1 /*							log10l.c
2  *
3  *	Common logarithm, 128-bit long double precision
4  *
5  *
6  *
7  * SYNOPSIS:
8  *
9  * long double x, y, log10l();
10  *
11  * y = log10l( x );
12  *
13  *
14  *
15  * DESCRIPTION:
16  *
17  * Returns the base 10 logarithm of x.
18  *
19  * The argument is separated into its exponent and fractional
20  * parts.  If the exponent is between -1 and +1, the logarithm
21  * of the fraction is approximated by
22  *
23  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24  *
25  * Otherwise, setting  z = 2(x-1)/x+1),
26  *
27  *     log(x) = z + z^3 P(z)/Q(z).
28  *
29  *
30  *
31  * ACCURACY:
32  *
33  *                      Relative error:
34  * arithmetic   domain     # trials      peak         rms
35  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
36  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
37  *
38  * In the tests over the interval exp(+-10000), the logarithms
39  * of the random arguments were uniformly distributed over
40  * [-10000, +10000].
41  *
42  */
43 
44 /*
45    Cephes Math Library Release 2.2:  January, 1991
46    Copyright 1984, 1991 by Stephen L. Moshier
47    Adapted for glibc November, 2001
48 
49     This library is free software; you can redistribute it and/or
50     modify it under the terms of the GNU Lesser General Public
51     License as published by the Free Software Foundation; either
52     version 2.1 of the License, or (at your option) any later version.
53 
54     This library is distributed in the hope that it will be useful,
55     but WITHOUT ANY WARRANTY; without even the implied warranty of
56     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
57     Lesser General Public License for more details.
58 
59     You should have received a copy of the GNU Lesser General Public
60     License along with this library; if not, see <http://www.gnu.org/licenses/>.
61  */
62 
63 #include "quadmath-imp.h"
64 
65 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66  * 1/sqrt(2) <= x < sqrt(2)
67  * Theoretical peak relative error = 5.3e-37,
68  * relative peak error spread = 2.3e-14
69  */
70 static const __float128 P[13] =
71 {
72   1.313572404063446165910279910527789794488E4Q,
73   7.771154681358524243729929227226708890930E4Q,
74   2.014652742082537582487669938141683759923E5Q,
75   3.007007295140399532324943111654767187848E5Q,
76   2.854829159639697837788887080758954924001E5Q,
77   1.797628303815655343403735250238293741397E5Q,
78   7.594356839258970405033155585486712125861E4Q,
79   2.128857716871515081352991964243375186031E4Q,
80   3.824952356185897735160588078446136783779E3Q,
81   4.114517881637811823002128927449878962058E2Q,
82   2.321125933898420063925789532045674660756E1Q,
83   4.998469661968096229986658302195402690910E-1Q,
84   1.538612243596254322971797716843006400388E-6Q
85 };
86 static const __float128 Q[12] =
87 {
88   3.940717212190338497730839731583397586124E4Q,
89   2.626900195321832660448791748036714883242E5Q,
90   7.777690340007566932935753241556479363645E5Q,
91   1.347518538384329112529391120390701166528E6Q,
92   1.514882452993549494932585972882995548426E6Q,
93   1.158019977462989115839826904108208787040E6Q,
94   6.132189329546557743179177159925690841200E5Q,
95   2.248234257620569139969141618556349415120E5Q,
96   5.605842085972455027590989944010492125825E4Q,
97   9.147150349299596453976674231612674085381E3Q,
98   9.104928120962988414618126155557301584078E2Q,
99   4.839208193348159620282142911143429644326E1Q
100 /* 1.000000000000000000000000000000000000000E0L, */
101 };
102 
103 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104  * where z = 2(x-1)/(x+1)
105  * 1/sqrt(2) <= x < sqrt(2)
106  * Theoretical peak relative error = 1.1e-35,
