1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--   A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S  --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2004-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- This unit was originally developed by Matthew J Heaney.                  --
28------------------------------------------------------------------------------
29
30with Ada.Containers.Helpers; use Ada.Containers.Helpers;
31
32with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
33pragma Elaborate_All
34  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
35
36with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
37pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
38
39with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
40pragma Elaborate_All
41  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
42
43with System; use type System.Address;
44with System.Put_Images;
45
46package body Ada.Containers.Bounded_Ordered_Sets with
47  SPARK_Mode => Off
48is
49
50   pragma Warnings (Off, "variable ""Busy*"" is not referenced");
51   pragma Warnings (Off, "variable ""Lock*"" is not referenced");
52   --  See comment in Ada.Containers.Helpers
53
54   ------------------------------
55   -- Access to Fields of Node --
56   ------------------------------
57
58   --  These subprograms provide functional notation for access to fields
59   --  of a node, and procedural notation for modifying these fields.
60
61   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
62   pragma Inline (Color);
63
64   function Left (Node : Node_Type) return Count_Type;
65   pragma Inline (Left);
66
67   function Parent (Node : Node_Type) return Count_Type;
68   pragma Inline (Parent);
69
70   function Right (Node : Node_Type) return Count_Type;
71   pragma Inline (Right);
72
73   procedure Set_Color
74     (Node  : in out Node_Type;
75      Color : Red_Black_Trees.Color_Type);
76   pragma Inline (Set_Color);
77
78   procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
79   pragma Inline (Set_Left);
80
81   procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
82   pragma Inline (Set_Right);
83
84   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
85   pragma Inline (Set_Parent);
86
87   -----------------------
88   -- Local Subprograms --
89   -----------------------
90
91   procedure Insert_Sans_Hint
92     (Container : in out Set;
93      New_Item  : Element_Type;
94      Node      : out Count_Type;
95      Inserted  : out Boolean);
96
97   procedure Insert_With_Hint
98     (Dst_Set  : in out Set;
99      Dst_Hint : Count_Type;
100      Src_Node : Node_Type;
101      Dst_Node : out Count_Type);
102
103   function Is_Greater_Element_Node
104     (Left  : Element_Type;
105      Right : Node_Type) return Boolean;
106   pragma Inline (Is_Greater_Element_Node);
107
108   function Is_Less_Element_Node
109     (Left  : Element_Type;
110      Right : Node_Type) return Boolean;
111   pragma Inline (Is_Less_Element_Node);
112
113   function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
114   pragma Inline (Is_Less_Node_Node);
115
116   procedure Replace_Element
117     (Container : in out Set;
118      Index     : Count_Type;
119      Item      : Element_Type);
120
121   --------------------------
122   -- Local Instantiations --
123   --------------------------
124
125   package Tree_Operations is
126      new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
127
128   use Tree_Operations;
129
130   package Element_Keys is
131      new Red_Black_Trees.Generic_Bounded_Keys
132        (Tree_Operations     => Tree_Operations,
133         Key_Type            => Element_Type,
134         Is_Less_Key_Node    => Is_Less_Element_Node,
135         Is_Greater_Key_Node => Is_Greater_Element_Node);
136
137   package Set_Ops is
138      new Red_Black_Trees.Generic_Bounded_Set_Operations
139        (Tree_Operations  => Tree_Operations,
140         Set_Type         => Set,
141         Assign           => Assign,
142         Insert_With_Hint => Insert_With_Hint,
143         Is_Less          => Is_Less_Node_Node);
144
145   ---------
146   -- "<" --
147   ---------
148
149   function "<" (Left, Right : Cursor) return Boolean is
150   begin
151      if Checks and then Left.Node = 0 then
152         raise Constraint_Error with "Left cursor equals No_Element";
153      end if;
154
155      if Checks and then Right.Node = 0 then
156         raise Constraint_Error with "Right cursor equals No_Element";
157      end if;
158
159      pragma Assert (Vet (Left.Container.all, Left.Node),
160                     "bad Left cursor in ""<""");
161
162      pragma Assert (Vet (Right.Container.all, Right.Node),
163                     "bad Right cursor in ""<""");
164
165      declare
166         LN : Nodes_Type renames Left.Container.Nodes;
167         RN : Nodes_Type renames Right.Container.Nodes;
168      begin
169         return LN (Left.Node).Element < RN (Right.Node).Element;
170      end;
171   end "<";
172
173   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
174   begin
175      if Checks and then Left.Node = 0 then
176         raise Constraint_Error with "Left cursor equals No_Element";
177      end if;
178
179      pragma Assert (Vet (Left.Container.all, Left.Node),
180                     "bad Left cursor in ""<""");
181
182      return Left.Container.Nodes (Left.Node).Element < Right;
183   end "<";
184
185   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
186   begin
187      if Checks and then Right.Node = 0 then
188         raise Constraint_Error with "Right cursor equals No_Element";
189      end if;
190
191      pragma Assert (Vet (Right.Container.all, Right.Node),
192                     "bad Right cursor in ""<""");
193
194      return Left < Right.Container.Nodes (Right.Node).Element;
195   end "<";
196
197   ---------
198   -- "=" --
199   ---------
200
201   function "=" (Left, Right : Set) return Boolean is
202      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
203      pragma Inline (Is_Equal_Node_Node);
204
205      function Is_Equal is
206         new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
207
208      ------------------------
209      -- Is_Equal_Node_Node --
210      ------------------------
211
212      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
213      begin
214         return L.Element = R.Element;
215      end Is_Equal_Node_Node;
216
217   --  Start of processing for Is_Equal
218
219   begin
220      return Is_Equal (Left, Right);
221   end "=";
222
223   ---------
224   -- ">" --
225   ---------
226
227   function ">" (Left, Right : Cursor) return Boolean is
228   begin
229      if Checks and then Left.Node = 0 then
230         raise Constraint_Error with "Left cursor equals No_Element";
231      end if;
232
233      if Checks and then Right.Node = 0 then
234         raise Constraint_Error with "Right cursor equals No_Element";
235      end if;
236
237      pragma Assert (Vet (Left.Container.all, Left.Node),
238                     "bad Left cursor in "">""");
239
240      pragma Assert (Vet (Right.Container.all, Right.Node),
241                     "bad Right cursor in "">""");
242
243      --  L > R same as R < L
244
245      declare
246         LN : Nodes_Type renames Left.Container.Nodes;
247         RN : Nodes_Type renames Right.Container.Nodes;
248      begin
249         return RN (Right.Node).Element < LN (Left.Node).Element;
250      end;
251   end ">";
252
253   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
254   begin
255      if Checks and then Right.Node = 0 then
256         raise Constraint_Error with "Right cursor equals No_Element";
257      end if;
258
259      pragma Assert (Vet (Right.Container.all, Right.Node),
260                     "bad Right cursor in "">""");
261
262      return Right.Container.Nodes (Right.Node).Element < Left;
263   end ">";
264
265   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
266   begin
267      if Checks and then Left.Node = 0 then
268         raise Constraint_Error with "Left cursor equals No_Element";
269      end if;
270
271      pragma Assert (Vet (Left.Container.all, Left.Node),
272                     "bad Left cursor in "">""");
273
274      return Right < Left.Container.Nodes (Left.Node).Element;
275   end ">";
276
277   ------------
278   -- Assign --
279   ------------
280
281   procedure Assign (Target : in out Set; Source : Set) is
282      procedure Append_Element (Source_Node : Count_Type);
283
284      procedure Append_Elements is
285         new Tree_Operations.Generic_Iteration (Append_Element);
286
287      --------------------
288      -- Append_Element --
289      --------------------
290
291      procedure Append_Element (Source_Node : Count_Type) is
292         SN : Node_Type renames Source.Nodes (Source_Node);
293
294         procedure Set_Element (Node : in out Node_Type);
295         pragma Inline (Set_Element);
296
297         function New_Node return Count_Type;
298         pragma Inline (New_Node);
299
300         procedure Insert_Post is
301            new Element_Keys.Generic_Insert_Post (New_Node);
302
303         procedure Unconditional_Insert_Sans_Hint is
304            new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
305
306         procedure Unconditional_Insert_Avec_Hint is
307            new Element_Keys.Generic_Unconditional_Insert_With_Hint
308              (Insert_Post,
309               Unconditional_Insert_Sans_Hint);
310
311         procedure Allocate is
312            new Tree_Operations.Generic_Allocate (Set_Element);
313
314         --------------
315         -- New_Node --
316         --------------
317
