1 /* Natural loop discovery code for GNU compiler.
2    Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34 
35 static void flow_loops_cfg_dump (FILE *);
36 
37 /* Dump loop related CFG information.  */
38 
39 static void
flow_loops_cfg_dump(FILE * file)40 flow_loops_cfg_dump (FILE *file)
41 {
42   basic_block bb;
43 
44   if (!file)
45     return;
46 
47   FOR_EACH_BB_FN (bb, cfun)
48     {
49       edge succ;
50       edge_iterator ei;
51 
52       fprintf (file, ";; %d succs { ", bb->index);
53       FOR_EACH_EDGE (succ, ei, bb->succs)
54 	fprintf (file, "%d ", succ->dest->index);
55       fprintf (file, "}\n");
56     }
57 }
58 
59 /* Return nonzero if the nodes of LOOP are a subset of OUTER.  */
60 
61 bool
flow_loop_nested_p(const class loop * outer,const class loop * loop)62 flow_loop_nested_p (const class loop *outer, const class loop *loop)
63 {
64   unsigned odepth = loop_depth (outer);
65 
66   return (loop_depth (loop) > odepth
67 	  && (*loop->superloops)[odepth] == outer);
68 }
69 
70 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
71    loops within LOOP.  */
72 
73 class loop *
superloop_at_depth(class loop * loop,unsigned depth)74 superloop_at_depth (class loop *loop, unsigned depth)
75 {
76   unsigned ldepth = loop_depth (loop);
77 
78   gcc_assert (depth <= ldepth);
79 
80   if (depth == ldepth)
81     return loop;
82 
83   return (*loop->superloops)[depth];
84 }
85 
86 /* Returns the list of the latch edges of LOOP.  */
87 
88 static vec<edge>
get_loop_latch_edges(const class loop * loop)89 get_loop_latch_edges (const class loop *loop)
90 {
91   edge_iterator ei;
92   edge e;
93   vec<edge> ret = vNULL;
94 
95   FOR_EACH_EDGE (e, ei, loop->header->preds)
96     {
97       if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
98 	ret.safe_push (e);
99     }
100 
101   return ret;
102 }
103 
104 /* Dump the loop information specified by LOOP to the stream FILE
105    using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
106 
107 void
flow_loop_dump(const class loop * loop,FILE * file,void (* loop_dump_aux)(const class loop *,FILE *,int),int verbose)108 flow_loop_dump (const class loop *loop, FILE *file,
109 		void (*loop_dump_aux) (const class loop *, FILE *, int),
110 		int verbose)
111 {
112   basic_block *bbs;
113   unsigned i;
114   vec<edge> latches;
115   edge e;
116 
117   if (! loop || ! loop->header)
118     return;
119 
120   fprintf (file, ";;\n;; Loop %d\n", loop->num);
121 
122   fprintf (file, ";;  header %d, ", loop->header->index);
123   if (loop->latch)
124     fprintf (file, "latch %d\n", loop->latch->index);
125   else
126     {
127       fprintf (file, "multiple latches:");
128       latches = get_loop_latch_edges (loop);
129       FOR_EACH_VEC_ELT (latches, i, e)
130 	fprintf (file, " %d", e->src->index);
131       latches.release ();
132       fprintf (file, "\n");
133     }
134 
135   fprintf (file, ";;  depth %d, outer %ld\n",
136 	   loop_depth (loop), (long) (loop_outer (loop)
137 				      ? loop_outer (loop)->num : -1));
138 
139   if (loop->latch)
140     {
141       bool read_profile_p;
142       gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
143       if (read_profile_p && !loop->any_estimate)
144 	fprintf (file, ";;  profile-based iteration count: %" PRIu64 "\n",
145 		 (uint64_t) nit);
146     }
147 
148   fprintf (file, ";;  nodes:");
149   bbs = get_loop_body (loop);
150   for (i = 0; i < loop->num_nodes; i++)
151     fprintf (file, " %d", bbs[i]->index);
152   free (bbs);
153   fprintf (file, "\n");
154 
155   if (loop_dump_aux)
156     loop_dump_aux (loop, file, verbose);
157 }
158 
159 /* Dump the loop information about loops to the stream FILE,
160    using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */
161 
162 void
flow_loops_dump(FILE * file,void (* loop_dump_aux)(const class loop *,FILE *,int),int verbose)163 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const class loop *, FILE *, int), int verbose)
164 {
165   class loop *loop;
166 
167   if (!current_loops || ! file)
168     return;
169 
170   fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
171 
172   FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
173     {
174       flow_loop_dump (loop, file, loop_dump_aux, verbose);
175     }
176 
177   if (verbose)
178     flow_loops_cfg_dump (file);
179 }
180 
181 /* Free data allocated for LOOP.  */
182 
183 void
flow_loop_free(class loop * loop)184 flow_loop_free (class loop *loop)
185 {
186   struct loop_exit *exit, *next;
187 
188   vec_free (loop->superloops);
189 
190   /* Break the list of the loop exit records.  They will be freed when the
191      corresponding edge is rescanned or removed, and this avoids
192      accessing the (already released) head of the list stored in the
193      loop structure.  */
194   for (exit = loop->exits->next; exit != loop->exits; exit = next)
195     {
196       next = exit->next;
197       exit->next = exit;
198       exit->prev = exit;
199     }
200 
201   ggc_free (loop->exits);
202   ggc_free (loop);
203 }
204 
205 /* Free all the memory allocated for LOOPS.  */
206 
207 void
flow_loops_free(struct loops * loops)208 flow_loops_free (struct loops *loops)
209 {
210   if (loops->larray)
211     {
212       unsigned i;
213       loop_p loop;
214 
215       /* Free the loop descriptors.  */
216       FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
217 	{
218 	  if (!loop)
219 	    continue;
220 
221 	  flow_loop_free (loop);
222 	}
223 
224       vec_free (loops->larray);
225     }
226 }
227 
228 /* Find the nodes contained within the LOOP with header HEADER.
229    Return the number of nodes within the loop.  */
230 
231 int
flow_loop_nodes_find(basic_block header,class loop * loop)232 flow_loop_nodes_find (basic_block header, class loop *loop)
233 {
234   vec<basic_block> stack = vNULL;
235   int num_nodes = 1;
236   edge latch;
237   edge_iterator latch_ei;
238 
239   header->loop_father = loop;
240 
241   FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
242     {
243       if (latch->src->loop_father == loop
244 	  || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 	continue;
246 
247       num_nodes++;
248       stack.safe_push (latch->src);
249       latch->src->loop_father = loop;
250 
251       while (!stack.is_empty ())
252 	{
253 	  basic_block node;
254 	  edge e;
255 	  edge_iterator ei;
256 
257 	  node = stack.pop ();
258 
259 	  FOR_EACH_EDGE (e, ei, node->preds)
260 	    {
261 	      basic_block ancestor = e->src;
262 
263 	      if (ancestor->loop_father != loop)
264 		{
265 		  ancestor->loop_father = loop;
266 		  num_nodes++;
267 		  stack.safe_push (ancestor);
268 		}
269 	    }
270 	}
271     }
272   stack.release ();
273 
274   return num_nodes;
275 }
276 
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278    superloop is FATHER.  */
279 
280 static void
establish_preds(class loop * loop,class loop * father)281 establish_preds (class loop *loop, class loop *father)
282 {
283   loop_p ploop;
284   unsigned depth = loop_depth (father) + 1;
285   unsigned i;
286 
287   loop->superloops = 0;
288   vec_alloc (loop->superloops, depth);
289   FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290     loop->superloops->quick_push (ploop);
291   loop->superloops->quick_push (father);
292 
293   for (ploop = loop->inner; ploop; ploop = ploop->next)
294     establish_preds (ploop, loop);
295 }
296 
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298    added loop.  If LOOP has some children, take care of that their
299    pred field will be initialized correctly.  If AFTER is non-null
300    then it's expected it's a pointer into FATHERs inner sibling
301    list and LOOP is added behind AFTER, otherwise it's added in front
302    of FATHERs siblings.  */
303 
304 void
flow_loop_tree_node_add(class loop * father,class loop * loop,class loop * after)305 flow_loop_tree_node_add (class loop *father, class loop *loop,
306 			 class loop *after)
307 {
308   if (after)
309     {
310       loop->next = after->next;
311       after->next = loop;
312     }
313   else
314     {
315       loop->next = father->inner;
316       father->inner = loop;
317     }
318 
319   establish_preds (loop, father);
320 }
321 
322 /* Remove LOOP from the loop hierarchy tree.  */
323 
324 void
flow_loop_tree_node_remove(class loop * loop)325 flow_loop_tree_node_remove (class loop *loop)
326 {
327   class loop *prev, *father;
328 
329   father = loop_outer (loop);
330 
331   /* Remove loop from the list of sons.  */
332   if (father->inner == loop)
333     father->inner = loop->next;
334   else
335     {
336       for (prev = father->inner; prev->next != loop; prev = prev->next)
337 	continue;
338       prev->next = loop->next;
339     }
340 
341   loop->superloops = NULL;
