1 /* SSA Dominator optimizations for trees
2    Copyright (C) 2001-2020 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 #include "alloc-pool.h"
49 #include "tree-vrp.h"
50 #include "vr-values.h"
51 #include "gimple-ssa-evrp-analyze.h"
52 #include "alias.h"
53 
54 /* This file implements optimizations on the dominator tree.  */
55 
56 /* Structure for recording edge equivalences.
57 
58    Computing and storing the edge equivalences instead of creating
59    them on-demand can save significant amounts of time, particularly
60    for pathological cases involving switch statements.
61 
62    These structures live for a single iteration of the dominator
63    optimizer in the edge's AUX field.  At the end of an iteration we
64    free each of these structures.  */
65 class edge_info
66 {
67  public:
68   typedef std::pair <tree, tree> equiv_pair;
69   edge_info (edge);
70   ~edge_info ();
71 
72   /* Record a simple LHS = RHS equivalence.  This may trigger
73      calls to derive_equivalences.  */
74   void record_simple_equiv (tree, tree);
75 
76   /* If traversing this edge creates simple equivalences, we store
77      them as LHS/RHS pairs within this vector.  */
78   vec<equiv_pair> simple_equivalences;
79 
80   /* Traversing an edge may also indicate one or more particular conditions
81      are true or false.  */
82   vec<cond_equivalence> cond_equivalences;
83 
84  private:
85   /* Derive equivalences by walking the use-def chains.  */
86   void derive_equivalences (tree, tree, int);
87 };
88 
89 /* Track whether or not we have changed the control flow graph.  */
90 static bool cfg_altered;
91 
92 /* Bitmap of blocks that have had EH statements cleaned.  We should
93    remove their dead edges eventually.  */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96 
97 /* Statistics for dominator optimizations.  */
98 struct opt_stats_d
99 {
100   long num_stmts;
101   long num_exprs_considered;
102   long num_re;
103   long num_const_prop;
104   long num_copy_prop;
105 };
106 
107 static struct opt_stats_d opt_stats;
108 
109 /* Local functions.  */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 						    class const_and_copies *,
114 						    class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 					      class const_and_copies *,
117 					      class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 					   class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 					       hash_table<expr_elt_hasher> *);
122 
123 /* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
124    associated with an edge E.  */
125 
edge_info(edge e)126 edge_info::edge_info (edge e)
127 {
128   /* Free the old one associated with E, if it exists and
129      associate our new object with E.  */
130   free_dom_edge_info (e);
131   e->aux = this;
132 
133   /* And initialize the embedded vectors.  */
134   simple_equivalences = vNULL;
135   cond_equivalences = vNULL;
136 }
137 
138 /* Destructor just needs to release the vectors.  */
139 
~edge_info(void)140 edge_info::~edge_info (void)
141 {
142   this->cond_equivalences.release ();
143   this->simple_equivalences.release ();
144 }
145 
146 /* NAME is known to have the value VALUE, which must be a constant.
147 
148    Walk through its use-def chain to see if there are other equivalences
149    we might be able to derive.
150 
151    RECURSION_LIMIT controls how far back we recurse through the use-def
152    chains.  */
153 
154 void
derive_equivalences(tree name,tree value,int recursion_limit)155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157   if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158     return;
159 
160   /* This records the equivalence for the toplevel object.  Do
161      this before checking the recursion limit.  */
162   simple_equivalences.safe_push (equiv_pair (name, value));
163 
164   /* Limit how far up the use-def chains we are willing to walk.  */
165   if (recursion_limit == 0)
166     return;
167 
168   /* We can walk up the use-def chains to potentially find more
169      equivalences.  */
170   gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171   if (is_gimple_assign (def_stmt))
172     {
173       enum tree_code code = gimple_assign_rhs_code (def_stmt);
174       switch (code)
175 	{
176 	/* If the result of an OR is zero, then its operands are, too.  */
177 	case BIT_IOR_EXPR:
178 	  if (integer_zerop (value))
179 	    {
180 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
182 
183 	      value = build_zero_cst (TREE_TYPE (rhs1));
184 	      derive_equivalences (rhs1, value, recursion_limit - 1);
185 	      value = build_zero_cst (TREE_TYPE (rhs2));
186 	      derive_equivalences (rhs2, value, recursion_limit - 1);
187 	    }
188 	  break;
189 
190 	/* If the result of an AND is nonzero, then its operands are, too.  */
191 	case BIT_AND_EXPR:
192 	  if (!integer_zerop (value))
193 	    {
194 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
196 
197 	      /* If either operand has a boolean range, then we
198 		 know its value must be one, otherwise we just know it
199 		 is nonzero.  The former is clearly useful, I haven't
200 		 seen cases where the latter is helpful yet.  */
201 	      if (TREE_CODE (rhs1) == SSA_NAME)
202 		{
203 		  if (ssa_name_has_boolean_range (rhs1))
204 		    {
205 		      value = build_one_cst (TREE_TYPE (rhs1));
206 		      derive_equivalences (rhs1, value, recursion_limit - 1);
207 		    }
208 		}
209 	      if (TREE_CODE (rhs2) == SSA_NAME)
210 		{
211 		  if (ssa_name_has_boolean_range (rhs2))
212 		    {
213 		      value = build_one_cst (TREE_TYPE (rhs2));
214 		      derive_equivalences (rhs2, value, recursion_limit - 1);
215 		    }
216 		}
217 	    }
218 	  break;
219 
220 	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 	   set via a widening type conversion, then we may be able to record
222 	   additional equivalences.  */
223 	case NOP_EXPR:
224 	case CONVERT_EXPR:
225 	  {
226 	    tree rhs = gimple_assign_rhs1 (def_stmt);
227 	    tree rhs_type = TREE_TYPE (rhs);
228 	    if (INTEGRAL_TYPE_P (rhs_type)
229 		&& (TYPE_PRECISION (TREE_TYPE (name))
230 		    >= TYPE_PRECISION (rhs_type))
231 		&& int_fits_type_p (value, rhs_type))
232 	      derive_equivalences (rhs,
233 				   fold_convert (rhs_type, value),
234 				   recursion_limit - 1);
235 	    break;
236 	  }
237 
238 	/* We can invert the operation of these codes trivially if
239 	   one of the RHS operands is a constant to produce a known
240 	   value for the other RHS operand.  */
241 	case POINTER_PLUS_EXPR:
242 	case PLUS_EXPR:
243 	  {
244 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
246 
247 	    /* If either argument is a constant, then we can compute
248 	       a constant value for the nonconstant argument.  */
249 	    if (TREE_CODE (rhs1) == INTEGER_CST
250 		&& TREE_CODE (rhs2) == SSA_NAME)
251 	      derive_equivalences (rhs2,
252 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 						value, rhs1),
254 				   recursion_limit - 1);
255 	    else if (TREE_CODE (rhs2) == INTEGER_CST
256 		     && TREE_CODE (rhs1) == SSA_NAME)
257 	      derive_equivalences (rhs1,
258 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 						value, rhs2),
260 				   recursion_limit - 1);
261 	    break;
262 	  }
263 
264 	/* If one of the operands is a constant, then we can compute
265 	   the value of the other operand.  If both operands are
266 	   SSA_NAMEs, then they must be equal if the result is zero.  */
267 	case MINUS_EXPR:
268 	  {
269 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
271 
272 	    /* If either argument is a constant, then we can compute
273 	       a constant value for the nonconstant argument.  */
274 	    if (TREE_CODE (rhs1) == INTEGER_CST
275 		&& TREE_CODE (rhs2) == SSA_NAME)
276 	      derive_equivalences (rhs2,
277 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 						rhs1, value),
279 				   recursion_limit - 1);
280 	    else if (TREE_CODE (rhs2) == INTEGER_CST
281 		     && TREE_CODE (rhs1) == SSA_NAME)
282 	      derive_equivalences (rhs1,
283 				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 						value, rhs2),
285 				   recursion_limit - 1);
286 	    else if (integer_zerop (value))
287 	      {
288 		tree cond = build2 (EQ_EXPR, boolean_type_node,
289 				    gimple_assign_rhs1 (def_stmt),
290 				    gimple_assign_rhs2 (def_stmt));
291 		tree inverted = invert_truthvalue (cond);
292 		record_conditions (&this->cond_equivalences, cond, inverted);
293 	      }
294 	    break;
295 	  }
296 
297 	case EQ_EXPR:
298 	case NE_EXPR:
299 	  {
300 	    if ((code == EQ_EXPR && integer_onep (value))
301 		|| (code == NE_EXPR && integer_zerop (value)))
302 	      {
303 		tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 		tree rhs2 = gimple_assign_rhs2 (def_stmt);
305 
306 		/* If either argument is a constant, then record the
307 		   other argument as being the same as that constant.
