1 /* LRA (local register allocator) driver and LRA utilities.
2    Copyright (C) 2010-2020 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.	If not see
19 <http://www.gnu.org/licenses/>.	 */
20 
21 
22 /* The Local Register Allocator (LRA) is a replacement of former
23    reload pass.	 It is focused to simplify code solving the reload
24    pass tasks, to make the code maintenance easier, and to implement new
25    perspective optimizations.
26 
27    The major LRA design solutions are:
28      o division small manageable, separated sub-tasks
29      o reflection of all transformations and decisions in RTL as more
30        as possible
31      o insn constraints as a primary source of the info (minimizing
32        number of target-depended macros/hooks)
33 
34    In brief LRA works by iterative insn process with the final goal is
35    to satisfy all insn and address constraints:
36      o New reload insns (in brief reloads) and reload pseudos might be
37        generated;
38      o Some pseudos might be spilled to assign hard registers to
39        new reload pseudos;
40      o Recalculating spilled pseudo values (rematerialization);
41      o Changing spilled pseudos to stack memory or their equivalences;
42      o Allocation stack memory changes the address displacement and
43        new iteration is needed.
44 
45    Here is block diagram of LRA passes:
46 
47                                 ------------------------
48            ---------------     | Undo inheritance for   |     ---------------
49           | Memory-memory |    | spilled pseudos,       |    | New (and old) |
50           | move coalesce |<---| splits for pseudos got |<-- |   pseudos     |
51            ---------------     | the same hard regs,    |    |  assignment   |
52   Start           |            | and optional reloads   |     ---------------
53     |             |             ------------------------            ^
54     V             |              ----------------                   |
55  -----------      V             | Update virtual |                  |
56 |  Remove   |----> ------------>|    register    |                  |
57 | scratches |     ^             |  displacements |                  |
58  -----------      |              ----------------                   |
59                   |                      |                          |
60                   |                      V         New              |
61                   |                 ------------  pseudos   -------------------
62                   |                |Constraints:| or insns | Inheritance/split |
63                   |                |    RTL     |--------->|  transformations  |
64                   |                | transfor-  |          |    in EBB scope   |
65                   | substi-        |  mations   |           -------------------
66                   | tutions         ------------
67                   |                     | No change
68           ----------------              V
69          | Spilled pseudo |      -------------------
70          |    to memory   |<----| Rematerialization |
71          |  substitution  |      -------------------
72           ----------------
73                   | No susbtitions
74                   V
75       -------------------------
76      | Hard regs substitution, |
77      |  devirtalization, and   |------> Finish
78      | restoring scratches got |
79      |         memory          |
80       -------------------------
81 
82    To speed up the process:
83      o We process only insns affected by changes on previous
84        iterations;
85      o We don't use DFA-infrastructure because it results in much slower
86        compiler speed than a special IR described below does;
87      o We use a special insn representation for quick access to insn
88        info which is always *synchronized* with the current RTL;
89        o Insn IR is minimized by memory.  It is divided on three parts:
90 	 o one specific for each insn in RTL (only operand locations);
91 	 o one common for all insns in RTL with the same insn code
92 	   (different operand attributes from machine descriptions);
93 	 o one oriented for maintenance of live info (list of pseudos).
94        o Pseudo data:
95 	 o all insns where the pseudo is referenced;
96 	 o live info (conflicting hard regs, live ranges, # of
97 	   references etc);
98 	 o data used for assigning (preferred hard regs, costs etc).
99 
100    This file contains LRA driver, LRA utility functions and data, and
101    code for dealing with scratches.  */
102 
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
124 #include "function-abi.h"
125 
126 /* Dump bitmap SET with TITLE and BB INDEX.  */
127 void
lra_dump_bitmap_with_title(const char * title,bitmap set,int index)128 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
129 {
130   unsigned int i;
131   int count;
132   bitmap_iterator bi;
133   static const int max_nums_on_line = 10;
134 
135   if (bitmap_empty_p (set))
136     return;
137   fprintf (lra_dump_file, "  %s %d:", title, index);
138   fprintf (lra_dump_file, "\n");
139   count = max_nums_on_line + 1;
140   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
141     {
142       if (count > max_nums_on_line)
143 	{
144 	  fprintf (lra_dump_file, "\n    ");
145 	  count = 0;
146 	}
147       fprintf (lra_dump_file, " %4u", i);
148       count++;
149     }
150   fprintf (lra_dump_file, "\n");
151 }
152 
153 /* Hard registers currently not available for allocation.  It can
154    changed after some hard  registers become not eliminable.  */
155 HARD_REG_SET lra_no_alloc_regs;
156 
157 static int get_new_reg_value (void);
158 static void expand_reg_info (void);
159 static void invalidate_insn_recog_data (int);
160 static int get_insn_freq (rtx_insn *);
161 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
162 					     rtx_insn *, int);
163 static void remove_scratches_1 (rtx_insn *);
164 
165 /* Expand all regno related info needed for LRA.  */
166 static void
expand_reg_data(int old)167 expand_reg_data (int old)
168 {
169   resize_reg_info ();
170   expand_reg_info ();
171   ira_expand_reg_equiv ();
172   for (int i = (int) max_reg_num () - 1; i >= old; i--)
173     lra_change_class (i, ALL_REGS, "      Set", true);
174 }
175 
176 /* Create and return a new reg of ORIGINAL mode.  If ORIGINAL is NULL
177    or of VOIDmode, use MD_MODE for the new reg.  Initialize its
178    register class to RCLASS.  Print message about assigning class
179    RCLASS containing new register name TITLE unless it is NULL.  Use
180    attributes of ORIGINAL if it is a register.  The created register
181    will have unique held value.  */
182 rtx
lra_create_new_reg_with_unique_value(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)183 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
184 				      enum reg_class rclass, const char *title)
185 {
186   machine_mode mode;
187   rtx new_reg;
188 
189   if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
190     mode = md_mode;
191   lra_assert (mode != VOIDmode);
192   new_reg = gen_reg_rtx (mode);
193   if (original == NULL_RTX || ! REG_P (original))
194     {
195       if (lra_dump_file != NULL)
196 	fprintf (lra_dump_file, "      Creating newreg=%i", REGNO (new_reg));
197     }
198   else
199     {
200       if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
201 	ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
202       REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
203       REG_POINTER (new_reg) = REG_POINTER (original);
204       REG_ATTRS (new_reg) = REG_ATTRS (original);
205       if (lra_dump_file != NULL)
206 	fprintf (lra_dump_file, "      Creating newreg=%i from oldreg=%i",
207 		 REGNO (new_reg), REGNO (original));
208     }
209   if (lra_dump_file != NULL)
210     {
211       if (title != NULL)
212 	fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
213 		 reg_class_names[rclass], *title == '\0' ? "" : " ",
214 		 title, REGNO (new_reg));
215       fprintf (lra_dump_file, "\n");
216     }
217   expand_reg_data (max_reg_num ());
218   setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
219   return new_reg;
220 }
221 
222 /* Analogous to the previous function but also inherits value of
223    ORIGINAL.  */
224 rtx
lra_create_new_reg(machine_mode md_mode,rtx original,enum reg_class rclass,const char * title)225 lra_create_new_reg (machine_mode md_mode, rtx original,
226 		    enum reg_class rclass, const char *title)
227 {
228   rtx new_reg;
229 
230   new_reg
231     = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
232   if (original != NULL_RTX && REG_P (original))
233     lra_assign_reg_val (REGNO (original), REGNO (new_reg));
234   return new_reg;
235 }
236 
237 /* Set up for REGNO unique hold value.	*/
238 void
lra_set_regno_unique_value(int regno)239 lra_set_regno_unique_value (int regno)
240 {
241   lra_reg_info[regno].val = get_new_reg_value ();
242 }
243 
244 /* Invalidate INSN related info used by LRA.  The info should never be
245    used after that.  */
246 void
lra_invalidate_insn_data(rtx_insn * insn)247 lra_invalidate_insn_data (rtx_insn *insn)
248 {
249   lra_invalidate_insn_regno_info (insn);
250   invalidate_insn_recog_data (INSN_UID (insn));
251 }
252 
253 /* Mark INSN deleted and invalidate the insn related info used by
254    LRA.	 */
255 void
lra_set_insn_deleted(rtx_insn * insn)256 lra_set_insn_deleted (rtx_insn *insn)
257 {
258   lra_invalidate_insn_data (insn);
259   SET_INSN_DELETED (insn);
260 }
261 
262 /* Delete an unneeded INSN and any previous insns who sole purpose is
263    loading data that is dead in INSN.  */
264 void
lra_delete_dead_insn(rtx_insn * insn)265 lra_delete_dead_insn (rtx_insn *insn)
266 {
267   rtx_insn *prev = prev_real_insn (insn);
268   rtx prev_dest;
269 
270   /* If the previous insn sets a register that dies in our insn,
271      delete it too.  */
272   if (prev && GET_CODE (PATTERN (prev)) == SET
273       && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
274       && reg_mentioned_p (prev_dest, PATTERN (insn))
275       && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
276       && ! side_effects_p (SET_SRC (PATTERN (prev))))
277     lra_delete_dead_insn (prev);
278 
279   lra_set_insn_deleted (insn);
280 }
281 
282 /* Emit insn x = y + z.  Return NULL if we failed to do it.
283    Otherwise, return the insn.  We don't use gen_add3_insn as it might
284    clobber CC.  */
285 static rtx_insn *
emit_add3_insn(rtx x,rtx y,rtx z)286 emit_add3_insn (rtx x, rtx y, rtx z)
287 {
288   rtx_insn *last;
289 
290   last = get_last_insn ();
291 
292   if (have_addptr3_insn (x, y, z))
293     {
294       rtx_insn *insn = gen_addptr3_insn (x, y, z);
295 
296       /* If the target provides an "addptr" pattern it hopefully does
297 	 for a reason.  So falling back to the normal add would be
298 	 a bug.  */
299       lra_assert (insn != NULL_RTX);
300       emit_insn (insn);
301       return insn;
302     }
303 
304   rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
305 							    y, z)));
306   if (recog_memoized (insn) < 0)
307     {
308       delete_insns_since (last);
309       insn = NULL;
310     }
311   return insn;
312 }
313 
314 /* Emit insn x = x + y.  Return the insn.  We use gen_add2_insn as the
315    last resort.  */
316 static rtx_insn *
emit_add2_insn(rtx x,rtx y)317 emit_add2_insn (rtx x, rtx y)
318 {
319   rtx_insn *insn = emit_add3_insn (x, x, y);
320   if (insn == NULL_RTX)
321     {
322       insn = gen_add2_insn (x, y);
323       if (insn != NULL_RTX)
324 	emit_insn (insn);
325     }
326   return insn;
327 }
328 
329 /* Target checks operands through operand predicates to recognize an
330    insn.  We should have a special precaution to generate add insns
331    which are frequent results of elimination.