107  * relative peak error spread 1.1e-9
108  */
109 static const __float128 R[6] =
110 {
111   1.418134209872192732479751274970992665513E5Q,
112  -8.977257995689735303686582344659576526998E4Q,
113   2.048819892795278657810231591630928516206E4Q,
114  -2.024301798136027039250415126250455056397E3Q,
115   8.057002716646055371965756206836056074715E1Q,
116  -8.828896441624934385266096344596648080902E-1Q
117 };
118 static const __float128 S[6] =
119 {
120   1.701761051846631278975701529965589676574E6Q,
121  -1.332535117259762928288745111081235577029E6Q,
122   4.001557694070773974936904547424676279307E5Q,
123  -5.748542087379434595104154610899551484314E4Q,
124   3.998526750980007367835804959888064681098E3Q,
125  -1.186359407982897997337150403816839480438E2Q
126 /* 1.000000000000000000000000000000000000000E0L, */
127 };
128 
129 static const __float128
130 /* log10(2) */
131 L102A = 0.3125Q,
132 L102B = -1.14700043360188047862611052755069732318101185E-2Q,
133 /* log10(e) */
134 L10EA = 0.5Q,
135 L10EB = -6.570551809674817234887108108339491770560299E-2Q,
136 /* sqrt(2)/2 */
137 SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
138 
139 
140 
141 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
142 
143 static __float128
neval(__float128 x,const __float128 * p,int n)144 neval (__float128 x, const __float128 *p, int n)
145 {
146   __float128 y;
147 
148   p += n;
149   y = *p--;
150   do
151     {
152       y = y * x + *p--;
153     }
154   while (--n > 0);
155   return y;
156 }
157 
158 
159 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
160 
161 static __float128
deval(__float128 x,const __float128 * p,int n)162 deval (__float128 x, const __float128 *p, int n)
163 {
164   __float128 y;
165 
166   p += n;
167   y = x + *p--;
168   do
169     {
170       y = y * x + *p--;
171     }
172   while (--n > 0);
173   return y;
174 }
175 
176 
177 
178 __float128
log10q(__float128 x)179 log10q (__float128 x)
180 {
181   __float128 z;
182   __float128 y;
183   int e;
184   int64_t hx, lx;
185 
186 /* Test for domain */
187   GET_FLT128_WORDS64 (hx, lx, x);
188   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
189     return (-1 / fabsq (x));		/* log10l(+-0)=-inf  */
190   if (hx < 0)
191     return (x - x) / (x - x);
192   if (hx >= 0x7fff000000000000LL)
193     return (x + x);
194 
195   if (x == 1)
196     return 0;
197 
198 /* separate mantissa from exponent */
199 
200 /* Note, frexp is used so that denormal numbers
201  * will be handled properly.
202  */
203   x = frexpq (x, &e);
204 
205 
206 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
207  * where z = 2(x-1)/x+1)
208  */
209   if ((e > 2) || (e < -2))
210     {
211       if (x < SQRTH)
212 	{			/* 2( 2x-1 )/( 2x+1 ) */
213 	  e -= 1;
214 	  z = x - 0.5Q;
215 	  y = 0.5Q * z + 0.5Q;
216 	}
217       else
218 	{			/*  2 (x-1)/(x+1)   */
219 	  z = x - 0.5Q;
220 	  z -= 0.5Q;
221 	  y = 0.5Q * x + 0.5Q;
222 	}
223       x = z / y;
224       z = x * x;
225       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
226       goto done;
227     }
228 
229 
230 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
231 
232   if (x < SQRTH)
233     {
234       e -= 1;
235       x = 2.0 * x - 1;	/*  2x - 1  */
236     }
237   else
238     {
239       x = x - 1;
240     }
241   z = x * x;
242   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
243   y = y - 0.5 * z;
244 
245 done:
246 
247   /* Multiply log of fraction by log10(e)
248    * and base 2 exponent by log10(2).
249    */
250   z = y * L10EB;
251   z += x * L10EB;
252   z += e * L102B;
253   z += y * L10EA;
254   z += x * L10EA;
255   z += e * L102A;
256   return (z);
257 }
258