318         function New_Node return Count_Type is
319            Result : Count_Type;
320         begin
321            Allocate (Target, Result);
322            return Result;
323         end New_Node;
324
325         -----------------
326         -- Set_Element --
327         -----------------
328
329         procedure Set_Element (Node : in out Node_Type) is
330         begin
331            Node.Element := SN.Element;
332         end Set_Element;
333
334         Target_Node : Count_Type;
335
336      --  Start of processing for Append_Element
337
338      begin
339         Unconditional_Insert_Avec_Hint
340           (Tree  => Target,
341            Hint  => 0,
342            Key   => SN.Element,
343            Node  => Target_Node);
344      end Append_Element;
345
346   --  Start of processing for Assign
347
348   begin
349      if Target'Address = Source'Address then
350         return;
351      end if;
352
353      if Checks and then Target.Capacity < Source.Length then
354         raise Capacity_Error
355           with "Target capacity is less than Source length";
356      end if;
357
358      Target.Clear;
359      Append_Elements (Source);
360   end Assign;
361
362   -------------
363   -- Ceiling --
364   -------------
365
366   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
367      Node : constant Count_Type :=
368        Element_Keys.Ceiling (Container, Item);
369   begin
370      return (if Node = 0 then No_Element
371              else Cursor'(Container'Unrestricted_Access, Node));
372   end Ceiling;
373
374   -----------
375   -- Clear --
376   -----------
377
378   procedure Clear (Container : in out Set) is
379   begin
380      while not Container.Is_Empty loop
381         Container.Delete_Last;
382      end loop;
383   end Clear;
384
385   -----------
386   -- Color --
387   -----------
388
389   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
390   begin
391      return Node.Color;
392   end Color;
393
394   ------------------------
395   -- Constant_Reference --
396   ------------------------
397
398   function Constant_Reference
399     (Container : aliased Set;
400      Position  : Cursor) return Constant_Reference_Type
401   is
402   begin
403      if Checks and then Position.Container = null then
404         raise Constraint_Error with "Position cursor has no element";
405      end if;
406
407      if Checks and then Position.Container /= Container'Unrestricted_Access
408      then
409         raise Program_Error with
410           "Position cursor designates wrong container";
411      end if;
412
413      pragma Assert
414        (Vet (Container, Position.Node),
415         "bad cursor in Constant_Reference");
416
417      declare
418         N : Node_Type renames Container.Nodes (Position.Node);
419         TC : constant Tamper_Counts_Access :=
420           Container.TC'Unrestricted_Access;
421      begin
422         return R : constant Constant_Reference_Type :=
423           (Element => N.Element'Access,
424            Control => (Controlled with TC))
425         do
426            Busy (TC.all);
427         end return;
428      end;
429   end Constant_Reference;
430
431   --------------
432   -- Contains --
433   --------------
434
435   function Contains
436     (Container : Set;
437      Item      : Element_Type) return Boolean
438   is
439   begin
440      return Find (Container, Item) /= No_Element;
441   end Contains;
442
443   ----------
444   -- Copy --
445   ----------
446
447   function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
448      C : constant Count_Type :=
449        (if Capacity = 0 then Source.Length
450         else Capacity);
451   begin
452      if Checks and then C < Source.Length then
453         raise Capacity_Error with "Capacity too small";
454      end if;
455
456      return Target : Set (Capacity => C) do
457         Assign (Target => Target, Source => Source);
458      end return;
459   end Copy;
460
461   ------------
462   -- Delete --
463   ------------
464
465   procedure Delete (Container : in out Set; Position : in out Cursor) is
466   begin
467      TC_Check (Container.TC);
468
469      if Checks and then Position.Node = 0 then
470         raise Constraint_Error with "Position cursor equals No_Element";
471      end if;
472
473      if Checks and then Position.Container /= Container'Unrestricted_Access
474      then
475         raise Program_Error with "Position cursor designates wrong set";
476      end if;
477
478      pragma Assert (Vet (Container, Position.Node),
479                     "bad cursor in Delete");
480
481      Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
482      Tree_Operations.Free (Container, Position.Node);
483
484      Position := No_Element;
485   end Delete;
486
487   procedure Delete (Container : in out Set; Item : Element_Type) is
488      X : constant Count_Type := Element_Keys.Find (Container, Item);
489
490   begin
491      Tree_Operations.Delete_Node_Sans_Free (Container, X);
492
493      if Checks and then X = 0 then
494         raise Constraint_Error with "attempt to delete element not in set";
495      end if;
496
497      Tree_Operations.Free (Container, X);
498   end Delete;
499
500   ------------------
501   -- Delete_First --
502   ------------------
503
504   procedure Delete_First (Container : in out Set) is
505      X : constant Count_Type := Container.First;
506   begin
507      if X /= 0 then
508         Tree_Operations.Delete_Node_Sans_Free (Container, X);
509         Tree_Operations.Free (Container, X);
510      end if;
511   end Delete_First;
512
513   -----------------
514   -- Delete_Last --
515   -----------------
516
517   procedure Delete_Last (Container : in out Set) is
518      X : constant Count_Type := Container.Last;
519   begin
520      if X /= 0 then
521         Tree_Operations.Delete_Node_Sans_Free (Container, X);
522         Tree_Operations.Free (Container, X);
523      end if;
524   end Delete_Last;
525
526   ----------------
527   -- Difference --
528   ----------------
529
530   procedure Difference (Target : in out Set; Source : Set)
531      renames Set_Ops.Set_Difference;
532
533   function Difference (Left, Right : Set) return Set
534      renames Set_Ops.Set_Difference;
535
536   -------------
537   -- Element --
538   -------------
539
540   function Element (Position : Cursor) return Element_Type is
541   begin
542      if Checks and then Position.Node = 0 then
543         raise Constraint_Error with "Position cursor equals No_Element";
544      end if;
545
546      pragma Assert (Vet (Position.Container.all, Position.Node),
547                     "bad cursor in Element");
548
549      return Position.Container.Nodes (Position.Node).Element;
550   end Element;
551
552   -----------
553   -- Empty --
554   -----------
555
556   function Empty (Capacity : Count_Type := 10) return Set is
557   begin
558      return Result : Set (Capacity) do
559         null;
560      end return;
561   end Empty;
562
563   -------------------------
564   -- Equivalent_Elements --
565   -------------------------
566
567   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
568   begin
569      return (if Left < Right or else Right < Left then False else True);
570   end Equivalent_Elements;
571
572   ---------------------
573   -- Equivalent_Sets --
574   ---------------------
575
576   function Equivalent_Sets (Left, Right : Set) return Boolean is
577      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
578      pragma Inline (Is_Equivalent_Node_Node);
579
580      function Is_Equivalent is
581         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
582
583      -----------------------------
584      -- Is_Equivalent_Node_Node --
585      -----------------------------
586
587      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
588      begin
589         return (if L.Element < R.Element then False
590                 elsif R.Element < L.Element then False
591                 else True);
592      end Is_Equivalent_Node_Node;
593
594   --  Start of processing for Equivalent_Sets
595
596   begin
597      return Is_Equivalent (Left, Right);
598   end Equivalent_Sets;
599
600   -------------
601   -- Exclude --
602   -------------
603
604   procedure Exclude (Container : in out Set; Item : Element_Type) is
605      X : constant Count_Type := Element_Keys.Find (Container, Item);
606   begin
607      if X /= 0 then
608         Tree_Operations.Delete_Node_Sans_Free (Container, X);
609         Tree_Operations.Free (Container, X);
610      end if;
611   end Exclude;
612
613   --------------
614   -- Finalize --
615   --------------
616
617   procedure Finalize (Object : in out Iterator) is
618   begin
619      if Object.Container /= null then
620         Unbusy (Object.Container.TC);
621      end if;
622   end Finalize;
623
624   ----------
625   -- Find --
626   ----------
627
628   function Find (Container : Set; Item : Element_Type) return Cursor is
629      Node : constant Count_Type := Element_Keys.Find (Container, Item);
630   begin
631      return (if Node = 0 then No_Element
632              else Cursor'(Container'Unrestricted_Access, Node));
633   end Find;
634
635   -----------
636   -- First --
637   -----------
638
639   function First (Container : Set) return Cursor is
640   begin
641      return (if Container.First = 0 then No_Element
642              else Cursor'(Container'Unrestricted_Access, Container.First));
643   end First;
644
645   function First (Object : Iterator) return Cursor is
646   begin
647      --  The value of the iterator object's Node component influences the
648      --  behavior of the First (and Last) selector function.
