs6000_reg_names[29][0],	/* r29  */				\
2042   &rs6000_reg_names[30][0],	/* r30  */				\
2043   &rs6000_reg_names[31][0],	/* r31  */				\
2044 									\
2045   &rs6000_reg_names[32][0],	/* fr0  */				\
2046   &rs6000_reg_names[33][0],	/* fr1  */				\
2047   &rs6000_reg_names[34][0],	/* fr2  */				\
2048   &rs6000_reg_names[35][0],	/* fr3  */				\
2049   &rs6000_reg_names[36][0],	/* fr4  */				\
2050   &rs6000_reg_names[37][0],	/* fr5  */				\
2051   &rs6000_reg_names[38][0],	/* fr6  */				\
2052   &rs6000_reg_names[39][0],	/* fr7  */				\
2053   &rs6000_reg_names[40][0],	/* fr8  */				\
2054   &rs6000_reg_names[41][0],	/* fr9  */				\
2055   &rs6000_reg_names[42][0],	/* fr10 */				\
2056   &rs6000_reg_names[43][0],	/* fr11 */				\
2057   &rs6000_reg_names[44][0],	/* fr12 */				\
2058   &rs6000_reg_names[45][0],	/* fr13 */				\
2059   &rs6000_reg_names[46][0],	/* fr14 */				\
2060   &rs6000_reg_names[47][0],	/* fr15 */				\
2061   &rs6000_reg_names[48][0],	/* fr16 */				\
2062   &rs6000_reg_names[49][0],	/* fr17 */				\
2063   &rs6000_reg_names[50][0],	/* fr18 */				\
2064   &rs6000_reg_names[51][0],	/* fr19 */				\
2065   &rs6000_reg_names[52][0],	/* fr20 */				\
2066   &rs6000_reg_names[53][0],	/* fr21 */				\
2067   &rs6000_reg_names[54][0],	/* fr22 */				\
2068   &rs6000_reg_names[55][0],	/* fr23 */				\
2069   &rs6000_reg_names[56][0],	/* fr24 */				\
2070   &rs6000_reg_names[57][0],	/* fr25 */				\
2071   &rs6000_reg_names[58][0],	/* fr26 */				\
2072   &rs6000_reg_names[59][0],	/* fr27 */				\
2073   &rs6000_reg_names[60][0],	/* fr28 */				\
2074   &rs6000_reg_names[61][0],	/* fr29 */				\
2075   &rs6000_reg_names[62][0],	/* fr30 */				\
2076   &rs6000_reg_names[63][0],	/* fr31 */				\
2077 									\
2078   &rs6000_reg_names[64][0],	/* vr0  */				\
2079   &rs6000_reg_names[65][0],	/* vr1  */				\
2080   &rs6000_reg_names[66][0],	/* vr2  */				\
2081   &rs6000_reg_names[67][0],	/* vr3  */				\
2082   &rs6000_reg_names[68][0],	/* vr4  */				\
2083   &rs6000_reg_names[69][0],	/* vr5  */				\
2084   &rs6000_reg_names[70][0],	/* vr6  */				\
2085   &rs6000_reg_names[71][0],	/* vr7  */				\
2086   &rs6000_reg_names[72][0],	/* vr8  */				\
2087   &rs6000_reg_names[73][0],	/* vr9  */				\
2088   &rs6000_reg_names[74][0],	/* vr10 */				\
2089   &rs6000_reg_names[75][0],	/* vr11 */				\
2090   &rs6000_reg_names[76][0],	/* vr12 */				\
2091   &rs6000_reg_names[77][0],	/* vr13 */				\
2092   &rs6000_reg_names[78][0],	/* vr14 */				\
2093   &rs6000_reg_names[79][0],	/* vr15 */				\
2094   &rs6000_reg_names[80][0],	/* vr16 */				\
2095   &rs6000_reg_names[81][0],	/* vr17 */				\
2096   &rs6000_reg_names[82][0],	/* vr18 */				\
2097   &rs6000_reg_names[83][0],	/* vr19 */				\
2098   &rs6000_reg_names[84][0],	/* vr20 */				\
2099   &rs6000_reg_names[85][0],	/* vr21 */				\
2100   &rs6000_reg_names[86][0],	/* vr22 */				\
2101   &rs6000_reg_names[87][0],	/* vr23 */				\
2102   &rs6000_reg_names[88][0],	/* vr24 */				\
2103   &rs6000_reg_names[89][0],	/* vr25 */				\
2104   &rs6000_reg_names[90][0],	/* vr26 */				\
2105   &rs6000_reg_names[91][0],	/* vr27 */				\
2106   &rs6000_reg_names[92][0],	/* vr28 */				\
2107   &rs6000_reg_names[93][0],	/* vr29 */				\
2108   &rs6000_reg_names[94][0],	/* vr30 */				\
2109   &rs6000_reg_names[95][0],	/* vr31 */				\
2110 									\
2111   &rs6000_reg_names[96][0],	/* lr   */				\
2112   &rs6000_reg_names[97][0],	/* ctr  */				\
2113   &rs6000_reg_names[98][0],	/* ca  */				\
2114   &rs6000_reg_names[99][0],	/* ap   */				\
2115 									\
2116   &rs6000_reg_names[100][0],	/* cr0  */				\
2117   &rs6000_reg_names[101][0],	/* cr1  */				\
2118   &rs6000_reg_names[102][0],	/* cr2  */				\
2119   &rs6000_reg_names[103][0],	/* cr3  */				\
2120   &rs6000_reg_names[104][0],	/* cr4  */				\
2121   &rs6000_reg_names[105][0],	/* cr5  */				\
2122   &rs6000_reg_names[106][0],	/* cr6  */				\
2123   &rs6000_reg_names[107][0],	/* cr7  */				\
2124 									\
2125   &rs6000_reg_names[108][0],	/* vrsave  */				\
2126   &rs6000_reg_names[109][0],	/* vscr  */				\
2127 									\
2128   &rs6000_reg_names[110][0]	/* sfp  */				\
2129 }
2130 
2131 /* Table of additional register names to use in user input.  */
2132 
2133 #define ADDITIONAL_REGISTER_NAMES \