342 }
343 
344 /* Allocates and returns new loop structure.  */
345 
346 class loop *
alloc_loop(void)347 alloc_loop (void)
348 {
349   class loop *loop = ggc_cleared_alloc<class loop> ();
350 
351   loop->exits = ggc_cleared_alloc<loop_exit> ();
352   loop->exits->next = loop->exits->prev = loop->exits;
353   loop->can_be_parallel = false;
354   loop->constraints = 0;
355   loop->nb_iterations_upper_bound = 0;
356   loop->nb_iterations_likely_upper_bound = 0;
357   loop->nb_iterations_estimate = 0;
358   return loop;
359 }
360 
361 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
362    (including the root of the loop tree).  */
363 
364 void
init_loops_structure(struct function * fn,struct loops * loops,unsigned num_loops)365 init_loops_structure (struct function *fn,
366 		      struct loops *loops, unsigned num_loops)
367 {
368   class loop *root;
369 
370   memset (loops, 0, sizeof *loops);
371   vec_alloc (loops->larray, num_loops);
372 
373   /* Dummy loop containing whole function.  */
374   root = alloc_loop ();
375   root->num_nodes = n_basic_blocks_for_fn (fn);
376   root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
377   root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
378   ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
379   EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
380 
381   loops->larray->quick_push (root);
382   loops->tree_root = root;
383 }
384 
385 /* Returns whether HEADER is a loop header.  */
386 
387 bool
bb_loop_header_p(basic_block header)388 bb_loop_header_p (basic_block header)
389 {
390   edge_iterator ei;
391   edge e;
392 
393   /* If we have an abnormal predecessor, do not consider the
394      loop (not worth the problems).  */
395   if (bb_has_abnormal_pred (header))
396     return false;
397 
398   /* Look for back edges where a predecessor is dominated
399      by this block.  A natural loop has a single entry
400      node (header) that dominates all the nodes in the
401      loop.  It also has single back edge to the header
402      from a latch node.  */
403   FOR_EACH_EDGE (e, ei, header->preds)
404     {
405       basic_block latch = e->src;
406       if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
407 	  && dominated_by_p (CDI_DOMINATORS, latch, header))
408 	return true;
409     }
410 
411   return false;
412 }
413 
414 /* Find all the natural loops in the function and save in LOOPS structure and
415    recalculate loop_father information in basic block structures.
416    If LOOPS is non-NULL then the loop structures for already recorded loops
417    will be re-used and their number will not change.  We assume that no
418    stale loops exist in LOOPS.
419    When LOOPS is NULL it is allocated and re-built from scratch.
420    Return the built LOOPS structure.  */
421 
422 struct loops *
flow_loops_find(struct loops * loops)423 flow_loops_find (struct loops *loops)
424 {
425   bool from_scratch = (loops == NULL);
426   int *rc_order;
427   int b;
428   unsigned i;
429 
430   /* Ensure that the dominators are computed.  */
431   calculate_dominance_info (CDI_DOMINATORS);
432 
433   if (!loops)
434     {
435       loops = ggc_cleared_alloc<struct loops> ();
436       init_loops_structure (cfun, loops, 1);
437     }
438 
439   /* Ensure that loop exits were released.  */
440   gcc_assert (loops->exits == NULL);
441 
442   /* Taking care of this degenerate case makes the rest of
443      this code simpler.  */
444   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
445     return loops;
446 
447   /* The root loop node contains all basic-blocks.  */
448   loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
449 
450   /* Compute depth first search order of the CFG so that outer
451      natural loops will be found before inner natural loops.  */
452   rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
453   pre_and_rev_post_order_compute (NULL, rc_order, false);
454 
455   /* Gather all loop headers in reverse completion order and allocate
456      loop structures for loops that are not already present.  */
457   auto_vec<loop_p> larray (loops->larray->length ());
458   for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
459     {
460       basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
461       if (bb_loop_header_p (header))
462 	{
463 	  class loop *loop;
464 
465 	  /* The current active loop tree has valid loop-fathers for
466 	     header blocks.  */
467 	  if (!from_scratch
468 	      && header->loop_father->header == header)
469 	    {
470 	      loop = header->loop_father;
471 	      /* If we found an existing loop remove it from the
472 		 loop tree.  It is going to be inserted again
473 		 below.  */
474 	      flow_loop_tree_node_remove (loop);
475 	    }
476 	  else
477 	    {
478 	      /* Otherwise allocate a new loop structure for the loop.  */
479 	      loop = alloc_loop ();
480 	      /* ???  We could re-use unused loop slots here.  */
481 	      loop->num = loops->larray->length ();
482 	      vec_safe_push (loops->larray, loop);
483 	      loop->header = header;
484 
485 	      if (!from_scratch
486 		  && dump_file && (dump_flags & TDF_DETAILS))
487 		fprintf (dump_file, "flow_loops_find: discovered new "
488 			 "loop %d with header %d\n",
489 			 loop->num, header->index);
490 	    }
491 	  /* Reset latch, we recompute it below.  */
492 	  loop->latch = NULL;
493 	  larray.safe_push (loop);
494 	}
495 
496       /* Make blocks part of the loop root node at start.  */
497       header->loop_father = loops->tree_root;
498     }
499 
500   free (rc_order);
501 
502   /* Now iterate over the loops found, insert them into the loop tree
503      and assign basic-block ownership.  */
504   for (i = 0; i < larray.length (); ++i)
505     {
506       class loop *loop = larray[i];
507       basic_block header = loop->header;
508       edge_iterator ei;
509       edge e;
510 
511       flow_loop_tree_node_add (header->loop_father, loop);
512       loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
513 
514       /* Look for the latch for this header block, if it has just a
515 	 single one.  */
516       FOR_EACH_EDGE (e, ei, header->preds)
517 	{
518 	  basic_block latch = e->src;
519 
520 	  if (flow_bb_inside_loop_p (loop, latch))
521 	    {
522 	      if (loop->latch != NULL)
523 		{
524 		  /* More than one latch edge.  */
525 		  loop->latch = NULL;
526 		  break;
527 		}
528 	      loop->latch = latch;
529 	    }
530 	}
531     }
532 
533   return loops;
534 }
535 
536 /* qsort helper for sort_sibling_loops.  */
537 
538 static int *sort_sibling_loops_cmp_rpo;
539 static int
sort_sibling_loops_cmp(const void * la_,const void * lb_)540 sort_sibling_loops_cmp (const void *la_, const void *lb_)
541 {
542   const class loop *la = *(const class loop * const *)la_;
543   const class loop *lb = *(const class loop * const *)lb_;
544   return (sort_sibling_loops_cmp_rpo[la->header->index]
545 	  - sort_sibling_loops_cmp_rpo[lb->header->index]);
546 }
547 
548 /* Sort sibling loops in RPO order.  */
549 
550 void
sort_sibling_loops(function * fn)551 sort_sibling_loops (function *fn)
552 {
553   /* Match flow_loops_find in the order we sort sibling loops.  */
554   sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
555   int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
556   pre_and_rev_post_order_compute_fn (fn, NULL, rc_order, false);
557   for (int i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; ++i)
558     sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
559   free (rc_order);
560 
561   auto_vec<loop_p, 3> siblings;
562   loop_p loop;
563   FOR_EACH_LOOP_FN (fn, loop, LI_INCLUDE_ROOT)
564     if (loop->inner && loop->inner->next)
565       {
566 	loop_p sibling = loop->inner;
567 	do
568 	  {
569 	    siblings.safe_push (sibling);
570 	    sibling = sibling->next;
571 	  }
572 	while (sibling);
573 	siblings.qsort (sort_sibling_loops_cmp);
574 	loop_p *siblingp = &loop->inner;
575 	for (unsigned i = 0; i < siblings.length (); ++i)
576 	  {
577 	    *siblingp = siblings[i];
578 	    siblingp = &(*siblingp)->next;
579 	  }
580 	*siblingp = NULL;
581 	siblings.truncate (0);
582       }
583 
584   free (sort_sibling_loops_cmp_rpo);
585   sort_sibling_loops_cmp_rpo = NULL;
586 }
587 
588 /* Ratio of frequencies of edges so that one of more latch edges is
589    considered to belong to inner loop with same header.  */
590 #define HEAVY_EDGE_RATIO 8
591 
592 /* Minimum number of samples for that we apply
593    find_subloop_latch_edge_by_profile heuristics.  */
594 #define HEAVY_EDGE_MIN_SAMPLES 10
595 
596 /* If the profile info is available, finds an edge in LATCHES that much more
597    frequent than the remaining edges.  Returns such an edge, or NULL if we do
598    not find one.