649
650      --  When the Node component is 0, this means the iterator object was
651      --  constructed without a start expression, in which case the (forward)
652      --  iteration starts from the (logical) beginning of the entire sequence
653      --  of items (corresponding to Container.First, for a forward iterator).
654
655      --  Otherwise, this is iteration over a partial sequence of items. When
656      --  the Node component is positive, the iterator object was constructed
657      --  with a start expression, that specifies the position from which the
658      --  (forward) partial iteration begins.
659
660      if Object.Node = 0 then
661         return Bounded_Ordered_Sets.First (Object.Container.all);
662      else
663         return Cursor'(Object.Container, Object.Node);
664      end if;
665   end First;
666
667   -------------------
668   -- First_Element --
669   -------------------
670
671   function First_Element (Container : Set) return Element_Type is
672   begin
673      if Checks and then Container.First = 0 then
674         raise Constraint_Error with "set is empty";
675      end if;
676
677      return Container.Nodes (Container.First).Element;
678   end First_Element;
679
680   -----------
681   -- Floor --
682   -----------
683
684   function Floor (Container : Set; Item : Element_Type) return Cursor is
685      Node : constant Count_Type := Element_Keys.Floor (Container, Item);
686   begin
687      return (if Node = 0 then No_Element
688              else Cursor'(Container'Unrestricted_Access, Node));
689   end Floor;
690
691   ------------------
692   -- Generic_Keys --
693   ------------------
694
695   package body Generic_Keys is
696
697      -----------------------
698      -- Local Subprograms --
699      -----------------------
700
701      function Is_Greater_Key_Node
702        (Left  : Key_Type;
703         Right : Node_Type) return Boolean;
704      pragma Inline (Is_Greater_Key_Node);
705
706      function Is_Less_Key_Node
707        (Left  : Key_Type;
708         Right : Node_Type) return Boolean;
709      pragma Inline (Is_Less_Key_Node);
710
711      --------------------------
712      -- Local Instantiations --
713      --------------------------
714
715      package Key_Keys is
716        new Red_Black_Trees.Generic_Bounded_Keys
717          (Tree_Operations     => Tree_Operations,
718           Key_Type            => Key_Type,
719           Is_Less_Key_Node    => Is_Less_Key_Node,
720           Is_Greater_Key_Node => Is_Greater_Key_Node);
721
722      -------------
723      -- Ceiling --
724      -------------
725
726      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
727         Node : constant Count_Type :=
728           Key_Keys.Ceiling (Container, Key);
729      begin
730         return (if Node = 0 then No_Element
731                 else Cursor'(Container'Unrestricted_Access, Node));
732      end Ceiling;
733
734      ------------------------
735      -- Constant_Reference --
736      ------------------------
737
738      function Constant_Reference
739        (Container : aliased Set;
740         Key       : Key_Type) return Constant_Reference_Type
741      is
742         Node : constant Count_Type := Key_Keys.Find (Container, Key);
743
744      begin
745         if Checks and then Node = 0 then
746            raise Constraint_Error with "key not in set";
747         end if;
748
749         declare
750            N : Node_Type renames Container.Nodes (Node);
751            TC : constant Tamper_Counts_Access :=
752              Container.TC'Unrestricted_Access;
753         begin
754            return R : constant Constant_Reference_Type :=
755              (Element => N.Element'Access,
756               Control => (Controlled with TC))
757            do
758               Busy (TC.all);
759            end return;
760         end;
761      end Constant_Reference;
762
763      --------------
764      -- Contains --
765      --------------
766
767      function Contains (Container : Set; Key : Key_Type) return Boolean is
768      begin
769         return Find (Container, Key) /= No_Element;
770      end Contains;
771
772      ------------
773      -- Delete --
774      ------------
775
776      procedure Delete (Container : in out Set; Key : Key_Type) is
777         X : constant Count_Type := Key_Keys.Find (Container, Key);
778
779      begin
780         if Checks and then X = 0 then
781            raise Constraint_Error with "attempt to delete key not in set";
782         end if;
783
784         Tree_Operations.Delete_Node_Sans_Free (Container, X);
785         Tree_Operations.Free (Container, X);
786      end Delete;
787
788      -------------
789      -- Element --
790      -------------
791
792      function Element (Container : Set; Key : Key_Type) return Element_Type is
793         Node : constant Count_Type := Key_Keys.Find (Container, Key);
794
795      begin
796         if Checks and then Node = 0 then
797            raise Constraint_Error with "key not in set";
798         end if;
799
800         return Container.Nodes (Node).Element;
801      end Element;
802
803      ---------------------
804      -- Equivalent_Keys --
805      ---------------------
806
807      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
808      begin
809         return (if Left < Right or else Right < Left then False else True);
810      end Equivalent_Keys;
811
812      -------------
813      -- Exclude --
814      -------------
815
816      procedure Exclude (Container : in out Set; Key : Key_Type) is
817         X : constant Count_Type := Key_Keys.Find (Container, Key);
818      begin
819         if X /= 0 then
820            Tree_Operations.Delete_Node_Sans_Free (Container, X);
821            Tree_Operations.Free (Container, X);
822         end if;
823      end Exclude;
824
825      --------------
826      -- Finalize --
827      --------------
828
829      procedure Finalize (Control : in out Reference_Control_Type) is
830      begin
831         if Control.Container /= null then
832            Impl.Reference_Control_Type (Control).Finalize;
833
834            if Checks and then not (Key (Control.Pos) = Control.Old_Key.all)
835            then
836               Delete (Control.Container.all, Key (Control.Pos));
837               raise Program_Error;
838            end if;
839
840            Control.Container := null;
841         end if;
842      end Finalize;
843
844      ----------
845      -- Find --