308 
309 		   If neither operand is a constant, then we have a
310 		   conditional name == name equivalence.  */
311 		if (TREE_CODE (rhs1) == INTEGER_CST)
312 		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 		else if (TREE_CODE (rhs2) == INTEGER_CST)
314 		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 	      }
316 	    else
317 	      {
318 		tree cond = build2 (code, boolean_type_node,
319 				    gimple_assign_rhs1 (def_stmt),
320 				    gimple_assign_rhs2 (def_stmt));
321 		tree inverted = invert_truthvalue (cond);
322 		if (integer_zerop (value))
323 		  std::swap (cond, inverted);
324 		record_conditions (&this->cond_equivalences, cond, inverted);
325 	      }
326 	    break;
327 	  }
328 
329 	/* For BIT_NOT and NEGATE, we can just apply the operation to the
330 	   VALUE to get the new equivalence.  It will always be a constant
331 	   so we can recurse.  */
332 	case BIT_NOT_EXPR:
333 	case NEGATE_EXPR:
334 	  {
335 	    tree rhs = gimple_assign_rhs1 (def_stmt);
336 	    tree res;
337 	    /* If this is a NOT and the operand has a boolean range, then we
338 	       know its value must be zero or one.  We are not supposed to
339 	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 	       the gimplifier, but it can be generated by match.pd out of
342 	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
343 	       of BIT_AND_EXPR above already forces a specific semantics for
344 	       boolean types with precision > 1 so we must do the same here,
345 	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 	       boolean types with precision > 1.  */
347 	    if (code == BIT_NOT_EXPR
348 		&& TREE_CODE (rhs) == SSA_NAME
349 		&& ssa_name_has_boolean_range (rhs))
350 	      {
351 		if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 		  res = build_one_cst (TREE_TYPE (rhs));
353 		else
354 		  res = build_zero_cst (TREE_TYPE (rhs));
355 	      }
356 	    else
357 	      res = fold_build1 (code, TREE_TYPE (rhs), value);
358 	    derive_equivalences (rhs, res, recursion_limit - 1);
359 	    break;
360 	  }
361 
362 	default:
363 	  {
364 	    if (TREE_CODE_CLASS (code) == tcc_comparison)
365 	      {
366 		tree cond = build2 (code, boolean_type_node,
367 				    gimple_assign_rhs1 (def_stmt),
368 				    gimple_assign_rhs2 (def_stmt));
369 		tree inverted = invert_truthvalue (cond);
370 		if (integer_zerop (value))
371 		  std::swap (cond, inverted);
372 		record_conditions (&this->cond_equivalences, cond, inverted);
373 		break;
374 	      }
375 	    break;
376 	  }
377 	}
378     }
379 }
380 
381 void
record_simple_equiv(tree lhs,tree rhs)382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384   /* If the RHS is a constant, then we may be able to derive
385      further equivalences.  Else just record the name = name
386      equivalence.  */
387   if (TREE_CODE (rhs) == INTEGER_CST)
388     derive_equivalences (lhs, rhs, 4);
389   else
390     simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392 
393 /* Free the edge_info data attached to E, if it exists.  */
394 
395 void
free_dom_edge_info(edge e)396 free_dom_edge_info (edge e)
397 {
398   class edge_info *edge_info = (class edge_info *)e->aux;
399 
400   if (edge_info)
401     delete edge_info;
402 }
403 
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405    If a particular edge can be threaded, copy the redirection
406    target from the EDGE_INFO structure into the edge's AUX field
407    as required by code to update the CFG and SSA graph for
408    jump threading.  */
409 
410 static void
free_all_edge_infos(void)411 free_all_edge_infos (void)
412 {
413   basic_block bb;
414   edge_iterator ei;
415   edge e;
416 
417   FOR_EACH_BB_FN (bb, cfun)
418     {
419       FOR_EACH_EDGE (e, ei, bb->preds)
420         {
421 	  free_dom_edge_info (e);
422 	  e->aux = NULL;
423 	}
424     }
425 }
426 
427 /* We have finished optimizing BB, record any information implied by
428    taking a specific outgoing edge from BB.  */
429 
430 static void
record_edge_info(basic_block bb)431 record_edge_info (basic_block bb)
432 {
433   gimple_stmt_iterator gsi = gsi_last_bb (bb);
434   class edge_info *edge_info;
435 
436   if (! gsi_end_p (gsi))
437     {
438       gimple *stmt = gsi_stmt (gsi);
439       location_t loc = gimple_location (stmt);
440 
441       if (gimple_code (stmt) == GIMPLE_SWITCH)
442 	{
443 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 	  tree index = gimple_switch_index (switch_stmt);
445 
446 	  if (TREE_CODE (index) == SSA_NAME)
447 	    {
448 	      int i;
449               int n_labels = gimple_switch_num_labels (switch_stmt);
450 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 	      edge e;
452 	      edge_iterator ei;
453 
454 	      for (i = 0; i < n_labels; i++)
455 		{
456 		  tree label = gimple_switch_label (switch_stmt, i);
457 		  basic_block target_bb
458 		    = label_to_block (cfun, CASE_LABEL (label));
459 		  if (CASE_HIGH (label)
460 		      || !CASE_LOW (label)
461 		      || info[target_bb->index])
462 		    info[target_bb->index] = error_mark_node;
463 		  else
464 		    info[target_bb->index] = label;
465 		}
466 
467 	      FOR_EACH_EDGE (e, ei, bb->succs)
468 		{
469 		  basic_block target_bb = e->dest;
470 		  tree label = info[target_bb->index];
471 
472 		  if (label != NULL && label != error_mark_node)
473 		    {
474 		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
475 						 CASE_LOW (label));
476 		      edge_info = new class edge_info (e);
477 		      edge_info->record_simple_equiv (index, x);
478 		    }
479 		}
480 	      free (info);
481 	    }
482 	}
483 
484       /* A COND_EXPR may create equivalences too.  */
485       if (gimple_code (stmt) == GIMPLE_COND)
486 	{
487 	  edge true_edge;
488 	  edge false_edge;
489 
490           tree op0 = gimple_cond_lhs (stmt);
491           tree op1 = gimple_cond_rhs (stmt);
492           enum tree_code code = gimple_cond_code (stmt);
493 
494 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
495 
496           /* Special case comparing booleans against a constant as we
497              know the value of OP0 on both arms of the branch.  i.e., we
498              can record an equivalence for OP0 rather than COND.
499 
500 	     However, don't do this if the constant isn't zero or one.
501 	     Such conditionals will get optimized more thoroughly during
502 	     the domwalk.  */
503 	  if ((code == EQ_EXPR || code == NE_EXPR)
504 	      && TREE_CODE (op0) == SSA_NAME
505 	      && ssa_name_has_boolean_range (op0)
506 	      && is_gimple_min_invariant (op1)
507 	      && (integer_zerop (op1) || integer_onep (op1)))
508             {
509 	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
510 	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
511 
512               if (code == EQ_EXPR)
513                 {
514 		  edge_info = new class edge_info (true_edge);
515 		  edge_info->record_simple_equiv (op0,
516 						  (integer_zerop (op1)
517 						   ? false_val : true_val));
518 		  edge_info = new class edge_info (false_edge);
519 		  edge_info->record_simple_equiv (op0,
520 						  (integer_zerop (op1)
521 						   ? true_val : false_val));
522                 }
523               else
524                 {
525 		  edge_info = new class edge_info (true_edge);
526 		  edge_info->record_simple_equiv (op0,
527 						  (integer_zerop (op1)
528 						   ? true_val : false_val));
529 		  edge_info = new class edge_info (false_edge);
530 		  edge_info->record_simple_equiv (op0,
531 						  (integer_zerop (op1)
532 						   ? false_val : true_val));
533                 }
534             }
535 	  /* This can show up in the IL as a result of copy propagation
536 	     it will eventually be canonicalized, but we have to cope
537 	     with this case within the pass.  */
538           else if (is_gimple_min_invariant (op0)
539                    && TREE_CODE (op1) == SSA_NAME)
540             {
541               tree cond = build2 (code, boolean_type_node, op0, op1);
542               tree inverted = invert_truthvalue_loc (loc, cond);
543               bool can_infer_simple_equiv
544                 = !(HONOR_SIGNED_ZEROS (op0)
545                     && real_zerop (op0));
546 	      class edge_info *edge_info;
547 
548 	      edge_info = new class edge_info (true_edge);
549               record_conditions (&edge_info->cond_equivalences, cond, inverted);
550 
551               if (can_infer_simple_equiv && code == EQ_EXPR)
552 		edge_info->record_simple_equiv (op1, op0);
553 
554 	      edge_info = new class edge_info (false_edge);
555               record_conditions (&edge_info->cond_equivalences, inverted, cond);
556 
557               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
558 		edge_info->record_simple_equiv (op1, op0);
559             }
560 
561           else if (TREE_CODE (op0) == SSA_NAME
562                    && (TREE_CODE (op1) == SSA_NAME
563                        || is_gimple_min_invariant (op1)))
564             {
565               tree cond = build2 (code, boolean_type_node, op0, op1);
566               tree inverted = invert_truthvalue_loc (loc, cond);
567               bool can_infer_simple_equiv
568                 = !(HONOR_SIGNED_ZEROS (op1)
569                     && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
570 	      class edge_info *edge_info;
571 
572 	      edge_info = new class edge_info (true_edge);
573               record_conditions (&edge_info->cond_equivalences, cond, inverted);
574 
575               if (can_infer_simple_equiv && code == EQ_EXPR)
576 		edge_info->record_simple_equiv (op0, op1);
577 
578 	      edge_info = new class edge_info (false_edge);
579               record_conditions (&edge_info->cond_equivalences, inverted, cond);
580 
581               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
582 		edge_info->record_simple_equiv (op0, op1);
583             }
584         }
585     }
586 }
587 
588 
589 class dom_opt_dom_walker : public dom_walker
590 {
591 public:
dom_opt_dom_walker(cdi_direction direction,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack,gcond * dummy_cond)592   dom_opt_dom_walker (cdi_direction direction,
593 		      class const_and_copies *const_and_copies,
594 		      class avail_exprs_stack *avail_exprs_stack,
595 		      gcond *dummy_cond)
596     : dom_walker (direction, REACHABLE_BLOCKS),
597       m_const_and_copies (const_and_copies),
598       m_avail_exprs_stack (avail_exprs_stack),
599       evrp_range_analyzer (true),
600       m_dummy_cond (dummy_cond) { }
601 
602   virtual edge before_dom_children (basic_block);
603   virtual void after_dom_children (basic_block);
604 
605 private:
606 
607   /* Unwindable equivalences, both const/copy and expression varieties.  */
608   class const_and_copies *m_const_and_copies;
609   class avail_exprs_stack *m_avail_exprs_stack;
610 
611   /* VRP data.  */
612   class evrp_range_analyzer evrp_range_analyzer;
613 
614   /* Dummy condition to avoid creating lots of throw away statements.  */
615   gcond *m_dummy_cond;
616 
617   /* Optimize a single statement within a basic block using the
618      various tables mantained by DOM.  Returns the taken edge if
619      the statement is a conditional with a statically determined
620      value.  */
621   edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
622 };
623 
624 /* Jump threading, redundancy elimination and const/copy propagation.