2134  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2135   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2136   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2137   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2138   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2139   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2140   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2141   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2142   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2143   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2144   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2145   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2146   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2147   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2148   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2149   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2150   {"v0",   64}, {"v1",   65}, {"v2",   66}, {"v3",   67},	\
2151   {"v4",   68}, {"v5",   69}, {"v6",   70}, {"v7",   71},	\
2152   {"v8",   72}, {"v9",   73}, {"v10",  74}, {"v11",  75},	\
2153   {"v12",  76}, {"v13",  77}, {"v14",  78}, {"v15",  79},	\
2154   {"v16",  80}, {"v17",  81}, {"v18",  82}, {"v19",  83},	\
2155   {"v20",  84}, {"v21",  85}, {"v22",  86}, {"v23",  87},	\
2156   {"v24",  88}, {"v25",  89}, {"v26",  90}, {"v27",  91},	\
2157   {"v28",  92}, {"v29",  93}, {"v30",  94}, {"v31",  95},	\
2158   {"vrsave", 108}, {"vscr", 109},				\
2159   /* no additional names for: lr, ctr, ap */			\
2160   {"cr0",  100},{"cr1",  101},{"cr2",  102},{"cr3",  103},	\
2161   {"cr4",  104},{"cr5",  105},{"cr6",  106},{"cr7",  107},	\
2162   {"cc",   100},{"sp",    1}, {"toc",   2},			\
2163   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2164   {"xer",  98},							\
2165   /* VSX registers overlaid on top of FR, Altivec registers */	\
2166   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2167   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2168   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2169   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2170   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2171   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2172   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2173   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2174   {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67},	\
2175   {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71},	\
2176   {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75},	\
2177   {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79},	\
2178   {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83},	\
2179   {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87},	\
2180   {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91},	\
2181   {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95},	\
2182 }
2183 
2184 /* This is how to output an element of a case-vector that is relative.  */
2185 
2186 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2187   do { char buf[100];					\
2188        fputs ("\t.long ", FILE);			\
2189        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2190        assemble_name (FILE, buf);			\
2191        putc ('-', FILE);				\
2192        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2193        assemble_name (FILE, buf);			\
2194        putc ('\n', FILE);				\
2195      } while (0)
2196 
2197 /* This is how to output an assembler line
2198    that says to advance the location counter
2199    to a multiple of 2**LOG bytes.  */
2200 
2201 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2202   if ((LOG) != 0)			\
2203     fprintf (FILE, "\t.align %d\n", (LOG))
2204 
2205 /* How to align the given loop. */
2206 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2207 
2208 /* Alignment guaranteed by __builtin_malloc.  */
2209 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2210    However, specifying the stronger guarantee currently leads to
2211    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2212    guarantee should be implemented here once that's fixed.  */
2213 #define MALLOC_ABI_ALIGNMENT (64)
2214 
2215 /* Pick up the return address upon entry to a procedure. Used for
2216    dwarf2 unwind information.  This also enables the table driven
2217    mechanism.  */
2218 
2219 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2220 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2221 
2222 /* Describe how we implement __builtin_eh_return.  */
2223 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2224 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2225 
2226 /* Print operand X (an rtx) in assembler syntax to file FILE.