846      ----------
847
848      function Find (Container : Set; Key : Key_Type) return Cursor is
849         Node : constant Count_Type := Key_Keys.Find (Container, Key);
850      begin
851         return (if Node = 0 then No_Element
852                 else Cursor'(Container'Unrestricted_Access, Node));
853      end Find;
854
855      -----------
856      -- Floor --
857      -----------
858
859      function Floor (Container : Set; Key : Key_Type) return Cursor is
860         Node : constant Count_Type := Key_Keys.Floor (Container, Key);
861      begin
862         return (if Node = 0 then No_Element
863                 else Cursor'(Container'Unrestricted_Access, Node));
864      end Floor;
865
866      -------------------------
867      -- Is_Greater_Key_Node --
868      -------------------------
869
870      function Is_Greater_Key_Node
871        (Left  : Key_Type;
872         Right : Node_Type) return Boolean
873      is
874      begin
875         return Key (Right.Element) < Left;
876      end Is_Greater_Key_Node;
877
878      ----------------------
879      -- Is_Less_Key_Node --
880      ----------------------
881
882      function Is_Less_Key_Node
883        (Left  : Key_Type;
884         Right : Node_Type) return Boolean
885      is
886      begin
887         return Left < Key (Right.Element);
888      end Is_Less_Key_Node;
889
890      ---------
891      -- Key --
892      ---------
893
894      function Key (Position : Cursor) return Key_Type is
895      begin
896         if Checks and then Position.Node = 0 then
897            raise Constraint_Error with
898              "Position cursor equals No_Element";
899         end if;
900
901         pragma Assert (Vet (Position.Container.all, Position.Node),
902                        "bad cursor in Key");
903
904         return Key (Position.Container.Nodes (Position.Node).Element);
905      end Key;
906
907      ----------
908      -- Read --
909      ----------
910
911      procedure Read
912        (Stream : not null access Root_Stream_Type'Class;
913         Item   : out Reference_Type)
914      is
915      begin
916         raise Program_Error with "attempt to stream reference";
917      end Read;
918
919      ------------------------------
920      -- Reference_Preserving_Key --
921      ------------------------------
922
923      function Reference_Preserving_Key
924        (Container : aliased in out Set;
925         Position  : Cursor) return Reference_Type
926      is
927      begin
928         if Checks and then Position.Container = null then
929            raise Constraint_Error with "Position cursor has no element";
930         end if;
931
932         if Checks and then Position.Container /= Container'Unrestricted_Access
933         then
934            raise Program_Error with
935              "Position cursor designates wrong container";
936         end if;
937
938         pragma Assert
939           (Vet (Container, Position.Node),
940            "bad cursor in function Reference_Preserving_Key");
941
942         declare
943            N : Node_Type renames Container.Nodes (Position.Node);
944         begin
945            return R : constant Reference_Type :=
946                         (Element => N.Element'Access,
947                          Control =>
948                            (Controlled with
949                              Container.TC'Unrestricted_Access,
950                              Container => Container'Unchecked_Access,
951                              Pos       => Position,
952                              Old_Key   => new Key_Type'(Key (Position))))
953            do
954               Busy (Container.TC);
955            end return;
956         end;
957      end Reference_Preserving_Key;
958
959      function Reference_Preserving_Key
960        (Container : aliased in out Set;
961         Key       : Key_Type) return Reference_Type
962      is
963         Node : constant Count_Type := Key_Keys.Find (Container, Key);
964
965      begin
966         if Checks and then Node = 0 then
967            raise Constraint_Error with "key not in set";
968         end if;
969
970         declare
971            N : Node_Type renames Container.Nodes (Node);
972         begin
973            return R : constant Reference_Type :=
974                         (Element => N.Element'Access,
975                          Control =>
976                            (Controlled with
977                              Container.TC'Unrestricted_Access,
978                              Container => Container'Unchecked_Access,
979                               Pos      => Find (Container, Key),
980                               Old_Key  => new Key_Type'(Key)))
981            do
982               Busy (Container.TC);
983            end return;
984         end;
985      end Reference_Preserving_Key;
986
987      -------------
988      -- Replace --
989      -------------
990
991      procedure Replace
992        (Container : in out Set;
993         Key       : Key_Type;
994         New_Item  : Element_Type)
995      is
996         Node : constant Count_Type := Key_Keys.Find (Container, Key);
997
998      begin
999         if Checks and then Node = 0 then
1000            raise Constraint_Error with
1001              "attempt to replace key not in set";
1002         end if;
1003
1004         Replace_Element (Container, Node, New_Item);
1005      end Replace;
1006
1007      -----------------------------------
1008      -- Update_Element_Preserving_Key --
1009      -----------------------------------
1010
1011      procedure Update_Element_Preserving_Key
1012        (Container : in out Set;
1013         Position  : Cursor;
1014         Process   : not null access procedure (Element : in out Element_Type))
1015      is
1016      begin
1017         if Checks and then Position.Node = 0 then
1018            raise Constraint_Error with
1019              "Position cursor equals No_Element";
1020         end if;
1021
1022         if Checks and then Position.Container /= Container'Unrestricted_Access
1023         then
1024            raise Program_Error with
1025              "Position cursor designates wrong set";
1026         end if;
1027
1028         pragma Assert (Vet (Container, Position.Node),
1029                        "bad cursor in Update_Element_Preserving_Key");
1030
1031         --  Per AI05-0022, the container implementation is required to detect
1032         --  element tampering by a generic actual subprogram.