599 
600    We do not use guessed profile here, only the measured one.  The guessed
601    profile is usually too flat and unreliable for this (and it is mostly based
602    on the loop structure of the program, so it does not make much sense to
603    derive the loop structure from it).  */
604 
605 static edge
find_subloop_latch_edge_by_profile(vec<edge> latches)606 find_subloop_latch_edge_by_profile (vec<edge> latches)
607 {
608   unsigned i;
609   edge e, me = NULL;
610   profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
611 
612   FOR_EACH_VEC_ELT (latches, i, e)
613     {
614       if (e->count ()> mcount)
615 	{
616 	  me = e;
617 	  mcount = e->count();
618 	}
619       tcount += e->count();
620     }
621 
622   if (!tcount.initialized_p () || !(tcount.ipa () > HEAVY_EDGE_MIN_SAMPLES)
623       || (tcount - mcount).apply_scale (HEAVY_EDGE_RATIO, 1) > tcount)
624     return NULL;
625 
626   if (dump_file)
627     fprintf (dump_file,
628 	     "Found latch edge %d -> %d using profile information.\n",
629 	     me->src->index, me->dest->index);
630   return me;
631 }
632 
633 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
634    on the structure of induction variables.  Returns this edge, or NULL if we
635    do not find any.
636 
637    We are quite conservative, and look just for an obvious simple innermost
638    loop (which is the case where we would lose the most performance by not
639    disambiguating the loop).  More precisely, we look for the following
640    situation: The source of the chosen latch edge dominates sources of all
641    the other latch edges.  Additionally, the header does not contain a phi node
642    such that the argument from the chosen edge is equal to the argument from
643    another edge.  */
644 
645 static edge
find_subloop_latch_edge_by_ivs(class loop * loop ATTRIBUTE_UNUSED,vec<edge> latches)646 find_subloop_latch_edge_by_ivs (class loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
647 {
648   edge e, latch = latches[0];
649   unsigned i;
650   gphi *phi;
651   gphi_iterator psi;
652   tree lop;
653   basic_block bb;
654 
655   /* Find the candidate for the latch edge.  */
656   for (i = 1; latches.iterate (i, &e); i++)
657     if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
658       latch = e;
659 
660   /* Verify that it dominates all the latch edges.  */
661   FOR_EACH_VEC_ELT (latches, i, e)
662     if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
663       return NULL;
664 
665   /* Check for a phi node that would deny that this is a latch edge of
666      a subloop.  */
667   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
668     {
669       phi = psi.phi ();
670       lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
671 
672       /* Ignore the values that are not changed inside the subloop.  */
673       if (TREE_CODE (lop) != SSA_NAME
674 	  || SSA_NAME_DEF_STMT (lop) == phi)
675 	continue;
676       bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
677       if (!bb || !flow_bb_inside_loop_p (loop, bb))
678 	continue;
679 
680       FOR_EACH_VEC_ELT (latches, i, e)
681 	if (e != latch
682 	    && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
683 	  return NULL;
684     }
685 
686   if (dump_file)
687     fprintf (dump_file,
688 	     "Found latch edge %d -> %d using iv structure.\n",
689 	     latch->src->index, latch->dest->index);
690   return latch;
691 }
692 
693 /* If we can determine that one of the several latch edges of LOOP behaves
694    as a latch edge of a separate subloop, returns this edge.  Otherwise
695    returns NULL.  */
696 
697 static edge
find_subloop_latch_edge(class loop * loop)698 find_subloop_latch_edge (class loop *loop)
699 {
700   vec<edge> latches = get_loop_latch_edges (loop);
701   edge latch = NULL;
702 
703   if (latches.length () > 1)
704     {
705       latch = find_subloop_latch_edge_by_profile (latches);
706 
707       if (!latch
708 	  /* We consider ivs to guess the latch edge only in SSA.  Perhaps we
709 	     should use cfghook for this, but it is hard to imagine it would
710 	     be useful elsewhere.  */
711 	  && current_ir_type () == IR_GIMPLE)
712 	latch = find_subloop_latch_edge_by_ivs (loop, latches);
713     }
714 
715   latches.release ();
716   return latch;
717 }
718 
719 /* Callback for make_forwarder_block.  Returns true if the edge E is marked
720    in the set MFB_REIS_SET.  */
721 
722 static hash_set<edge> *mfb_reis_set;
723 static bool
mfb_redirect_edges_in_set(edge e)724 mfb_redirect_edges_in_set (edge e)
725 {
726   return mfb_reis_set->contains (e);
727 }
728 
729 /* Creates a subloop of LOOP with latch edge LATCH.  */
730 
731 static void
form_subloop(class loop * loop,edge latch)732 form_subloop (class loop *loop, edge latch)
733 {
734   edge_iterator ei;
735   edge e, new_entry;
736   class loop *new_loop;
737 
738   mfb_reis_set = new hash_set<edge>;
739   FOR_EACH_EDGE (e, ei, loop->header->preds)
740     {
741       if (e != latch)
742 	mfb_reis_set->add (e);
743     }
744   new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
745 				    NULL);
746   delete mfb_reis_set;
747 
748   loop->header = new_entry->src;
749 
750   /* Find the blocks and subloops that belong to the new loop, and add it to
751      the appropriate place in the loop tree.  */
752   new_loop = alloc_loop ();
753   new_loop->header = new_entry->dest;
754   new_loop->latch = latch->src;
755   add_loop (new_loop, loop);
756 }
757 
758 /* Make all the latch edges of LOOP to go to a single forwarder block --
759    a new latch of LOOP.  */
760 
761 static void
merge_latch_edges(class loop * loop)762 merge_latch_edges (class loop *loop)
763 {
764   vec<edge> latches = get_loop_latch_edges (loop);
765   edge latch, e;
766   unsigned i;
767 
768   gcc_assert (latches.length () > 0);
769 
770   if (latches.length () == 1)
771     loop->latch = latches[0]->src;
772   else
773     {
774       if (dump_file)
775 	fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
776 
777       mfb_reis_set = new hash_set<edge>;
778       FOR_EACH_VEC_ELT (latches, i, e)
779 	mfb_reis_set->add (e);
780       latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
781 				    NULL);
782       delete mfb_reis_set;
783 
784       loop->header = latch->dest;
785       loop->latch = latch->src;
786     }
787 
788   latches.release ();
789 }
790 
791 /* LOOP may have several latch edges.  Transform it into (possibly several)
792    loops with single latch edge.  */
793 
794 static void
disambiguate_multiple_latches(class loop * loop)795 disambiguate_multiple_latches (class loop *loop)
796 {
797   edge e;
798 
799   /* We eliminate the multiple latches by splitting the header to the forwarder
800      block F and the rest R, and redirecting the edges.  There are two cases:
801 
802      1) If there is a latch edge E that corresponds to a subloop (we guess
803         that based on profile -- if it is taken much more often than the
804 	remaining edges; and on trees, using the information about induction
805 	variables of the loops), we redirect E to R, all the remaining edges to
806 	F, then rescan the loops and try again for the outer loop.
807      2) If there is no such edge, we redirect all latch edges to F, and the
808         entry edges to R, thus making F the single latch of the loop.  */
809 
810   if (dump_file)
811     fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
812 	     loop->num);
813 
814   /* During latch merging, we may need to redirect the entry edges to a new
815      block.  This would cause problems if the entry edge was the one from the
816      entry block.  To avoid having to handle this case specially, split
817      such entry edge.  */
818   e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
819   if (e)
820     split_edge (e);
821 
822   while (1)
823     {
824       e = find_subloop_latch_edge (loop);
825       if (!e)
826 	break;
827 
828       form_subloop (loop, e);
829     }
830 
831   merge_latch_edges (loop);
832 }
833 
834 /* Split loops with multiple latch edges.  */
835 
836 void
disambiguate_loops_with_multiple_latches(void)837 disambiguate_loops_with_multiple_latches (void)
838 {
839   class loop *loop;
840 
841   FOR_EACH_LOOP (loop, 0)
842     {
843       if (!loop->latch)
844 	disambiguate_multiple_latches (loop);
845     }
846 }
847 
848 /* Return nonzero if basic block BB belongs to LOOP.  */
849 bool
flow_bb_inside_loop_p(const class loop * loop,const_basic_block bb)850 flow_bb_inside_loop_p (const class loop *loop, const_basic_block bb)
851 {
852   class loop *source_loop;
853 
854   if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
855       || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
856     return 0;
857 
858   source_loop = bb->loop_father;
859   return loop == source_loop || flow_loop_nested_p (loop, source_loop);
860 }
861 
862 /* Enumeration predicate for get_loop_body_with_size.  */
863 static bool
glb_enum_p(const_basic_block bb,const void * glb_loop)864 glb_enum_p (const_basic_block bb, const void *glb_loop)
865 {
866   const class loop *const loop = (const class loop *) glb_loop;
867   return (bb != loop->header
868 	  && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
869 }
870 
871 /* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
872    order against direction of edges from latch.  Specially, if
873    header != latch, latch is the 1-st block.  LOOP cannot be the fake
874    loop tree root, and its size must be at most MAX_SIZE.  The blocks
875    in the LOOP body are stored to BODY, and the size of the LOOP is
876    returned.  */
877 
878 unsigned
get_loop_body_with_size(const class loop * loop,basic_block * body,unsigned max_size)879 get_loop_body_with_size (const class loop *loop, basic_block *body,
880 			 unsigned max_size)
881 {
882   return dfs_enumerate_from (loop->header, 1, glb_enum_p,
883 			     body, max_size, loop);
884 }
885 
886 /* Gets basic blocks of a LOOP.  Header is the 0-th block, rest is in dfs
887    order against direction of edges from latch.  Specially, if
888    header != latch, latch is the 1-st block.  */
889 
890 basic_block *
get_loop_body(const class loop * loop)891 get_loop_body (const class loop *loop)
892 {
893   basic_block *body, bb;
894   unsigned tv = 0;
895 
896   gcc_assert (loop->num_nodes);
897 
898   body = XNEWVEC (basic_block, loop->num_nodes);
899 
900   if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
901     {
902       /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
903 	 special-case the fake loop that contains the whole function.  */
904       gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
905       body[tv++] = loop->header;
906       body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
907       FOR_EACH_BB_FN (bb, cfun)
908 	body[tv++] = bb;
909     }
910   else
911     tv = get_loop_body_with_size (loop, body, loop->num_nodes);
912 
913   gcc_assert (tv == loop->num_nodes);
914   return body;
915 }
916 
917 /* Fills dominance descendants inside LOOP of the basic block BB into
918    array TOVISIT from index *TV.  */
919 
920 static void
fill_sons_in_loop(const class loop * loop,basic_block bb,basic_block * tovisit,int * tv)921 fill_sons_in_loop (const class loop *loop, basic_block bb,
922 		   basic_block *tovisit, int *tv)
923 {
924   basic_block son, postpone = NULL;
925 
926   tovisit[(*tv)++] = bb;
927   for (son = first_dom_son (CDI_DOMINATORS, bb);
928        son;
929        son = next_dom_son (CDI_DOMINATORS, son))
930     {
931       if (!flow_bb_inside_loop_p (loop, son))
932 	continue;
933 
934       if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
935 	{
936 	  postpone = son;
937 	  continue;
938 	}
939       fill_sons_in_loop (loop, son, tovisit, tv);
940     }
941 
942   if (postpone)
943     fill_sons_in_loop (loop, postpone, tovisit, tv);
944 }
945 
946 /* Gets body of a LOOP (that must be different from the outermost loop)
947    sorted by dominance relation.  Additionally, if a basic block s dominates
948    the latch, then only blocks dominated by s are be after it.  */
949 
950 basic_block *
get_loop_body_in_dom_order(const class loop * loop)951 get_loop_body_in_dom_order (const class loop *loop)
952 {
953   basic_block *tovisit;
954   int tv;
955 
956   gcc_assert (loop->num_nodes);
957 
958   tovisit = XNEWVEC (basic_block, loop->num_nodes);
959 
960   gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
961 
962   tv = 0;
963   fill_sons_in_loop (loop, loop->header, tovisit, &tv);
964 
965   gcc_assert (tv == (int) loop->num_nodes);
966 
967   return tovisit;
968 }
969 
970 /* Gets body of a LOOP sorted via provided BB_COMPARATOR.  */
971 
972 basic_block *
get_loop_body_in_custom_order(const class loop * loop,int (* bb_comparator)(const void *,const void *))973 get_loop_body_in_custom_order (const class loop *loop,
974 			       int (*bb_comparator) (const void *, const void *))
975 {
976   basic_block *bbs = get_loop_body (loop);
977 
978   qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
979 
980   return bbs;
981 }
982 
983 /* Same as above, but use gcc_sort_r instead of qsort.  */
984 
985 basic_block *
get_loop_body_in_custom_order(const class loop * loop,void * data,int (* bb_comparator)(const void *,const void *,void *))986 get_loop_body_in_custom_order (const class loop *loop, void *data,
987 			       int (*bb_comparator) (const void *, const void *, void *))
988 {
989   basic_block *bbs = get_loop_body (loop);
990 
991   gcc_sort_r (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator, data);
992 
993   return bbs;
994 }
995 
996 /* Get body of a LOOP in breadth first sort order.  */
997 
998 basic_block *
get_loop_body_in_bfs_order(const class loop * loop)999 get_loop_body_in_bfs_order (const class loop *loop)
1000 {
1001   basic_block *blocks;
1002   basic_block bb;
1003   unsigned int i = 1;
1004   unsigned int vc = 0;
1005 
1006   gcc_assert (loop->num_nodes);
1007   gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1008 
1009   blocks = XNEWVEC (basic_block, loop->num_nodes);
1010   auto_bitmap visited;
1011   blocks[0] = loop->header;
1012   bitmap_set_bit (visited, loop->header->index);
1013   while (i < loop->num_nodes)
1014     {
1015       edge e;
1016       edge_iterator ei;
1017       gcc_assert (i > vc);
1018       bb = blocks[vc++];
1019 
1020       FOR_EACH_EDGE (e, ei, bb->succs)
1021 	{
1022 	  if (flow_bb_inside_loop_p (loop, e->dest))
1023 	    {
1024 	      /* This bb is now visited.  */
1025 	      if (bitmap_set_bit (visited, e->dest->index))
1026 		blocks[i++] = e->dest;
1027 	    }
1028 	}
1029     }
1030 
1031   return blocks;
1032 }
1033 
1034 /* Hash function for struct loop_exit.  */
1035 
1036 hashval_t
hash(loop_exit * exit)1037 loop_exit_hasher::hash (loop_exit *exit)
1038 {
1039   return htab_hash_pointer (exit->e);
1040 }
1041 
1042 /* Equality function for struct loop_exit.  Compares with edge.  */
1043 
1044 bool
equal(loop_exit * exit,edge e)1045 loop_exit_hasher::equal (loop_exit *exit, edge e)
1046 {
1047   return exit->e == e;
1048 }
1049 
1050 /* Frees the list of loop exit descriptions EX.  */
1051 
1052 void
remove(loop_exit * exit)1053 loop_exit_hasher::remove (loop_exit *exit)
1054 {
1055   loop_exit *next;
1056   for (; exit; exit = next)
1057     {
1058       next = exit->next_e;
1059 
1060       exit->next->prev = exit->prev;
1061       exit->prev->next = exit->next;
1062 
1063       ggc_free (exit);
1064     }
1065 }
1066 
1067 /* Returns the list of records for E as an exit of a loop.  */
1068 
1069 static struct loop_exit *
get_exit_descriptions(edge e)1070 get_exit_descriptions (edge e)
1071 {
1072   return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1073 }
1074 
1075 /* Updates the lists of loop exits in that E appears.
1076    If REMOVED is true, E is being removed, and we
1077    just remove it from the lists of exits.