332 
333    Emit insns for x = y + z.  X can be used to store intermediate
334    values and should be not in Y and Z when we use X to store an
335    intermediate value.  Y + Z should form [base] [+ index[ * scale]] [
336    + disp] where base and index are registers, disp and scale are
337    constants.  Y should contain base if it is present, Z should
338    contain disp if any.  index[*scale] can be part of Y or Z.  */
339 void
lra_emit_add(rtx x,rtx y,rtx z)340 lra_emit_add (rtx x, rtx y, rtx z)
341 {
342   int old;
343   rtx_insn *last;
344   rtx a1, a2, base, index, disp, scale, index_scale;
345   bool ok_p;
346 
347   rtx_insn *add3_insn = emit_add3_insn (x, y, z);
348   old = max_reg_num ();
349   if (add3_insn != NULL)
350     ;
351   else
352     {
353       disp = a2 = NULL_RTX;
354       if (GET_CODE (y) == PLUS)
355 	{
356 	  a1 = XEXP (y, 0);
357 	  a2 = XEXP (y, 1);
358 	  disp = z;
359 	}
360       else
361 	{
362 	  a1 = y;
363 	  if (CONSTANT_P (z))
364 	    disp = z;
365 	  else
366 	    a2 = z;
367 	}
368       index_scale = scale = NULL_RTX;
369       if (GET_CODE (a1) == MULT)
370 	{
371 	  index_scale = a1;
372 	  index = XEXP (a1, 0);
373 	  scale = XEXP (a1, 1);
374 	  base = a2;
375 	}
376       else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
377 	{
378 	  index_scale = a2;
379 	  index = XEXP (a2, 0);
380 	  scale = XEXP (a2, 1);
381 	  base = a1;
382 	}
383       else
384 	{
385 	  base = a1;
386 	  index = a2;
387 	}
388       if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
389 	  || (index != NULL_RTX
390 	      && ! (REG_P (index) || GET_CODE (index) == SUBREG))
391 	  || (disp != NULL_RTX && ! CONSTANT_P (disp))
392 	  || (scale != NULL_RTX && ! CONSTANT_P (scale)))
393 	{
394 	  /* Probably we have no 3 op add.  Last chance is to use 2-op
395 	     add insn.  To succeed, don't move Z to X as an address
396 	     segment always comes in Y.  Otherwise, we might fail when
397 	     adding the address segment to register.  */
398 	  lra_assert (x != y && x != z);
399 	  emit_move_insn (x, y);
400 	  rtx_insn *insn = emit_add2_insn (x, z);
401 	  lra_assert (insn != NULL_RTX);
402 	}
403       else
404 	{
405 	  if (index_scale == NULL_RTX)
406 	    index_scale = index;
407 	  if (disp == NULL_RTX)
408 	    {
409 	      /* Generate x = index_scale; x = x + base.  */
410 	      lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
411 	      emit_move_insn (x, index_scale);
412 	      rtx_insn *insn = emit_add2_insn (x, base);
413 	      lra_assert (insn != NULL_RTX);
414 	    }
415 	  else if (scale == NULL_RTX)
416 	    {
417 	      /* Try x = base + disp.  */
418 	      lra_assert (base != NULL_RTX);
419 	      last = get_last_insn ();
420 	      rtx_insn *move_insn =
421 		emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
422 	      if (recog_memoized (move_insn) < 0)
423 		{
424 		  delete_insns_since (last);
425 		  /* Generate x = disp; x = x + base.  */
426 		  emit_move_insn (x, disp);
427 		  rtx_insn *add2_insn = emit_add2_insn (x, base);
428 		  lra_assert (add2_insn != NULL_RTX);
429 		}
430 	      /* Generate x = x + index.  */
431 	      if (index != NULL_RTX)
432 		{
433 		  rtx_insn *insn = emit_add2_insn (x, index);
434 		  lra_assert (insn != NULL_RTX);
435 		}
436 	    }
437 	  else
438 	    {
439 	      /* Try x = index_scale; x = x + disp; x = x + base.  */
440 	      last = get_last_insn ();
441 	      rtx_insn *move_insn = emit_move_insn (x, index_scale);
442 	      ok_p = false;
443 	      if (recog_memoized (move_insn) >= 0)
444 		{
445 		  rtx_insn *insn = emit_add2_insn (x, disp);
446 		  if (insn != NULL_RTX)
447 		    {
448 		      if (base == NULL_RTX)
449 			ok_p = true;
450 		      else
451 			{
452 			  insn = emit_add2_insn (x, base);
453 			  if (insn != NULL_RTX)
454 			    ok_p = true;
455 			}
456 		    }
457 		}
458 	      if (! ok_p)
459 		{
460 		  rtx_insn *insn;
461 
462 		  delete_insns_since (last);
463 		  /* Generate x = disp; x = x + base; x = x + index_scale.  */
464 		  emit_move_insn (x, disp);
465 		  if (base != NULL_RTX)
466 		    {
467 		      insn = emit_add2_insn (x, base);
468 		      lra_assert (insn != NULL_RTX);
469 		    }
470 		  insn = emit_add2_insn (x, index_scale);
471 		  lra_assert (insn != NULL_RTX);
472 		}
473 	    }
474 	}
475     }
476   /* Functions emit_... can create pseudos -- so expand the pseudo
477      data.  */
478   if (old != max_reg_num ())
479     expand_reg_data (old);
480 }
481 
482 /* The number of emitted reload insns so far.  */
483 int lra_curr_reload_num;
484 
485 /* Emit x := y, processing special case when y = u + v or y = u + v *
486    scale + w through emit_add (Y can be an address which is base +
487    index reg * scale + displacement in general case).  X may be used
488    as intermediate result therefore it should be not in Y.  */
489 void
lra_emit_move(rtx x,rtx y)490 lra_emit_move (rtx x, rtx y)
491 {
492   int old;
493   rtx_insn *insn;
494 
495   if (GET_CODE (y) != PLUS)
496     {
497       if (rtx_equal_p (x, y))
498 	return;
499       old = max_reg_num ();
500 
501       insn = (GET_CODE (x) != STRICT_LOW_PART
502 	      ? emit_move_insn (x, y) : emit_insn (gen_rtx_SET (x, y)));
503       /* The move pattern may require scratch registers, so convert them
504 	 into real registers now.  */
505       if (insn != NULL_RTX)
506 	remove_scratches_1 (insn);
507       if (REG_P (x))
508 	lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
509       /* Function emit_move can create pseudos -- so expand the pseudo
510 	 data.	*/
511       if (old != max_reg_num ())
512 	expand_reg_data (old);
513       return;
514     }
515   lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
516 }
517 
518 /* Update insn operands which are duplication of operands whose
519    numbers are in array of NOPS (with end marker -1).  The insn is
520    represented by its LRA internal representation ID.  */
521 void
lra_update_dups(lra_insn_recog_data_t id,signed char * nops)522 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
523 {
524   int i, j, nop;
525   struct lra_static_insn_data *static_id = id->insn_static_data;
526 
527   for (i = 0; i < static_id->n_dups; i++)
528     for (j = 0; (nop = nops[j]) >= 0; j++)
529       if (static_id->dup_num[i] == nop)
530 	*id->dup_loc[i] = *id->operand_loc[nop];
531 }
532 
533 
534 
535 /* This page contains code dealing with info about registers in the
536    insns.  */
537 
538 /* Pools for insn reg info.  */
539 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
540 
541 /* Create LRA insn related info about a reference to REGNO in INSN
542    with TYPE (in/out/inout), biggest reference mode MODE, flag that it
543    is reference through subreg (SUBREG_P), and reference to the next
544    insn reg info (NEXT).  If REGNO can be early clobbered,
545    alternatives in which it can be early clobbered are given by
546    EARLY_CLOBBER_ALTS.  */
547 static struct lra_insn_reg *
new_insn_reg(rtx_insn * insn,int regno,enum op_type type,machine_mode mode,bool subreg_p,alternative_mask early_clobber_alts,struct lra_insn_reg * next)548 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
549 	      machine_mode mode, bool subreg_p,
550 	      alternative_mask early_clobber_alts,
551 	      struct lra_insn_reg *next)
552 {
553   lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
554   ir->type = type;
555   ir->biggest_mode = mode;
556   if (NONDEBUG_INSN_P (insn)
557       && partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
558     lra_reg_info[regno].biggest_mode = mode;
559   ir->subreg_p = subreg_p;
560   ir->early_clobber_alts = early_clobber_alts;
561   ir->regno = regno;
562   ir->next = next;
563   return ir;
564 }
565 
566 /* Free insn reg info list IR.	*/
567 static void
free_insn_regs(struct lra_insn_reg * ir)568 free_insn_regs (struct lra_insn_reg *ir)
569 {
570   struct lra_insn_reg *next_ir;
571 
572   for (; ir != NULL; ir = next_ir)
573     {
574       next_ir = ir->next;
575       lra_insn_reg_pool.remove (ir);
576     }
577 }
578 
579 /* Finish pool for insn reg info.  */
580 static void
finish_insn_regs(void)581 finish_insn_regs (void)
582 {
583   lra_insn_reg_pool.release ();
584 }
585 
586 
587 
588 /* This page contains code dealing LRA insn info (or in other words
589    LRA internal insn representation).  */
590 
591 /* Map INSN_CODE -> the static insn data.  This info is valid during
592    all translation unit.  */
593 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
594 
595 /* Debug insns are represented as a special insn with one input
596    operand which is RTL expression in var_location.  */
597 
598 /* The following data are used as static insn operand data for all
599    debug insns.	 If structure lra_operand_data is changed, the
600    initializer should be changed too.  */
601 static struct lra_operand_data debug_operand_data =
602   {
603     NULL, /* alternative  */
604     0, /* early_clobber_alts */
605     E_VOIDmode, /* We are not interesting in the operand mode.  */
606     OP_IN,
607     0, 0, 0
608   };
609 
610 /* The following data are used as static insn data for all debug
611    bind insns.  If structure lra_static_insn_data is changed, the
612    initializer should be changed too.  */
613 static struct lra_static_insn_data debug_bind_static_data =
614   {
615     &debug_operand_data,
616     0,	/* Duplication operands #.  */
617     -1, /* Commutative operand #.  */
618     1,	/* Operands #.	There is only one operand which is debug RTL
619 	   expression.	*/
620     0,	/* Duplications #.  */
621     0,	/* Alternatives #.  We are not interesting in alternatives
622 	   because we does not proceed debug_insns for reloads.	 */
623     NULL, /* Hard registers referenced in machine description.	*/
624     NULL  /* Descriptions of operands in alternatives.	*/
625   };
626 
627 /* The following data are used as static insn data for all debug
628    marker insns.  If structure lra_static_insn_data is changed, the
629    initializer should be changed too.  */
630 static struct lra_static_insn_data debug_marker_static_data =
631   {
632     &debug_operand_data,
633     0,	/* Duplication operands #.  */
634     -1, /* Commutative operand #.  */
635     0,	/* Operands #.	There isn't any operand.  */
636     0,	/* Duplications #.  */
637     0,	/* Alternatives #.  We are not interesting in alternatives
638 	   because we does not proceed debug_insns for reloads.	 */
639     NULL, /* Hard registers referenced in machine description.	*/
640     NULL  /* Descriptions of operands in alternatives.	*/
641   };
642 
643 /* Called once per compiler work to initialize some LRA data related
644    to insns.  */
645 static void
init_insn_code_data_once(void)646 init_insn_code_data_once (void)
647 {
648   memset (insn_code_data, 0, sizeof (insn_code_data));
649 }
650 
651 /* Called once per compiler work to finalize some LRA data related to
652    insns.  */
653 static void
finish_insn_code_data_once(void)654 finish_insn_code_data_once (void)
655 {
656   for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
657     {
658       if (insn_code_data[i] != NULL)
659 	{
660 	  free (insn_code_data[i]);
661 	  insn_code_data[i] = NULL;
662 	}
663     }
664 }
665 
666 /* Return static insn data, allocate and setup if necessary.  Although
667    dup_num is static data (it depends only on icode), to set it up we