2227    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2228    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2229 
2230 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2231 
2232 /* Define which CODE values are valid.  */
2233 
2234 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2235 
2236 /* Print a memory address as an operand to reference that memory location.  */
2237 
2238 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2239 
2240 /* For switching between functions with different target attributes.  */
2241 #define SWITCHABLE_TARGET 1
2242 
2243 /* uncomment for disabling the corresponding default options */
2244 /* #define  MACHINE_no_sched_interblock */
2245 /* #define  MACHINE_no_sched_speculative */
2246 /* #define  MACHINE_no_sched_speculative_load */
2247 
2248 /* General flags.  */
2249 extern int frame_pointer_needed;
2250 
2251 /* Classification of the builtin functions as to which switches enable the
2252    builtin, and what attributes it should have.  We used to use the target
2253    flags macros, but we've run out of bits, so we now map the options into new
2254    settings used here.  */
2255 
2256 /* Builtin operand count.  */
2257 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2258 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2259 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2260 #define RS6000_BTC_QUATERNARY	0x00000004	/* normal quaternary
2261 						   function. */
2262 #define RS6000_BTC_QUINARY	0x00000005	/* normal quinary function.  */
2263 #define RS6000_BTC_SENARY	0x00000006	/* normal senary function.  */
2264 #define RS6000_BTC_OPND_MASK	0x00000007	/* Mask to isolate operands. */
2265 
2266 /* Builtin attributes.  */
2267 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2268 #define RS6000_BTC_PREDICATE	0x00000008	/* predicate function.  */
2269 #define RS6000_BTC_ABS		0x00000010	/* Altivec/VSX ABS
2270 						   function.  */
2271 #define RS6000_BTC_DST		0x00000020	/* Altivec DST function.  */
2272 
2273 #define RS6000_BTC_TYPE_MASK	0x0000003f	/* Mask to isolate types */
2274 
2275 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2276 #define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2277 						   modifies global state.  */
2278 #define RS6000_BTC_PURE		0x00000200	/* reads global
2279 						   state/mem and does
2280 						   not modify global state.  */
2281 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2282 #define RS6000_BTC_QUAD		0x00000800	/* Uses a register quad.  */
2283 #define RS6000_BTC_PAIR		0x00001000	/* Uses a register pair.  */
2284 #define RS6000_BTC_QUADPAIR	0x00001800	/* Uses a quad and a pair.  */
2285 #define RS6000_BTC_ATTR_MASK	0x00001f00	/* Mask of the attributes.  */
2286 
2287 /* Miscellaneous information.  */
2288 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2289 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2290 #define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2291 #define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2292 #define RS6000_BTC_GIMPLE	0x10000000	/* function should be expanded
2293 						   into gimple.  */
2294 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2295 
2296 /* Convenience macros to document the instruction type.  */
2297 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2298 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2299 
2300 /* Builtin targets.  For now, we reuse the masks for those options that are in
2301    target flags, and pick a random bit for ldbl128, which isn't in
2302    target_flags.  */
2303 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2304 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2305 #define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2306 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2307 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2308 #define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2309 #define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2310 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2311 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2312 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2313 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2314 