625 
626    This pass may expose new symbols that need to be renamed into SSA.  For
627    every new symbol exposed, its corresponding bit will be set in
628    VARS_TO_RENAME.  */
629 
630 namespace {
631 
632 const pass_data pass_data_dominator =
633 {
634   GIMPLE_PASS, /* type */
635   "dom", /* name */
636   OPTGROUP_NONE, /* optinfo_flags */
637   TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
638   ( PROP_cfg | PROP_ssa ), /* properties_required */
639   0, /* properties_provided */
640   0, /* properties_destroyed */
641   0, /* todo_flags_start */
642   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
643 };
644 
645 class pass_dominator : public gimple_opt_pass
646 {
647 public:
pass_dominator(gcc::context * ctxt)648   pass_dominator (gcc::context *ctxt)
649     : gimple_opt_pass (pass_data_dominator, ctxt),
650       may_peel_loop_headers_p (false)
651   {}
652 
653   /* opt_pass methods: */
clone()654   opt_pass * clone () { return new pass_dominator (m_ctxt); }
set_pass_param(unsigned int n,bool param)655   void set_pass_param (unsigned int n, bool param)
656     {
657       gcc_assert (n == 0);
658       may_peel_loop_headers_p = param;
659     }
gate(function *)660   virtual bool gate (function *) { return flag_tree_dom != 0; }
661   virtual unsigned int execute (function *);
662 
663  private:
664   /* This flag is used to prevent loops from being peeled repeatedly in jump
665      threading; it will be removed once we preserve loop structures throughout
666      the compilation -- we will be able to mark the affected loops directly in
667      jump threading, and avoid peeling them next time.  */
668   bool may_peel_loop_headers_p;
669 }; // class pass_dominator
670 
671 unsigned int
execute(function * fun)672 pass_dominator::execute (function *fun)
673 {
674   memset (&opt_stats, 0, sizeof (opt_stats));
675 
676   /* Create our hash tables.  */
677   hash_table<expr_elt_hasher> *avail_exprs
678     = new hash_table<expr_elt_hasher> (1024);
679   class avail_exprs_stack *avail_exprs_stack
680     = new class avail_exprs_stack (avail_exprs);
681   class const_and_copies *const_and_copies = new class const_and_copies ();
682   need_eh_cleanup = BITMAP_ALLOC (NULL);
683   need_noreturn_fixup.create (0);
684 
685   calculate_dominance_info (CDI_DOMINATORS);
686   cfg_altered = false;
687 
688   /* We need to know loop structures in order to avoid destroying them
689      in jump threading.  Note that we still can e.g. thread through loop
690      headers to an exit edge, or through loop header to the loop body, assuming
691      that we update the loop info.
692 
693      TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
694      to several overly conservative bail-outs in jump threading, case
695      gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
696      missing.  We should improve jump threading in future then
697      LOOPS_HAVE_PREHEADERS won't be needed here.  */
698   loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
699 		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
700 
701   /* Initialize the value-handle array.  */
702   threadedge_initialize_values ();
703 
704   /* We need accurate information regarding back edges in the CFG
705      for jump threading; this may include back edges that are not part of
706      a single loop.  */
707   mark_dfs_back_edges ();
708 
709   /* We want to create the edge info structures before the dominator walk
710      so that they'll be in place for the jump threader, particularly when
711      threading through a join block.
712 
713      The conditions will be lazily updated with global equivalences as
714      we reach them during the dominator walk.  */
715   basic_block bb;
716   FOR_EACH_BB_FN (bb, fun)
717     record_edge_info (bb);
718 
719   gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
720 					 integer_zero_node, NULL, NULL);
721 
722   /* Recursively walk the dominator tree optimizing statements.  */
723   dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
724 			     avail_exprs_stack, dummy_cond);
725   walker.walk (fun->cfg->x_entry_block_ptr);
726 
727   /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
728      edge.  When found, remove jump threads which contain any outgoing
729      edge from the affected block.  */
730   if (cfg_altered)
731     {
732       FOR_EACH_BB_FN (bb, fun)
733 	{
734 	  edge_iterator ei;
735 	  edge e;
736 
737 	  /* First see if there are any edges without EDGE_EXECUTABLE
738 	     set.  */
739 	  bool found = false;
740 	  FOR_EACH_EDGE (e, ei, bb->succs)
741 	    {
742 	      if ((e->flags & EDGE_EXECUTABLE) == 0)
743 		{
744 		  found = true;
745 		  break;
746 		}
747 	    }
748 
749 	  /* If there were any such edges found, then remove jump threads
750 	     containing any edge leaving BB.  */
751 	  if (found)
752 	    FOR_EACH_EDGE (e, ei, bb->succs)
753 	      remove_jump_threads_including (e);
754 	}
755     }
756 
757   {
758     gimple_stmt_iterator gsi;
759     basic_block bb;
760     FOR_EACH_BB_FN (bb, fun)
761       {
762 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
763 	  update_stmt_if_modified (gsi_stmt (gsi));
764       }
765   }
766 
767   /* If we exposed any new variables, go ahead and put them into
768      SSA form now, before we handle jump threading.  This simplifies
769      interactions between rewriting of _DECL nodes into SSA form
770      and rewriting SSA_NAME nodes into SSA form after block
771      duplication and CFG manipulation.  */
772   update_ssa (TODO_update_ssa);
773 
774   free_all_edge_infos ();
775 
776   /* Thread jumps, creating duplicate blocks as needed.  */
777   cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
778 
779   if (cfg_altered)
780     free_dominance_info (CDI_DOMINATORS);
781 
782   /* Removal of statements may make some EH edges dead.  Purge
783      such edges from the CFG as needed.  */
784   if (!bitmap_empty_p (need_eh_cleanup))
785     {
786       unsigned i;
787       bitmap_iterator bi;
788 
789       /* Jump threading may have created forwarder blocks from blocks
790 	 needing EH cleanup; the new successor of these blocks, which
791 	 has inherited from the original block, needs the cleanup.
792 	 Don't clear bits in the bitmap, as that can break the bitmap
793 	 iterator.  */
794       EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
795 	{
796 	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
797 	  if (bb == NULL)
798 	    continue;
799 	  while (single_succ_p (bb)
800 		 && (single_succ_edge (bb)->flags
801 		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
802 	    bb = single_succ (bb);
803 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
804 	    continue;
805 	  if ((unsigned) bb->index != i)
806 	    bitmap_set_bit (need_eh_cleanup, bb->index);
807 	}
808 
809       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
810       bitmap_clear (need_eh_cleanup);
811     }
812 
813   /* Fixup stmts that became noreturn calls.  This may require splitting
814      blocks and thus isn't possible during the dominator walk or before
815      jump threading finished.  Do this in reverse order so we don't
816      inadvertedly remove a stmt we want to fixup by visiting a dominating
817      now noreturn call first.  */
818   while (!need_noreturn_fixup.is_empty ())
819     {
820       gimple *stmt = need_noreturn_fixup.pop ();
821       if (dump_file && dump_flags & TDF_DETAILS)
822 	{
823 	  fprintf (dump_file, "Fixing up noreturn call ");
824 	  print_gimple_stmt (dump_file, stmt, 0);
825 	  fprintf (dump_file, "\n");
826 	}
827       fixup_noreturn_call (stmt);
828     }
829 
830   statistics_counter_event (fun, "Redundant expressions eliminated",
831 			    opt_stats.num_re);
832   statistics_counter_event (fun, "Constants propagated",
833 			    opt_stats.num_const_prop);
834   statistics_counter_event (fun, "Copies propagated",
835 			    opt_stats.num_copy_prop);
836 
837   /* Debugging dumps.  */
838   if (dump_file && (dump_flags & TDF_STATS))
839     dump_dominator_optimization_stats (dump_file, avail_exprs);
840 
841   loop_optimizer_finalize ();
842 
843   /* Delete our main hashtable.  */
844   delete avail_exprs;
845   avail_exprs = NULL;
846 
847   /* Free asserted bitmaps and stacks.  */
848   BITMAP_FREE (need_eh_cleanup);
849   need_noreturn_fixup.release ();
850   delete avail_exprs_stack;
851   delete const_and_copies;
852 
853   /* Free the value-handle array.  */
854   threadedge_finalize_values ();
855 
856   return 0;
857 }
858 
859 } // anon namespace
860 
861 gimple_opt_pass *
make_pass_dominator(gcc::context * ctxt)862 make_pass_dominator (gcc::context *ctxt)
863 {
864   return new pass_dominator (ctxt);
865 }
866 
867 /* A hack until we remove threading from tree-vrp.c and bring the
868    simplification routine into the dom_opt_dom_walker class.  */
869 static class vr_values *x_vr_values;
870 
871 /* A trivial wrapper so that we can present the generic jump
872    threading code with a simple API for simplifying statements.  */
873 static tree
simplify_stmt_for_jump_threading(gimple * stmt,gimple * within_stmt ATTRIBUTE_UNUSED,class avail_exprs_stack * avail_exprs_stack,basic_block bb ATTRIBUTE_UNUSED)874 simplify_stmt_for_jump_threading (gimple *stmt,