668    need to extract insn first.	So recog_data should be valid for
669    normal insn (ICODE >= 0) before the call.  */
670 static struct lra_static_insn_data *
get_static_insn_data(int icode,int nop,int ndup,int nalt)671 get_static_insn_data (int icode, int nop, int ndup, int nalt)
672 {
673   struct lra_static_insn_data *data;
674   size_t n_bytes;
675 
676   lra_assert (icode < (int) NUM_INSN_CODES);
677   if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
678     return data;
679   lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
680   n_bytes = sizeof (struct lra_static_insn_data)
681 	    + sizeof (struct lra_operand_data) * nop
682 	    + sizeof (int) * ndup;
683   data = XNEWVAR (struct lra_static_insn_data, n_bytes);
684   data->operand_alternative = NULL;
685   data->n_operands = nop;
686   data->n_dups = ndup;
687   data->n_alternatives = nalt;
688   data->operand = ((struct lra_operand_data *)
689 		   ((char *) data + sizeof (struct lra_static_insn_data)));
690   data->dup_num = ((int *) ((char *) data->operand
691 			    + sizeof (struct lra_operand_data) * nop));
692   if (icode >= 0)
693     {
694       int i;
695 
696       insn_code_data[icode] = data;
697       for (i = 0; i < nop; i++)
698 	{
699 	  data->operand[i].constraint
700 	    = insn_data[icode].operand[i].constraint;
701 	  data->operand[i].mode = insn_data[icode].operand[i].mode;
702 	  data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
703 	  data->operand[i].is_operator
704 	    = insn_data[icode].operand[i].is_operator;
705 	  data->operand[i].type
706 	    = (data->operand[i].constraint[0] == '=' ? OP_OUT
707 	       : data->operand[i].constraint[0] == '+' ? OP_INOUT
708 	       : OP_IN);
709 	  data->operand[i].is_address = false;
710 	}
711       for (i = 0; i < ndup; i++)
712 	data->dup_num[i] = recog_data.dup_num[i];
713     }
714   return data;
715 }
716 
717 /* The current length of the following array.  */
718 int lra_insn_recog_data_len;
719 
720 /* Map INSN_UID -> the insn recog data (NULL if unknown).  */
721 lra_insn_recog_data_t *lra_insn_recog_data;
722 
723 /* Alloc pool we allocate entries for lra_insn_recog_data from.  */
724 static object_allocator<class lra_insn_recog_data>
725   lra_insn_recog_data_pool ("insn recog data pool");
726 
727 /* Initialize LRA data about insns.  */
728 static void
init_insn_recog_data(void)729 init_insn_recog_data (void)
730 {
731   lra_insn_recog_data_len = 0;
732   lra_insn_recog_data = NULL;
733 }
734 
735 /* Expand, if necessary, LRA data about insns.	*/
736 static void
check_and_expand_insn_recog_data(int index)737 check_and_expand_insn_recog_data (int index)
738 {
739   int i, old;
740 
741   if (lra_insn_recog_data_len > index)
742     return;
743   old = lra_insn_recog_data_len;
744   lra_insn_recog_data_len = index * 3 / 2 + 1;
745   lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
746 				    lra_insn_recog_data,
747 				    lra_insn_recog_data_len);
748   for (i = old; i < lra_insn_recog_data_len; i++)
749     lra_insn_recog_data[i] = NULL;
750 }
751 
752 /* Finish LRA DATA about insn.	*/
753 static void
free_insn_recog_data(lra_insn_recog_data_t data)754 free_insn_recog_data (lra_insn_recog_data_t data)
755 {
756   if (data->operand_loc != NULL)
757     free (data->operand_loc);
758   if (data->dup_loc != NULL)
759     free (data->dup_loc);
760   if (data->arg_hard_regs != NULL)
761     free (data->arg_hard_regs);
762   if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
763     {
764       if (data->insn_static_data->operand_alternative != NULL)
765 	free (const_cast <operand_alternative *>
766 	      (data->insn_static_data->operand_alternative));
767       free_insn_regs (data->insn_static_data->hard_regs);
768       free (data->insn_static_data);
769     }
770   free_insn_regs (data->regs);
771   data->regs = NULL;
772   lra_insn_recog_data_pool.remove (data);
773 }
774 
775 /* Pools for copies.  */
776 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
777 
778 /* Finish LRA data about all insns.  */
779 static void
finish_insn_recog_data(void)780 finish_insn_recog_data (void)
781 {
782   int i;
783   lra_insn_recog_data_t data;
784 
785   for (i = 0; i < lra_insn_recog_data_len; i++)
786     if ((data = lra_insn_recog_data[i]) != NULL)
787       free_insn_recog_data (data);
788   finish_insn_regs ();
789   lra_copy_pool.release ();
790   lra_insn_reg_pool.release ();
791   lra_insn_recog_data_pool.release ();
792   free (lra_insn_recog_data);
793 }
794 
795 /* Setup info about operands in alternatives of LRA DATA of insn.  */
796 static void
setup_operand_alternative(lra_insn_recog_data_t data,const operand_alternative * op_alt)797 setup_operand_alternative (lra_insn_recog_data_t data,
798 			   const operand_alternative *op_alt)
799 {
800   int i, j, nop, nalt;
801   int icode = data->icode;
802   struct lra_static_insn_data *static_data = data->insn_static_data;
803 
804   static_data->commutative = -1;
805   nop = static_data->n_operands;
806   nalt = static_data->n_alternatives;
807   static_data->operand_alternative = op_alt;
808   for (i = 0; i < nop; i++)
809     {
810       static_data->operand[i].early_clobber_alts = 0;
811       static_data->operand[i].is_address = false;
812       if (static_data->operand[i].constraint[0] == '%')
813 	{
814 	  /* We currently only support one commutative pair of operands.  */
815 	  if (static_data->commutative < 0)
816 	    static_data->commutative = i;
817 	  else
818 	    lra_assert (icode < 0); /* Asm  */
819 	  /* The last operand should not be marked commutative.  */
820 	  lra_assert (i != nop - 1);
821 	}
822     }
823   for (j = 0; j < nalt; j++)
824     for (i = 0; i < nop; i++, op_alt++)
825       {
826 	if (op_alt->earlyclobber)
827 	  static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
828 	static_data->operand[i].is_address |= op_alt->is_address;
829       }
830 }
831 
832 /* Recursively process X and collect info about registers, which are
833    not the insn operands, in X with TYPE (in/out/inout) and flag that
834    it is early clobbered in the insn (EARLY_CLOBBER) and add the info
835    to LIST.  X is a part of insn given by DATA.	 Return the result
836    list.  */
837 static struct lra_insn_reg *
collect_non_operand_hard_regs(rtx_insn * insn,rtx * x,lra_insn_recog_data_t data,struct lra_insn_reg * list,enum op_type type,bool early_clobber)838 collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
839 			       lra_insn_recog_data_t data,
840 			       struct lra_insn_reg *list,
841 			       enum op_type type, bool early_clobber)
842 {
843   int i, j, regno, last;
844   bool subreg_p;
845   machine_mode mode;
846   struct lra_insn_reg *curr;
847   rtx op = *x;
848   enum rtx_code code = GET_CODE (op);
849   const char *fmt = GET_RTX_FORMAT (code);
850 
851   for (i = 0; i < data->insn_static_data->n_operands; i++)
852     if (! data->insn_static_data->operand[i].is_operator
853 	&& x == data->operand_loc[i])
854       /* It is an operand loc. Stop here.  */
855       return list;
856   for (i = 0; i < data->insn_static_data->n_dups; i++)
857     if (x == data->dup_loc[i])
858       /* It is a dup loc. Stop here.  */
859       return list;
860   mode = GET_MODE (op);
861   subreg_p = false;
862   if (code == SUBREG)
863     {
864       mode = wider_subreg_mode (op);
865       if (read_modify_subreg_p (op))
866 	subreg_p = true;
867       op = SUBREG_REG (op);
868       code = GET_CODE (op);
869     }
870   if (REG_P (op))
871     {
872       if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
873 	return list;
874       /* Process all regs even unallocatable ones as we need info
875 	 about all regs for rematerialization pass.  */
876       for (last = end_hard_regno (mode, regno); regno < last; regno++)
877 	{
878 	  for (curr = list; curr != NULL; curr = curr->next)
879 	    if (curr->regno == regno && curr->subreg_p == subreg_p
880 		&& curr->biggest_mode == mode)
881 	      {
882 		if (curr->type != type)
883 		  curr->type = OP_INOUT;
884 		if (early_clobber)
885 		  curr->early_clobber_alts = ALL_ALTERNATIVES;
886 		break;
887 	      }
888 	  if (curr == NULL)
889 	    {
890 	      /* This is a new hard regno or the info cannot be
891 		 integrated into the found structure.	 */
892 #ifdef STACK_REGS
893 	      early_clobber
894 		= (early_clobber
895 		   /* This clobber is to inform popping floating
896 		      point stack only.  */
897 		   && ! (FIRST_STACK_REG <= regno
898 			 && regno <= LAST_STACK_REG));
899 #endif
900 	      list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
901 				   early_clobber ? ALL_ALTERNATIVES : 0, list);
902 	    }
903 	}
904       return list;
905     }
906   switch (code)
907     {
908     case SET:
909       list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
910 					    list, OP_OUT, false);
911       list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
912 					    list, OP_IN, false);
913       break;
914     case CLOBBER:
915       /* We treat clobber of non-operand hard registers as early clobber.  */
916       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
917 					    list, OP_OUT, true);
918       break;
919     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
920       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
921 					    list, OP_INOUT, false);
922       break;
923     case PRE_MODIFY: case POST_MODIFY:
924       list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
925 					    list, OP_INOUT, false);
926       list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
927 					    list, OP_IN, false);
928       break;
929     default:
930       fmt = GET_RTX_FORMAT (code);
931       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
932 	{
933 	  if (fmt[i] == 'e')
934 	    list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
935 						  list, OP_IN, false);
936 	  else if (fmt[i] == 'E')
937 	    for (j = XVECLEN (op, i) - 1; j >= 0; j--)
938 	      list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
939 						    data, list, OP_IN, false);
940 	}
941     }
942   return list;
943 }
944 
945 /* Set up and return info about INSN.  Set up the info if it is not set up
946    yet.	 */
947 lra_insn_recog_data_t
lra_set_insn_recog_data(rtx_insn * insn)948 lra_set_insn_recog_data (rtx_insn *insn)
949 {
950   lra_insn_recog_data_t data;
951   int i, n, icode;
952   rtx **locs;
953   unsigned int uid = INSN_UID (insn);
954   struct lra_static_insn_data *insn_static_data;
955 
956   check_and_expand_insn_recog_data (uid);
957   if (DEBUG_INSN_P (insn))
958     icode = -1;
959   else
960     {
961       icode = INSN_CODE (insn);
962       if (icode < 0)
963 	/* It might be a new simple insn which is not recognized yet.  */
964 	INSN_CODE (insn) = icode = recog_memoized (insn);
965     }
966   data = lra_insn_recog_data_pool.allocate ();
967   lra_insn_recog_data[uid] = data;
968   data->insn = insn;
969   data->used_insn_alternative = LRA_UNKNOWN_ALT;
970   data->icode = icode;
971   data->regs = NULL;
972   if (DEBUG_INSN_P (insn))
973     {
974       data->dup_loc = NULL;
975       data->arg_hard_regs = NULL;
976       data->preferred_alternatives = ALL_ALTERNATIVES;
977       if (DEBUG_BIND_INSN_P (insn))
978 	{
979 	  data->insn_static_data = &debug_bind_static_data;
980 	  data->operand_loc = XNEWVEC (rtx *, 1);
