1 /* e_sinhl.c -- long double version of e_sinh.c.
2  * Conversion to long double by Ulrich Drepper,
3  * Cygnus Support, drepper@cygnus.com.
4  */
5 
6 /*
7  * ====================================================
8  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9  *
10  * Developed at SunPro, a Sun Microsystems, Inc. business.
11  * Permission to use, copy, modify, and distribute this
12  * software is freely granted, provided that this notice
13  * is preserved.
14  * ====================================================
15  */
16 
17 /* Changes for 128-bit long double are
18    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
19    and are incorporated herein by permission of the author.  The author
20    reserves the right to distribute this material elsewhere under different
21    copying permissions.  These modifications are distributed here under
22    the following terms:
23 
24     This library is free software; you can redistribute it and/or
25     modify it under the terms of the GNU Lesser General Public
26     License as published by the Free Software Foundation; either
27     version 2.1 of the License, or (at your option) any later version.
28 
29     This library is distributed in the hope that it will be useful,
30     but WITHOUT ANY WARRANTY; without even the implied warranty of
31     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
32     Lesser General Public License for more details.
33 
34     You should have received a copy of the GNU Lesser General Public
35     License along with this library; if not, see
36     <http://www.gnu.org/licenses/>.  */
37 
38 /* sinhq(x)
39  * Method :
40  * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
41  *      1. Replace x by |x| (sinhl(-x) = -sinhl(x)).
42  *      2.
43  *                                                   E + E/(E+1)
44  *          0        <= x <= 25     :  sinhl(x) := --------------, E=expm1q(x)
45  *                                                       2
46  *
47  *          25       <= x <= lnovft :  sinhl(x) := expq(x)/2
48  *          lnovft   <= x <= ln2ovft:  sinhl(x) := expq(x/2)/2 * expq(x/2)
49  *          ln2ovft  <  x           :  sinhl(x) := x*shuge (overflow)
50  *
51  * Special cases:
52  *      sinhl(x) is |x| if x is +INF, -INF, or NaN.
53  *      only sinhl(0)=0 is exact for finite x.
54  */
55 
56 #include "quadmath-imp.h"
57 
58 static const __float128 one = 1.0, shuge = 1.0e4931Q,
59 ovf_thresh = 1.1357216553474703894801348310092223067821E4Q;
60 
61 __float128
sinhq(__float128 x)62 sinhq (__float128 x)
63 {
64   __float128 t, w, h;
65   uint32_t jx, ix;
66   ieee854_float128 u;
67 
68   /* Words of |x|. */
69   u.value = x;
70   jx = u.words32.w0;
71   ix = jx & 0x7fffffff;
72 
73   /* x is INF or NaN */
74   if (ix >= 0x7fff0000)
75     return x + x;
76 
77   h = 0.5;
78   if (jx & 0x80000000)
79     h = -h;
80 
81   /* Absolute value of x.  */
82   u.words32.w0 = ix;
83 
84   /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */
85   if (ix <= 0x40044000)
86     {
87       if (ix < 0x3fc60000) /* |x| < 2^-57 */
88 	{
89 	  math_check_force_underflow (x);
90 	  if (shuge + x > one)
91 	    return x;		/* sinh(tiny) = tiny with inexact */
92 	}
93       t = expm1q (u.value);
94       if (ix < 0x3fff0000)
95 	return h * (2.0 * t - t * t / (t + one));
96       return h * (t + t / (t + one));
97     }
98 
99   /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */
100   if (ix <= 0x400c62e3) /* 11356.375 */
101     return h * expq (u.value);
102 
103   /* |x| in [log(maxdouble), overflowthreshold]
104      Overflow threshold is log(2 * maxdouble).  */
105   if (u.value <= ovf_thresh)
106     {
107       w = expq (0.5 * u.value);
108       t = h * w;
109       return t * w;
110     }
111 
112   /* |x| > overflowthreshold, sinhl(x) overflow */
113   return x * shuge;
114 }
115