1 /* Define per-register tables for data flow info and register allocation.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_REGS_H
21 #define GCC_REGS_H
22 
23 #define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
24 
25 /* When you only have the mode of a pseudo register before it has a hard
26    register chosen for it, this reports the size of each hard register
27    a pseudo in such a mode would get allocated to.  A target may
28    override this.  */
29 
30 #ifndef REGMODE_NATURAL_SIZE
31 #define REGMODE_NATURAL_SIZE(MODE)	UNITS_PER_WORD
32 #endif
33 
34 /* Maximum register number used in this function, plus one.  */
35 
36 extern int max_regno;
37 
38 /* REG_N_REFS and REG_N_SETS are initialized by a call to
39    regstat_init_n_sets_and_refs from the current values of
40    DF_REG_DEF_COUNT and DF_REG_USE_COUNT.  REG_N_REFS and REG_N_SETS
41    should only be used if a pass need to change these values in some
42    magical way or the pass needs to have accurate values for these
43    and is not using incremental df scanning.
44 
45    At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
46    should be made to regstat_free_n_sets_and_refs.
47 
48    Local alloc seems to play pretty loose with these values.
49    REG_N_REFS is set to 0 if the register is used in an asm.
50    Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
51    REG_N_SETS for three address insns.  Other passes seem to have
52    other special values.  */
53 
54 
55 
56 /* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
57 
58 struct regstat_n_sets_and_refs_t
59 {
60   int sets;			/* # of times (REG n) is set */
61   int refs;			/* # of times (REG n) is used or set */
62 };
63 
64 extern struct regstat_n_sets_and_refs_t *regstat_n_sets_and_refs;
65 
66 /* Indexed by n, gives number of times (REG n) is used or set.  */
67 static inline int
REG_N_REFS(int regno)68 REG_N_REFS (int regno)
69 {
70   return regstat_n_sets_and_refs[regno].refs;
71 }
72 
73 /* Indexed by n, gives number of times (REG n) is used or set.  */
74 #define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
75 #define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
76 
77 /* Indexed by n, gives number of times (REG n) is set.  */
78 static inline int
REG_N_SETS(int regno)79 REG_N_SETS (int regno)
80 {
81   return regstat_n_sets_and_refs[regno].sets;
82 }
83 
84 /* Indexed by n, gives number of times (REG n) is set.  */
85 #define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
86 #define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
87 
88 /* Given a REG, return TRUE if the reg is a PARM_DECL, FALSE otherwise.  */
89 extern bool reg_is_parm_p (rtx);
90 
91 /* Functions defined in regstat.c.  */
92 extern void regstat_init_n_sets_and_refs (void);
93 extern void regstat_free_n_sets_and_refs (void);
94 extern void regstat_compute_ri (void);
95 extern void regstat_free_ri (void);
96 extern bitmap regstat_get_setjmp_crosses (void);
97 extern void regstat_compute_calls_crossed (void);
98 extern void regstat_free_calls_crossed (void);
99 extern void dump_reg_info (FILE *);
100 
101 /* Register information indexed by register number.  This structure is
102    initialized by calling regstat_compute_ri and is destroyed by
103    calling regstat_free_ri.  */
104 struct reg_info_t
105 {
106   int freq;			/* # estimated frequency (REG n) is used or set */
107   int deaths;			/* # of times (REG n) dies */
108   int calls_crossed;		/* # of calls (REG n) is live across */
109   int basic_block;		/* # of basic blocks (REG n) is used in */
110 };
111 
112 extern struct reg_info_t *reg_info_p;
113 
114 /* The number allocated elements of reg_info_p.  */
115 extern size_t reg_info_p_size;
116 
117 /* Estimate frequency of references to register N.  */
118 
119 #define REG_FREQ(N) (reg_info_p[N].freq)
120 
121 /* The weights for each insn varies from 0 to REG_FREQ_BASE.
122    This constant does not need to be high, as in infrequently executed
123    regions we want to count instructions equivalently to optimize for
124    size instead of speed.  */
125 #define REG_FREQ_MAX 1000
126 
127 /* Compute register frequency from the BB frequency.  When optimizing for size,
128    or profile driven feedback is available and the function is never executed,
129    frequency is always equivalent.  Otherwise rescale the basic block
130    frequency.  */
131 #define REG_FREQ_FROM_BB(bb) ((optimize_function_for_size_p (cfun)	      \
132 			       || !cfun->cfg->count_max.initialized_p ())     \
133 			      ? REG_FREQ_MAX				      \
134 			      : ((bb)->count.to_frequency (cfun)	      \
135 				* REG_FREQ_MAX / BB_FREQ_MAX)		      \
136 			      ? ((bb)->count.to_frequency (cfun)	      \
137 				 * REG_FREQ_MAX / BB_FREQ_MAX)		      \
138 			      : 1)
139 
140 /* Indexed by N, gives number of insns in which register N dies.