981 	  data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
982 	}
983       else if (DEBUG_MARKER_INSN_P (insn))
984 	{
985 	  data->insn_static_data = &debug_marker_static_data;
986 	  data->operand_loc = NULL;
987 	}
988       return data;
989     }
990   if (icode < 0)
991     {
992       int nop, nalt;
993       machine_mode operand_mode[MAX_RECOG_OPERANDS];
994       const char *constraints[MAX_RECOG_OPERANDS];
995 
996       nop = asm_noperands (PATTERN (insn));
997       data->operand_loc = data->dup_loc = NULL;
998       nalt = 1;
999       if (nop < 0)
1000 	{
1001 	  /* It is a special insn like USE or CLOBBER.  We should
1002 	     recognize any regular insn otherwise LRA can do nothing
1003 	     with this insn.  */
1004 	  gcc_assert (GET_CODE (PATTERN (insn)) == USE
1005 		      || GET_CODE (PATTERN (insn)) == CLOBBER
1006 		      || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1007 	  data->insn_static_data = insn_static_data
1008 	    = get_static_insn_data (-1, 0, 0, nalt);
1009 	}
1010       else
1011 	{
1012 	  /* expand_asm_operands makes sure there aren't too many
1013 	     operands.	*/
1014 	  lra_assert (nop <= MAX_RECOG_OPERANDS);
1015 	  if (nop != 0)
1016 	    data->operand_loc = XNEWVEC (rtx *, nop);
1017 	  /* Now get the operand values and constraints out of the
1018 	     insn.  */
1019 	  decode_asm_operands (PATTERN (insn), NULL,
1020 			       data->operand_loc,
1021 			       constraints, operand_mode, NULL);
1022 	  if (nop > 0)
1023 	    for (const char *p =constraints[0]; *p; p++)
1024 	      nalt += *p == ',';
1025 	  data->insn_static_data = insn_static_data
1026 	    = get_static_insn_data (-1, nop, 0, nalt);
1027 	  for (i = 0; i < nop; i++)
1028 	    {
1029 	      insn_static_data->operand[i].mode = operand_mode[i];
1030 	      insn_static_data->operand[i].constraint = constraints[i];
1031 	      insn_static_data->operand[i].strict_low = false;
1032 	      insn_static_data->operand[i].is_operator = false;
1033 	      insn_static_data->operand[i].is_address = false;
1034 	    }
1035 	}
1036       for (i = 0; i < insn_static_data->n_operands; i++)
1037 	insn_static_data->operand[i].type
1038 	  = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1039 	     : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1040 	     : OP_IN);
1041       data->preferred_alternatives = ALL_ALTERNATIVES;
1042       if (nop > 0)
1043 	{
1044 	  operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1045 						  nalt * nop);
1046 	  preprocess_constraints (nop, nalt, constraints, op_alt,
1047 				  data->operand_loc);
1048 	  setup_operand_alternative (data, op_alt);
1049 	}
1050     }
1051   else
1052     {
1053       insn_extract (insn);
1054       data->insn_static_data = insn_static_data
1055 	= get_static_insn_data (icode, insn_data[icode].n_operands,
1056 				insn_data[icode].n_dups,
1057 				insn_data[icode].n_alternatives);
1058       n = insn_static_data->n_operands;
1059       if (n == 0)
1060 	locs = NULL;
1061       else
1062 	{
1063 	  locs = XNEWVEC (rtx *, n);
1064 	  memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1065 	}
1066       data->operand_loc = locs;
1067       n = insn_static_data->n_dups;
1068       if (n == 0)
1069 	locs = NULL;
1070       else
1071 	{
1072 	  locs = XNEWVEC (rtx *, n);
1073 	  memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1074 	}
1075       data->dup_loc = locs;
1076       data->preferred_alternatives = get_preferred_alternatives (insn);
1077       const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1078       if (!insn_static_data->operand_alternative)
1079 	setup_operand_alternative (data, op_alt);
1080       else if (op_alt != insn_static_data->operand_alternative)
1081 	insn_static_data->operand_alternative = op_alt;
1082     }
1083   if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1084     insn_static_data->hard_regs = NULL;
1085   else
1086     insn_static_data->hard_regs
1087       = collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
1088 				       NULL, OP_IN, false);
1089   data->arg_hard_regs = NULL;
1090   if (CALL_P (insn))
1091     {
1092       bool use_p;
1093       rtx link;
1094       int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1095 
1096       n_hard_regs = 0;
1097       /* Finding implicit hard register usage.	We believe it will be
1098 	 not changed whatever transformations are used.	 Call insns
1099 	 are such example.  */
1100       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1101 	   link != NULL_RTX;
1102 	   link = XEXP (link, 1))
1103 	if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1104 	     || GET_CODE (XEXP (link, 0)) == CLOBBER)
1105 	    && REG_P (XEXP (XEXP (link, 0), 0)))
1106 	  {
1107 	    regno = REGNO (XEXP (XEXP (link, 0), 0));
1108 	    lra_assert (regno < FIRST_PSEUDO_REGISTER);
1109 	    /* It is an argument register.  */
1110 	    for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1111 	      arg_hard_regs[n_hard_regs++]
1112 		= regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1113 	  }
1114 
1115       if (n_hard_regs != 0)
1116 	{
1117 	  arg_hard_regs[n_hard_regs++] = -1;
1118 	  data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1119 	  memcpy (data->arg_hard_regs, arg_hard_regs,
1120 		  sizeof (int) * n_hard_regs);
1121 	}
1122     }
1123   /* Some output operand can be recognized only from the context not
1124      from the constraints which are empty in this case.	 Call insn may
1125      contain a hard register in set destination with empty constraint
1126      and extract_insn treats them as an input.	*/
1127   for (i = 0; i < insn_static_data->n_operands; i++)
1128     {
1129       int j;
1130       rtx pat, set;
1131       struct lra_operand_data *operand = &insn_static_data->operand[i];
1132 
1133       /* ??? Should we treat 'X' the same way.	It looks to me that
1134 	 'X' means anything and empty constraint means we do not
1135 	 care.	*/
1136       if (operand->type != OP_IN || *operand->constraint != '\0'
1137 	  || operand->is_operator)
1138 	continue;
1139       pat = PATTERN (insn);
1140       if (GET_CODE (pat) == SET)
1141 	{
1142 	  if (data->operand_loc[i] != &SET_DEST (pat))
1143 	    continue;
1144 	}
1145       else if (GET_CODE (pat) == PARALLEL)
1146 	{
1147 	  for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1148 	    {
1149 	      set = XVECEXP (PATTERN (insn), 0, j);
1150 	      if (GET_CODE (set) == SET
1151 		  && &SET_DEST (set) == data->operand_loc[i])
1152 		break;
1153 	    }
1154 	  if (j < 0)
1155 	    continue;
1156 	}
1157       else
1158 	continue;
1159       operand->type = OP_OUT;
1160     }
1161   return data;
1162 }
1163 
1164 /* Return info about insn give by UID.	The info should be already set
1165    up.	*/
1166 static lra_insn_recog_data_t
get_insn_recog_data_by_uid(int uid)1167 get_insn_recog_data_by_uid (int uid)
1168 {
1169   lra_insn_recog_data_t data;
1170 
1171   data = lra_insn_recog_data[uid];
1172   lra_assert (data != NULL);
1173   return data;
1174 }
1175 
1176 /* Invalidate all info about insn given by its UID.  */
1177 static void
invalidate_insn_recog_data(int uid)1178 invalidate_insn_recog_data (int uid)
1179 {
1180   lra_insn_recog_data_t data;
1181 
1182   data = lra_insn_recog_data[uid];
1183   lra_assert (data != NULL);
1184   free_insn_recog_data (data);
1185   lra_insn_recog_data[uid] = NULL;
1186 }
1187 
1188 /* Update all the insn info about INSN.	 It is usually called when
1189    something in the insn was changed.  Return the updated info.	 */
1190 lra_insn_recog_data_t
lra_update_insn_recog_data(rtx_insn * insn)1191 lra_update_insn_recog_data (rtx_insn *insn)
1192 {
1193   lra_insn_recog_data_t data;
1194   int n;
1195   unsigned int uid = INSN_UID (insn);
1196   struct lra_static_insn_data *insn_static_data;
1197   poly_int64 sp_offset = 0;
1198 
1199   check_and_expand_insn_recog_data (uid);
1200   if ((data = lra_insn_recog_data[uid]) != NULL
1201       && data->icode != INSN_CODE (insn))
1202     {
1203       sp_offset = data->sp_offset;
1204       invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1205       invalidate_insn_recog_data (uid);
1206       data = NULL;
1207     }
1208   if (data == NULL)
1209     {
1210       data = lra_get_insn_recog_data (insn);
1211       /* Initiate or restore SP offset.  */
1212       data->sp_offset = sp_offset;
1213       return data;
1214     }
1215   insn_static_data = data->insn_static_data;
1216   data->used_insn_alternative = LRA_UNKNOWN_ALT;
1217   if (DEBUG_INSN_P (insn))
1218     return data;
1219   if (data->icode < 0)
1220     {
1221       int nop;
1222       machine_mode operand_mode[MAX_RECOG_OPERANDS];
1223       const char *constraints[MAX_RECOG_OPERANDS];
1224 
1225       nop = asm_noperands (PATTERN (insn));
1226       if (nop >= 0)
1227 	{
1228 	  lra_assert (nop == data->insn_static_data->n_operands);
1229 	  /* Now get the operand values and constraints out of the
1230 	     insn.  */
1231 	  decode_asm_operands (PATTERN (insn), NULL,
1232 			       data->operand_loc,
1233 			       constraints, operand_mode, NULL);
1234 
1235 	  if (flag_checking)
1236 	    for (int i = 0; i < nop; i++)
1237 	      lra_assert
1238 		(insn_static_data->operand[i].mode == operand_mode[i]
1239 		 && insn_static_data->operand[i].constraint == constraints[i]
1240 		 && ! insn_static_data->operand[i].is_operator);
1241 	}
1242 
1243       if (flag_checking)
1244 	for (int i = 0; i < insn_static_data->n_operands; i++)
1245 	  lra_assert
1246 	    (insn_static_data->operand[i].type
1247 	     == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1248 		 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1249 		 : OP_IN));
1250     }
1251   else
1252     {
1253       insn_extract (insn);
1254       n = insn_static_data->n_operands;
1255       if (n != 0)
1256 	memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1257       n = insn_static_data->n_dups;
1258       if (n != 0)
1259 	memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1260       lra_assert (check_bool_attrs (insn));
1261     }
1262   return data;
1263 }
1264 
1265 /* Set up that INSN is using alternative ALT now.  */
1266 void
lra_set_used_insn_alternative(rtx_insn * insn,int alt)1267 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1268 {
1269   lra_insn_recog_data_t data;
1270 
1271   data = lra_get_insn_recog_data (insn);
1272   data->used_insn_alternative = alt;
1273 }
1274 
1275 /* Set up that insn with UID is using alternative ALT now.  The insn
1276    info should be already set up.  */
1277 void
lra_set_used_insn_alternative_by_uid(int uid,int alt)1278 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1279 {
1280   lra_insn_recog_data_t data;
1281 
1282   check_and_expand_insn_recog_data (uid);
1283   data = lra_insn_recog_data[uid];
1284   lra_assert (data != NULL);
1285   data->used_insn_alternative = alt;
1286 }
1287 
1288 
1289 
1290 /* This page contains code dealing with common register info and
1291    pseudo copies.  */
1292 
1293 /* The size of the following array.  */
1294 static int reg_info_size;
1295 /* Common info about each register.  */
1296 class lra_reg *lra_reg_info;
1297 
1298 HARD_REG_SET hard_regs_spilled_into;
1299 
1300 /* Last register value.	 */
1301 static int last_reg_value;
1302 
1303 /* Return new register value.  */
1304 static int