875 				  gimple *within_stmt ATTRIBUTE_UNUSED,
876 				  class avail_exprs_stack *avail_exprs_stack,
877 				  basic_block bb ATTRIBUTE_UNUSED)
878 {
879   /* First query our hash table to see if the expression is available
880      there.  A non-NULL return value will be either a constant or another
881      SSA_NAME.  */
882   tree cached_lhs =  avail_exprs_stack->lookup_avail_expr (stmt, false, true);
883   if (cached_lhs)
884     return cached_lhs;
885 
886   /* If the hash table query failed, query VRP information.  This is
887      essentially the same as tree-vrp's simplification routine.  The
888      copy in tree-vrp is scheduled for removal in gcc-9.  */
889   if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
890     {
891       cached_lhs
892 	= x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
893 						 gimple_cond_lhs (cond_stmt),
894 						 gimple_cond_rhs (cond_stmt),
895 						 within_stmt);
896       return cached_lhs;
897     }
898 
899   if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
900     {
901       tree op = gimple_switch_index (switch_stmt);
902       if (TREE_CODE (op) != SSA_NAME)
903 	return NULL_TREE;
904 
905       const value_range_equiv *vr = x_vr_values->get_value_range (op);
906       if (vr->undefined_p ()
907 	  || vr->varying_p ()
908 	  || vr->symbolic_p ())
909 	return NULL_TREE;
910 
911       if (vr->kind () == VR_RANGE)
912 	{
913 	  size_t i, j;
914 
915 	  find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
916 
917 	  /* Is there only one such label?  */
918 	  if (i == j)
919 	    {
920 	      tree label = gimple_switch_label (switch_stmt, i);
921 	      tree singleton;
922 
923 	      /* The i'th label will only be taken if the value range of the
924 		 operand is entirely within the bounds of this label.  */
925 	      if (CASE_HIGH (label) != NULL_TREE
926 		  ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
927 		     && tree_int_cst_compare (CASE_HIGH (label), vr->max ()) >= 0)
928 		  : (vr->singleton_p (&singleton)
929 		     && tree_int_cst_equal (CASE_LOW (label), singleton)))
930 		return label;
931 	    }
932 
933 	  /* If there are no such labels, then the default label
934 	     will be taken.  */
935 	  if (i > j)
936 	    return gimple_switch_label (switch_stmt, 0);
937 	}
938 
939       if (vr->kind () == VR_ANTI_RANGE)
940           {
941             unsigned n = gimple_switch_num_labels (switch_stmt);
942             tree min_label = gimple_switch_label (switch_stmt, 1);
943             tree max_label = gimple_switch_label (switch_stmt, n - 1);
944 
945             /* The default label will be taken only if the anti-range of the
946                operand is entirely outside the bounds of all the (non-default)
947                case labels.  */
948             if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
949                 && (CASE_HIGH (max_label) != NULL_TREE
950                     ? tree_int_cst_compare (vr->max (), CASE_HIGH (max_label)) >= 0
951                     : tree_int_cst_compare (vr->max (), CASE_LOW (max_label)) >= 0))
952             return gimple_switch_label (switch_stmt, 0);
953           }
954 	return NULL_TREE;
955     }
956 
957   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
958     {
959       tree lhs = gimple_assign_lhs (assign_stmt);
960       if (TREE_CODE (lhs) == SSA_NAME
961 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
962 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
963 	  && stmt_interesting_for_vrp (stmt))
964 	{
965 	  edge dummy_e;
966 	  tree dummy_tree;
967 	  value_range_equiv new_vr;
968 	  x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
969 						&dummy_tree, &new_vr);
970 	  tree singleton;
971 	  if (new_vr.singleton_p (&singleton))
972 	    return singleton;
973 	}
974     }
975   return NULL;
976 }
977 
978 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
979 
980 static tree
dom_valueize(tree t)981 dom_valueize (tree t)
982 {
983   if (TREE_CODE (t) == SSA_NAME)
984     {
985       tree tem = SSA_NAME_VALUE (t);
986       if (tem)
987 	return tem;
988     }
989   return t;
990 }
991 
992 /* We have just found an equivalence for LHS on an edge E.
993    Look backwards to other uses of LHS and see if we can derive
994    additional equivalences that are valid on edge E.  */
995 static void
back_propagate_equivalences(tree lhs,edge e,class const_and_copies * const_and_copies)996 back_propagate_equivalences (tree lhs, edge e,
997 			     class const_and_copies *const_and_copies)
998 {
999   use_operand_p use_p;
1000   imm_use_iterator iter;
1001   bitmap domby = NULL;
1002   basic_block dest = e->dest;
1003 
1004   /* Iterate over the uses of LHS to see if any dominate E->dest.
1005      If so, they may create useful equivalences too.
1006 
1007      ???  If the code gets re-organized to a worklist to catch more
1008      indirect opportunities and it is made to handle PHIs then this
1009      should only consider use_stmts in basic-blocks we have already visited.  */
1010   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1011     {
1012       gimple *use_stmt = USE_STMT (use_p);
1013 
1014       /* Often the use is in DEST, which we trivially know we can't use.
1015 	 This is cheaper than the dominator set tests below.  */
1016       if (dest == gimple_bb (use_stmt))
1017 	continue;
1018 
1019       /* Filter out statements that can never produce a useful
1020 	 equivalence.  */
1021       tree lhs2 = gimple_get_lhs (use_stmt);
1022       if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1023 	continue;
1024 
1025       /* Profiling has shown the domination tests here can be fairly
1026 	 expensive.  We get significant improvements by building the
1027 	 set of blocks that dominate BB.  We can then just test
1028 	 for set membership below.
1029 
1030 	 We also initialize the set lazily since often the only uses
1031 	 are going to be in the same block as DEST.  */
1032       if (!domby)
1033 	{
1034 	  domby = BITMAP_ALLOC (NULL);
1035 	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1036 	  while (bb)
1037 	    {
1038 	      bitmap_set_bit (domby, bb->index);
1039 	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1040 	    }
1041 	}
1042 
1043       /* This tests if USE_STMT does not dominate DEST.  */
1044       if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1045 	continue;
1046 
1047       /* At this point USE_STMT dominates DEST and may result in a
1048 	 useful equivalence.  Try to simplify its RHS to a constant
1049 	 or SSA_NAME.  */
1050       tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1051 						 no_follow_ssa_edges);
1052       if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1053 	record_equality (lhs2, res, const_and_copies);
1054     }
1055 
1056   if (domby)
1057     BITMAP_FREE (domby);
1058 }
1059 
1060 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1061    by traversing edge E (which are cached in E->aux).
1062 
1063    Callers are responsible for managing the unwinding markers.  */
1064 void
record_temporary_equivalences(edge e,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1065 record_temporary_equivalences (edge e,
1066 			       class const_and_copies *const_and_copies,
1067 			       class avail_exprs_stack *avail_exprs_stack)
1068 {
1069   int i;
1070   class edge_info *edge_info = (class edge_info *) e->aux;
1071 
1072   /* If we have info associated with this edge, record it into
1073      our equivalence tables.  */
1074   if (edge_info)
1075     {
1076       cond_equivalence *eq;
1077       /* If we have 0 = COND or 1 = COND equivalences, record them
1078 	 into our expression hash tables.  */
1079       for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1080 	avail_exprs_stack->record_cond (eq);
1081 
1082       edge_info::equiv_pair *seq;
1083       for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1084 	{
1085 	  tree lhs = seq->first;
1086 	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1087 	    continue;
1088 
1089 	  /* Record the simple NAME = VALUE equivalence.  */
1090 	  tree rhs = seq->second;
1091 
1092 	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1093 	     cheaper to compute than the other, then set up the equivalence
1094 	     such that we replace the expensive one with the cheap one.
1095 
1096 	     If they are the same cost to compute, then do not record
1097 	     anything.  */
1098 	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1099 	    {
1100 	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1101 	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1102 
1103 	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1104 	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1105 
1106 	      if (rhs_cost > lhs_cost)
1107 	        record_equality (rhs, lhs, const_and_copies);
1108 	      else if (rhs_cost < lhs_cost)
1109 	        record_equality (lhs, rhs, const_and_copies);
1110 	    }
1111 	  else
1112 	    record_equality (lhs, rhs, const_and_copies);
1113 
1114 
1115 	  /* Any equivalence found for LHS may result in additional
1116 	     equivalences for other uses of LHS that we have already
1117 	     processed.  */
1118 	  back_propagate_equivalences (lhs, e, const_and_copies);
1119 	}
1120     }
1121 }
1122 
1123 /* PHI nodes can create equivalences too.
