1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--           A D A . C O N T A I N E R S . H A S H E D _ S E T S            --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 2004-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- This specification is derived from the Ada Reference Manual for use with --
12-- GNAT. The copyright notice above, and the license provisions that follow --
13-- apply solely to the  contents of the part following the private keyword. --
14--                                                                          --
15-- GNAT is free software;  you can  redistribute it  and/or modify it under --
16-- terms of the  GNU General Public License as published  by the Free Soft- --
17-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
18-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
19-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
20-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
21--                                                                          --
22-- As a special exception under Section 7 of GPL version 3, you are granted --
23-- additional permissions described in the GCC Runtime Library Exception,   --
24-- version 3.1, as published by the Free Software Foundation.               --
25--                                                                          --
26-- You should have received a copy of the GNU General Public License and    --
27-- a copy of the GCC Runtime Library Exception along with this program;     --
28-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
29-- <http://www.gnu.org/licenses/>.                                          --
30--                                                                          --
31-- This unit was originally developed by Matthew J Heaney.                  --
32------------------------------------------------------------------------------
33
34with Ada.Iterator_Interfaces;
35
36private with Ada.Containers.Hash_Tables;
37with Ada.Containers.Helpers;
38private with Ada.Finalization;
39private with Ada.Streams;
40private with Ada.Strings.Text_Output;
41
42generic
43   type Element_Type is private;
44
45   with function Hash (Element : Element_Type) return Hash_Type;
46
47   with function Equivalent_Elements
48          (Left, Right : Element_Type) return Boolean;
49
50   with function "=" (Left, Right : Element_Type) return Boolean is <>;
51
52package Ada.Containers.Hashed_Sets with
53  SPARK_Mode => Off
54is
55   pragma Annotate (CodePeer, Skip_Analysis);
56   pragma Preelaborate;
57   pragma Remote_Types;
58
59   type Set is tagged private
60   with
61      Constant_Indexing => Constant_Reference,
62      Default_Iterator  => Iterate,
63      Iterator_Element  => Element_Type,
64      Aggregate         => (Empty       => Empty,
65                            Add_Unnamed => Include);
66
67   pragma Preelaborable_Initialization (Set);
68
69   type Cursor is private;
70   pragma Preelaborable_Initialization (Cursor);
71
72   Empty_Set : constant Set;
73   --  Set objects declared without an initialization expression are
74   --  initialized to the value Empty_Set.
75
76   No_Element : constant Cursor;
77   --  Cursor objects declared without an initialization expression are
78   --  initialized to the value No_Element.
79
80   function Has_Element (Position : Cursor) return Boolean;
81   --  Equivalent to Position /= No_Element
82
83   package Set_Iterator_Interfaces is new
84     Ada.Iterator_Interfaces (Cursor, Has_Element);
85
86   function Empty (Capacity : Count_Type := 1000) return Set;
87
88   function "=" (Left, Right : Set) return Boolean;
89   --  For each element in Left, set equality attempts to find the equal
90   --  element in Right; if a search fails, then set equality immediately
91   --  returns False. The search works by calling Hash to find the bucket in
92   --  the Right set that corresponds to the Left element. If the bucket is
93   --  non-empty, the search calls the generic formal element equality operator
94   --  to compare the element (in Left) to the element of each node in the
95   --  bucket (in Right); the search terminates when a matching node in the
96   --  bucket is found, or the nodes in the bucket are exhausted. (Note that
97   --  element equality is called here, not Equivalent_Elements. Set equality
98   --  is the only operation in which element equality is used. Compare set
99   --  equality to Equivalent_Sets, which does call Equivalent_Elements.)
100
101   function Equivalent_Sets (Left, Right : Set) return Boolean;
102   --  Similar to set equality, with the difference that the element in Left is
103   --  compared to the elements in Right using the generic formal
104   --  Equivalent_Elements operation instead of element equality.
105
106   function To_Set (New_Item : Element_Type) return Set;
107   --  Constructs a singleton set comprising New_Element. To_Set calls Hash to
108   --  determine the bucket for New_Item.
109
110   function Capacity (Container : Set) return Count_Type;
111   --  Returns the current capacity of the set. Capacity is the maximum length
112   --  before which rehashing in guaranteed not to occur.