get_new_reg_value(void)1305 get_new_reg_value (void)
1306 {
1307   return ++last_reg_value;
1308 }
1309 
1310 /* Vec referring to pseudo copies.  */
1311 static vec<lra_copy_t> copy_vec;
1312 
1313 /* Initialize I-th element of lra_reg_info.  */
1314 static inline void
initialize_lra_reg_info_element(int i)1315 initialize_lra_reg_info_element (int i)
1316 {
1317   bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1318 #ifdef STACK_REGS
1319   lra_reg_info[i].no_stack_p = false;
1320 #endif
1321   CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1322   lra_reg_info[i].preferred_hard_regno1 = -1;
1323   lra_reg_info[i].preferred_hard_regno2 = -1;
1324   lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1325   lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1326   lra_reg_info[i].biggest_mode = VOIDmode;
1327   lra_reg_info[i].live_ranges = NULL;
1328   lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1329   lra_reg_info[i].last_reload = 0;
1330   lra_reg_info[i].restore_rtx = NULL_RTX;
1331   lra_reg_info[i].val = get_new_reg_value ();
1332   lra_reg_info[i].offset = 0;
1333   lra_reg_info[i].copies = NULL;
1334 }
1335 
1336 /* Initialize common reg info and copies.  */
1337 static void
init_reg_info(void)1338 init_reg_info (void)
1339 {
1340   int i;
1341 
1342   last_reg_value = 0;
1343   reg_info_size = max_reg_num () * 3 / 2 + 1;
1344   lra_reg_info = XNEWVEC (class lra_reg, reg_info_size);
1345   for (i = 0; i < reg_info_size; i++)
1346     initialize_lra_reg_info_element (i);
1347   copy_vec.truncate (0);
1348   CLEAR_HARD_REG_SET (hard_regs_spilled_into);
1349 }
1350 
1351 
1352 /* Finish common reg info and copies.  */
1353 static void
finish_reg_info(void)1354 finish_reg_info (void)
1355 {
1356   int i;
1357 
1358   for (i = 0; i < reg_info_size; i++)
1359     bitmap_clear (&lra_reg_info[i].insn_bitmap);
1360   free (lra_reg_info);
1361   reg_info_size = 0;
1362 }
1363 
1364 /* Expand common reg info if it is necessary.  */
1365 static void
expand_reg_info(void)1366 expand_reg_info (void)
1367 {
1368   int i, old = reg_info_size;
1369 
1370   if (reg_info_size > max_reg_num ())
1371     return;
1372   reg_info_size = max_reg_num () * 3 / 2 + 1;
1373   lra_reg_info = XRESIZEVEC (class lra_reg, lra_reg_info, reg_info_size);
1374   for (i = old; i < reg_info_size; i++)
1375     initialize_lra_reg_info_element (i);
1376 }
1377 
1378 /* Free all copies.  */
1379 void
lra_free_copies(void)1380 lra_free_copies (void)
1381 {
1382   lra_copy_t cp;
1383 
1384   while (copy_vec.length () != 0)
1385     {
1386       cp = copy_vec.pop ();
1387       lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1388       lra_copy_pool.remove (cp);
1389     }
1390 }
1391 
1392 /* Create copy of two pseudos REGNO1 and REGNO2.  The copy execution
1393    frequency is FREQ.  */
1394 void
lra_create_copy(int regno1,int regno2,int freq)1395 lra_create_copy (int regno1, int regno2, int freq)
1396 {
1397   bool regno1_dest_p;
1398   lra_copy_t cp;
1399 
1400   lra_assert (regno1 != regno2);
1401   regno1_dest_p = true;
1402   if (regno1 > regno2)
1403     {
1404       std::swap (regno1, regno2);
1405       regno1_dest_p = false;
1406     }
1407   cp = lra_copy_pool.allocate ();
1408   copy_vec.safe_push (cp);
1409   cp->regno1_dest_p = regno1_dest_p;
1410   cp->freq = freq;
1411   cp->regno1 = regno1;
1412   cp->regno2 = regno2;
1413   cp->regno1_next = lra_reg_info[regno1].copies;
1414   lra_reg_info[regno1].copies = cp;
1415   cp->regno2_next = lra_reg_info[regno2].copies;
1416   lra_reg_info[regno2].copies = cp;
1417   if (lra_dump_file != NULL)
1418     fprintf (lra_dump_file, "	   Creating copy r%d%sr%d@%d\n",
1419 	     regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1420 }
1421 
1422 /* Return N-th (0, 1, ...) copy.  If there is no copy, return
1423    NULL.  */
1424 lra_copy_t
lra_get_copy(int n)1425 lra_get_copy (int n)
1426 {
1427   if (n >= (int) copy_vec.length ())
1428     return NULL;
1429   return copy_vec[n];
1430 }
1431 
1432 
1433 
1434 /* This page contains code dealing with info about registers in
1435    insns.  */
1436 
1437 /* Process X of INSN recursively and add info (operand type is given
1438    by TYPE) about registers in X to the insn DATA.  If X can be early
1439    clobbered, alternatives in which it can be early clobbered are given
1440    by EARLY_CLOBBER_ALTS.  */
1441 static void
add_regs_to_insn_regno_info(lra_insn_recog_data_t data,rtx x,rtx_insn * insn,enum op_type type,alternative_mask early_clobber_alts)1442 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
1443 			     rtx_insn *insn, enum op_type type,
1444 			     alternative_mask early_clobber_alts)
1445 {
1446   int i, j, regno;
1447   bool subreg_p;
1448   machine_mode mode;
1449   const char *fmt;
1450   enum rtx_code code;
1451   struct lra_insn_reg *curr;
1452 
1453   code = GET_CODE (x);
1454   mode = GET_MODE (x);
1455   subreg_p = false;
1456   if (GET_CODE (x) == SUBREG)
1457     {
1458       mode = wider_subreg_mode (x);
1459       if (read_modify_subreg_p (x))
1460 	subreg_p = true;
1461       x = SUBREG_REG (x);
1462       code = GET_CODE (x);
1463     }
1464   if (REG_P (x))
1465     {
1466       regno = REGNO (x);
1467       /* Process all regs even unallocatable ones as we need info about
1468 	 all regs for rematerialization pass.  */
1469       expand_reg_info ();
1470       if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
1471 	{
1472 	  data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1473 				     early_clobber_alts, data->regs);
1474 	  return;
1475 	}
1476       else
1477 	{
1478 	  for (curr = data->regs; curr != NULL; curr = curr->next)
1479 	    if (curr->regno == regno)
1480 	      {
1481 		if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1482 		  /* The info cannot be integrated into the found
1483 		     structure.  */
1484 		  data->regs = new_insn_reg (data->insn, regno, type, mode,
1485 					     subreg_p, early_clobber_alts,
1486 					     data->regs);
1487 		else
1488 		  {
1489 		    if (curr->type != type)
1490 		      curr->type = OP_INOUT;
1491 		    curr->early_clobber_alts |= early_clobber_alts;
1492 		  }
1493 		return;
1494 	      }
1495 	  gcc_unreachable ();
1496 	}
1497     }
1498 
1499   switch (code)
1500     {
1501     case SET:
1502       add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, 0);
1503       add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, 0);
1504       break;
1505     case CLOBBER:
1506       /* We treat clobber of non-operand hard registers as early
1507 	 clobber.  */
1508       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
1509 				   ALL_ALTERNATIVES);
1510       break;
1511     case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1512       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1513       break;
1514     case PRE_MODIFY: case POST_MODIFY:
1515       add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1516       add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, 0);
1517       break;
1518     default:
1519       if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1520 	/* Some targets place small structures in registers for return
1521 	   values of functions, and those registers are wrapped in
1522 	   PARALLEL that we may see as the destination of a SET.  Here
1523 	   is an example:
1524 
1525 	   (call_insn 13 12 14 2 (set (parallel:BLK [
1526 		(expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1527 		    (const_int 0 [0]))
1528 		(expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1529 		    (const_int 8 [0x8]))
1530 	       ])
1531 	     (call (mem:QI (symbol_ref:DI (...	*/
1532 	type = OP_IN;
1533       fmt = GET_RTX_FORMAT (code);
1534       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1535 	{
1536 	  if (fmt[i] == 'e')
1537 	    add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, 0);
1538 	  else if (fmt[i] == 'E')
1539 	    {
1540 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1541 		add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
1542 					     type, 0);
1543 	    }
1544 	}
1545     }
1546 }
1547 
1548 /* Return execution frequency of INSN.	*/
1549 static int
get_insn_freq(rtx_insn * insn)1550 get_insn_freq (rtx_insn *insn)
1551 {
1552   basic_block bb = BLOCK_FOR_INSN (insn);
1553 
1554   gcc_checking_assert (bb != NULL);
1555   return REG_FREQ_FROM_BB (bb);
1556 }
1557 
1558 /* Invalidate all reg info of INSN with DATA and execution frequency
1559    FREQ.  Update common info about the invalidated registers.  */
1560 static void
invalidate_insn_data_regno_info(lra_insn_recog_data_t data,rtx_insn * insn,int freq)1561 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1562 				 int freq)
1563 {
1564   int uid;
1565   bool debug_p;
1566   unsigned int i;
1567   struct lra_insn_reg *ir, *next_ir;
1568 
1569   uid = INSN_UID (insn);
1570   debug_p = DEBUG_INSN_P (insn);
1571   for (ir = data->regs; ir != NULL; ir = next_ir)
1572     {
1573       i = ir->regno;
1574       next_ir = ir->next;
1575       lra_insn_reg_pool.remove (ir);
1576       bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1577       if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1578 	{
1579 	  lra_reg_info[i].nrefs--;
1580 	  lra_reg_info[i].freq -= freq;
1581 	  lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1582 	}
1583     }
1584   data->regs = NULL;
1585 }
1586 
1587 /* Invalidate all reg info of INSN.  Update common info about the
1588    invalidated registers.  */
1589 void
lra_invalidate_insn_regno_info(rtx_insn * insn)1590 lra_invalidate_insn_regno_info (rtx_insn *insn)
1591 {
1592   invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1593 				   get_insn_freq (insn));
1594 }
1595 
1596 /* Update common reg info from reg info of insn given by its DATA and
1597    execution frequency FREQ.  */
1598 static void
setup_insn_reg_info(lra_insn_recog_data_t data,int freq)1599 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1600 {
1601   unsigned int i;
1602   struct lra_insn_reg *ir;
1603 
1604   for (ir = data->regs; ir != NULL; ir = ir->next)
1605     if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1606       {
1607 	lra_reg_info[i].nrefs++;
1608 	lra_reg_info[i].freq += freq;
1609       }
1610 }
1611 
1612 /* Set up insn reg info of INSN.  Update common reg info from reg info
1613    of INSN.  */
1614 void
lra_update_insn_regno_info(rtx_insn * insn)1615 lra_update_insn_regno_info (rtx_insn *insn)
1616 {
1617   int i, freq;
1618   lra_insn_recog_data_t data;
1619   struct lra_static_insn_data *static_data;
1620   enum rtx_code code;
1621   rtx link;
1622 
1623   if (! INSN_P (insn))
1624     return;
1625   data = lra_get_insn_recog_data (insn);
1626   static_data = data->insn_static_data;
1627   freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
1628   invalidate_insn_data_regno_info (data, insn, freq);
1629   for (i = static_data->n_operands - 1; i >= 0; i--)
1630     add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
1631 				 static_data->operand[i].type,
1632 				 static_data->operand[i].early_clobber_alts);
1633   if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1634     add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
1635 				 code == USE ? OP_IN : OP_OUT, 0);
1636   if (CALL_P (insn))
1637     /* On some targets call insns can refer to pseudos in memory in