1124 
1125    Ignoring any alternatives which are the same as the result, if
1126    all the alternatives are equal, then the PHI node creates an
1127    equivalence.  */
1128 
1129 static void
record_equivalences_from_phis(basic_block bb)1130 record_equivalences_from_phis (basic_block bb)
1131 {
1132   gphi_iterator gsi;
1133 
1134   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1135     {
1136       gphi *phi = gsi.phi ();
1137 
1138       /* We might eliminate the PHI, so advance GSI now.  */
1139       gsi_next (&gsi);
1140 
1141       tree lhs = gimple_phi_result (phi);
1142       tree rhs = NULL;
1143       size_t i;
1144 
1145       for (i = 0; i < gimple_phi_num_args (phi); i++)
1146 	{
1147 	  tree t = gimple_phi_arg_def (phi, i);
1148 
1149 	  /* Ignore alternatives which are the same as our LHS.  Since
1150 	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1151 	     can simply compare pointers.  */
1152 	  if (lhs == t)
1153 	    continue;
1154 
1155 	  /* If the associated edge is not marked as executable, then it
1156 	     can be ignored.  */
1157 	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1158 	    continue;
1159 
1160 	  t = dom_valueize (t);
1161 
1162 	  /* If T is an SSA_NAME and its associated edge is a backedge,
1163 	     then quit as we cannot utilize this equivalence.  */
1164 	  if (TREE_CODE (t) == SSA_NAME
1165 	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1166 	    break;
1167 
1168 	  /* If we have not processed an alternative yet, then set
1169 	     RHS to this alternative.  */
1170 	  if (rhs == NULL)
1171 	    rhs = t;
1172 	  /* If we have processed an alternative (stored in RHS), then
1173 	     see if it is equal to this one.  If it isn't, then stop
1174 	     the search.  */
1175 	  else if (! operand_equal_for_phi_arg_p (rhs, t))
1176 	    break;
1177 	}
1178 
1179       /* If we had no interesting alternatives, then all the RHS alternatives
1180 	 must have been the same as LHS.  */
1181       if (!rhs)
1182 	rhs = lhs;
1183 
1184       /* If we managed to iterate through each PHI alternative without
1185 	 breaking out of the loop, then we have a PHI which may create
1186 	 a useful equivalence.  We do not need to record unwind data for
1187 	 this, since this is a true assignment and not an equivalence
1188 	 inferred from a comparison.  All uses of this ssa name are dominated
1189 	 by this assignment, so unwinding just costs time and space.  */
1190       if (i == gimple_phi_num_args (phi))
1191 	{
1192 	  if (may_propagate_copy (lhs, rhs))
1193 	    set_ssa_name_value (lhs, rhs);
1194 	  else if (virtual_operand_p (lhs))
1195 	    {
1196 	      gimple *use_stmt;
1197 	      imm_use_iterator iter;
1198 	      use_operand_p use_p;
1199 	      /* For virtual operands we have to propagate into all uses as
1200 	         otherwise we will create overlapping life-ranges.  */
1201 	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1202 	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1203 	          SET_USE (use_p, rhs);
1204 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1205 	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1206 	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1207 	      remove_phi_node (&tmp_gsi, true);
1208 	    }
1209 	}
1210     }
1211 }
1212 
1213 /* Record any equivalences created by the incoming edge to BB into
1214    CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
1215    incoming edge, then no equivalence is created.  */
1216 
1217 static void
record_equivalences_from_incoming_edge(basic_block bb,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1218 record_equivalences_from_incoming_edge (basic_block bb,
1219     class const_and_copies *const_and_copies,
1220     class avail_exprs_stack *avail_exprs_stack)
1221 {
1222   edge e;
1223   basic_block parent;
1224 
1225   /* If our parent block ended with a control statement, then we may be
1226      able to record some equivalences based on which outgoing edge from
1227      the parent was followed.  */
1228   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1229 
1230   e = single_pred_edge_ignoring_loop_edges (bb, true);
1231 
1232   /* If we had a single incoming edge from our parent block, then enter
1233      any data associated with the edge into our tables.  */
1234   if (e && e->src == parent)
1235     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1236 }
1237 
1238 /* Dump statistics for the hash table HTAB.  */
1239 
1240 static void
htab_statistics(FILE * file,const hash_table<expr_elt_hasher> & htab)1241 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1242 {
1243   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1244 	   (long) htab.size (),
1245 	   (long) htab.elements (),
1246 	   htab.collisions ());
1247 }
1248 
1249 /* Dump SSA statistics on FILE.  */
1250 
1251 static void
dump_dominator_optimization_stats(FILE * file,hash_table<expr_elt_hasher> * avail_exprs)1252 dump_dominator_optimization_stats (FILE *file,
1253 				   hash_table<expr_elt_hasher> *avail_exprs)
1254 {
1255   fprintf (file, "Total number of statements:                   %6ld\n\n",
1256 	   opt_stats.num_stmts);
1257   fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1258            opt_stats.num_exprs_considered);
1259 
1260   fprintf (file, "\nHash table statistics:\n");
1261 
1262   fprintf (file, "    avail_exprs: ");
1263   htab_statistics (file, *avail_exprs);
1264 }
1265 
1266 
1267 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1268    This constrains the cases in which we may treat this as assignment.  */
1269 
1270 static void
record_equality(tree x,tree y,class const_and_copies * const_and_copies)1271 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1272 {
1273   tree prev_x = NULL, prev_y = NULL;
1274 
1275   if (tree_swap_operands_p (x, y))
1276     std::swap (x, y);
1277 
1278   /* Most of the time tree_swap_operands_p does what we want.  But there
1279      are cases where we know one operand is better for copy propagation than
1280      the other.  Given no other code cares about ordering of equality
1281      comparison operators for that purpose, we just handle the special cases
1282      here.  */
1283   if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1284     {
1285       /* If one operand is a single use operand, then make it
1286 	 X.  This will preserve its single use properly and if this
1287 	 conditional is eliminated, the computation of X can be
1288 	 eliminated as well.  */
1289       if (has_single_use (y) && ! has_single_use (x))
1290 	std::swap (x, y);
1291     }
1292   if (TREE_CODE (x) == SSA_NAME)
1293     prev_x = SSA_NAME_VALUE (x);
1294   if (TREE_CODE (y) == SSA_NAME)
1295     prev_y = SSA_NAME_VALUE (y);
1296 
1297   /* If one of the previous values is invariant, or invariant in more loops
1298      (by depth), then use that.
1299      Otherwise it doesn't matter which value we choose, just so
1300      long as we canonicalize on one value.  */
1301   if (is_gimple_min_invariant (y))
1302     ;
1303   else if (is_gimple_min_invariant (x))
1304     prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1305   else if (prev_x && is_gimple_min_invariant (prev_x))
1306     x = y, y = prev_x, prev_x = prev_y;
1307   else if (prev_y)
1308     y = prev_y;
1309 
1310   /* After the swapping, we must have one SSA_NAME.  */
1311   if (TREE_CODE (x) != SSA_NAME)
1312     return;
1313 
1314   /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1315      variable compared against zero.  If we're honoring signed zeros,
1316      then we cannot record this value unless we know that the value is
1317      nonzero.  */
1318   if (HONOR_SIGNED_ZEROS (x)
1319       && (TREE_CODE (y) != REAL_CST
1320 	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
1321     return;
1322 
1323   const_and_copies->record_const_or_copy (x, y, prev_x);
1324 }
1325 
1326 /* Returns true when STMT is a simple iv increment.  It detects the
1327    following situation:
1328 
1329    i_1 = phi (..., i_k)
1330    [...]
1331    i_j = i_{j-1}  for each j : 2 <= j <= k-1
1332    [...]
1333    i_k = i_{k-1} +/- ...  */
1334 
1335 bool
simple_iv_increment_p(gimple * stmt)1336 simple_iv_increment_p (gimple *stmt)
1337 {
1338   enum tree_code code;
1339   tree lhs, preinc;
1340   gimple *phi;
1341   size_t i;
1342 
1343   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1344     return false;
1345 
1346   lhs = gimple_assign_lhs (stmt);
1347   if (TREE_CODE (lhs) != SSA_NAME)
1348     return false;
1349 
1350   code = gimple_assign_rhs_code (stmt);
1351   if (code != PLUS_EXPR
1352       && code != MINUS_EXPR
1353       && code != POINTER_PLUS_EXPR)
1354     return false;
1355 
1356   preinc = gimple_assign_rhs1 (stmt);
1357   if (TREE_CODE (preinc) != SSA_NAME)
1358     return false;
1359 
1360   phi = SSA_NAME_DEF_STMT (preinc);
1361   while (gimple_code (phi) != GIMPLE_PHI)
1362     {
1363       /* Follow trivial copies, but not the DEF used in a back edge,
1364 	 so that we don't prevent coalescing.  */
1365       if (!gimple_assign_ssa_name_copy_p (phi))
1366 	return false;
1367       preinc = gimple_assign_rhs1 (phi);
1368       phi = SSA_NAME_DEF_STMT (preinc);
1369     }
1370 
1371   for (i = 0; i < gimple_phi_num_args (phi); i++)
1372     if (gimple_phi_arg_def (phi, i) == lhs)
1373       return true;
1374 
1375   return false;
1376 }
1377 
1378 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1379    successors of BB.  */
1380 
1381 static void
cprop_into_successor_phis(basic_block bb,class const_and_copies * const_and_copies)1382 cprop_into_successor_phis (basic_block bb,
1383 			   class const_and_copies *const_and_copies)
1384 {
1385   edge e;
1386   edge_iterator ei;
1387 
1388   FOR_EACH_EDGE (e, ei, bb->succs)
1389     {
1390       int indx;
1391       gphi_iterator gsi;
1392 
1393       /* If this is an abnormal edge, then we do not want to copy propagate
1394 	 into the PHI alternative associated with this edge.  */
1395       if (e->flags & EDGE_ABNORMAL)
1396 	continue;
1397 
1398       gsi = gsi_start_phis (e->dest);
1399       if (gsi_end_p (gsi))
1400 	continue;
1401 
1402       /* We may have an equivalence associated with this edge.  While
1403 	 we cannot propagate it into non-dominated blocks, we can
1404 	 propagate them into PHIs in non-dominated blocks.  */
1405 
1406       /* Push the unwind marker so we can reset the const and copies
1407 	 table back to its original state after processing this edge.  */
1408       const_and_copies->push_marker ();
1409 
1410       /* Extract and record any simple NAME = VALUE equivalences.