1033
1034         declare
1035            N : Node_Type renames Container.Nodes (Position.Node);
1036            E : Element_Type renames N.Element;
1037            K : constant Key_Type := Key (E);
1038            Lock : With_Lock (Container.TC'Unrestricted_Access);
1039         begin
1040            Process (E);
1041            if Equivalent_Keys (K, Key (E)) then
1042               return;
1043            end if;
1044         end;
1045
1046         Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
1047         Tree_Operations.Free (Container, Position.Node);
1048
1049         raise Program_Error with "key was modified";
1050      end Update_Element_Preserving_Key;
1051
1052      -----------
1053      -- Write --
1054      -----------
1055
1056      procedure Write
1057        (Stream : not null access Root_Stream_Type'Class;
1058         Item   : Reference_Type)
1059      is
1060      begin
1061         raise Program_Error with "attempt to stream reference";
1062      end Write;
1063   end Generic_Keys;
1064
1065   ------------------------
1066   -- Get_Element_Access --
1067   ------------------------
1068
1069   function Get_Element_Access
1070     (Position : Cursor) return not null Element_Access is
1071   begin
1072      return Position.Container.Nodes (Position.Node).Element'Access;
1073   end Get_Element_Access;
1074
1075   -----------------
1076   -- Has_Element --
1077   -----------------
1078
1079   function Has_Element (Position : Cursor) return Boolean is
1080   begin
1081      return Position /= No_Element;
1082   end Has_Element;
1083
1084   -------------
1085   -- Include --
1086   -------------
1087
1088   procedure Include (Container : in out Set; New_Item : Element_Type) is
1089      Position : Cursor;
1090      Inserted : Boolean;
1091
1092   begin
1093      Insert (Container, New_Item, Position, Inserted);
1094
1095      if not Inserted then
1096         TE_Check (Container.TC);
1097
1098         Container.Nodes (Position.Node).Element := New_Item;
1099      end if;
1100   end Include;
1101
1102   ------------
1103   -- Insert --
1104   ------------
1105
1106   procedure Insert
1107     (Container : in out Set;
1108      New_Item  : Element_Type;
1109      Position  : out Cursor;
1110      Inserted  : out Boolean)
1111   is
1112   begin
1113      Insert_Sans_Hint
1114        (Container,
1115         New_Item,
1116         Position.Node,
1117         Inserted);
1118
1119      Position.Container := Container'Unrestricted_Access;
1120   end Insert;
1121
1122   procedure Insert
1123     (Container : in out Set;
1124      New_Item  : Element_Type)
1125   is
1126      Position : Cursor;
1127      pragma Unreferenced (Position);
1128
1129      Inserted : Boolean;
1130
1131   begin
1132      Insert (Container, New_Item, Position, Inserted);
1133
1134      if Checks and then not Inserted then
1135         raise Constraint_Error with
1136           "attempt to insert element already in set";
1137      end if;
1138   end Insert;
1139
1140   ----------------------
1141   -- Insert_Sans_Hint --
1142   ----------------------
1143
1144   procedure Insert_Sans_Hint
1145     (Container : in out Set;
1146      New_Item  : Element_Type;
1147      Node      : out Count_Type;
1148      Inserted  : out Boolean)
1149   is
1150      procedure Set_Element (Node : in out Node_Type);
1151      pragma Inline (Set_Element);
1152
1153      function New_Node return Count_Type;
1154      pragma Inline (New_Node);
1155
1156      procedure Insert_Post is
1157        new Element_Keys.Generic_Insert_Post (New_Node);
1158
1159      procedure Conditional_Insert_Sans_Hint is
1160        new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1161
1162      procedure Allocate is
1163         new Tree_Operations.Generic_Allocate (Set_Element);
1164
1165      --------------
1166      -- New_Node --
1167      --------------
1168
1169      function New_Node return Count_Type is
1170         Result : Count_Type;
1171      begin
1172         Allocate (Container, Result);
1173         return Result;
1174      end New_Node;
1175
1176      -----------------
1177      -- Set_Element --
1178      -----------------
1179
1180      procedure Set_Element (Node : in out Node_Type) is
1181      begin
1182         Node.Element := New_Item;
1183      end Set_Element;
1184
1185   --  Start of processing for Insert_Sans_Hint
1186
1187   begin
1188      TC_Check (Container.TC);
1189
1190      Conditional_Insert_Sans_Hint
1191        (Container,
1192         New_Item,
1193         Node,
1194         Inserted);
1195   end Insert_Sans_Hint;
1196
1197   ----------------------
1198   -- Insert_With_Hint --
1199   ----------------------
1200
1201   procedure Insert_With_Hint
1202     (Dst_Set  : in out Set;
1203      Dst_Hint : Count_Type;
1204      Src_Node : Node_Type;
1205      Dst_Node : out Count_Type)
1206   is
1207      Success : Boolean;
1208      pragma Unreferenced (Success);
1209
1210      procedure Set_Element (Node : in out Node_Type);
1211      pragma Inline (Set_Element);
1212
1213      function New_Node return Count_Type;
1214      pragma Inline (New_Node);
1215
1216      procedure Insert_Post is
1217         new Element_Keys.Generic_Insert_Post (New_Node);
1218
1219      procedure Insert_Sans_Hint is
1220         new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1221
1222      procedure Local_Insert_With_Hint is
1223         new Element_Keys.Generic_Conditional_Insert_With_Hint
1224           (Insert_Post,
1225            Insert_Sans_Hint);
1226
1227      procedure Allocate is
1228         new Tree_Operations.Generic_Allocate (Set_Element);
1229
1230      --------------
1231      -- New_Node --
1232      --------------
1233
1234      function New_Node return Count_Type is
1235         Result : Count_Type;
1236      begin
1237         Allocate (Dst_Set, Result);
1238         return Result;
1239      end New_Node;
1240
1241      -----------------
1242      -- Set_Element --
1243      -----------------
1244
1245      procedure Set_Element (Node : in out Node_Type) is
1246      begin
1247         Node.Element := Src_Node.Element;
1248      end Set_Element;
1249
1250   --  Start of processing for Insert_With_Hint
1251
1252   begin
1253      Local_Insert_With_Hint
1254        (Dst_Set,
1255         Dst_Hint,
1256         Src_Node.Element,
1257         Dst_Node,
1258         Success);
1259   end Insert_With_Hint;
1260
1261   ------------------
1262   -- Intersection --
1263   ------------------
1264
1265   procedure Intersection (Target : in out Set; Source : Set)
1266      renames Set_Ops.Set_Intersection;
1267
1268   function Intersection (Left, Right : Set) return Set
1269      renames Set_Ops.Set_Intersection;
1270
1271   --------------
1272   -- Is_Empty --
1273   --------------
1274
1275   function Is_Empty (Container : Set) return Boolean is
1276   begin
1277      return Container.Length = 0;
1278   end Is_Empty;
1279
1280   -----------------------------
1281   -- Is_Greater_Element_Node --
1282   -----------------------------
1283
1284   function Is_Greater_Element_Node
1285     (Left  : Element_Type;
1286      Right : Node_Type) return Boolean
1287   is
1288   begin
1289      --  Compute e > node same as node < e
1290
1291      return Right.Element < Left;
1292   end Is_Greater_Element_Node;
1293
1294   --------------------------
1295   -- Is_Less_Element_Node --
1296   --------------------------
1297
1298   function Is_Less_Element_Node
1299     (Left  : Element_Type;
1300      Right : Node_Type) return Boolean
1301   is
1302   begin
1303      return Left < Right.Element;
1304   end Is_Less_Element_Node;
1305
1306   -----------------------
1307   -- Is_Less_Node_Node --
1308   -----------------------
1309
1310   function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1311   begin
1312      return L.Element < R.Element;
1313   end Is_Less_Node_Node;
1314
1315   ---------------
1316   -- Is_Subset --
1317   ---------------
1318
1319   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
1320      renames Set_Ops.Set_Subset;
1321
1322   -------------
1323   -- Iterate --
1324   -------------
1325
1326   procedure Iterate
1327     (Container : Set;
1328      Process   : not null access procedure (Position : Cursor))
1329   is
1330      procedure Process_Node (Node : Count_Type);
1331      pragma Inline (Process_Node);
1332
1333      procedure Local_Iterate is
1334        new Tree_Operations.Generic_Iteration (Process_Node);
1335
1336      ------------------
1337      -- Process_Node --
1338      ------------------
1339
1340      procedure Process_Node (Node : Count_Type) is
1341      begin
1342         Process (Cursor'(Container'Unrestricted_Access, Node));
1343      end Process_Node;
1344
1345      S : Set renames Container'Unrestricted_Access.all;
1346      Busy : With_Busy (S.TC'Unrestricted_Access);
1347
1348   --  Start of processing for Iterate
1349
1350   begin
1351      Local_Iterate (S);
1352   end Iterate;
1353
1354   function Iterate (Container : Set)
1355     return Set_Iterator_Interfaces.Reversible_Iterator'class
1356   is
1357   begin
1358      --  The value of the Node component influences the behavior of the First
1359      --  and Last selector functions of the iterator object. When the Node
1360      --  component is 0 (as is the case here), this means the iterator object
1361      --  was constructed without a start expression. This is a complete
1362      --  iterator, meaning that the iteration starts from the (logical)
1363      --  beginning of the sequence of items.