1078    If NEW_EDGE is true and E is not a loop exit, we
1079    do not try to remove it from loop exit lists.  */
1080 
1081 void
rescan_loop_exit(edge e,bool new_edge,bool removed)1082 rescan_loop_exit (edge e, bool new_edge, bool removed)
1083 {
1084   struct loop_exit *exits = NULL, *exit;
1085   class loop *aloop, *cloop;
1086 
1087   if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1088     return;
1089 
1090   if (!removed
1091       && e->src->loop_father != NULL
1092       && e->dest->loop_father != NULL
1093       && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1094     {
1095       cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1096       for (aloop = e->src->loop_father;
1097 	   aloop != cloop;
1098 	   aloop = loop_outer (aloop))
1099 	{
1100 	  exit = ggc_alloc<loop_exit> ();
1101 	  exit->e = e;
1102 
1103 	  exit->next = aloop->exits->next;
1104 	  exit->prev = aloop->exits;
1105 	  exit->next->prev = exit;
1106 	  exit->prev->next = exit;
1107 
1108 	  exit->next_e = exits;
1109 	  exits = exit;
1110 	}
1111     }
1112 
1113   if (!exits && new_edge)
1114     return;
1115 
1116   loop_exit **slot
1117     = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1118 						 exits ? INSERT : NO_INSERT);
1119   if (!slot)
1120     return;
1121 
1122   if (exits)
1123     {
1124       if (*slot)
1125 	loop_exit_hasher::remove (*slot);
1126       *slot = exits;
1127     }
1128   else
1129     current_loops->exits->clear_slot (slot);
1130 }
1131 
1132 /* For each loop, record list of exit edges, and start maintaining these
1133    lists.  */
1134 
1135 void
record_loop_exits(void)1136 record_loop_exits (void)
1137 {
1138   basic_block bb;
1139   edge_iterator ei;
1140   edge e;
1141 
1142   if (!current_loops)
1143     return;
1144 
1145   if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1146     return;
1147   loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1148 
1149   gcc_assert (current_loops->exits == NULL);
1150   current_loops->exits
1151     = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1152 
1153   FOR_EACH_BB_FN (bb, cfun)
1154     {
1155       FOR_EACH_EDGE (e, ei, bb->succs)
1156 	{
1157 	  rescan_loop_exit (e, true, false);
1158 	}
1159     }
1160 }
1161 
1162 /* Dumps information about the exit in *SLOT to FILE.
1163    Callback for htab_traverse.  */
1164 
1165 int
dump_recorded_exit(loop_exit ** slot,FILE * file)1166 dump_recorded_exit (loop_exit **slot, FILE *file)
1167 {
1168   struct loop_exit *exit = *slot;
1169   unsigned n = 0;
1170   edge e = exit->e;
1171 
1172   for (; exit != NULL; exit = exit->next_e)
1173     n++;
1174 
1175   fprintf (file, "Edge %d->%d exits %u loops\n",
1176 	   e->src->index, e->dest->index, n);
1177 
1178   return 1;
1179 }
1180 
1181 /* Dumps the recorded exits of loops to FILE.  */
1182 
1183 extern void dump_recorded_exits (FILE *);
1184 void
dump_recorded_exits(FILE * file)1185 dump_recorded_exits (FILE *file)
1186 {
1187   if (!current_loops->exits)
1188     return;
1189   current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1190 }
1191 
1192 /* Releases lists of loop exits.  */
1193 
1194 void
release_recorded_exits(function * fn)1195 release_recorded_exits (function *fn)
1196 {
1197   gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1198   loops_for_fn (fn)->exits->empty ();
1199   loops_for_fn (fn)->exits = NULL;
1200   loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1201 }
1202 
1203 /* Returns the list of the exit edges of a LOOP.  */
1204 
1205 vec<edge>
get_loop_exit_edges(const class loop * loop,basic_block * body)1206 get_loop_exit_edges (const class loop *loop, basic_block *body)
1207 {
1208   vec<edge> edges = vNULL;
1209   edge e;
1210   unsigned i;
1211   edge_iterator ei;
1212   struct loop_exit *exit;
1213 
1214   gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1215 
1216   /* If we maintain the lists of exits, use them.  Otherwise we must
1217      scan the body of the loop.  */
1218   if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1219     {
1220       for (exit = loop->exits->next; exit->e; exit = exit->next)
1221 	edges.safe_push (exit->e);
1222     }
1223   else
1224     {
1225       bool body_from_caller = true;
1226       if (!body)
1227 	{
1228 	  body = get_loop_body (loop);
1229 	  body_from_caller = false;
1230 	}
1231       for (i = 0; i < loop->num_nodes; i++)
1232 	FOR_EACH_EDGE (e, ei, body[i]->succs)
1233 	  {
1234 	    if (!flow_bb_inside_loop_p (loop, e->dest))
1235 	      edges.safe_push (e);
1236 	  }
1237       if (!body_from_caller)
1238 	free (body);
1239     }
1240 
1241   return edges;
1242 }
1243 
1244 /* Counts the number of conditional branches inside LOOP.  */
1245 
1246 unsigned
num_loop_branches(const class loop * loop)1247 num_loop_branches (const class loop *loop)
1248 {
1249   unsigned i, n;
1250   basic_block * body;
1251 
1252   gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1253 
1254   body = get_loop_body (loop);
1255   n = 0;
1256   for (i = 0; i < loop->num_nodes; i++)
1257     if (EDGE_COUNT (body[i]->succs) >= 2)
1258       n++;
1259   free (body);
1260 
1261   return n;
1262 }
1263 
1264 /* Adds basic block BB to LOOP.  */
1265 void
add_bb_to_loop(basic_block bb,class loop * loop)1266 add_bb_to_loop (basic_block bb, class loop *loop)
1267 {
1268   unsigned i;
1269   loop_p ploop;
1270   edge_iterator ei;
1271   edge e;
1272 
1273   gcc_assert (bb->loop_father == NULL);
1274   bb->loop_father = loop;
1275   loop->num_nodes++;
1276   FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1277     ploop->num_nodes++;
1278 
1279   FOR_EACH_EDGE (e, ei, bb->succs)
1280     {
1281       rescan_loop_exit (e, true, false);
1282     }
1283   FOR_EACH_EDGE (e, ei, bb->preds)
1284     {
1285       rescan_loop_exit (e, true, false);
1286     }
1287 }
1288 
1289 /* Remove basic block BB from loops.  */
1290 void
remove_bb_from_loops(basic_block bb)1291 remove_bb_from_loops (basic_block bb)
1292 {
1293   unsigned i;
1294   class loop *loop = bb->loop_father;
1295   loop_p ploop;
1296   edge_iterator ei;
1297   edge e;
1298 
1299   gcc_assert (loop != NULL);
1300   loop->num_nodes--;
1301   FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1302     ploop->num_nodes--;
1303   bb->loop_father = NULL;
1304 
1305   FOR_EACH_EDGE (e, ei, bb->succs)
1306     {
1307       rescan_loop_exit (e, false, true);
1308     }
1309   FOR_EACH_EDGE (e, ei, bb->preds)
1310     {
1311       rescan_loop_exit (e, false, true);
1312     }
1313 }
1314 
1315 /* Finds nearest common ancestor in loop tree for given loops.  */
1316 class loop *
find_common_loop(class loop * loop_s,class loop * loop_d)1317 find_common_loop (class loop *loop_s, class loop *loop_d)
1318 {
1319   unsigned sdepth, ddepth;
1320 
1321   if (!loop_s) return loop_d;
1322   if (!loop_d) return loop_s;
1323 
1324   sdepth = loop_depth (loop_s);
1325   ddepth = loop_depth (loop_d);
1326 
1327   if (sdepth < ddepth)
1328     loop_d = (*loop_d->superloops)[sdepth];
1329   else if (sdepth > ddepth)
1330     loop_s = (*loop_s->superloops)[ddepth];
1331 
1332   while (loop_s != loop_d)
1333     {
1334       loop_s = loop_outer (loop_s);
1335       loop_d = loop_outer (loop_d);
1336     }
1337   return loop_s;
1338 }
1339 
1340 /* Removes LOOP from structures and frees its data.  */
1341 
1342 void
delete_loop(class loop * loop)1343 delete_loop (class loop *loop)
1344 {
1345   /* Remove the loop from structure.  */
1346   flow_loop_tree_node_remove (loop);
1347 
1348   /* Remove loop from loops array.  */
1349   (*current_loops->larray)[loop->num] = NULL;
1350 
1351   /* Free loop data.  */
1352   flow_loop_free (loop);
1353 }
1354 
1355 /* Cancels the LOOP; it must be innermost one.  */
1356 
1357 static void
cancel_loop(class loop * loop)1358 cancel_loop (class loop *loop)
1359 {
1360   basic_block *bbs;
1361   unsigned i;
1362   class loop *outer = loop_outer (loop);
1363 
1364   gcc_assert (!loop->inner);
1365 
1366   /* Move blocks up one level (they should be removed as soon as possible).  */