1638        CALL_INSN_FUNCTION_USAGE list.  Process them in order to
1639        consider their occurrences in calls for different
1640        transformations (e.g. inheritance) with given pseudos.  */
1641     for (link = CALL_INSN_FUNCTION_USAGE (insn);
1642 	 link != NULL_RTX;
1643 	 link = XEXP (link, 1))
1644       {
1645 	code = GET_CODE (XEXP (link, 0));
1646 	if ((code == USE || code == CLOBBER)
1647 	    && MEM_P (XEXP (XEXP (link, 0), 0)))
1648 	  add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
1649 				       code == USE ? OP_IN : OP_OUT, 0);
1650       }
1651   if (NONDEBUG_INSN_P (insn))
1652     setup_insn_reg_info (data, freq);
1653 }
1654 
1655 /* Return reg info of insn given by it UID.  */
1656 struct lra_insn_reg *
lra_get_insn_regs(int uid)1657 lra_get_insn_regs (int uid)
1658 {
1659   lra_insn_recog_data_t data;
1660 
1661   data = get_insn_recog_data_by_uid (uid);
1662   return data->regs;
1663 }
1664 
1665 
1666 
1667 /* Recursive hash function for RTL X.  */
1668 hashval_t
lra_rtx_hash(rtx x)1669 lra_rtx_hash (rtx x)
1670 {
1671   int i, j;
1672   enum rtx_code code;
1673   const char *fmt;
1674   hashval_t val = 0;
1675 
1676   if (x == 0)
1677     return val;
1678 
1679   code = GET_CODE (x);
1680   val += (int) code + 4095;
1681 
1682   /* Some RTL can be compared nonrecursively.  */
1683   switch (code)
1684     {
1685     case REG:
1686       return val + REGNO (x);
1687 
1688     case LABEL_REF:
1689       return iterative_hash_object (XEXP (x, 0), val);
1690 
1691     case SYMBOL_REF:
1692       return iterative_hash_object (XSTR (x, 0), val);
1693 
1694     case SCRATCH:
1695     case CONST_DOUBLE:
1696     case CONST_VECTOR:
1697       return val;
1698 
1699     case CONST_INT:
1700       return val + UINTVAL (x);
1701 
1702     default:
1703       break;
1704     }
1705 
1706   /* Hash the elements.  */
1707   fmt = GET_RTX_FORMAT (code);
1708   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1709     {
1710       switch (fmt[i])
1711 	{
1712 	case 'w':
1713 	  val += XWINT (x, i);
1714 	  break;
1715 
1716 	case 'n':
1717 	case 'i':
1718 	  val += XINT (x, i);
1719 	  break;
1720 
1721 	case 'V':
1722 	case 'E':
1723 	  val += XVECLEN (x, i);
1724 
1725 	  for (j = 0; j < XVECLEN (x, i); j++)
1726 	    val += lra_rtx_hash (XVECEXP (x, i, j));
1727 	  break;
1728 
1729 	case 'e':
1730 	  val += lra_rtx_hash (XEXP (x, i));
1731 	  break;
1732 
1733 	case 'S':
1734 	case 's':
1735 	  val += htab_hash_string (XSTR (x, i));
1736 	  break;
1737 
1738 	case 'u':
1739 	case '0':
1740 	case 't':
1741 	  break;
1742 
1743 	  /* It is believed that rtx's at this level will never
1744 	     contain anything but integers and other rtx's, except for
1745 	     within LABEL_REFs and SYMBOL_REFs.  */
1746 	default:
1747 	  abort ();
1748 	}
1749     }
1750   return val;
1751 }
1752 
1753 
1754 
1755 /* This page contains code dealing with stack of the insns which
1756    should be processed by the next constraint pass.  */
1757 
1758 /* Bitmap used to put an insn on the stack only in one exemplar.  */
1759 static sbitmap lra_constraint_insn_stack_bitmap;
1760 
1761 /* The stack itself.  */
1762 vec<rtx_insn *> lra_constraint_insn_stack;
1763 
1764 /* Put INSN on the stack.  If ALWAYS_UPDATE is true, always update the reg
1765    info for INSN, otherwise only update it if INSN is not already on the
1766    stack.  */
1767 static inline void
lra_push_insn_1(rtx_insn * insn,bool always_update)1768 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1769 {
1770   unsigned int uid = INSN_UID (insn);
1771   if (always_update)
1772     lra_update_insn_regno_info (insn);
1773   if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1774     lra_constraint_insn_stack_bitmap =
1775       sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1776   if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1777     return;
1778   bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1779   if (! always_update)
1780     lra_update_insn_regno_info (insn);
1781   lra_constraint_insn_stack.safe_push (insn);
1782 }
1783 
1784 /* Put INSN on the stack.  */
1785 void
lra_push_insn(rtx_insn * insn)1786 lra_push_insn (rtx_insn *insn)
1787 {
1788   lra_push_insn_1 (insn, false);
1789 }
1790 
1791 /* Put INSN on the stack and update its reg info.  */
1792 void
lra_push_insn_and_update_insn_regno_info(rtx_insn * insn)1793 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1794 {
1795   lra_push_insn_1 (insn, true);
1796 }
1797 
1798 /* Put insn with UID on the stack.  */
1799 void
lra_push_insn_by_uid(unsigned int uid)1800 lra_push_insn_by_uid (unsigned int uid)
1801 {
1802   lra_push_insn (lra_insn_recog_data[uid]->insn);
1803 }
1804 
1805 /* Take the last-inserted insns off the stack and return it.  */
1806 rtx_insn *
lra_pop_insn(void)1807 lra_pop_insn (void)
1808 {
1809   rtx_insn *insn = lra_constraint_insn_stack.pop ();
1810   bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1811   return insn;
1812 }
1813 
1814 /* Return the current size of the insn stack.  */
1815 unsigned int
lra_insn_stack_length(void)1816 lra_insn_stack_length (void)
1817 {
1818   return lra_constraint_insn_stack.length ();
1819 }
1820 
1821 /* Push insns FROM to TO (excluding it) going in reverse order.	 */
1822 static void
push_insns(rtx_insn * from,rtx_insn * to)1823 push_insns (rtx_insn *from, rtx_insn *to)
1824 {
1825   rtx_insn *insn;
1826 
1827   if (from == NULL_RTX)
1828     return;
1829   for (insn = from; insn != to; insn = PREV_INSN (insn))
1830     if (INSN_P (insn))
1831       lra_push_insn (insn);
1832 }
1833 
1834 /* Set up sp offset for insn in range [FROM, LAST].  The offset is
1835    taken from the next BB insn after LAST or zero if there in such
1836    insn.  */
1837 static void
setup_sp_offset(rtx_insn * from,rtx_insn * last)1838 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1839 {
1840   rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
1841   poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
1842 		       ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1843 
1844   for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1845     lra_get_insn_recog_data (insn)->sp_offset = offset;
1846 }
1847 
1848 /* Emit insns BEFORE before INSN and insns AFTER after INSN.  Put the
1849    insns onto the stack.  Print about emitting the insns with
1850    TITLE.  */
1851 void
lra_process_new_insns(rtx_insn * insn,rtx_insn * before,rtx_insn * after,const char * title)1852 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1853 		       const char *title)
1854 {
1855   rtx_insn *last;
1856 
1857   if (before == NULL_RTX && after == NULL_RTX)
1858     return;
1859   if (lra_dump_file != NULL)
1860     {
1861       dump_insn_slim (lra_dump_file, insn);
1862       if (before != NULL_RTX)
1863 	{
1864 	  fprintf (lra_dump_file,"    %s before:\n", title);
1865 	  dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1866 	}
1867       if (after != NULL_RTX)
1868 	{
1869 	  fprintf (lra_dump_file, "    %s after:\n", title);
1870 	  dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1871 	}
1872       fprintf (lra_dump_file, "\n");
1873     }
1874   if (before != NULL_RTX)
1875     {
1876       if (cfun->can_throw_non_call_exceptions)
1877 	copy_reg_eh_region_note_forward (insn, before, NULL);
1878       emit_insn_before (before, insn);
1879       push_insns (PREV_INSN (insn), PREV_INSN (before));
1880       setup_sp_offset (before, PREV_INSN (insn));
1881     }
1882   if (after != NULL_RTX)
1883     {
1884       if (cfun->can_throw_non_call_exceptions)
1885 	copy_reg_eh_region_note_forward (insn, after, NULL);
1886       for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1887 	;
1888       emit_insn_after (after, insn);
1889       push_insns (last, insn);
1890       setup_sp_offset (after, last);
1891     }
1892   if (cfun->can_throw_non_call_exceptions)
1893     {
1894       rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1895       if (note && !insn_could_throw_p (insn))
1896 	remove_note (insn, note);
1897     }
1898 }
1899 
1900 
1901 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1902    register NEW_REG.  Try to simplify subreg of constant if SUBREG_P.
1903    DEBUG_P is if LOC is within a DEBUG_INSN.  Return true if any
1904    change was made.  */
1905 bool
lra_substitute_pseudo(rtx * loc,int old_regno,rtx new_reg,bool subreg_p,bool debug_p)1906 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
1907 		       bool debug_p)
1908 {
1909   rtx x = *loc;
1910   bool result = false;
1911   enum rtx_code code;
1912   const char *fmt;
1913   int i, j;
1914 
1915   if (x == NULL_RTX)
1916     return false;
1917 
1918   code = GET_CODE (x);
1919   if (code == SUBREG && subreg_p)
1920     {
1921       rtx subst, inner = SUBREG_REG (x);
1922       /* Transform subreg of constant while we still have inner mode
1923 	 of the subreg.  The subreg internal should not be an insn
1924 	 operand.  */
1925       if (REG_P (inner) && (int) REGNO (inner) == old_regno
1926 	  && CONSTANT_P (new_reg)
1927 	  && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1928 				       SUBREG_BYTE (x))) != NULL_RTX)
1929 	{
1930 	  *loc = subst;
1931 	  return true;
1932 	}
1933 
1934     }
1935   else if (code == REG && (int) REGNO (x) == old_regno)
1936     {
1937       machine_mode mode = GET_MODE (x);
1938       machine_mode inner_mode = GET_MODE (new_reg);
1939 
1940       if (mode != inner_mode
1941 	  && ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1942 	{
1943 	  poly_uint64 offset = 0;
1944 	  if (partial_subreg_p (mode, inner_mode)
1945 	      && SCALAR_INT_MODE_P (inner_mode))
1946 	    offset = subreg_lowpart_offset (mode, inner_mode);
1947 	  if (debug_p)
1948 	    new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
1949 	  else
1950 	    new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
1951 	}
1952       *loc = new_reg;
1953       return true;
1954     }
1955 
1956   /* Scan all the operand sub-expressions.  */
1957   fmt = GET_RTX_FORMAT (code);
1958   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1959     {
1960       if (fmt[i] == 'e')
1961 	{
1962 	  if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1963 				     new_reg, subreg_p, debug_p))
1964 	    result = true;
1965 	}
1966       else if (fmt[i] == 'E')
1967 	{
1968 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1969 	    if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1970 				       new_reg, subreg_p, debug_p))
1971 	      result = true;
1972 	}
1973     }
1974   return result;
1975 }
1976 
1977 /* Call lra_substitute_pseudo within an insn.  Try to simplify subreg
1978    of constant if SUBREG_P.  This won't update the insn ptr, just the
1979    contents of the insn.  */
1980 bool
lra_substitute_pseudo_within_insn(rtx_insn * insn,int old_regno,rtx new_reg,bool subreg_p)1981 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1982 				   rtx new_reg, bool subreg_p)
1983 {
1984   rtx loc = insn;
1985   return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
1986 				DEBUG_INSN_P (insn));
1987 }
1988 
1989 
1990 
1991 /* This page contains code dealing with scratches (changing them onto
1992    pseudos and restoring them from the pseudos).
1993 
1994    We change scratches into pseudos at the beginning of LRA to
1995    simplify dealing with them (conflicts, hard register assignments).