1411 
1412 	 Don't bother with [01] = COND equivalences, they're not useful
1413 	 here.  */
1414       class edge_info *edge_info = (class edge_info *) e->aux;
1415 
1416       if (edge_info)
1417 	{
1418 	  edge_info::equiv_pair *seq;
1419 	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1420 	    {
1421 	      tree lhs = seq->first;
1422 	      tree rhs = seq->second;
1423 
1424 	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
1425 		const_and_copies->record_const_or_copy (lhs, rhs);
1426 	    }
1427 
1428 	}
1429 
1430       indx = e->dest_idx;
1431       for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1432 	{
1433 	  tree new_val;
1434 	  use_operand_p orig_p;
1435 	  tree orig_val;
1436           gphi *phi = gsi.phi ();
1437 
1438 	  /* The alternative may be associated with a constant, so verify
1439 	     it is an SSA_NAME before doing anything with it.  */
1440 	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1441 	  orig_val = get_use_from_ptr (orig_p);
1442 	  if (TREE_CODE (orig_val) != SSA_NAME)
1443 	    continue;
1444 
1445 	  /* If we have *ORIG_P in our constant/copy table, then replace
1446 	     ORIG_P with its value in our constant/copy table.  */
1447 	  new_val = SSA_NAME_VALUE (orig_val);
1448 	  if (new_val
1449 	      && new_val != orig_val
1450 	      && may_propagate_copy (orig_val, new_val))
1451 	    propagate_value (orig_p, new_val);
1452 	}
1453 
1454       const_and_copies->pop_to_marker ();
1455     }
1456 }
1457 
1458 edge
before_dom_children(basic_block bb)1459 dom_opt_dom_walker::before_dom_children (basic_block bb)
1460 {
1461   gimple_stmt_iterator gsi;
1462 
1463   if (dump_file && (dump_flags & TDF_DETAILS))
1464     fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1465 
1466   evrp_range_analyzer.enter (bb);
1467 
1468   /* Push a marker on the stacks of local information so that we know how
1469      far to unwind when we finalize this block.  */
1470   m_avail_exprs_stack->push_marker ();
1471   m_const_and_copies->push_marker ();
1472 
1473   record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1474 					  m_avail_exprs_stack);
1475 
1476   /* PHI nodes can create equivalences too.  */
1477   record_equivalences_from_phis (bb);
1478 
1479   /* Create equivalences from redundant PHIs.  PHIs are only truly
1480      redundant when they exist in the same block, so push another
1481      marker and unwind right afterwards.  */
1482   m_avail_exprs_stack->push_marker ();
1483   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1484     eliminate_redundant_computations (&gsi, m_const_and_copies,
1485 				      m_avail_exprs_stack);
1486   m_avail_exprs_stack->pop_to_marker ();
1487 
1488   edge taken_edge = NULL;
1489   /* Initialize visited flag ahead of us, it has undefined state on
1490      pass entry.  */
1491   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1492     gimple_set_visited (gsi_stmt (gsi), false);
1493   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1494     {
1495       /* Do not optimize a stmt twice, substitution might end up with
1496          _3 = _3 which is not valid.  */
1497       if (gimple_visited_p (gsi_stmt (gsi)))
1498 	{
1499 	  gsi_next (&gsi);
1500 	  continue;
1501 	}
1502 
1503       /* Compute range information and optimize the stmt.  */
1504       evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1505       bool removed_p = false;
1506       taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1507       if (!removed_p)
1508 	gimple_set_visited (gsi_stmt (gsi), true);
1509 
1510       /* Go back and visit stmts inserted by folding after substituting
1511 	 into the stmt at gsi.  */
1512       if (gsi_end_p (gsi))
1513 	{
1514 	  gcc_checking_assert (removed_p);
1515 	  gsi = gsi_last_bb (bb);
1516 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1517 	    gsi_prev (&gsi);
1518 	}
1519       else
1520 	{
1521 	  do
1522 	    {
1523 	      gsi_prev (&gsi);
1524 	    }
1525 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1526 	}
1527       if (gsi_end_p (gsi))
1528 	gsi = gsi_start_bb (bb);
1529       else
1530 	gsi_next (&gsi);
1531     }
1532 
1533   /* Now prepare to process dominated blocks.  */
1534   record_edge_info (bb);
1535   cprop_into_successor_phis (bb, m_const_and_copies);
1536   if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1537     return NULL;
1538 
1539   return taken_edge;
1540 }
1541 
1542 /* We have finished processing the dominator children of BB, perform
1543    any finalization actions in preparation for leaving this node in
1544    the dominator tree.  */
1545 
1546 void
after_dom_children(basic_block bb)1547 dom_opt_dom_walker::after_dom_children (basic_block bb)
1548 {
1549   x_vr_values = evrp_range_analyzer.get_vr_values ();
1550   thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1551 			 m_avail_exprs_stack,
1552 			 &evrp_range_analyzer,
1553 			 simplify_stmt_for_jump_threading);
1554   x_vr_values = NULL;
1555 
1556   /* These remove expressions local to BB from the tables.  */
1557   m_avail_exprs_stack->pop_to_marker ();
1558   m_const_and_copies->pop_to_marker ();
1559   evrp_range_analyzer.leave (bb);
1560 }
1561 
1562 /* Search for redundant computations in STMT.  If any are found, then
1563    replace them with the variable holding the result of the computation.
1564 
1565    If safe, record this expression into AVAIL_EXPRS_STACK and
1566    CONST_AND_COPIES.  */
1567 
1568 static void
eliminate_redundant_computations(gimple_stmt_iterator * gsi,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1569 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1570 				  class const_and_copies *const_and_copies,
1571 				  class avail_exprs_stack *avail_exprs_stack)
1572 {
1573   tree expr_type;
1574   tree cached_lhs;
1575   tree def;
1576   bool insert = true;
1577   bool assigns_var_p = false;
1578 
1579   gimple *stmt = gsi_stmt (*gsi);
1580 
1581   if (gimple_code (stmt) == GIMPLE_PHI)
1582     def = gimple_phi_result (stmt);
1583   else
1584     def = gimple_get_lhs (stmt);
1585 
1586   /* Certain expressions on the RHS can be optimized away, but cannot
1587      themselves be entered into the hash tables.  */
1588   if (! def
1589       || TREE_CODE (def) != SSA_NAME
1590       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1591       || gimple_vdef (stmt)
1592       /* Do not record equivalences for increments of ivs.  This would create
1593 	 overlapping live ranges for a very questionable gain.  */
1594       || simple_iv_increment_p (stmt))
1595     insert = false;
1596 
1597   /* Check if the expression has been computed before.  */
1598   cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1599 
1600   opt_stats.num_exprs_considered++;
1601 
1602   /* Get the type of the expression we are trying to optimize.  */
1603   if (is_gimple_assign (stmt))
1604     {
1605       expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1606       assigns_var_p = true;
1607     }
1608   else if (gimple_code (stmt) == GIMPLE_COND)
1609     expr_type = boolean_type_node;
1610   else if (is_gimple_call (stmt))
1611     {
1612       gcc_assert (gimple_call_lhs (stmt));
1613       expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1614       assigns_var_p = true;
1615     }
1616   else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1617     expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1618   else if (gimple_code (stmt) == GIMPLE_PHI)
1619     /* We can't propagate into a phi, so the logic below doesn't apply.
1620        Instead record an equivalence between the cached LHS and the
1621        PHI result of this statement, provided they are in the same block.
1622        This should be sufficient to kill the redundant phi.  */
1623     {
1624       if (def && cached_lhs)
1625 	const_and_copies->record_const_or_copy (def, cached_lhs);
1626       return;
1627     }
1628   else
1629     gcc_unreachable ();
1630 
1631   if (!cached_lhs)
1632     return;
1633 
1634   /* It is safe to ignore types here since we have already done
1635      type checking in the hashing and equality routines.  In fact
1636      type checking here merely gets in the way of constant
1637      propagation.  Also, make sure that it is safe to propagate
1638      CACHED_LHS into the expression in STMT.  */
1639   if ((TREE_CODE (cached_lhs) != SSA_NAME
1640        && (assigns_var_p
1641            || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1642       || may_propagate_copy_into_stmt (stmt, cached_lhs))
1643   {
1644       gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1645 			   || is_gimple_min_invariant (cached_lhs));
1646 
1647       if (dump_file && (dump_flags & TDF_DETAILS))
1648 	{
1649 	  fprintf (dump_file, "  Replaced redundant expr '");
1650 	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
1651 	  fprintf (dump_file, "' with '");
1652 	  print_generic_expr (dump_file, cached_lhs, dump_flags);
1653           fprintf (dump_file, "'\n");
1654 	}
1655 
1656       opt_stats.num_re++;
1657 
1658       if (assigns_var_p
1659 	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1660 	cached_lhs = fold_convert (expr_type, cached_lhs);
1661 
1662       propagate_tree_value_into_stmt (gsi, cached_lhs);
1663 
1664       /* Since it is always necessary to mark the result as modified,
1665          perhaps we should move this into propagate_tree_value_into_stmt
1666          itself.  */
1667       gimple_set_modified (gsi_stmt (*gsi), true);
1668   }
1669 }
1670 
1671 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1672    the available expressions table or the const_and_copies table.