1364
1365      --  Note: For a forward iterator, Container.First is the beginning, and
1366      --  for a reverse iterator, Container.Last is the beginning.
1367
1368      return It : constant Iterator :=
1369        Iterator'(Limited_Controlled with
1370                    Container => Container'Unrestricted_Access,
1371                    Node      => 0)
1372      do
1373         Busy (Container.TC'Unrestricted_Access.all);
1374      end return;
1375   end Iterate;
1376
1377   function Iterate (Container : Set; Start : Cursor)
1378     return Set_Iterator_Interfaces.Reversible_Iterator'class
1379   is
1380   begin
1381      --  It was formerly the case that when Start = No_Element, the partial
1382      --  iterator was defined to behave the same as for a complete iterator,
1383      --  and iterate over the entire sequence of items. However, those
1384      --  semantics were unintuitive and arguably error-prone (it is too easy
1385      --  to accidentally create an endless loop), and so they were changed,
1386      --  per the ARG meeting in Denver on 2011/11. However, there was no
1387      --  consensus about what positive meaning this corner case should have,
1388      --  and so it was decided to simply raise an exception. This does imply,
1389      --  however, that it is not possible to use a partial iterator to specify
1390      --  an empty sequence of items.
1391
1392      if Checks and then Start = No_Element then
1393         raise Constraint_Error with
1394           "Start position for iterator equals No_Element";
1395      end if;
1396
1397      if Checks and then Start.Container /= Container'Unrestricted_Access then
1398         raise Program_Error with
1399           "Start cursor of Iterate designates wrong set";
1400      end if;
1401
1402      pragma Assert (Vet (Container, Start.Node),
1403                     "Start cursor of Iterate is bad");
1404
1405      --  The value of the Node component influences the behavior of the First
1406      --  and Last selector functions of the iterator object. When the Node
1407      --  component is positive (as is the case here), it means that this
1408      --  is a partial iteration, over a subset of the complete sequence of
1409      --  items. The iterator object was constructed with a start expression,
1410      --  indicating the position from which the iteration begins. (Note that
1411      --  the start position has the same value irrespective of whether this
1412      --  is a forward or reverse iteration.)
1413
1414      return It : constant Iterator :=
1415        Iterator'(Limited_Controlled with
1416                    Container => Container'Unrestricted_Access,
1417                    Node      => Start.Node)
1418      do
1419         Busy (Container.TC'Unrestricted_Access.all);
1420      end return;
1421   end Iterate;
1422
1423   ----------
1424   -- Last --
1425   ----------
1426
1427   function Last (Container : Set) return Cursor is
1428   begin
1429      return (if Container.Last = 0 then No_Element
1430              else Cursor'(Container'Unrestricted_Access, Container.Last));
1431   end Last;
1432
1433   function Last (Object : Iterator) return Cursor is
1434   begin
1435      --  The value of the iterator object's Node component influences the
1436      --  behavior of the Last (and First) selector function.
1437
1438      --  When the Node component is 0, this means the iterator object was
1439      --  constructed without a start expression, in which case the (reverse)
1440      --  iteration starts from the (logical) beginning of the entire sequence
1441      --  (corresponding to Container.Last, for a reverse iterator).
1442
1443      --  Otherwise, this is iteration over a partial sequence of items. When
1444      --  the Node component is positive, the iterator object was constructed
1445      --  with a start expression, that specifies the position from which the
1446      --  (reverse) partial iteration begins.
1447
1448      if Object.Node = 0 then
1449         return Bounded_Ordered_Sets.Last (Object.Container.all);
1450      else
1451         return Cursor'(Object.Container, Object.Node);
1452      end if;
1453   end Last;
1454
1455   ------------------
1456   -- Last_Element --
1457   ------------------
1458
1459   function Last_Element (Container : Set) return Element_Type is
1460   begin
1461      if Checks and then Container.Last = 0 then
1462         raise Constraint_Error with "set is empty";
1463      end if;
1464
1465      return Container.Nodes (Container.Last).Element;
1466   end Last_Element;
1467
1468   ----------
1469   -- Left --
1470   ----------
1471
1472   function Left (Node : Node_Type) return Count_Type is
1473   begin
1474      return Node.Left;
1475   end Left;
1476
1477   ------------
1478   -- Length --
1479   ------------
1480
1481   function Length (Container : Set) return Count_Type is
1482   begin
1483      return Container.Length;
1484   end Length;
1485
1486   ----------
1487   -- Move --
1488   ----------
1489
1490   procedure Move (Target : in out Set; Source : in out Set) is
1491   begin
1492      if Target'Address = Source'Address then
1493         return;
1494      end if;
1495
1496      TC_Check (Source.TC);
1497
1498      Target.Assign (Source);
1499      Source.Clear;
1500   end Move;
1501
1502   ----------
1503   -- Next --
1504   ----------
1505
1506   function Next (Position : Cursor) return Cursor is
1507   begin
1508      if Position = No_Element then
1509         return No_Element;
1510      end if;
1511
1512      pragma Assert (Vet (Position.Container.all, Position.Node),
1513                     "bad cursor in Next");
1514
1515      declare
1516         Node : constant Count_Type :=
1517           Tree_Operations.Next (Position.Container.all, Position.Node);
1518
1519      begin
1520         if Node = 0 then
1521            return No_Element;
1522         end if;
1523
1524         return Cursor'(Position.Container, Node);
1525      end;
1526   end Next;
1527
1528   procedure Next (Position : in out Cursor) is
1529   begin
1530      Position := Next (Position);
1531   end Next;
1532
1533   function Next (Object : Iterator; Position : Cursor) return Cursor is
1534   begin
1535      if Position.Container = null then
1536         return No_Element;
1537      end if;
1538
1539      if Checks and then Position.Container /= Object.Container then
1540         raise Program_Error with
1541           "Position cursor of Next designates wrong set";
1542      end if;
1543
1544      return Next (Position);
1545   end Next;
1546
1547   -------------
1548   -- Overlap --
1549   -------------
1550
1551   function Overlap (Left, Right : Set) return Boolean
1552      renames Set_Ops.Set_Overlap;
1553
1554   ------------
1555   -- Parent --
1556   ------------
1557
1558   function Parent (Node : Node_Type) return Count_Type is
1559   begin
1560      return Node.Parent;
1561   end Parent;
1562
1563   --------------
1564   -- Previous --
1565   --------------
1566
1567   function Previous (Position : Cursor) return Cursor is
1568   begin
1569      if Position = No_Element then
1570         return No_Element;
1571      end if;
1572
1573      pragma Assert (Vet (Position.Container.all, Position.Node),
1574                     "bad cursor in Previous");
1575
1576      declare
1577         Node : constant Count_Type :=
1578           Tree_Operations.Previous (Position.Container.all, Position.Node);
1579      begin
1580         return (if Node = 0 then No_Element
1581                 else Cursor'(Position.Container, Node));
1582      end;
1583   end Previous;
1584
1585   procedure Previous (Position : in out Cursor) is
1586   begin
1587      Position := Previous (Position);
1588   end Previous;
1589
1590   function Previous (Object : Iterator; Position : Cursor) return Cursor is
1591   begin
1592      if Position.Container = null then
1593         return No_Element;
1594      end if;
1595