1367   bbs = get_loop_body (loop);
1368   for (i = 0; i < loop->num_nodes; i++)
1369     bbs[i]->loop_father = outer;
1370 
1371   free (bbs);
1372   delete_loop (loop);
1373 }
1374 
1375 /* Cancels LOOP and all its subloops.  */
1376 void
cancel_loop_tree(class loop * loop)1377 cancel_loop_tree (class loop *loop)
1378 {
1379   while (loop->inner)
1380     cancel_loop_tree (loop->inner);
1381   cancel_loop (loop);
1382 }
1383 
1384 /* Disable warnings about missing quoting in GCC diagnostics for
1385    the verification errors.  Their format strings don't follow GCC
1386    diagnostic conventions and the calls are ultimately followed by
1387    a deliberate ICE triggered by a failed assertion.  */
1388 #if __GNUC__ >= 10
1389 #  pragma GCC diagnostic push
1390 #  pragma GCC diagnostic ignored "-Wformat-diag"
1391 #endif
1392 
1393 /* Checks that information about loops is correct
1394      -- sizes of loops are all right
1395      -- results of get_loop_body really belong to the loop
1396      -- loop header have just single entry edge and single latch edge
1397      -- loop latches have only single successor that is header of their loop
1398      -- irreducible loops are correctly marked
1399      -- the cached loop depth and loop father of each bb is correct
1400   */
1401 DEBUG_FUNCTION void
verify_loop_structure(void)1402 verify_loop_structure (void)
1403 {
1404   unsigned *sizes, i, j;
1405   basic_block bb, *bbs;
1406   class loop *loop;
1407   int err = 0;
1408   edge e;
1409   unsigned num = number_of_loops (cfun);
1410   struct loop_exit *exit, *mexit;
1411   bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1412 
1413   if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1414     {
1415       error ("loop verification on loop tree that needs fixup");
1416       err = 1;
1417     }
1418 
1419   /* We need up-to-date dominators, compute or verify them.  */
1420   if (!dom_available)
1421     calculate_dominance_info (CDI_DOMINATORS);
1422   else
1423     verify_dominators (CDI_DOMINATORS);
1424 
1425   /* Check the loop tree root.  */
1426   if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1427       || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1428       || (current_loops->tree_root->num_nodes
1429 	  != (unsigned) n_basic_blocks_for_fn (cfun)))
1430     {
1431       error ("corrupt loop tree root");
1432       err = 1;
1433     }
1434 
1435   /* Check the headers.  */
1436   FOR_EACH_BB_FN (bb, cfun)
1437     if (bb_loop_header_p (bb))
1438       {
1439 	if (bb->loop_father->header == NULL)
1440 	  {
1441 	    error ("loop with header %d marked for removal", bb->index);
1442 	    err = 1;
1443 	  }
1444 	else if (bb->loop_father->header != bb)
1445 	  {
1446 	    error ("loop with header %d not in loop tree", bb->index);
1447 	    err = 1;
1448 	  }
1449       }
1450     else if (bb->loop_father->header == bb)
1451       {
1452 	error ("non-loop with header %d not marked for removal", bb->index);
1453 	err = 1;
1454       }
1455 
1456   /* Check the recorded loop father and sizes of loops.  */
1457   auto_sbitmap visited (last_basic_block_for_fn (cfun));
1458   bitmap_clear (visited);
1459   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1460   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1461     {
1462       unsigned n;
1463 
1464       if (loop->header == NULL)
1465 	{
1466 	  error ("removed loop %d in loop tree", loop->num);
1467 	  err = 1;
1468 	  continue;
1469 	}
1470 
1471       n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1472       if (loop->num_nodes != n)
1473 	{
1474 	  error ("size of loop %d should be %d, not %d",
1475 		 loop->num, n, loop->num_nodes);
1476 	  err = 1;
1477 	}
1478 
1479       for (j = 0; j < n; j++)
1480 	{
1481 	  bb = bbs[j];
1482 
1483 	  if (!flow_bb_inside_loop_p (loop, bb))
1484 	    {
1485 	      error ("bb %d does not belong to loop %d",
1486 		     bb->index, loop->num);
1487 	      err = 1;
1488 	    }
1489 
1490 	  /* Ignore this block if it is in an inner loop.  */
1491 	  if (bitmap_bit_p (visited, bb->index))
1492 	    continue;
1493 	  bitmap_set_bit (visited, bb->index);
1494 
1495 	  if (bb->loop_father != loop)
1496 	    {
1497 	      error ("bb %d has father loop %d, should be loop %d",
1498 		     bb->index, bb->loop_father->num, loop->num);
1499 	      err = 1;
1500 	    }
1501 	}
1502     }
1503   free (bbs);
1504 
1505   /* Check headers and latches.  */
1506   FOR_EACH_LOOP (loop, 0)
1507     {
1508       i = loop->num;
1509       if (loop->header == NULL)
1510 	continue;
1511       if (!bb_loop_header_p (loop->header))
1512 	{
1513 	  error ("loop %d%'s header is not a loop header", i);
1514 	  err = 1;
1515 	}
1516       if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1517 	  && EDGE_COUNT (loop->header->preds) != 2)
1518 	{
1519 	  error ("loop %d%'s header does not have exactly 2 entries", i);
1520 	  err = 1;
1521 	}
1522       if (loop->latch)
1523 	{
1524 	  if (!find_edge (loop->latch, loop->header))
1525 	    {
1526 	      error ("loop %d%'s latch does not have an edge to its header", i);
1527 	      err = 1;
1528 	    }
1529 	  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1530 	    {
1531 	      error ("loop %d%'s latch is not dominated by its header", i);
1532 	      err = 1;
1533 	    }
1534 	}
1535       if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1536 	{
1537 	  if (!single_succ_p (loop->latch))
1538 	    {
1539 	      error ("loop %d%'s latch does not have exactly 1 successor", i);
1540 	      err = 1;
1541 	    }
1542 	  if (single_succ (loop->latch) != loop->header)
1543 	    {
1544 	      error ("loop %d%'s latch does not have header as successor", i);
1545 	      err = 1;
1546 	    }
1547 	  if (loop->latch->loop_father != loop)
1548 	    {
1549 	      error ("loop %d%'s latch does not belong directly to it", i);
1550 	      err = 1;
1551 	    }
1552 	}
1553       if (loop->header->loop_father != loop)
1554 	{
1555 	  error ("loop %d%'s header does not belong directly to it", i);
1556 	  err = 1;
1557 	}
1558       if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1559 	  && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1560 	{
1561 	  error ("loop %d%'s latch is marked as part of irreducible region", i);
1562 	  err = 1;
1563 	}
1564     }
1565 
1566   /* Check irreducible loops.  */
1567   if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1568     {
1569       auto_edge_flag saved_irr_mask (cfun);
1570       /* Record old info.  */
1571       auto_sbitmap irreds (last_basic_block_for_fn (cfun));
1572       FOR_EACH_BB_FN (bb, cfun)
1573 	{
1574 	  edge_iterator ei;
1575 	  if (bb->flags & BB_IRREDUCIBLE_LOOP)
1576 	    bitmap_set_bit (irreds, bb->index);
1577 	  else
1578 	    bitmap_clear_bit (irreds, bb->index);
1579 	  FOR_EACH_EDGE (e, ei, bb->succs)
1580 	    if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1581 	      e->flags |= saved_irr_mask;
1582 	}
1583 
1584       /* Recount it.  */
1585       mark_irreducible_loops ();
1586 
1587       /* Compare.  */
1588       FOR_EACH_BB_FN (bb, cfun)
1589 	{
1590 	  edge_iterator ei;
1591 
1592 	  if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1593 	      && !bitmap_bit_p (irreds, bb->index))
1594 	    {
1595 	      error ("basic block %d should be marked irreducible", bb->index);
1596 	      err = 1;
1597 	    }
1598 	  else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1599 	      && bitmap_bit_p (irreds, bb->index))
1600 	    {
1601 	      error ("basic block %d should not be marked irreducible", bb->index);
1602 	      err = 1;
1603 	    }
1604 	  FOR_EACH_EDGE (e, ei, bb->succs)
1605 	    {
1606 	      if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1607 		  && !(e->flags & saved_irr_mask))
1608 		{
1609 		  error ("edge from %d to %d should be marked irreducible",
1610 			 e->src->index, e->dest->index);
1611 		  err = 1;
1612 		}
1613 	      else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1614 		       && (e->flags & saved_irr_mask))
