1// Copyright 2013 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package debug 6 7import ( 8 "runtime" 9 "sort" 10 "time" 11) 12 13// GCStats collect information about recent garbage collections. 14type GCStats struct { 15 LastGC time.Time // time of last collection 16 NumGC int64 // number of garbage collections 17 PauseTotal time.Duration // total pause for all collections 18 Pause []time.Duration // pause history, most recent first 19 PauseEnd []time.Time // pause end times history, most recent first 20 PauseQuantiles []time.Duration 21} 22 23// ReadGCStats reads statistics about garbage collection into stats. 24// The number of entries in the pause history is system-dependent; 25// stats.Pause slice will be reused if large enough, reallocated otherwise. 26// ReadGCStats may use the full capacity of the stats.Pause slice. 27// If stats.PauseQuantiles is non-empty, ReadGCStats fills it with quantiles 28// summarizing the distribution of pause time. For example, if 29// len(stats.PauseQuantiles) is 5, it will be filled with the minimum, 30// 25%, 50%, 75%, and maximum pause times. 31func ReadGCStats(stats *GCStats) { 32 // Create a buffer with space for at least two copies of the 33 // pause history tracked by the runtime. One will be returned 34 // to the caller and the other will be used as transfer buffer 35 // for end times history and as a temporary buffer for 36 // computing quantiles. 37 const maxPause = len(((*runtime.MemStats)(nil)).PauseNs) 38 if cap(stats.Pause) < 2*maxPause+3 { 39 stats.Pause = make([]time.Duration, 2*maxPause+3) 40 } 41 42 // readGCStats fills in the pause and end times histories (up to 43 // maxPause entries) and then three more: Unix ns time of last GC, 44 // number of GC, and total pause time in nanoseconds. Here we 45 // depend on the fact that time.Duration's native unit is 46 // nanoseconds, so the pauses and the total pause time do not need 47 // any conversion. 48 readGCStats(&stats.Pause) 49 n := len(stats.Pause) - 3 50 stats.LastGC = time.Unix(0, int64(stats.Pause[n])) 51 stats.NumGC = int64(stats.Pause[n+1]) 52 stats.PauseTotal = stats.Pause[n+2] 53 n /= 2 // buffer holds pauses and end times 54 stats.Pause = stats.Pause[:n] 55 56 if cap(stats.PauseEnd) < maxPause { 57 stats.PauseEnd = make([]time.Time, 0, maxPause) 58 } 59 stats.PauseEnd = stats.PauseEnd[:0] 60 for _, ns := range stats.Pause[n : n+n] { 61 stats.PauseEnd = append(stats.PauseEnd, time.Unix(0, int64(ns))) 62 } 63 64 if len(stats.PauseQuantiles) > 0 { 65 if n == 0 { 66 for i := range stats.PauseQuantiles { 67 stats.PauseQuantiles[i] = 0 68 } 69 } else { 70 // There's room for a second copy of the data in stats.Pause. 71 // See the allocation at the top of the function. 72 sorted := stats.Pause[n : n+n] 73 copy(sorted, stats.Pause) 74 sort.Slice(sorted, func(i, j int) bool { return sorted[i] < sorted[j] }) 75 nq := len(stats.PauseQuantiles) - 1 76 for i := 0; i < nq; i++ { 77 stats.PauseQuantiles[i] = sorted[len(sorted)*i/nq] 78 } 79 stats.PauseQuantiles[nq] = sorted[len(sorted)-1] 80 } 81 } 82} 83 84// SetGCPercent sets the garbage collection target percentage: 85// a collection is triggered when the ratio of freshly allocated data 86// to live data remaining after the previous collection reaches this percentage. 87// SetGCPercent returns the previous setting. 88// The initial setting is the value of the GOGC environment variable 89// at startup, or 100 if the variable is not set. 90// A negative percentage disables garbage collection. 91func SetGCPercent(percent int) int { 92 return int(setGCPercent(int32(percent))) 93} 94 95// FreeOSMemory forces a garbage collection followed by an 96// attempt to return as much memory to the operating system 97// as possible. (Even if this is not called, the runtime gradually 98// returns memory to the operating system in a background task.) 99func FreeOSMemory() { 100 freeOSMemory() 101} 102 103// SetMaxStack sets the maximum amount of memory that 104// can be used by a single goroutine stack. 105// If any goroutine exceeds this limit while growing its stack, 106// the program crashes. 107// SetMaxStack returns the previous setting. 108// The initial setting is 1 GB on 64-bit systems, 250 MB on 32-bit systems. 109// 110// SetMaxStack is useful mainly for limiting the damage done by 111// goroutines that enter an infinite recursion. It only limits future 112// stack growth. 113func SetMaxStack(bytes int) int { 114 return setMaxStack(bytes) 115} 116 117// SetMaxThreads sets the maximum number of operating system 118// threads that the Go program can use. If it attempts to use more than 119// this many, the program crashes. 120// SetMaxThreads returns the previous setting. 121// The initial setting is 10,000 threads. 122// 123// The limit controls the number of operating system threads, not the number 124// of goroutines. A Go program creates a new thread only when a goroutine 125// is ready to run but all the existing threads are blocked in system calls, cgo calls, 126// or are locked to other goroutines due to use of runtime.LockOSThread. 127// 128// SetMaxThreads is useful mainly for limiting the damage done by 129// programs that create an unbounded number of threads. The idea is 130// to take down the program before it takes down the operating system. 131func SetMaxThreads(threads int) int { 132 return setMaxThreads(threads) 133} 134 135// SetPanicOnFault controls the runtime's behavior when a program faults 136// at an unexpected (non-nil) address. Such faults are typically caused by 137// bugs such as runtime memory corruption, so the default response is to crash 138// the program. Programs working with memory-mapped files or unsafe 139// manipulation of memory may cause faults at non-nil addresses in less 140// dramatic situations; SetPanicOnFault allows such programs to request 141// that the runtime trigger only a panic, not a crash. 142// SetPanicOnFault applies only to the current goroutine. 143// It returns the previous setting. 144func SetPanicOnFault(enabled bool) bool { 145 return setPanicOnFault(enabled) 146} 147 148// WriteHeapDump writes a description of the heap and the objects in 149// it to the given file descriptor. 150// 151// WriteHeapDump suspends the execution of all goroutines until the heap 152// dump is completely written. Thus, the file descriptor must not be 153// connected to a pipe or socket whose other end is in the same Go 154// process; instead, use a temporary file or network socket. 155// 156// The heap dump format is defined at https://golang.org/s/go15heapdump. 157func WriteHeapDump(fd uintptr) 158 159// SetTraceback sets the amount of detail printed by the runtime in 160// the traceback it prints before exiting due to an unrecovered panic 161// or an internal runtime error. 162// The level argument takes the same values as the GOTRACEBACK 163// environment variable. For example, SetTraceback("all") ensure 164// that the program prints all goroutines when it crashes. 165// See the package runtime documentation for details. 166// If SetTraceback is called with a level lower than that of the 167// environment variable, the call is ignored. 168func SetTraceback(level string) 169