1 /*                                                      log2l.c
2  *      Base 2 logarithm, 128-bit long double precision
3  *
4  *
5  *
6  * SYNOPSIS:
7  *
8  * long double x, y, log2l();
9  *
10  * y = log2l( x );
11  *
12  *
13  *
14  * DESCRIPTION:
15  *
16  * Returns the base 2 logarithm of x.
17  *
18  * The argument is separated into its exponent and fractional
19  * parts.  If the exponent is between -1 and +1, the (natural)
20  * logarithm of the fraction is approximated by
21  *
22  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23  *
24  * Otherwise, setting  z = 2(x-1)/x+1),
25  *
26  *     log(x) = z + z^3 P(z)/Q(z).
27  *
28  *
29  *
30  * ACCURACY:
31  *
32  *                      Relative error:
33  * arithmetic   domain     # trials      peak         rms
34  *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35
35  *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
36  *
37  * In the tests over the interval exp(+-10000), the logarithms
38  * of the random arguments were uniformly distributed over
39  * [-10000, +10000].
40  *
41  */
42 
43 /*
44    Cephes Math Library Release 2.2:  January, 1991
45    Copyright 1984, 1991 by Stephen L. Moshier
46    Adapted for glibc November, 2001
47 
48     This library is free software; you can redistribute it and/or
49     modify it under the terms of the GNU Lesser General Public
50     License as published by the Free Software Foundation; either
51     version 2.1 of the License, or (at your option) any later version.
52 
53     This library is distributed in the hope that it will be useful,
54     but WITHOUT ANY WARRANTY; without even the implied warranty of
55     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
56     Lesser General Public License for more details.
57 
58     You should have received a copy of the GNU Lesser General Public
59     License along with this library; if not, see <http://www.gnu.org/licenses/>.
60  */
61 
62 #include "quadmath-imp.h"
63 
64 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
65  * 1/sqrt(2) <= x < sqrt(2)
66  * Theoretical peak relative error = 5.3e-37,
67  * relative peak error spread = 2.3e-14
68  */
69 static const __float128 P[13] =
70 {
71   1.313572404063446165910279910527789794488E4Q,
72   7.771154681358524243729929227226708890930E4Q,
73   2.014652742082537582487669938141683759923E5Q,
74   3.007007295140399532324943111654767187848E5Q,
75   2.854829159639697837788887080758954924001E5Q,
76   1.797628303815655343403735250238293741397E5Q,
77   7.594356839258970405033155585486712125861E4Q,
78   2.128857716871515081352991964243375186031E4Q,
79   3.824952356185897735160588078446136783779E3Q,
80   4.114517881637811823002128927449878962058E2Q,
81   2.321125933898420063925789532045674660756E1Q,
82   4.998469661968096229986658302195402690910E-1Q,
83   1.538612243596254322971797716843006400388E-6Q
84 };
85 static const __float128 Q[12] =
86 {
87   3.940717212190338497730839731583397586124E4Q,
88   2.626900195321832660448791748036714883242E5Q,
89   7.777690340007566932935753241556479363645E5Q,
90   1.347518538384329112529391120390701166528E6Q,
91   1.514882452993549494932585972882995548426E6Q,
92   1.158019977462989115839826904108208787040E6Q,
93   6.132189329546557743179177159925690841200E5Q,
94   2.248234257620569139969141618556349415120E5Q,
95   5.605842085972455027590989944010492125825E4Q,
96   9.147150349299596453976674231612674085381E3Q,
97   9.104928120962988414618126155557301584078E2Q,
98   4.839208193348159620282142911143429644326E1Q
99 /* 1.000000000000000000000000000000000000000E0L, */
100 };
101 
102 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
103  * where z = 2(x-1)/(x+1)
104  * 1/sqrt(2) <= x < sqrt(2)
105  * Theoretical peak relative error = 1.1e-35,
106  * relative peak error spread 1.1e-9
107  */
108 static const __float128 R[6] =
109 {
110   1.418134209872192732479751274970992665513E5Q,
111  -8.977257995689735303686582344659576526998E4Q,
112   2.048819892795278657810231591630928516206E4Q,
113  -2.024301798136027039250415126250455056397E3Q,
114   8.057002716646055371965756206836056074715E1Q,
115  -8.828896441624934385266096344596648080902E-1Q
116 };
117 static const __float128 S[6] =
118 {
119   1.701761051846631278975701529965589676574E6Q,
120  -1.332535117259762928288745111081235577029E6Q,
121   4.001557694070773974936904547424676279307E5Q,
122  -5.748542087379434595104154610899551484314E4Q,
123   3.998526750980007367835804959888064681098E3Q,
124  -1.186359407982897997337150403816839480438E2Q
125 /* 1.000000000000000000000000000000000000000E0L, */
126 };
127 
128 static const __float128
129 /* log2(e) - 1 */
130 LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
131 /* sqrt(2)/2 */
132 SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
133 
134 
135 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
136 
137 static __float128
neval(__float128 x,const __float128 * p,int n)138 neval (__float128 x, const __float128 *p, int n)
139 {
140   __float128 y;
141 
142   p += n;
143   y = *p--;
144   do
145     {
146       y = y * x + *p--;
147     }
148   while (--n > 0);
149   return y;
150 }
151 
152 
153 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
154 
155 static __float128
deval(__float128 x,const __float128 * p,int n)156 deval (__float128 x, const __float128 *p, int n)
157 {
158   __float128 y;
159 
160   p += n;
161   y = x + *p--;
162   do
163     {
164       y = y * x + *p--;
165     }
166   while (--n > 0);
167   return y;
168 }
169 
170 
171 
172 __float128
log2q(__float128 x)173 log2q (__float128 x)
174 {
175   __float128 z;
176   __float128 y;
177   int e;
178   int64_t hx, lx;
179 
180 /* Test for domain */
181   GET_FLT128_WORDS64 (hx, lx, x);
182   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
183     return (-1 / fabsq (x));		/* log2l(+-0)=-inf  */
184   if (hx < 0)
185     return (x - x) / (x - x);
186   if (hx >= 0x7fff000000000000LL)
187     return (x + x);
188 
189   if (x == 1)
190     return 0;
191 
192 /* separate mantissa from exponent */
193 
194 /* Note, frexp is used so that denormal numbers
195  * will be handled properly.
196  */
197   x = frexpq (x, &e);
198 
199 
200 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
201  * where z = 2(x-1)/x+1)
202  */
203   if ((e > 2) || (e < -2))
204     {
205       if (x < SQRTH)
206 	{			/* 2( 2x-1 )/( 2x+1 ) */
207 	  e -= 1;
208 	  z = x - 0.5Q;
209 	  y = 0.5Q * z + 0.5Q;
210 	}
211       else
212 	{			/*  2 (x-1)/(x+1)   */
213 	  z = x - 0.5Q;
214 	  z -= 0.5Q;
215 	  y = 0.5Q * x + 0.5Q;
216 	}
217       x = z / y;
218       z = x * x;
219       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
220       goto done;
221     }
222 
223 
224 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
225 
226   if (x < SQRTH)
227     {
228       e -= 1;
229       x = 2.0 * x - 1;	/*  2x - 1  */
230     }
231   else
232     {
233       x = x - 1;
234     }
235   z = x * x;
236   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
237   y = y - 0.5 * z;
238 
239 done:
240 
241 /* Multiply log of fraction by log2(e)
242  * and base 2 exponent by 1
243  */
244   z = y * LOG2EA;
245   z += x * LOG2EA;
246   z += y;
247   z += x;
248   z += e;
249   return (z);
250 }
251