1615 		{
1616 		  error ("edge from %d to %d should not be marked irreducible",
1617 			 e->src->index, e->dest->index);
1618 		  err = 1;
1619 		}
1620 	      e->flags &= ~saved_irr_mask;
1621 	    }
1622 	}
1623     }
1624 
1625   /* Check the recorded loop exits.  */
1626   FOR_EACH_LOOP (loop, 0)
1627     {
1628       if (!loop->exits || loop->exits->e != NULL)
1629 	{
1630 	  error ("corrupted head of the exits list of loop %d",
1631 		 loop->num);
1632 	  err = 1;
1633 	}
1634       else
1635 	{
1636 	  /* Check that the list forms a cycle, and all elements except
1637 	     for the head are nonnull.  */
1638 	  for (mexit = loop->exits, exit = mexit->next, i = 0;
1639 	       exit->e && exit != mexit;
1640 	       exit = exit->next)
1641 	    {
1642 	      if (i++ & 1)
1643 		mexit = mexit->next;
1644 	    }
1645 
1646 	  if (exit != loop->exits)
1647 	    {
1648 	      error ("corrupted exits list of loop %d", loop->num);
1649 	      err = 1;
1650 	    }
1651 	}
1652 
1653       if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1654 	{
1655 	  if (loop->exits->next != loop->exits)
1656 	    {
1657 	      error ("nonempty exits list of loop %d, but exits are not recorded",
1658 		     loop->num);
1659 	      err = 1;
1660 	    }
1661 	}
1662     }
1663 
1664   if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1665     {
1666       unsigned n_exits = 0, eloops;
1667 
1668       sizes = XCNEWVEC (unsigned, num);
1669       memset (sizes, 0, sizeof (unsigned) * num);
1670       FOR_EACH_BB_FN (bb, cfun)
1671 	{
1672 	  edge_iterator ei;
1673 	  if (bb->loop_father == current_loops->tree_root)
1674 	    continue;
1675 	  FOR_EACH_EDGE (e, ei, bb->succs)
1676 	    {
1677 	      if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1678 		continue;
1679 
1680 	      n_exits++;
1681 	      exit = get_exit_descriptions (e);
1682 	      if (!exit)
1683 		{
1684 		  error ("exit %d->%d not recorded",
1685 			 e->src->index, e->dest->index);
1686 		  err = 1;
1687 		}
1688 	      eloops = 0;
1689 	      for (; exit; exit = exit->next_e)
1690 		eloops++;
1691 
1692 	      for (loop = bb->loop_father;
1693 		   loop != e->dest->loop_father
1694 		   /* When a loop exit is also an entry edge which
1695 		      can happen when avoiding CFG manipulations
1696 		      then the last loop exited is the outer loop
1697 		      of the loop entered.  */
1698 		   && loop != loop_outer (e->dest->loop_father);
1699 		   loop = loop_outer (loop))
1700 		{
1701 		  eloops--;
1702 		  sizes[loop->num]++;
1703 		}
1704 
1705 	      if (eloops != 0)
1706 		{
1707 		  error ("wrong list of exited loops for edge %d->%d",
1708 			 e->src->index, e->dest->index);
1709 		  err = 1;
1710 		}
1711 	    }
1712 	}
1713 
1714       if (n_exits != current_loops->exits->elements ())
1715 	{
1716 	  error ("too many loop exits recorded");
1717 	  err = 1;
1718 	}
1719 
1720       FOR_EACH_LOOP (loop, 0)
1721 	{
1722 	  eloops = 0;
1723 	  for (exit = loop->exits->next; exit->e; exit = exit->next)
1724 	    eloops++;
1725 	  if (eloops != sizes[loop->num])
1726 	    {
1727 	      error ("%d exits recorded for loop %d (having %d exits)",
1728 		     eloops, loop->num, sizes[loop->num]);
1729 	      err = 1;
1730 	    }
1731 	}
1732 
1733       free (sizes);
1734     }
1735 
1736   gcc_assert (!err);
1737 
1738   if (!dom_available)
1739     free_dominance_info (CDI_DOMINATORS);
1740 }
1741 
1742 #if __GNUC__ >= 10
1743 #  pragma GCC diagnostic pop
1744 #endif
1745 
1746 /* Returns latch edge of LOOP.  */
1747 edge
loop_latch_edge(const class loop * loop)1748 loop_latch_edge (const class loop *loop)
1749 {
1750   return find_edge (loop->latch, loop->header);
1751 }
1752 
1753 /* Returns preheader edge of LOOP.  */
1754 edge
loop_preheader_edge(const class loop * loop)1755 loop_preheader_edge (const class loop *loop)
1756 {
1757   edge e;
1758   edge_iterator ei;
1759 
1760   gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1761 	      && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
1762 
1763   FOR_EACH_EDGE (e, ei, loop->header->preds)
1764     if (e->src != loop->latch)
1765       break;
1766 
1767   if (! e)
1768     {
1769       gcc_assert (! loop_outer (loop));
1770       return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1771     }
1772 
1773   return e;
1774 }
1775 
1776 /* Returns true if E is an exit of LOOP.  */
1777 
1778 bool
loop_exit_edge_p(const class loop * loop,const_edge e)1779 loop_exit_edge_p (const class loop *loop, const_edge e)
1780 {
1781   return (flow_bb_inside_loop_p (loop, e->src)
1782 	  && !flow_bb_inside_loop_p (loop, e->dest));
1783 }
1784 
1785 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1786    or more than one exit.  If loops do not have the exits recorded, NULL
1787    is returned always.  */
1788 
1789 edge
single_exit(const class loop * loop)1790 single_exit (const class loop *loop)
1791 {
1792   struct loop_exit *exit = loop->exits->next;
1793 
1794   if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1795     return NULL;
1796 
1797   if (exit->e && exit->next == loop->exits)
1798     return exit->e;
1799   else
1800     return NULL;
1801 }
1802 
1803 /* Returns true when BB has an incoming edge exiting LOOP.  */
1804 
1805 bool
loop_exits_to_bb_p(class loop * loop,basic_block bb)1806 loop_exits_to_bb_p (class loop *loop, basic_block bb)
1807 {
1808   edge e;
1809   edge_iterator ei;
1810 
1811   FOR_EACH_EDGE (e, ei, bb->preds)
1812     if (loop_exit_edge_p (loop, e))
1813       return true;
1814 
1815   return false;
1816 }
1817 
1818 /* Returns true when BB has an outgoing edge exiting LOOP.  */
1819 
1820 bool
loop_exits_from_bb_p(class loop * loop,basic_block bb)1821 loop_exits_from_bb_p (class loop *loop, basic_block bb)
1822 {
1823   edge e;
1824   edge_iterator ei;
1825 
1826   FOR_EACH_EDGE (e, ei, bb->succs)
1827     if (loop_exit_edge_p (loop, e))
1828       return true;
1829 
1830   return false;
1831 }
1832 
1833 /* Return location corresponding to the loop control condition if possible.  */
1834 
1835 dump_user_location_t
get_loop_location(class loop * loop)1836 get_loop_location (class loop *loop)
1837 {
1838   rtx_insn *insn = NULL;
1839   class niter_desc *desc = NULL;
1840   edge exit;
1841 
1842   /* For a for or while loop, we would like to return the location
1843      of the for or while statement, if possible.  To do this, look
1844      for the branch guarding the loop back-edge.  */
1845 
1846   /* If this is a simple loop with an in_edge, then the loop control
1847      branch is typically at the end of its source.  */
1848   desc = get_simple_loop_desc (loop);
1849   if (desc->in_edge)
1850     {
1851       FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1852         {
1853           if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1854             return insn;
1855         }
1856     }
1857   /* If loop has a single exit, then the loop control branch
1858      must be at the end of its source.  */
1859   if ((exit = single_exit (loop)))
1860     {
1861       FOR_BB_INSNS_REVERSE (exit->src, insn)
1862         {
1863           if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1864             return insn;
1865         }
1866     }
1867   /* Next check the latch, to see if it is non-empty.  */
1868   FOR_BB_INSNS_REVERSE (loop->latch, insn)
1869     {
1870       if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1871         return insn;
1872     }
1873   /* Finally, if none of the above identifies the loop control branch,
1874      return the first location in the loop header.  */
1875   FOR_BB_INSNS (loop->header, insn)
1876     {
1877       if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1878         return insn;
1879     }
1880   /* If all else fails, simply return the current function location.  */
1881   return dump_user_location_t::from_function_decl (current_function_decl);
1882 }
1883 
1884 /* Records that every statement in LOOP is executed I_BOUND times.