1673    Detect and record those equivalences into AVAIL_EXPRS_STACK.
1674 
1675    We handle only very simple copy equivalences here.  The heavy
1676    lifing is done by eliminate_redundant_computations.  */
1677 
1678 static void
record_equivalences_from_stmt(gimple * stmt,int may_optimize_p,class avail_exprs_stack * avail_exprs_stack)1679 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1680 			       class avail_exprs_stack *avail_exprs_stack)
1681 {
1682   tree lhs;
1683   enum tree_code lhs_code;
1684 
1685   gcc_assert (is_gimple_assign (stmt));
1686 
1687   lhs = gimple_assign_lhs (stmt);
1688   lhs_code = TREE_CODE (lhs);
1689 
1690   if (lhs_code == SSA_NAME
1691       && gimple_assign_single_p (stmt))
1692     {
1693       tree rhs = gimple_assign_rhs1 (stmt);
1694 
1695       /* If the RHS of the assignment is a constant or another variable that
1696 	 may be propagated, register it in the CONST_AND_COPIES table.  We
1697 	 do not need to record unwind data for this, since this is a true
1698 	 assignment and not an equivalence inferred from a comparison.  All
1699 	 uses of this ssa name are dominated by this assignment, so unwinding
1700 	 just costs time and space.  */
1701       if (may_optimize_p
1702 	  && (TREE_CODE (rhs) == SSA_NAME
1703 	      || is_gimple_min_invariant (rhs)))
1704 	{
1705 	  rhs = dom_valueize (rhs);
1706 
1707 	  if (dump_file && (dump_flags & TDF_DETAILS))
1708 	    {
1709 	      fprintf (dump_file, "==== ASGN ");
1710 	      print_generic_expr (dump_file, lhs);
1711 	      fprintf (dump_file, " = ");
1712 	      print_generic_expr (dump_file, rhs);
1713 	      fprintf (dump_file, "\n");
1714 	    }
1715 
1716 	  set_ssa_name_value (lhs, rhs);
1717 	}
1718     }
1719 
1720   /* Make sure we can propagate &x + CST.  */
1721   if (lhs_code == SSA_NAME
1722       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1723       && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1724       && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1725     {
1726       tree op0 = gimple_assign_rhs1 (stmt);
1727       tree op1 = gimple_assign_rhs2 (stmt);
1728       tree new_rhs
1729 	= build1 (ADDR_EXPR, TREE_TYPE (op0),
1730 		  fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1731 			       unshare_expr (op0), fold_convert (ptr_type_node,
1732 								 op1)));
1733       if (dump_file && (dump_flags & TDF_DETAILS))
1734 	{
1735 	  fprintf (dump_file, "==== ASGN ");
1736 	  print_generic_expr (dump_file, lhs);
1737 	  fprintf (dump_file, " = ");
1738 	  print_generic_expr (dump_file, new_rhs);
1739 	  fprintf (dump_file, "\n");
1740 	}
1741 
1742       set_ssa_name_value (lhs, new_rhs);
1743     }
1744 
1745   /* A memory store, even an aliased store, creates a useful
1746      equivalence.  By exchanging the LHS and RHS, creating suitable
1747      vops and recording the result in the available expression table,
1748      we may be able to expose more redundant loads.  */
1749   if (!gimple_has_volatile_ops (stmt)
1750       && gimple_references_memory_p (stmt)
1751       && gimple_assign_single_p (stmt)
1752       && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1753 	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1754       && !is_gimple_reg (lhs))
1755     {
1756       tree rhs = gimple_assign_rhs1 (stmt);
1757       gassign *new_stmt;
1758 
1759       /* Build a new statement with the RHS and LHS exchanged.  */
1760       if (TREE_CODE (rhs) == SSA_NAME)
1761         {
1762           /* NOTE tuples.  The call to gimple_build_assign below replaced
1763              a call to build_gimple_modify_stmt, which did not set the
1764              SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
1765              may cause an SSA validation failure, as the LHS may be a
1766              default-initialized name and should have no definition.  I'm
1767              a bit dubious of this, as the artificial statement that we
1768              generate here may in fact be ill-formed, but it is simply
1769              used as an internal device in this pass, and never becomes
1770              part of the CFG.  */
1771 	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1772           new_stmt = gimple_build_assign (rhs, lhs);
1773           SSA_NAME_DEF_STMT (rhs) = defstmt;
1774         }
1775       else
1776         new_stmt = gimple_build_assign (rhs, lhs);
1777 
1778       gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1779 
1780       /* Finally enter the statement into the available expression
1781 	 table.  */
1782       avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1783     }
1784 }
1785 
1786 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1787    CONST_AND_COPIES.  */
1788 
1789 static void
cprop_operand(gimple * stmt,use_operand_p op_p,vr_values * vr_values)1790 cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
1791 {
1792   tree val;
1793   tree op = USE_FROM_PTR (op_p);
1794 
1795   /* If the operand has a known constant value or it is known to be a
1796      copy of some other variable, use the value or copy stored in
1797      CONST_AND_COPIES.  */
1798   val = SSA_NAME_VALUE (op);
1799   if (!val)
1800     val = vr_values->op_with_constant_singleton_value_range (op);
1801 
1802   if (val && val != op)
1803     {
1804       /* Do not replace hard register operands in asm statements.  */
1805       if (gimple_code (stmt) == GIMPLE_ASM
1806 	  && !may_propagate_copy_into_asm (op))
1807 	return;
1808 
1809       /* Certain operands are not allowed to be copy propagated due
1810 	 to their interaction with exception handling and some GCC
1811 	 extensions.  */
1812       if (!may_propagate_copy (op, val))
1813 	return;
1814 
1815       /* Do not propagate copies into BIVs.
1816          See PR23821 and PR62217 for how this can disturb IV and
1817 	 number of iteration analysis.  */
1818       if (TREE_CODE (val) != INTEGER_CST)
1819 	{
1820 	  gimple *def = SSA_NAME_DEF_STMT (op);
1821 	  if (gimple_code (def) == GIMPLE_PHI
1822 	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
1823 	    return;
1824 	}
1825 
1826       /* Dump details.  */
1827       if (dump_file && (dump_flags & TDF_DETAILS))
1828 	{
1829 	  fprintf (dump_file, "  Replaced '");
1830 	  print_generic_expr (dump_file, op, dump_flags);
1831 	  fprintf (dump_file, "' with %s '",
1832 		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1833 	  print_generic_expr (dump_file, val, dump_flags);
1834 	  fprintf (dump_file, "'\n");
1835 	}
1836 
1837       if (TREE_CODE (val) != SSA_NAME)
1838 	opt_stats.num_const_prop++;
1839       else
1840 	opt_stats.num_copy_prop++;
1841 
1842       propagate_value (op_p, val);
1843 
1844       /* And note that we modified this statement.  This is now
1845 	 safe, even if we changed virtual operands since we will
1846 	 rescan the statement and rewrite its operands again.  */
1847       gimple_set_modified (stmt, true);
1848     }
1849 }
1850 
1851 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1852    known value for that SSA_NAME (or NULL if no value is known).
1853 
1854    Propagate values from CONST_AND_COPIES into the uses, vuses and
1855    vdef_ops of STMT.  */
1856 
1857 static void
cprop_into_stmt(gimple * stmt,vr_values * vr_values)1858 cprop_into_stmt (gimple *stmt, vr_values *vr_values)
1859 {
1860   use_operand_p op_p;
1861   ssa_op_iter iter;
1862   tree last_copy_propagated_op = NULL;
1863 
1864   FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1865     {
1866       tree old_op = USE_FROM_PTR (op_p);
1867 
1868       /* If we have A = B and B = A in the copy propagation tables
1869 	 (due to an equality comparison), avoid substituting B for A
1870 	 then A for B in the trivially discovered cases.   This allows
1871 	 optimization of statements were A and B appear as input
1872 	 operands.  */
1873       if (old_op != last_copy_propagated_op)
1874 	{
1875 	  cprop_operand (stmt, op_p, vr_values);
1876 
1877 	  tree new_op = USE_FROM_PTR (op_p);
1878 	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1879 	    last_copy_propagated_op = new_op;
1880 	}
1881     }
1882 }
1883 
1884 /* If STMT contains a relational test, try to convert it into an
1885    equality test if there is only a single value which can ever
1886    make the test true.
1887 
1888    For example, if the expression hash table contains:
1889 
1890     TRUE = (i <= 1)
1891 
1892    And we have a test within statement of i >= 1, then we can safely
1893    rewrite the test as i == 1 since there only a single value where
1894    the test is true.
1895 
1896    This is similar to code in VRP.  */
1897 
1898 static void
test_for_singularity(gimple * stmt,gcond * dummy_cond,avail_exprs_stack * avail_exprs_stack)1899 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1900 		      avail_exprs_stack *avail_exprs_stack)
1901 {
1902   /* We want to support gimple conditionals as well as assignments
1903      where the RHS contains a conditional.  */
1904   if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1905     {
1906       enum tree_code code = ERROR_MARK;
1907       tree lhs, rhs;
1908 
1909       /* Extract the condition of interest from both forms we support.  */
1910       if (is_gimple_assign (stmt))
1911 	{
1912 	  code = gimple_assign_rhs_code (stmt);
1913 	  lhs = gimple_assign_rhs1 (stmt);
1914 	  rhs = gimple_assign_rhs2 (stmt);
1915 	}
1916       else if (gimple_code (stmt) == GIMPLE_COND)
1917 	{
1918 	  code = gimple_cond_code (as_a <gcond *> (stmt));
1919 	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1920 	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1921 	}
1922 
1923       /* We're looking for a relational test using LE/GE.  Also note we can
1924 	 canonicalize LT/GT tests against constants into LE/GT tests.  */
1925       if (code == LE_EXPR || code == GE_EXPR
1926 	  || ((code == LT_EXPR || code == GT_EXPR)
1927 	       && TREE_CODE (rhs) == INTEGER_CST))
1928 	{
1929 	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
1930 	  if (code == LT_EXPR)
1931 	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1932 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1933 
1934 	  if (code == GT_EXPR)
1935 	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1936 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1937 
1938 	  /* Determine the code we want to check for in the hash table.  */
1939 	  enum tree_code test_code;
1940 	  if (code == GE_EXPR || code == GT_EXPR)
1941 	    test_code = LE_EXPR;
1942 	  else
1943 	    test_code = GE_EXPR;
1944 
1945 	  /* Update the dummy statement so we can query the hash tables.  */
1946 	  gimple_cond_set_code (dummy_cond, test_code);
1947 	  gimple_cond_set_lhs (dummy_cond, lhs);
1948 	  gimple_cond_set_rhs (dummy_cond, rhs);
1949 	  tree cached_lhs
1950 	    = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1951 
1952 	  /* If the lookup returned 1 (true), then the expression we
1953 	     queried was in the hash table.  As a result there is only
1954 	     one value that makes the original conditional true.  Update
1955 	     STMT accordingly.  */
1956 	  if (cached_lhs && integer_onep (cached_lhs))
1957 	    {
1958 	      if (is_gimple_assign (stmt))
1959 		{
1960 		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1961 		  gimple_assign_set_rhs2 (stmt, rhs);
1962 		  gimple_set_modified (stmt, true);
1963 		}
1964 	      else
1965 		{
1966 		  gimple_set_modified (stmt, true);
1967 		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1968 		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1969 		  gimple_set_modified (stmt, true);
1970 		}
1971 	    }
1972 	}
1973     }
1974 }
1975 
1976 /* Optimize the statement in block BB pointed to by iterator SI.
1977 
1978    We try to perform some simplistic global redundancy elimination and
1979    constant propagation:
1980 
1981    1- To detect global redundancy, we keep track of expressions that have
1982       been computed in this block and its dominators.  If we find that the
1983       same expression is computed more than once, we eliminate repeated
1984       computations by using the target of the first one.
