1 /* s_sinl.c -- long double version of s_sin.c.
2  * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 /* sinq(x)
17  * Return sine function of x.
18  *
19  * kernel function:
20  *	__quadmath_kernel_sinq		... sine function on [-pi/4,pi/4]
21  *	__quadmath_kernel_cosq		... cose function on [-pi/4,pi/4]
22  *	__quadmath_rem_pio2q	... argument reduction routine
23  *
24  * Method.
25  *      Let S,C and T denote the sin, cos and tan respectively on
26  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27  *	in [-pi/4 , +pi/4], and let n = k mod 4.
28  *	We have
29  *
30  *          n        sin(x)      cos(x)        tan(x)
31  *     ----------------------------------------------------------
32  *	    0	       S	   C		 T
33  *	    1	       C	  -S		-1/T
34  *	    2	      -S	  -C		 T
35  *	    3	      -C	   S		-1/T
36  *     ----------------------------------------------------------
37  *
38  * Special cases:
39  *      Let trig be any of sin, cos, or tan.
40  *      trig(+-INF)  is NaN, with signals;
41  *      trig(NaN)    is that NaN;
42  *
43  * Accuracy:
44  *	TRIG(x) returns trig(x) nearly rounded
45  */
46 
47 #include "quadmath-imp.h"
48 
sinq(__float128 x)49 __float128 sinq(__float128 x)
50 {
51 	__float128 y[2],z=0;
52 	int64_t n, ix;
53 
54     /* High word of x. */
55 	GET_FLT128_MSW64(ix,x);
56 
57     /* |x| ~< pi/4 */
58 	ix &= 0x7fffffffffffffffLL;
59 	if(ix <= 0x3ffe921fb54442d1LL)
60 	  return __quadmath_kernel_sinq(x,z,0);
61 
62     /* sin(Inf or NaN) is NaN */
63 	else if (ix>=0x7fff000000000000LL) {
64 	    if (ix == 0x7fff000000000000LL) {
65 		GET_FLT128_LSW64(n,x);
66 		if (n == 0)
67 		    errno = EDOM;
68 	    }
69 	    return x-x;
70 	}
71 
72     /* argument reduction needed */
73 	else {
74 	    n = __quadmath_rem_pio2q(x,y);
75 	    switch(n&3) {
76 		case 0: return  __quadmath_kernel_sinq(y[0],y[1],1);
77 		case 1: return  __quadmath_kernel_cosq(y[0],y[1]);
78 		case 2: return -__quadmath_kernel_sinq(y[0],y[1],1);
79 		default:
80 			return -__quadmath_kernel_cosq(y[0],y[1]);
81 	    }
82 	}
83 }
84