141    Note that if register N is live around loops, it can die
142    in transitions between basic blocks, and that is not counted here.
143    So this is only a reliable indicator of how many regions of life there are
144    for registers that are contained in one basic block.  */
145 
146 #define REG_N_DEATHS(N) (reg_info_p[N].deaths)
147 
148 /* Get the number of consecutive words required to hold pseudo-reg N.  */
149 
150 #define PSEUDO_REGNO_SIZE(N) \
151   ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1)		\
152    / UNITS_PER_WORD)
153 
154 /* Get the number of bytes required to hold pseudo-reg N.  */
155 
156 #define PSEUDO_REGNO_BYTES(N) \
157   GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
158 
159 /* Get the machine mode of pseudo-reg N.  */
160 
161 #define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
162 
163 /* Indexed by N, gives number of CALL_INSNS across which (REG n) is live.  */
164 
165 #define REG_N_CALLS_CROSSED(N)  (reg_info_p[N].calls_crossed)
166 
167 /* Indexed by n, gives number of basic block that  (REG n) is used in.
168    If the value is REG_BLOCK_GLOBAL (-1),
169    it means (REG n) is used in more than one basic block.
170    REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
171    This information remains valid for the rest of the compilation
172    of the current function; it is used to control register allocation.  */
173 
174 #define REG_BLOCK_UNKNOWN 0
175 #define REG_BLOCK_GLOBAL -1
176 
177 #define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
178 
179 /* Vector of substitutions of register numbers,
180    used to map pseudo regs into hardware regs.
181 
182    This can't be folded into reg_n_info without changing all of the
183    machine dependent directories, since the reload functions
184    in the machine dependent files access it.  */
185 
186 extern short *reg_renumber;
187 
188 /* Flag set by local-alloc or global-alloc if they decide to allocate
189    something in a call-clobbered register.  */
190 
191 extern int caller_save_needed;
192 
193 /* Select a register mode required for caller save of hard regno REGNO.  */
194 #ifndef HARD_REGNO_CALLER_SAVE_MODE
195 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
196   choose_hard_reg_mode (REGNO, NREGS, NULL)
197 #endif
198 
199 /* Target-dependent globals.  */
200 struct target_regs {
201   /* For each starting hard register, the number of consecutive hard
202      registers that a given machine mode occupies.  */
203   unsigned char x_hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
204 
205   /* For each hard register, the widest mode object that it can contain.
206      This will be a MODE_INT mode if the register can hold integers.  Otherwise
207      it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
208      register.  */
209   machine_mode x_reg_raw_mode[FIRST_PSEUDO_REGISTER];
210 
211   /* Vector indexed by machine mode saying whether there are regs of
212      that mode.  */
213   bool x_have_regs_of_mode[MAX_MACHINE_MODE];
214 
215   /* 1 if the corresponding class contains a register of the given mode.  */
216   char x_contains_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
217 
218   /* 1 if the corresponding class contains a register of the given mode
219      which is not global and can therefore be allocated.  */
220   char x_contains_allocatable_reg_of_mode[N_REG_CLASSES][MAX_MACHINE_MODE];
221 
222   /* Record for each mode whether we can move a register directly to or
223      from an object of that mode in memory.  If we can't, we won't try
224      to use that mode directly when accessing a field of that mode.  */
225   char x_direct_load[NUM_MACHINE_MODES];
226   char x_direct_store[NUM_MACHINE_MODES];
227 
228   /* Record for each mode whether we can float-extend from memory.  */
229   bool x_float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
230 };
231 
232 extern struct target_regs default_target_regs;
233 #if SWITCHABLE_TARGET
234 extern struct target_regs *this_target_regs;
235 #else
236 #define this_target_regs (&default_target_regs)
237 #endif
238 #define reg_raw_mode \
239   (this_target_regs->x_reg_raw_mode)
240 #define have_regs_of_mode \
241   (this_target_regs->x_have_regs_of_mode)
242 #define contains_reg_of_mode \
243   (this_target_regs->x_contains_reg_of_mode)
244 #define contains_allocatable_reg_of_mode \
245   (this_target_regs->x_contains_allocatable_reg_of_mode)
246 #define direct_load \
247   (this_target_regs->x_direct_load)
248 #define direct_store \