1985 
1986    2- Constant values and copy assignments.  This is used to do very
1987       simplistic constant and copy propagation.  When a constant or copy
1988       assignment is found, we map the value on the RHS of the assignment to
1989       the variable in the LHS in the CONST_AND_COPIES table.
1990 
1991    3- Very simple redundant store elimination is performed.
1992 
1993    4- We can simplify a condition to a constant or from a relational
1994       condition to an equality condition.  */
1995 
1996 edge
optimize_stmt(basic_block bb,gimple_stmt_iterator * si,bool * removed_p)1997 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
1998 				   bool *removed_p)
1999 {
2000   gimple *stmt, *old_stmt;
2001   bool may_optimize_p;
2002   bool modified_p = false;
2003   bool was_noreturn;
2004   edge retval = NULL;
2005 
2006   old_stmt = stmt = gsi_stmt (*si);
2007   was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2008 
2009   if (dump_file && (dump_flags & TDF_DETAILS))
2010     {
2011       fprintf (dump_file, "Optimizing statement ");
2012       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2013     }
2014 
2015   update_stmt_if_modified (stmt);
2016   opt_stats.num_stmts++;
2017 
2018   /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
2019   cprop_into_stmt (stmt, evrp_range_analyzer.get_vr_values ());
2020 
2021   /* If the statement has been modified with constant replacements,
2022      fold its RHS before checking for redundant computations.  */
2023   if (gimple_modified_p (stmt))
2024     {
2025       tree rhs = NULL;
2026 
2027       /* Try to fold the statement making sure that STMT is kept
2028 	 up to date.  */
2029       if (fold_stmt (si))
2030 	{
2031 	  stmt = gsi_stmt (*si);
2032 	  gimple_set_modified (stmt, true);
2033 
2034 	  if (dump_file && (dump_flags & TDF_DETAILS))
2035 	    {
2036 	      fprintf (dump_file, "  Folded to: ");
2037 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2038 	    }
2039 	}
2040 
2041       /* We only need to consider cases that can yield a gimple operand.  */
2042       if (gimple_assign_single_p (stmt))
2043         rhs = gimple_assign_rhs1 (stmt);
2044       else if (gimple_code (stmt) == GIMPLE_GOTO)
2045         rhs = gimple_goto_dest (stmt);
2046       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2047         /* This should never be an ADDR_EXPR.  */
2048         rhs = gimple_switch_index (swtch_stmt);
2049 
2050       if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2051         recompute_tree_invariant_for_addr_expr (rhs);
2052 
2053       /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2054 	 even if fold_stmt updated the stmt already and thus cleared
2055 	 gimple_modified_p flag on it.  */
2056       modified_p = true;
2057     }
2058 
2059   /* Check for redundant computations.  Do this optimization only
2060      for assignments that have no volatile ops and conditionals.  */
2061   may_optimize_p = (!gimple_has_side_effects (stmt)
2062                     && (is_gimple_assign (stmt)
2063                         || (is_gimple_call (stmt)
2064                             && gimple_call_lhs (stmt) != NULL_TREE)
2065                         || gimple_code (stmt) == GIMPLE_COND
2066                         || gimple_code (stmt) == GIMPLE_SWITCH));
2067 
2068   if (may_optimize_p)
2069     {
2070       if (gimple_code (stmt) == GIMPLE_CALL)
2071 	{
2072 	  /* Resolve __builtin_constant_p.  If it hasn't been
2073 	     folded to integer_one_node by now, it's fairly
2074 	     certain that the value simply isn't constant.  */
2075 	  tree callee = gimple_call_fndecl (stmt);
2076 	  if (callee
2077 	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2078 	    {
2079 	      propagate_tree_value_into_stmt (si, integer_zero_node);
2080 	      stmt = gsi_stmt (*si);
2081 	    }
2082 	}
2083 
2084       if (gimple_code (stmt) == GIMPLE_COND)
2085 	{
2086 	  tree lhs = gimple_cond_lhs (stmt);
2087 	  tree rhs = gimple_cond_rhs (stmt);
2088 
2089 	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2090 	     then this conditional is computable at compile time.  We can just
2091 	     shove either 0 or 1 into the LHS, mark the statement as modified
2092 	     and all the right things will just happen below.
2093 
2094 	     Note this would apply to any case where LHS has a range
2095 	     narrower than its type implies and RHS is outside that
2096 	     narrower range.  Future work.  */
2097 	  if (TREE_CODE (lhs) == SSA_NAME
2098 	      && ssa_name_has_boolean_range (lhs)
2099 	      && TREE_CODE (rhs) == INTEGER_CST
2100 	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
2101 	    {
2102 	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
2103 				   fold_convert (TREE_TYPE (lhs),
2104 						 integer_zero_node));
2105 	      gimple_set_modified (stmt, true);
2106 	    }
2107 	  else if (TREE_CODE (lhs) == SSA_NAME)
2108 	    {
2109 	      /* Exploiting EVRP data is not yet fully integrated into DOM
2110 		 but we need to do something for this case to avoid regressing
2111 		 udr4.f90 and new1.C which have unexecutable blocks with
2112 		 undefined behavior that get diagnosed if they're left in the
2113 		 IL because we've attached range information to new
2114 		 SSA_NAMES.  */
2115 	      update_stmt_if_modified (stmt);
2116 	      edge taken_edge = NULL;
2117 	      evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2118 						       &taken_edge);
2119 	      if (taken_edge)
2120 		{
2121 		  if (taken_edge->flags & EDGE_TRUE_VALUE)
2122 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2123 		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
2124 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2125 		  else
2126 		    gcc_unreachable ();
2127 		  gimple_set_modified (stmt, true);
2128 		  update_stmt (stmt);
2129 		  cfg_altered = true;
2130 		  return taken_edge;
2131 		}
2132 	    }
2133 	}
2134 
2135       update_stmt_if_modified (stmt);
2136       eliminate_redundant_computations (si, m_const_and_copies,
2137 					m_avail_exprs_stack);
2138       stmt = gsi_stmt (*si);
2139 
2140       /* Perform simple redundant store elimination.  */
2141       if (gimple_assign_single_p (stmt)
2142 	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2143 	{
2144 	  tree lhs = gimple_assign_lhs (stmt);
2145 	  tree rhs = gimple_assign_rhs1 (stmt);
2146 	  tree cached_lhs;
2147 	  gassign *new_stmt;
2148 	  rhs = dom_valueize (rhs);
2149 	  /* Build a new statement with the RHS and LHS exchanged.  */
2150 	  if (TREE_CODE (rhs) == SSA_NAME)
2151 	    {
2152 	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2153 	      new_stmt = gimple_build_assign (rhs, lhs);
2154 	      SSA_NAME_DEF_STMT (rhs) = defstmt;
2155 	    }
2156 	  else
2157 	    new_stmt = gimple_build_assign (rhs, lhs);
2158 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2159 	  expr_hash_elt *elt = NULL;
2160 	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2161 							       false, &elt);
2162 	  if (cached_lhs
2163 	      && operand_equal_p (rhs, cached_lhs, 0)
2164 	      && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2165 				       ? elt->expr ()->ops.single.rhs
2166 				       : NULL_TREE, lhs))
2167 	    {
2168 	      basic_block bb = gimple_bb (stmt);
2169 	      unlink_stmt_vdef (stmt);
2170 	      if (gsi_remove (si, true))
2171 		{
2172 		  bitmap_set_bit (need_eh_cleanup, bb->index);
2173 		  if (dump_file && (dump_flags & TDF_DETAILS))
2174 		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2175 		}
2176 	      release_defs (stmt);
2177 	      *removed_p = true;
2178 	      return retval;
2179 	    }
2180 	}
2181 
2182       /* If this statement was not redundant, we may still be able to simplify
2183 	 it, which may in turn allow other part of DOM or other passes to do
2184 	 a better job.  */
2185       test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2186     }
2187 
2188   /* Record any additional equivalences created by this statement.  */
2189   if (is_gimple_assign (stmt))
2190     record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2191 
2192   /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2193      know where it goes.  */
2194   if (gimple_modified_p (stmt) || modified_p)
2195     {
2196       tree val = NULL;
2197 
2198       if (gimple_code (stmt) == GIMPLE_COND)
2199         val = fold_binary_loc (gimple_location (stmt),
2200 			       gimple_cond_code (stmt), boolean_type_node,
2201 			       gimple_cond_lhs (stmt),
2202 			       gimple_cond_rhs (stmt));
2203       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2204 	val = gimple_switch_index (swtch_stmt);
2205 
2206       if (val && TREE_CODE (val) == INTEGER_CST)
2207 	{
2208 	  retval = find_taken_edge (bb, val);
2209 	  if (retval)
2210 	    {
2211 	      /* Fix the condition to be either true or false.  */
2212 	      if (gimple_code (stmt) == GIMPLE_COND)
2213 		{
2214 		  if (integer_zerop (val))
2215 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2216 		  else if (integer_onep (val))
2217 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2218 		  else
2219 		    gcc_unreachable ();
2220 
2221 		  gimple_set_modified (stmt, true);
2222 		}
2223 
2224 	      /* Further simplifications may be possible.  */
2225 	      cfg_altered = true;
2226 	    }
2227 	}
2228 
2229       update_stmt_if_modified (stmt);
2230 
2231       /* If we simplified a statement in such a way as to be shown that it
2232 	 cannot trap, update the eh information and the cfg to match.  */
2233       if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2234 	{
2235 	  bitmap_set_bit (need_eh_cleanup, bb->index);
2236 	  if (dump_file && (dump_flags & TDF_DETAILS))
2237 	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2238 	}
2239 
2240       if (!was_noreturn
2241 	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2242 	need_noreturn_fixup.safe_push (stmt);
2243     }
2244   return retval;
2245 }
2246