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2315 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2316 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2317 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2318 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2319 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2320 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2321 #define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2322 #define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2323 #define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2324 #define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2325 #define RS6000_BTM_MMA		MASK_MMA	/* ISA 3.1 MMA.  */
2326 #define RS6000_BTM_P10		MASK_POWER10
2327 
2328 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2329 				 | RS6000_BTM_VSX			\
2330 				 | RS6000_BTM_P8_VECTOR			\
2331 				 | RS6000_BTM_P9_VECTOR			\
2332 				 | RS6000_BTM_P9_MISC			\
2333 				 | RS6000_BTM_MODULO                    \
2334 				 | RS6000_BTM_CRYPTO			\
2335 				 | RS6000_BTM_FRE			\
2336 				 | RS6000_BTM_FRES			\
2337 				 | RS6000_BTM_FRSQRTE			\
2338 				 | RS6000_BTM_FRSQRTES			\
2339 				 | RS6000_BTM_HTM			\
2340 				 | RS6000_BTM_POPCNTD			\
2341 				 | RS6000_BTM_CELL			\
2342 				 | RS6000_BTM_DFP			\
2343 				 | RS6000_BTM_HARD_FLOAT		\
2344 				 | RS6000_BTM_LDBL128			\
2345 				 | RS6000_BTM_POWERPC64			\
2346 				 | RS6000_BTM_FLOAT128			\
2347 				 | RS6000_BTM_FLOAT128_HW		\
2348 				 | RS6000_BTM_MMA			\
2349 				 | RS6000_BTM_P10)
2350 
2351 /* Define builtin enum index.  */
2352 
2353 #undef RS6000_BUILTIN_0
2354 #undef RS6000_BUILTIN_1
2355 #undef RS6000_BUILTIN_2
2356 #undef RS6000_BUILTIN_3
2357 #undef RS6000_BUILTIN_A
2358 #undef RS6000_BUILTIN_D
2359 #undef RS6000_BUILTIN_H
2360 #undef RS6000_BUILTIN_M
2361 #undef RS6000_BUILTIN_P
2362 #undef RS6000_BUILTIN_X
2363 
2364 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2365 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2366 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2367 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2368 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2369 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2370 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2371 #define RS6000_BUILTIN_M(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2372 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2373 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2374 
2375 enum rs6000_builtins
2376 {
2377 #include "rs6000-builtin.def"
2378 
2379   RS6000_BUILTIN_COUNT
2380 };
2381 
2382 #undef RS6000_BUILTIN_0
2383 #undef RS6000_BUILTIN_1
2384 #undef RS6000_BUILTIN_2
2385 #undef RS6000_BUILTIN_3
2386 #undef RS6000_BUILTIN_A
2387 #undef RS6000_BUILTIN_D
2388 #undef RS6000_BUILTIN_H
2389 #undef RS6000_BUILTIN_M
2390 #undef RS6000_BUILTIN_P
2391 #undef RS6000_BUILTIN_X
2392 
2393 /* Mappings for overloaded builtins.  */
2394 struct altivec_builtin_types
2395 {
2396   enum rs6000_builtins code;
2397   enum rs6000_builtins overloaded_code;
2398   signed char ret_type;
2399   signed char op1;
2400   signed char op2;
2401   signed char op3;
2402 };
2403 extern const struct altivec_builtin_types altivec_overloaded_builtins[];
2404 
2405 enum rs6000_builtin_type_index
2406 {
2407   RS6000_BTI_NOT_OPAQUE,
2408   RS6000_BTI_opaque_V4SI,
2409   RS6000_BTI_V16QI,              /* __vector signed char */
2410   RS6000_BTI_V1TI,
2411   RS6000_BTI_V2DI,
2412   RS6000_BTI_V2DF,
2413   RS6000_BTI_V4HI,
2414   RS6000_BTI_V4SI,
2415   RS6000_BTI_V4SF,
2416   RS6000_BTI_V8HI,
2417   RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2418   RS6000_BTI_unsigned_V1TI,
2419   RS6000_BTI_unsigned_V8HI,
2420   RS6000_BTI_unsigned_V4SI,
2421   RS6000_BTI_unsigned_V2DI,
2422   RS6000_BTI_bool_char,          /* __bool char */
2423   RS6000_BTI_bool_short,         /* __bool short */
2424   RS6000_BTI_bool_int,           /* __bool int */
2425   RS6000_BTI_bool_long_long,     /* __bool long long */
2426   RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2427 				    channels of 1, 5, 5, and 5 bits
2428 				    respectively as packed with the
2429 				    vpkpx insn.  __pixel is only
2430 				    meaningful as a vector type.