1996 
1997    If the pseudo denoting scratch was spilled it means that we do need
1998    a hard register for it.  Such pseudos are transformed back to
1999    scratches at the end of LRA.	 */
2000 
2001 /* Description of location of a former scratch operand.	 */
2002 struct sloc
2003 {
2004   rtx_insn *insn; /* Insn where the scratch was.  */
2005   int nop;  /* Number of the operand which was a scratch.  */
2006   int icode;  /* Original icode from which scratch was removed.  */
2007 };
2008 
2009 typedef struct sloc *sloc_t;
2010 
2011 /* Locations of the former scratches.  */
2012 static vec<sloc_t> scratches;
2013 
2014 /* Bitmap of scratch regnos.  */
2015 static bitmap_head scratch_bitmap;
2016 
2017 /* Bitmap of scratch operands.	*/
2018 static bitmap_head scratch_operand_bitmap;
2019 
2020 /* Return true if pseudo REGNO is made of SCRATCH.  */
2021 bool
lra_former_scratch_p(int regno)2022 lra_former_scratch_p (int regno)
2023 {
2024   return bitmap_bit_p (&scratch_bitmap, regno);
2025 }
2026 
2027 /* Return true if the operand NOP of INSN is a former scratch.	*/
2028 bool
lra_former_scratch_operand_p(rtx_insn * insn,int nop)2029 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
2030 {
2031   return bitmap_bit_p (&scratch_operand_bitmap,
2032 		       INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
2033 }
2034 
2035 /* Register operand NOP in INSN as a former scratch.  It will be
2036    changed to scratch back, if it is necessary, at the LRA end.  */
2037 void
lra_register_new_scratch_op(rtx_insn * insn,int nop,int icode)2038 lra_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
2039 {
2040   lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
2041   rtx op = *id->operand_loc[nop];
2042   sloc_t loc = XNEW (struct sloc);
2043   lra_assert (REG_P (op));
2044   loc->insn = insn;
2045   loc->nop = nop;
2046   loc->icode = icode;
2047   scratches.safe_push (loc);
2048   bitmap_set_bit (&scratch_bitmap, REGNO (op));
2049   bitmap_set_bit (&scratch_operand_bitmap,
2050 		  INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
2051   add_reg_note (insn, REG_UNUSED, op);
2052 }
2053 
2054 /* Change INSN's scratches into pseudos and save their location.  */
2055 static void
remove_scratches_1(rtx_insn * insn)2056 remove_scratches_1 (rtx_insn *insn)
2057 {
2058   int i;
2059   bool insn_changed_p;
2060   rtx reg;
2061   lra_insn_recog_data_t id;
2062   struct lra_static_insn_data *static_id;
2063 
2064   id = lra_get_insn_recog_data (insn);
2065   static_id = id->insn_static_data;
2066   insn_changed_p = false;
2067   for (i = 0; i < static_id->n_operands; i++)
2068     if (GET_CODE (*id->operand_loc[i]) == SCRATCH
2069 	&& GET_MODE (*id->operand_loc[i]) != VOIDmode)
2070       {
2071 	insn_changed_p = true;
2072 	*id->operand_loc[i] = reg
2073 	  = lra_create_new_reg (static_id->operand[i].mode,
2074 				*id->operand_loc[i], ALL_REGS, NULL);
2075 	lra_register_new_scratch_op (insn, i, id->icode);
2076 	if (lra_dump_file != NULL)
2077 	  fprintf (lra_dump_file,
2078 		   "Removing SCRATCH in insn #%u (nop %d)\n",
2079 		   INSN_UID (insn), i);
2080       }
2081   if (insn_changed_p)
2082     /* Because we might use DF right after caller-saves sub-pass
2083        we need to keep DF info up to date.  */
2084     df_insn_rescan (insn);
2085 }
2086 
2087 /* Change scratches into pseudos and save their location.  */
2088 static void
remove_scratches(void)2089 remove_scratches (void)
2090 {
2091   basic_block bb;
2092   rtx_insn *insn;
2093 
2094   scratches.create (get_max_uid ());
2095   bitmap_initialize (&scratch_bitmap, &reg_obstack);
2096   bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
2097   FOR_EACH_BB_FN (bb, cfun)
2098     FOR_BB_INSNS (bb, insn)
2099     if (INSN_P (insn))
2100       remove_scratches_1 (insn);
2101 }
2102 
2103 /* Changes pseudos created by function remove_scratches onto scratches.	 */
2104 static void
restore_scratches(void)2105 restore_scratches (void)
2106 {
2107   int regno;
2108   unsigned i;
2109   sloc_t loc;
2110   rtx_insn *last = NULL;
2111   lra_insn_recog_data_t id = NULL;
2112 
2113   for (i = 0; scratches.iterate (i, &loc); i++)
2114     {
2115       /* Ignore already deleted insns.  */
2116       if (NOTE_P (loc->insn)
2117 	  && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
2118 	continue;
2119       if (last != loc->insn)
2120 	{
2121 	  last = loc->insn;
2122 	  id = lra_get_insn_recog_data (last);
2123 	}
2124       if (loc->icode != id->icode)
2125 	{
2126 	  /* The icode doesn't match, which means the insn has been modified
2127 	     (e.g. register elimination).  The scratch cannot be restored.  */
2128 	  continue;
2129 	}
2130       if (REG_P (*id->operand_loc[loc->nop])
2131 	  && ((regno = REGNO (*id->operand_loc[loc->nop]))
2132 	      >= FIRST_PSEUDO_REGISTER)
2133 	  && lra_get_regno_hard_regno (regno) < 0)
2134 	{
2135 	  /* It should be only case when scratch register with chosen
2136 	     constraint 'X' did not get memory or hard register.  */
2137 	  lra_assert (lra_former_scratch_p (regno));
2138 	  *id->operand_loc[loc->nop]
2139 	    = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2140 	  lra_update_dup (id, loc->nop);
2141 	  if (lra_dump_file != NULL)
2142 	    fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2143 		     INSN_UID (loc->insn), loc->nop);
2144 	}
2145     }
2146   for (i = 0; scratches.iterate (i, &loc); i++)
2147     free (loc);
2148   scratches.release ();
2149   bitmap_clear (&scratch_bitmap);
2150   bitmap_clear (&scratch_operand_bitmap);
2151 }
2152 
2153 
2154 
2155 /* Function checks RTL for correctness.	 If FINAL_P is true, it is
2156    done at the end of LRA and the check is more rigorous.  */
2157 static void
check_rtl(bool final_p)2158 check_rtl (bool final_p)
2159 {
2160   basic_block bb;
2161   rtx_insn *insn;
2162 
2163   lra_assert (! final_p || reload_completed);
2164   FOR_EACH_BB_FN (bb, cfun)
2165     FOR_BB_INSNS (bb, insn)
2166     if (NONDEBUG_INSN_P (insn)
2167 	&& GET_CODE (PATTERN (insn)) != USE
2168 	&& GET_CODE (PATTERN (insn)) != CLOBBER
2169 	&& GET_CODE (PATTERN (insn)) != ASM_INPUT)
2170       {
2171 	if (final_p)
2172 	  {
2173 	    extract_constrain_insn (insn);
2174 	    continue;
2175 	  }
2176 	/* LRA code is based on assumption that all addresses can be
2177 	   correctly decomposed.  LRA can generate reloads for
2178 	   decomposable addresses.  The decomposition code checks the
2179 	   correctness of the addresses.  So we don't need to check
2180 	   the addresses here.  Don't call insn_invalid_p here, it can
2181 	   change the code at this stage.  */
2182 	if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2183 	  fatal_insn_not_found (insn);
2184       }
2185 }
2186 
2187 /* Determine if the current function has an exception receiver block
2188    that reaches the exit block via non-exceptional edges  */
2189 static bool
has_nonexceptional_receiver(void)2190 has_nonexceptional_receiver (void)
2191 {
2192   edge e;
2193   edge_iterator ei;
2194   basic_block *tos, *worklist, bb;
2195 
2196   /* If we're not optimizing, then just err on the safe side.  */
2197   if (!optimize)
2198     return true;
2199 
2200   /* First determine which blocks can reach exit via normal paths.  */
2201   tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2202 
2203   FOR_EACH_BB_FN (bb, cfun)
2204     bb->flags &= ~BB_REACHABLE;
2205 
2206   /* Place the exit block on our worklist.  */
2207   EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2208   *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2209 
2210   /* Iterate: find everything reachable from what we've already seen.  */
2211   while (tos != worklist)
2212     {
2213       bb = *--tos;
2214 
2215       FOR_EACH_EDGE (e, ei, bb->preds)
2216 	if (e->flags & EDGE_ABNORMAL)
2217 	  {
2218 	    free (worklist);
2219 	    return true;
2220 	  }
2221 	else
2222 	  {
2223 	    basic_block src = e->src;
2224 
2225 	    if (!(src->flags & BB_REACHABLE))
2226 	      {
2227 		src->flags |= BB_REACHABLE;
2228 		*tos++ = src;
2229 	      }
2230 	  }
2231     }
2232   free (worklist);
2233   /* No exceptional block reached exit unexceptionally.	 */
2234   return false;
2235 }
2236 
2237 
2238 /* Process recursively X of INSN and add REG_INC notes if necessary.  */
2239 static void
add_auto_inc_notes(rtx_insn * insn,rtx x)2240 add_auto_inc_notes (rtx_insn *insn, rtx x)
2241 {
2242   enum rtx_code code = GET_CODE (x);
2243   const char *fmt;
2244   int i, j;
2245 
2246   if (code == MEM && auto_inc_p (XEXP (x, 0)))
2247     {
2248       add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2249       return;
2250     }
2251 
2252   /* Scan all X sub-expressions.  */
2253   fmt = GET_RTX_FORMAT (code);
2254   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2255     {
2256       if (fmt[i] == 'e')
2257 	add_auto_inc_notes (insn, XEXP (x, i));
2258       else if (fmt[i] == 'E')
2259 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2260 	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
2261     }
2262 }
2263 
2264 
2265 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2266    We change pseudos by hard registers without notification of DF and
2267    that can make the notes obsolete.  DF-infrastructure does not deal
2268    with REG_INC notes -- so we should regenerate them here.  */
2269 static void
update_inc_notes(void)2270 update_inc_notes (void)
2271 {
2272   rtx *pnote;
2273   basic_block bb;
2274   rtx_insn *insn;
2275 
2276   FOR_EACH_BB_FN (bb, cfun)
2277     FOR_BB_INSNS (bb, insn)
2278     if (NONDEBUG_INSN_P (insn))
2279       {
2280 	pnote = &REG_NOTES (insn);
2281 	while (*pnote != 0)
2282 	  {
2283 	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
2284                 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2285                 || REG_NOTE_KIND (*pnote) == REG_INC)
2286 	      *pnote = XEXP (*pnote, 1);
2287 	    else
2288 	      pnote = &XEXP (*pnote, 1);
2289 	  }
2290 
2291 	if (AUTO_INC_DEC)
2292 	  add_auto_inc_notes (insn, PATTERN (insn));
2293       }
2294 }
2295 
2296 /* Set to 1 while in lra.  */
2297 int lra_in_progress;
2298 
2299 /* Start of pseudo regnos before the LRA.  */
2300 int lra_new_regno_start;
2301 
2302 /* Start of reload pseudo regnos before the new spill pass.  */
2303 int lra_constraint_new_regno_start;
2304 
2305 /* Avoid spilling pseudos with regno more than the following value if
2306    it is possible.  */
2307 int lra_bad_spill_regno_start;
2308 
2309 /* A pseudo of Pmode.  */
2310 rtx lra_pmode_pseudo;
2311 
2312 /* Inheritance pseudo regnos before the new spill pass.	 */
2313 bitmap_head lra_inheritance_pseudos;
2314 
2315 /* Split regnos before the new spill pass.  */
2316 bitmap_head lra_split_regs;
2317 
2318 /* Reload pseudo regnos before the new assignment pass which still can
2319    be spilled after the assignment pass as memory is also accepted in
2320    insns for the reload pseudos.  */
2321 bitmap_head lra_optional_reload_pseudos;
2322 
2323 /* Pseudo regnos used for subreg reloads before the new assignment