1596      if Checks and then Position.Container /= Object.Container then
1597         raise Program_Error with
1598           "Position cursor of Previous designates wrong set";
1599      end if;
1600
1601      return Previous (Position);
1602   end Previous;
1603
1604   ----------------------
1605   -- Pseudo_Reference --
1606   ----------------------
1607
1608   function Pseudo_Reference
1609     (Container : aliased Set'Class) return Reference_Control_Type
1610   is
1611      TC : constant Tamper_Counts_Access :=
1612        Container.TC'Unrestricted_Access;
1613   begin
1614      return R : constant Reference_Control_Type := (Controlled with TC) do
1615         Busy (TC.all);
1616      end return;
1617   end Pseudo_Reference;
1618
1619   -------------------
1620   -- Query_Element --
1621   -------------------
1622
1623   procedure Query_Element
1624     (Position : Cursor;
1625      Process  : not null access procedure (Element : Element_Type))
1626   is
1627   begin
1628      if Checks and then Position.Node = 0 then
1629         raise Constraint_Error with "Position cursor equals No_Element";
1630      end if;
1631
1632      pragma Assert (Vet (Position.Container.all, Position.Node),
1633                     "bad cursor in Query_Element");
1634
1635      declare
1636         S : Set renames Position.Container.all;
1637         Lock : With_Lock (S.TC'Unrestricted_Access);
1638      begin
1639         Process (S.Nodes (Position.Node).Element);
1640      end;
1641   end Query_Element;
1642
1643   ---------------
1644   -- Put_Image --
1645   ---------------
1646
1647   procedure Put_Image
1648     (S : in out Ada.Strings.Text_Output.Sink'Class; V : Set)
1649   is
1650      First_Time : Boolean := True;
1651      use System.Put_Images;
1652   begin
1653      Array_Before (S);
1654
1655      for X of V loop
1656         if First_Time then
1657            First_Time := False;
1658         else
1659            Simple_Array_Between (S);
1660         end if;
1661
1662         Element_Type'Put_Image (S, X);
1663      end loop;
1664
1665      Array_After (S);
1666   end Put_Image;
1667
1668   ----------
1669   -- Read --
1670   ----------
1671
1672   procedure Read
1673     (Stream    : not null access Root_Stream_Type'Class;
1674      Container : out Set)
1675   is
1676      procedure Read_Element (Node : in out Node_Type);
1677      pragma Inline (Read_Element);
1678
1679      procedure Allocate is
1680         new Tree_Operations.Generic_Allocate (Read_Element);
1681
1682      procedure Read_Elements is
1683         new Tree_Operations.Generic_Read (Allocate);
1684
1685      ------------------
1686      -- Read_Element --
1687      ------------------
1688
1689      procedure Read_Element (Node : in out Node_Type) is
1690      begin
1691         Element_Type'Read (Stream, Node.Element);
1692      end Read_Element;
1693
1694   --  Start of processing for Read
1695
1696   begin
1697      Read_Elements (Stream, Container);
1698   end Read;
1699
1700   procedure Read
1701     (Stream : not null access Root_Stream_Type'Class;
1702      Item   : out Cursor)
1703   is
1704   begin
1705      raise Program_Error with "attempt to stream set cursor";
1706   end Read;
1707
1708   procedure Read
1709     (Stream : not null access Root_Stream_Type'Class;
1710      Item   : out Constant_Reference_Type)
1711   is
1712   begin
1713      raise Program_Error with "attempt to stream reference";
1714   end Read;
1715
1716   -------------
1717   -- Replace --
1718   -------------
1719
1720   procedure Replace (Container : in out Set; New_Item : Element_Type) is
1721      Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1722
1723   begin
1724      TE_Check (Container.TC);
1725
1726      if Checks and then Node = 0 then
1727         raise Constraint_Error with
1728           "attempt to replace element not in set";
1729      end if;
1730
1731      Container.Nodes (Node).Element := New_Item;
1732   end Replace;
1733
1734   ---------------------
1735   -- Replace_Element --
1736   ---------------------
1737
1738   procedure Replace_Element
1739     (Container : in out Set;
1740      Index     : Count_Type;
1741      Item      : Element_Type)
1742   is
1743      pragma Assert (Index /= 0);
1744
1745      function New_Node return Count_Type;
1746      pragma Inline (New_Node);
1747
1748      procedure Local_Insert_Post is
1749         new Element_Keys.Generic_Insert_Post (New_Node);
1750
1751      procedure Local_Insert_Sans_Hint is
1752         new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1753
1754      procedure Local_Insert_With_Hint is
1755         new Element_Keys.Generic_Conditional_Insert_With_Hint
1756           (Local_Insert_Post,
1757            Local_Insert_Sans_Hint);
1758
1759      Nodes : Nodes_Type renames Container.Nodes;
1760      Node  : Node_Type renames Nodes (Index);
1761
1762      --------------
1763      -- New_Node --
1764      --------------
1765
1766      function New_Node return Count_Type is
1767      begin
1768         Node.Element := Item;
1769         Node.Color   := Red_Black_Trees.Red;
1770         Node.Parent  := 0;
1771         Node.Right   := 0;
1772         Node.Left    := 0;
1773         return Index;
1774      end New_Node;
1775
1776      Hint      : Count_Type;
1777      Result    : Count_Type;
1778      Inserted  : Boolean;
1779      Compare   : Boolean;
1780
1781   --  Start of processing for Replace_Element
1782
1783   begin
1784      --  Replace_Element assigns value Item to the element designated by Node,
1785      --  per certain semantic constraints, described as follows.
1786
1787      --  If Item is equivalent to the element, then element is replaced and
1788      --  there's nothing else to do. This is the easy case.
1789
1790      --  If Item is not equivalent, then the node will (possibly) have to move
1791      --  to some other place in the tree. This is slighly more complicated,
1792      --  because we must ensure that Item is not equivalent to some other
1793      --  element in the tree (in which case, the replacement is not allowed).
1794
1795      --  Determine whether Item is equivalent to element on the specified
1796      --  node.
1797
1798      declare
1799         Lock : With_Lock (Container.TC'Unrestricted_Access);
1800      begin
1801         Compare := (if Item < Node.Element then False
1802                     elsif Node.Element < Item then False
1803                     else True);
1804      end;
1805
1806      if Compare then
1807
1808         --  Item is equivalent to the node's element, so we will not have to
1809         --  move the node.
1810
1811         TE_Check (Container.TC);
1812
1813         Node.Element := Item;
1814         return;
1815      end if;
1816
1817      --  The replacement Item is not equivalent to the element on the
1818      --  specified node, which means that it will need to be re-inserted in a
1819      --  different position in the tree. We must now determine whether Item is
1820      --  equivalent to some other element in the tree (which would prohibit
1821      --  the assignment and hence the move).
1822
1823      --  Ceiling returns the smallest element equivalent or greater than the
1824      --  specified Item; if there is no such element, then it returns 0.
1825
1826      Hint := Element_Keys.Ceiling (Container, Item);
1827
1828      if Hint /= 0 then  -- Item <= Nodes (Hint).Element
1829         declare
1830            Lock : With_Lock (Container.TC'Unrestricted_Access);
1831         begin
1832            Compare := Item < Nodes (Hint).Element;
1833         end;
1834
1835         --  Item is equivalent to Nodes (Hint).Element
1836
1837         if Checks and then not Compare then
1838
1839            --  Ceiling returns an element that is equivalent or greater than
1840            --  Item. If Item is "not less than" the element, then by
1841            --  elimination we know that Item is equivalent to the element.