2431 				    There is no corresponding scalar
2432 				    __pixel data type.)  */
2433   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2434   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2435   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2436   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2437   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2438   RS6000_BTI_long,	         /* long_integer_type_node */
2439   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2440   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2441   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2442   RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2443   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2444   RS6000_BTI_INTHI,	         /* intHI_type_node */
2445   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2446   RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2447   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2448   RS6000_BTI_INTDI,		 /* intDI_type_node */
2449   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2450   RS6000_BTI_INTTI,		 /* intTI_type_node */
2451   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2452   RS6000_BTI_float,	         /* float_type_node */
2453   RS6000_BTI_double,	         /* double_type_node */
2454   RS6000_BTI_long_double,        /* long_double_type_node */
2455   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2456   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2457   RS6000_BTI_void,	         /* void_type_node */
2458   RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2459   RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2460   RS6000_BTI_const_str,		 /* pointer to const char * */
2461   RS6000_BTI_vector_pair,	 /* unsigned 256-bit types (vector pair).  */
2462   RS6000_BTI_vector_quad,	 /* unsigned 512-bit types (vector quad).  */
2463   RS6000_BTI_MAX
2464 };
2465 
2466 
2467 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2468 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2469 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2470 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2471 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2472 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2473 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2474 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2475 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2476 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2477 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2478 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2479 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2480 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2481 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2482 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2483 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2484 #define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2485 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2486 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2487 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2488 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2489 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2490 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2491 
2492 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2493 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2494 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2495 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2496 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2497 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2498 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2499 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2500 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2501 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2502 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2503 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2504 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2505 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2506 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2507 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2508 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2509 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2510 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2511 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2512 #define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2513 #define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2514 #define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2515 #define vector_pair_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_pair])
2516 #define vector_quad_type_node		 (rs6000_builtin_types[RS6000_BTI_vector_quad])
2517 
2518 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2519 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2520 
2521 #ifndef USED_FOR_TARGET
2522 extern GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
2523 extern GTY(()) tree altivec_builtin_mask_for_load;
2524 extern GTY(()) section *toc_section;
2525 
2526 /* A C structure for machine-specific, per-function data.
2527    This is added to the cfun structure.  */
2528 typedef struct GTY(()) machine_function
2529 {
2530   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
2531   int ra_needs_full_frame;
2532   /* Flags if __builtin_return_address (0) was used.  */
2533   int ra_need_lr;
2534   /* Cache lr_save_p after expansion of builtin_eh_return.  */
2535   int lr_save_state;
2536   /* Whether we need to save the TOC to the reserved stack location in the
2537      function prologue.  */
2538   bool save_toc_in_prologue;
2539   /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2540      varargs save area.  */
2541   HOST_WIDE_INT varargs_save_offset;
2542   /* Alternative internal arg pointer for -fsplit-stack.  */
2543   rtx split_stack_arg_pointer;
2544   bool split_stack_argp_used;
2545   /* Flag if r2 setup is needed with ELFv2 ABI.  */
2546   bool r2_setup_needed;
2547   /* The number of components we use for separate shrink-wrapping.  */
2548   int n_components;
2549   /* The components already handled by separate shrink-wrapping, which should
2550      not be considered by the prologue and epilogue.  */
2551   bool gpr_is_wrapped_separately[32];
2552   bool fpr_is_wrapped_separately[32];
2553   bool lr_is_wrapped_separately;
2554   bool toc_is_wrapped_separately;
2555 } machine_function;
2556 #endif
2557 
2558 
2559 #define TARGET_SUPPORTS_WIDE_INT 1
2560 
2561 #if (GCC_VERSION >= 3000)
2562 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2563 #endif
2564 
2565 /* Whether a given VALUE is a valid 16 or 34-bit signed integer.  */
2566 #define SIGNED_INTEGER_NBIT_P(VALUE, N)					\
2567   IN_RANGE ((VALUE),							\
2568 	    -(HOST_WIDE_INT_1 << ((N)-1)),				\
2569 	    (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2570 
2571 #define SIGNED_INTEGER_16BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 16)
2572 #define SIGNED_INTEGER_34BIT_P(VALUE)	SIGNED_INTEGER_NBIT_P (VALUE, 34)
2573 
2574 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2575    argument that gives a length to validate a range of addresses, to allow for
2576    splitting insns into several insns, each of which has an offsettable
2577    address.  */
2578 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2579   IN_RANGE ((VALUE),							\
2580 	    -(HOST_WIDE_INT_1 << 15),					\
2581 	    (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2582 
2583 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA)			\
2584   IN_RANGE ((VALUE),							\
2585 	    -(HOST_WIDE_INT_1 << 33),					\
2586 	    (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2587 
2588 /* Define this if some processing needs to be done before outputting the
2589    assembler code.  On the PowerPC, we remember if the current insn is a normal
2590    prefixed insn where we need to emit a 'p' before the insn.  */
2591 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS)			\
2592 do									\
2593   {									\
2594     if (TARGET_PREFIXED)						\
2595       rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS);		\
2596   }									\
2597 while (0)
2598 
2599 /* Do anything special before emitting an opcode.  We use it to emit a 'p' for
2600    prefixed insns that is set in FINAL_PRESCAN_INSN.  */
2601 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE)				\
2602   do									\
2603     {									\
2604      if (TARGET_PREFIXED)						\
2605        rs6000_asm_output_opcode (STREAM);				\
2606     }									\
2607   while (0)
2608