2324    pass.  Such pseudos still can be spilled after the assignment
2325    pass.  */
2326 bitmap_head lra_subreg_reload_pseudos;
2327 
2328 /* File used for output of LRA debug information.  */
2329 FILE *lra_dump_file;
2330 
2331 /* True if we found an asm error.  */
2332 bool lra_asm_error_p;
2333 
2334 /* True if we should try spill into registers of different classes
2335    instead of memory.  */
2336 bool lra_reg_spill_p;
2337 
2338 /* Set up value LRA_REG_SPILL_P.  */
2339 static void
setup_reg_spill_flag(void)2340 setup_reg_spill_flag (void)
2341 {
2342   int cl, mode;
2343 
2344   if (targetm.spill_class != NULL)
2345     for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2346       for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2347 	if (targetm.spill_class ((enum reg_class) cl,
2348 				 (machine_mode) mode) != NO_REGS)
2349 	  {
2350 	    lra_reg_spill_p = true;
2351 	    return;
2352 	  }
2353   lra_reg_spill_p = false;
2354 }
2355 
2356 /* True if the current function is too big to use regular algorithms
2357    in LRA. In other words, we should use simpler and faster algorithms
2358    in LRA.  It also means we should not worry about generation code
2359    for caller saves.  The value is set up in IRA.  */
2360 bool lra_simple_p;
2361 
2362 /* Major LRA entry function.  F is a file should be used to dump LRA
2363    debug info.  */
2364 void
lra(FILE * f)2365 lra (FILE *f)
2366 {
2367   int i;
2368   bool live_p, inserted_p;
2369 
2370   lra_dump_file = f;
2371   lra_asm_error_p = false;
2372   lra_pmode_pseudo = gen_reg_rtx (Pmode);
2373 
2374   timevar_push (TV_LRA);
2375 
2376   /* Make sure that the last insn is a note.  Some subsequent passes
2377      need it.  */
2378   emit_note (NOTE_INSN_DELETED);
2379 
2380   lra_no_alloc_regs = ira_no_alloc_regs;
2381 
2382   init_reg_info ();
2383   expand_reg_info ();
2384 
2385   init_insn_recog_data ();
2386 
2387   /* Some quick check on RTL generated by previous passes.  */
2388   if (flag_checking)
2389     check_rtl (false);
2390 
2391   lra_in_progress = 1;
2392 
2393   lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2394   lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2395   lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2396   lra_rematerialization_iter = 0;
2397 
2398   setup_reg_spill_flag ();
2399 
2400   /* Function remove_scratches can creates new pseudos for clobbers --
2401      so set up lra_constraint_new_regno_start before its call to
2402      permit changing reg classes for pseudos created by this
2403      simplification.  */
2404   lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2405   lra_bad_spill_regno_start = INT_MAX;
2406   remove_scratches ();
2407 
2408   /* A function that has a non-local label that can reach the exit
2409      block via non-exceptional paths must save all call-saved
2410      registers.	 */
2411   if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2412     crtl->saves_all_registers = 1;
2413 
2414   if (crtl->saves_all_registers)
2415     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2416       if (!crtl->abi->clobbers_full_reg_p (i)
2417 	  && !fixed_regs[i]
2418 	  && !LOCAL_REGNO (i))
2419 	df_set_regs_ever_live (i, true);
2420 
2421   /* We don't DF from now and avoid its using because it is to
2422      expensive when a lot of RTL changes are made.  */
2423   df_set_flags (DF_NO_INSN_RESCAN);
2424   lra_constraint_insn_stack.create (get_max_uid ());
2425   lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2426   bitmap_clear (lra_constraint_insn_stack_bitmap);
2427   lra_live_ranges_init ();
2428   lra_constraints_init ();
2429   lra_curr_reload_num = 0;
2430   push_insns (get_last_insn (), NULL);
2431   /* It is needed for the 1st coalescing.  */
2432   bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2433   bitmap_initialize (&lra_split_regs, &reg_obstack);
2434   bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2435   bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2436   live_p = false;
2437   if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
2438     /* If we have a stack frame, we must align it now.  The stack size
2439        may be a part of the offset computation for register
2440        elimination.  */
2441     assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2442   lra_init_equiv ();
2443   for (;;)
2444     {
2445       for (;;)
2446 	{
2447 	  bool reloads_p = lra_constraints (lra_constraint_iter == 0);
2448 	  /* Constraint transformations may result in that eliminable
2449 	     hard regs become uneliminable and pseudos which use them
2450 	     should be spilled.	 It is better to do it before pseudo
2451 	     assignments.
2452 
2453 	     For example, rs6000 can make
2454 	     RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2455 	     to use a constant pool.  */
2456 	  lra_eliminate (false, false);
2457 	  /* We should try to assign hard registers to scratches even
2458 	     if there were no RTL transformations in lra_constraints.
2459 	     Also we should check IRA assignments on the first
2460 	     iteration as they can be wrong because of early clobbers
2461 	     operands which are ignored in IRA.  */
2462 	  if (! reloads_p && lra_constraint_iter > 1)
2463 	    {
2464 	      /* Stack is not empty here only when there are changes
2465 		 during the elimination sub-pass.  */
2466 	      if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
2467 		break;
2468 	      else
2469 		/* If there are no reloads but changing due
2470 		   elimination, restart the constraint sub-pass
2471 		   first.  */
2472 		continue;
2473 	    }
2474 	  /* Do inheritance only for regular algorithms.  */
2475 	  if (! lra_simple_p)
2476 	    lra_inheritance ();
2477 	  if (live_p)
2478 	    lra_clear_live_ranges ();
2479 	  bool fails_p;
2480 	  do
2481 	    {
2482 	      /* We need live ranges for lra_assign -- so build them.
2483 		 But don't remove dead insns or change global live
2484 		 info as we can undo inheritance transformations after
2485 		 inheritance pseudo assigning.  */
2486 	      lra_create_live_ranges (true, !lra_simple_p);
2487 	      live_p = true;
2488 	      /* If we don't spill non-reload and non-inheritance
2489 		 pseudos, there is no sense to run memory-memory move
2490 		 coalescing.  If inheritance pseudos were spilled, the
2491 		 memory-memory moves involving them will be removed by
2492 		 pass undoing inheritance.  */
2493 	      if (lra_simple_p)
2494 		lra_assign (fails_p);
2495 	      else
2496 		{
2497 		  bool spill_p = !lra_assign (fails_p);
2498 
2499 		  if (lra_undo_inheritance ())
2500 		    live_p = false;
2501 		  if (spill_p && ! fails_p)
2502 		    {
2503 		      if (! live_p)
2504 			{
2505 			  lra_create_live_ranges (true, true);
2506 			  live_p = true;
2507 			}
2508 		      if (lra_coalesce ())
2509 			live_p = false;
2510 		    }
2511 		  if (! live_p)
2512 		    lra_clear_live_ranges ();
2513 		}
2514 	      if (fails_p)
2515 		{
2516 		  /* It is a very rare case.  It is the last hope to
2517 		     split a hard regno live range for a reload
2518 		     pseudo.  */
2519 		  if (live_p)
2520 		    lra_clear_live_ranges ();
2521 		  live_p = false;
2522 		  if (! lra_split_hard_reg_for ())
2523 		    break;
2524 		}
2525 	    }
2526 	  while (fails_p);
2527 	  if (! live_p) {
2528 	    /* We need the correct reg notes for work of constraint sub-pass.  */
2529 	    lra_create_live_ranges (true, true);
2530 	    live_p = true;
2531 	  }
2532 	}
2533       /* Don't clear optional reloads bitmap until all constraints are
2534 	 satisfied as we need to differ them from regular reloads.  */
2535       bitmap_clear (&lra_optional_reload_pseudos);
2536       bitmap_clear (&lra_subreg_reload_pseudos);
2537       bitmap_clear (&lra_inheritance_pseudos);
2538       bitmap_clear (&lra_split_regs);
2539       if (! live_p)
2540 	{
2541 	  /* We need full live info for spilling pseudos into
2542 	     registers instead of memory.  */
2543 	  lra_create_live_ranges (lra_reg_spill_p, true);
2544 	  live_p = true;
2545 	}
2546       /* We should check necessity for spilling here as the above live
2547 	 range pass can remove spilled pseudos.  */
2548       if (! lra_need_for_spills_p ())
2549 	break;
2550       /* Now we know what pseudos should be spilled.  Try to
2551 	 rematerialize them first.  */
2552       if (lra_remat ())
2553 	{
2554 	  /* We need full live info -- see the comment above.  */
2555 	  lra_create_live_ranges (lra_reg_spill_p, true);
2556 	  live_p = true;
2557 	  if (! lra_need_for_spills_p ())
2558 	    {
2559 	      if (lra_need_for_scratch_reg_p ())
2560 		continue;
2561 	      break;
2562 	    }
2563 	}
2564       lra_spill ();
2565       /* Assignment of stack slots changes elimination offsets for
2566 	 some eliminations.  So update the offsets here.  */
2567       lra_eliminate (false, false);
2568       lra_constraint_new_regno_start = max_reg_num ();
2569       if (lra_bad_spill_regno_start == INT_MAX
2570 	  && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2571 	  && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2572 	/* After switching off inheritance and rematerialization
2573 	   passes, avoid spilling reload pseudos will be created to
2574 	   prevent LRA cycling in some complicated cases.  */
2575 	lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2576       lra_assignment_iter_after_spill = 0;
2577     }
2578   restore_scratches ();
2579   lra_eliminate (true, false);
2580   lra_final_code_change ();
2581   lra_in_progress = 0;
2582   if (live_p)
2583     lra_clear_live_ranges ();
2584   lra_live_ranges_finish ();
2585   lra_constraints_finish ();
2586   finish_reg_info ();
2587   sbitmap_free (lra_constraint_insn_stack_bitmap);
2588   lra_constraint_insn_stack.release ();
2589   finish_insn_recog_data ();
2590   regstat_free_n_sets_and_refs ();
2591   regstat_free_ri ();
2592   reload_completed = 1;
2593   update_inc_notes ();
2594 
2595   inserted_p = fixup_abnormal_edges ();
2596 
2597   /* We've possibly turned single trapping insn into multiple ones.  */
2598   if (cfun->can_throw_non_call_exceptions)
2599     {
2600       auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2601       bitmap_ones (blocks);
2602       find_many_sub_basic_blocks (blocks);
2603     }
2604 
2605   if (inserted_p)
2606     commit_edge_insertions ();
2607 
2608   /* Replacing pseudos with their memory equivalents might have
2609      created shared rtx.  Subsequent passes would get confused
2610      by this, so unshare everything here.  */
2611   unshare_all_rtl_again (get_insns ());
2612 
2613   if (flag_checking)
2614     check_rtl (true);
2615 
2616   timevar_pop (TV_LRA);
2617 }
2618 
2619 /* Called once per compiler to initialize LRA data once.  */
2620 void
lra_init_once(void)2621 lra_init_once (void)
2622 {
2623   init_insn_code_data_once ();
2624 }
2625 
2626 /* Called once per compiler to finish LRA data which are initialize
2627    once.  */
2628 void
lra_finish_once(void)2629 lra_finish_once (void)
2630 {
2631   finish_insn_code_data_once ();
2632 }
2633