249   (this_target_regs->x_direct_store)
250 #define float_extend_from_mem \
251   (this_target_regs->x_float_extend_from_mem)
252 
253 /* Return the number of hard registers in (reg:MODE REGNO).  */
254 
255 ALWAYS_INLINE unsigned char
hard_regno_nregs(unsigned int regno,machine_mode mode)256 hard_regno_nregs (unsigned int regno, machine_mode mode)
257 {
258   return this_target_regs->x_hard_regno_nregs[regno][mode];
259 }
260 
261 /* Return an exclusive upper bound on the registers occupied by hard
262    register (reg:MODE REGNO).  */
263 
264 static inline unsigned int
end_hard_regno(machine_mode mode,unsigned int regno)265 end_hard_regno (machine_mode mode, unsigned int regno)
266 {
267   return regno + hard_regno_nregs (regno, mode);
268 }
269 
270 /* Add to REGS all the registers required to store a value of mode MODE
271    in register REGNO.  */
272 
273 static inline void
add_to_hard_reg_set(HARD_REG_SET * regs,machine_mode mode,unsigned int regno)274 add_to_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
275 		     unsigned int regno)
276 {
277   unsigned int end_regno;
278 
279   end_regno = end_hard_regno (mode, regno);
280   do
281     SET_HARD_REG_BIT (*regs, regno);
282   while (++regno < end_regno);
283 }
284 
285 /* Likewise, but remove the registers.  */
286 
287 static inline void
remove_from_hard_reg_set(HARD_REG_SET * regs,machine_mode mode,unsigned int regno)288 remove_from_hard_reg_set (HARD_REG_SET *regs, machine_mode mode,
289 			  unsigned int regno)
290 {
291   unsigned int end_regno;
292 
293   end_regno = end_hard_regno (mode, regno);
294   do
295     CLEAR_HARD_REG_BIT (*regs, regno);
296   while (++regno < end_regno);
297 }
298 
299 /* Return true if REGS contains the whole of (reg:MODE REGNO).  */
300 
301 static inline bool
in_hard_reg_set_p(const_hard_reg_set regs,machine_mode mode,unsigned int regno)302 in_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
303 		   unsigned int regno)
304 {
305   unsigned int end_regno;
306 
307   gcc_assert (HARD_REGISTER_NUM_P (regno));
308 
309   if (!TEST_HARD_REG_BIT (regs, regno))
310     return false;
311 
312   end_regno = end_hard_regno (mode, regno);
313 
314   if (!HARD_REGISTER_NUM_P (end_regno - 1))
315     return false;
316 
317   while (++regno < end_regno)
318     if (!TEST_HARD_REG_BIT (regs, regno))
319       return false;
320 
321   return true;
322 }
323 
324 /* Return true if (reg:MODE REGNO) includes an element of REGS.  */
325 
326 static inline bool
overlaps_hard_reg_set_p(const_hard_reg_set regs,machine_mode mode,unsigned int regno)327 overlaps_hard_reg_set_p (const_hard_reg_set regs, machine_mode mode,
328 			 unsigned int regno)
329 {
330   unsigned int end_regno;
331 
332   if (TEST_HARD_REG_BIT (regs, regno))
333     return true;
334 
335   end_regno = end_hard_regno (mode, regno);
336   while (++regno < end_regno)
337     if (TEST_HARD_REG_BIT (regs, regno))
338       return true;
339 
340   return false;
341 }
342 
343 /* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
344    REGNO and MODE.  */
345 
346 static inline void
add_range_to_hard_reg_set(HARD_REG_SET * regs,unsigned int regno,int nregs)347 add_range_to_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
348 			   int nregs)
349 {
350   while (nregs-- > 0)
351     SET_HARD_REG_BIT (*regs, regno + nregs);
352 }
353 
354 /* Likewise, but remove the registers.  */
355 
356 static inline void
remove_range_from_hard_reg_set(HARD_REG_SET * regs,unsigned int regno,int nregs)357 remove_range_from_hard_reg_set (HARD_REG_SET *regs, unsigned int regno,
358 				int nregs)
359 {
360   while (nregs-- > 0)
361     CLEAR_HARD_REG_BIT (*regs, regno + nregs);
362 }
363 
364 /* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
365    REGNO and MODE.  */
366 static inline bool
range_overlaps_hard_reg_set_p(const_hard_reg_set set,unsigned regno,int nregs)367 range_overlaps_hard_reg_set_p (const_hard_reg_set set, unsigned regno,
368 			       int nregs)
369 {
370   while (nregs-- > 0)
371     if (TEST_HARD_REG_BIT (set, regno + nregs))
372       return true;
373   return false;
374 }
375 
376 /* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
377    REGNO and MODE.  */
378 static inline bool
range_in_hard_reg_set_p(const_hard_reg_set set,unsigned regno,int nregs)379 range_in_hard_reg_set_p (const_hard_reg_set set, unsigned regno, int nregs)
380 {
381   while (nregs-- > 0)
382     if (!TEST_HARD_REG_BIT (set, regno + nregs))
383       return false;
384   return true;
385 }
386 
387 #endif /* GCC_REGS_H */
388