1842
1843            --  But this means that it is not possible to assign the value of
1844            --  Item to the specified element (on Node), because a different
1845            --  element (on Hint) equivalent to Item already exsits. (Were we
1846            --  to change Node's element value, we would have to move Node, but
1847            --  we would be unable to move the Node, because its new position
1848            --  in the tree is already occupied by an equivalent element.)
1849
1850            raise Program_Error with "attempt to replace existing element";
1851         end if;
1852
1853         --  Item is not equivalent to any other element in the tree
1854         --  (specifically, it is less than Nodes (Hint).Element), so it is
1855         --  safe to assign the value of Item to Node.Element. This means that
1856         --  the node will have to move to a different position in the tree
1857         --  (because its element will have a different value).
1858
1859         --  The nearest (greater) neighbor of Item is Hint. This will be the
1860         --  insertion position of Node (because its element will have Item as
1861         --  its new value).
1862
1863         --  If Node equals Hint, the relative position of Node does not
1864         --  change. This allows us to perform an optimization: we need not
1865         --  remove Node from the tree and then reinsert it with its new value,
1866         --  because it would only be placed in the exact same position.
1867
1868         if Hint = Index then
1869            TE_Check (Container.TC);
1870
1871            Node.Element := Item;
1872            return;
1873         end if;
1874      end if;
1875
1876      --  If we get here, it is because Item was greater than all elements in
1877      --  the tree (Hint = 0), or because Item was less than some element at a
1878      --  different place in the tree (Item < Nodes (Hint).Element and Hint /=
1879      --  Index). In either case, we remove Node from the tree and then insert
1880      --  Item into the tree, onto the same Node.
1881
1882      Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1883
1884      Local_Insert_With_Hint
1885        (Tree     => Container,
1886         Position => Hint,
1887         Key      => Item,
1888         Node     => Result,
1889         Inserted => Inserted);
1890
1891      pragma Assert (Inserted);
1892      pragma Assert (Result = Index);
1893   end Replace_Element;
1894
1895   procedure Replace_Element
1896     (Container : in out Set;
1897      Position  : Cursor;
1898      New_Item  : Element_Type)
1899   is
1900   begin
1901      if Checks and then Position.Node = 0 then
1902         raise Constraint_Error with
1903           "Position cursor equals No_Element";
1904      end if;
1905
1906      if Checks and then Position.Container /= Container'Unrestricted_Access
1907      then
1908         raise Program_Error with
1909           "Position cursor designates wrong set";
1910      end if;
1911
1912      pragma Assert (Vet (Container, Position.Node),
1913                     "bad cursor in Replace_Element");
1914
1915      Replace_Element (Container, Position.Node, New_Item);
1916   end Replace_Element;
1917
1918   ---------------------
1919   -- Reverse_Iterate --
1920   ---------------------
1921
1922   procedure Reverse_Iterate
1923     (Container : Set;
1924      Process   : not null access procedure (Position : Cursor))
1925   is
1926      procedure Process_Node (Node : Count_Type);
1927      pragma Inline (Process_Node);
1928
1929      procedure Local_Reverse_Iterate is
1930         new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1931
1932      ------------------
1933      -- Process_Node --
1934      ------------------
1935
1936      procedure Process_Node (Node : Count_Type) is
1937      begin
1938         Process (Cursor'(Container'Unrestricted_Access, Node));
1939      end Process_Node;
1940
1941      S : Set renames Container'Unrestricted_Access.all;
1942      Busy : With_Busy (S.TC'Unrestricted_Access);
1943
1944   --  Start of processing for Reverse_Iterate
1945
1946   begin
1947      Local_Reverse_Iterate (S);
1948   end Reverse_Iterate;
1949
1950   -----------
1951   -- Right --
1952   -----------
1953
1954   function Right (Node : Node_Type) return Count_Type is
1955   begin
1956      return Node.Right;
1957   end Right;
1958
1959   ---------------
1960   -- Set_Color --
1961   ---------------
1962
1963   procedure Set_Color
1964     (Node  : in out Node_Type;
1965      Color : Red_Black_Trees.Color_Type)
1966   is
1967   begin
1968      Node.Color := Color;
1969   end Set_Color;
1970
1971   --------------
1972   -- Set_Left --
1973   --------------
1974
1975   procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1976   begin
1977      Node.Left := Left;
1978   end Set_Left;
1979
1980   ----------------
1981   -- Set_Parent --
1982   ----------------
1983
1984   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1985   begin
1986      Node.Parent := Parent;
1987   end Set_Parent;
1988
1989   ---------------
1990   -- Set_Right --
1991   ---------------
1992
1993   procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1994   begin
1995      Node.Right := Right;
1996   end Set_Right;
1997
1998   --------------------------
1999   -- Symmetric_Difference --
2000   --------------------------
2001
2002   procedure Symmetric_Difference (Target : in out Set; Source : Set)
2003      renames Set_Ops.Set_Symmetric_Difference;
2004
2005   function Symmetric_Difference (Left, Right : Set) return Set
2006      renames Set_Ops.Set_Symmetric_Difference;
2007
2008   ------------
2009   -- To_Set --
2010   ------------
2011
2012   function To_Set (New_Item : Element_Type) return Set is
2013      Node     : Count_Type;
2014      Inserted : Boolean;
2015   begin
2016      return S : Set (1) do
2017         Insert_Sans_Hint (S, New_Item, Node, Inserted);
2018         pragma Assert (Inserted);
2019      end return;
2020   end To_Set;
2021
2022   -----------
2023   -- Union --
2024   -----------
2025
2026   procedure Union (Target : in out Set; Source : Set)
2027      renames Set_Ops.Set_Union;
2028
2029   function Union (Left, Right : Set) return Set
2030      renames Set_Ops.Set_Union;
2031
2032   -----------
2033   -- Write --
2034   -----------
2035
2036   procedure Write
2037     (Stream    : not null access Root_Stream_Type'Class;
2038      Container : Set)
2039   is
2040      procedure Write_Element
2041        (Stream : not null access Root_Stream_Type'Class;
2042         Node   : Node_Type);
2043      pragma Inline (Write_Element);
2044
2045      procedure Write_Elements is
2046         new Tree_Operations.Generic_Write (Write_Element);
2047
2048      -------------------
2049      -- Write_Element --
2050      -------------------
2051
2052      procedure Write_Element
2053        (Stream : not null access Root_Stream_Type'Class;
2054         Node   : Node_Type)
2055      is
2056      begin
2057         Element_Type'Write (Stream, Node.Element);
2058      end Write_Element;
2059
2060   --  Start of processing for Write
2061
2062   begin
2063      Write_Elements (Stream, Container);
2064   end Write;
2065
2066   procedure Write
2067     (Stream : not null access Root_Stream_Type'Class;
2068      Item   : Cursor)
2069   is
2070   begin
2071      raise Program_Error with "attempt to stream set cursor";
2072   end Write;
2073
2074   procedure Write
2075     (Stream : not null access Root_Stream_Type'Class;
2076      Item   : Constant_Reference_Type)
2077   is
2078   begin
2079      raise Program_Error with "attempt to stream reference";
2080   end Write;
2081
2082end Ada.Containers.Bounded_Ordered_Sets;
2083