1885    REALISTIC is true if I_BOUND is expected to be close to the real number
1886    of iterations.  UPPER is true if we are sure the loop iterates at most
1887    I_BOUND times.  */
1888 
1889 void
record_niter_bound(class loop * loop,const widest_int & i_bound,bool realistic,bool upper)1890 record_niter_bound (class loop *loop, const widest_int &i_bound,
1891 		    bool realistic, bool upper)
1892 {
1893   /* Update the bounds only when there is no previous estimation, or when the
1894      current estimation is smaller.  */
1895   if (upper
1896       && (!loop->any_upper_bound
1897 	  || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1898     {
1899       loop->any_upper_bound = true;
1900       loop->nb_iterations_upper_bound = i_bound;
1901       if (!loop->any_likely_upper_bound)
1902 	{
1903 	  loop->any_likely_upper_bound = true;
1904 	  loop->nb_iterations_likely_upper_bound = i_bound;
1905 	}
1906     }
1907   if (realistic
1908       && (!loop->any_estimate
1909 	  || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1910     {
1911       loop->any_estimate = true;
1912       loop->nb_iterations_estimate = i_bound;
1913     }
1914   if (!realistic
1915       && (!loop->any_likely_upper_bound
1916           || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1917     {
1918       loop->any_likely_upper_bound = true;
1919       loop->nb_iterations_likely_upper_bound = i_bound;
1920     }
1921 
1922   /* If an upper bound is smaller than the realistic estimate of the
1923      number of iterations, use the upper bound instead.  */
1924   if (loop->any_upper_bound
1925       && loop->any_estimate
1926       && wi::ltu_p (loop->nb_iterations_upper_bound,
1927 		    loop->nb_iterations_estimate))
1928     loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1929   if (loop->any_upper_bound
1930       && loop->any_likely_upper_bound
1931       && wi::ltu_p (loop->nb_iterations_upper_bound,
1932 		    loop->nb_iterations_likely_upper_bound))
1933     loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1934 }
1935 
1936 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1937    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
1938    on the number of iterations of LOOP could not be derived, returns -1.  */
1939 
1940 HOST_WIDE_INT
get_estimated_loop_iterations_int(class loop * loop)1941 get_estimated_loop_iterations_int (class loop *loop)
1942 {
1943   widest_int nit;
1944   HOST_WIDE_INT hwi_nit;
1945 
1946   if (!get_estimated_loop_iterations (loop, &nit))
1947     return -1;
1948 
1949   if (!wi::fits_shwi_p (nit))
1950     return -1;
1951   hwi_nit = nit.to_shwi ();
1952 
1953   return hwi_nit < 0 ? -1 : hwi_nit;
1954 }
1955 
1956 /* Returns an upper bound on the number of executions of statements
1957    in the LOOP.  For statements before the loop exit, this exceeds
1958    the number of execution of the latch by one.  */
1959 
1960 HOST_WIDE_INT
max_stmt_executions_int(class loop * loop)1961 max_stmt_executions_int (class loop *loop)
1962 {
1963   HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1964   HOST_WIDE_INT snit;
1965 
1966   if (nit == -1)
1967     return -1;
1968 
1969   snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1970 
1971   /* If the computation overflows, return -1.  */
1972   return snit < 0 ? -1 : snit;
1973 }
1974 
1975 /* Returns an likely upper bound on the number of executions of statements
1976    in the LOOP.  For statements before the loop exit, this exceeds
1977    the number of execution of the latch by one.  */
1978 
1979 HOST_WIDE_INT
likely_max_stmt_executions_int(class loop * loop)1980 likely_max_stmt_executions_int (class loop *loop)
1981 {
1982   HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1983   HOST_WIDE_INT snit;
1984 
1985   if (nit == -1)
1986     return -1;
1987 
1988   snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1989 
1990   /* If the computation overflows, return -1.  */
1991   return snit < 0 ? -1 : snit;
1992 }
1993 
1994 /* Sets NIT to the estimated number of executions of the latch of the
1995    LOOP.  If we have no reliable estimate, the function returns false, otherwise
1996    returns true.  */
1997 
1998 bool
get_estimated_loop_iterations(class loop * loop,widest_int * nit)1999 get_estimated_loop_iterations (class loop *loop, widest_int *nit)
2000 {
2001   /* Even if the bound is not recorded, possibly we can derrive one from
2002      profile.  */
2003   if (!loop->any_estimate)
2004     {
2005       if (loop->header->count.reliable_p ())
2006 	{
2007           *nit = gcov_type_to_wide_int
2008 		   (expected_loop_iterations_unbounded (loop) + 1);
2009 	  return true;
2010 	}
2011       return false;
2012     }
2013 
2014   *nit = loop->nb_iterations_estimate;
2015   return true;
2016 }
2017 
2018 /* Sets NIT to an upper bound for the maximum number of executions of the
2019    latch of the LOOP.  If we have no reliable estimate, the function returns
2020    false, otherwise returns true.  */
2021 
2022 bool
get_max_loop_iterations(const class loop * loop,widest_int * nit)2023 get_max_loop_iterations (const class loop *loop, widest_int *nit)
2024 {
2025   if (!loop->any_upper_bound)
2026     return false;
2027 
2028   *nit = loop->nb_iterations_upper_bound;
2029   return true;
2030 }
2031 
2032 /* Similar to get_max_loop_iterations, but returns the estimate only
2033    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
2034    on the number of iterations of LOOP could not be derived, returns -1.  */
2035 
2036 HOST_WIDE_INT
get_max_loop_iterations_int(const class loop * loop)2037 get_max_loop_iterations_int (const class loop *loop)
2038 {
2039   widest_int nit;
2040   HOST_WIDE_INT hwi_nit;
2041 
2042   if (!get_max_loop_iterations (loop, &nit))
2043     return -1;
2044 
2045   if (!wi::fits_shwi_p (nit))
2046     return -1;
2047   hwi_nit = nit.to_shwi ();
2048 
2049   return hwi_nit < 0 ? -1 : hwi_nit;
2050 }
2051 
2052 /* Sets NIT to an upper bound for the maximum number of executions of the
2053    latch of the LOOP.  If we have no reliable estimate, the function returns
2054    false, otherwise returns true.  */
2055 
2056 bool
get_likely_max_loop_iterations(class loop * loop,widest_int * nit)2057 get_likely_max_loop_iterations (class loop *loop, widest_int *nit)
2058 {
2059   if (!loop->any_likely_upper_bound)
2060     return false;
2061 
2062   *nit = loop->nb_iterations_likely_upper_bound;
2063   return true;
2064 }
2065 
2066 /* Similar to get_max_loop_iterations, but returns the estimate only
2067    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
2068    on the number of iterations of LOOP could not be derived, returns -1.  */
2069 
2070 HOST_WIDE_INT
get_likely_max_loop_iterations_int(class loop * loop)2071 get_likely_max_loop_iterations_int (class loop *loop)
2072 {
2073   widest_int nit;
2074   HOST_WIDE_INT hwi_nit;
2075 
2076   if (!get_likely_max_loop_iterations (loop, &nit))
2077     return -1;
2078 
2079   if (!wi::fits_shwi_p (nit))
2080     return -1;
2081   hwi_nit = nit.to_shwi ();
2082 
2083   return hwi_nit < 0 ? -1 : hwi_nit;
2084 }
2085 
2086 /* Returns the loop depth of the loop BB belongs to.  */
2087 
2088 int
bb_loop_depth(const_basic_block bb)2089 bb_loop_depth (const_basic_block bb)
2090 {
2091   return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2092 }
2093 
2094 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP.  */
2095 
2096 void
mark_loop_for_removal(loop_p loop)2097 mark_loop_for_removal (loop_p loop)
2098 {
2099   if (loop->header == NULL)
2100     return;
2101   loop->former_header = loop->header;
2102   loop->header = NULL;
2103   loop->latch = NULL;
2104   loops_state_set (LOOPS_NEED_FIXUP);
2105 }
2106