113
114   procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
115   --  Adjusts the current capacity, by allocating a new buckets array. If the
116   --  requested capacity is less than the current capacity, then the capacity
117   --  is contracted (to a value not less than the current length). If the
118   --  requested capacity is greater than the current capacity, then the
119   --  capacity is expanded (to a value not less than what is requested). In
120   --  either case, the nodes are rehashed from the old buckets array onto the
121   --  new buckets array (Hash is called once for each existing element in
122   --  order to compute the new index), and then the old buckets array is
123   --  deallocated.
124
125   function Length (Container : Set) return Count_Type;
126   --  Returns the number of items in the set
127
128   function Is_Empty (Container : Set) return Boolean;
129   --  Equivalent to Length (Container) = 0
130
131   procedure Clear (Container : in out Set);
132   --  Removes all of the items from the set
133
134   function Element (Position : Cursor) return Element_Type;
135   --  Returns the element of the node designated by the cursor
136
137   procedure Replace_Element
138     (Container : in out Set;
139      Position  : Cursor;
140      New_Item  : Element_Type);
141   --  If New_Item is equivalent (as determined by calling Equivalent_Elements)
142   --  to the element of the node designated by Position, then New_Element is
143   --  assigned to that element. Otherwise, it calls Hash to determine the
144   --  bucket for New_Item. If the bucket is not empty, then it calls
145   --  Equivalent_Elements for each node in that bucket to determine whether
146   --  New_Item is equivalent to an element in that bucket. If
147   --  Equivalent_Elements returns True then Program_Error is raised (because
148   --  an element may appear only once in the set); otherwise, New_Item is
149   --  assigned to the node designated by Position, and the node is moved to
150   --  its new bucket.
151
152   procedure Query_Element
153     (Position : Cursor;
154      Process  : not null access procedure (Element : Element_Type));
155   --  Calls Process with the element (having only a constant view) of the node
156   --  designed by the cursor.
157
158   type Constant_Reference_Type
159     (Element : not null access constant Element_Type) is private
160        with Implicit_Dereference => Element;
161
162   function Constant_Reference
163     (Container : aliased Set;
164      Position  : Cursor) return Constant_Reference_Type;
165   pragma Inline (Constant_Reference);
166
167   procedure Assign (Target : in out Set; Source : Set);
168
169   function Copy (Source : Set; Capacity : Count_Type := 0) return Set;
170
171   procedure Move (Target : in out Set; Source : in out Set);
172   --  Clears Target (if it's not empty), and then moves (not copies) the
173   --  buckets array and nodes from Source to Target.
174
175   procedure Insert
176     (Container : in out Set;
177      New_Item  : Element_Type;
178      Position  : out Cursor;
179      Inserted  : out Boolean);
180   --  Conditionally inserts New_Item into the set. If New_Item is already in
181   --  the set, then Inserted returns False and Position designates the node
182   --  containing the existing element (which is not modified). If New_Item is
183   --  not already in the set, then Inserted returns True and Position
184   --  designates the newly-inserted node containing New_Item. The search for
185   --  an existing element works as follows. Hash is called to determine
186   --  New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
187   --  is called to compare New_Item to the element of each node in that
188   --  bucket. If the bucket is empty, or there were no equivalent elements in
189   --  the bucket, the search "fails" and the New_Item is inserted in the set
190   --  (and Inserted returns True); otherwise, the search "succeeds" (and
191   --  Inserted returns False).
192
193   procedure Insert  (Container : in out Set; New_Item : Element_Type);
194   --  Attempts to insert New_Item into the set, performing the usual insertion
195   --  search (which involves calling both Hash and Equivalent_Elements); if
196   --  the search succeeds (New_Item is equivalent to an element already in the
197   --  set, and so was not inserted), then this operation raises
198   --  Constraint_Error. (This version of Insert is similar to Replace, but
199   --  having the opposite exception behavior. It is intended for use when you
200   --  want to assert that the item is not already in the set.)
201
202   procedure Include (Container : in out Set; New_Item : Element_Type);
203   --  Attempts to insert New_Item into the set. If an element equivalent to
204   --  New_Item is already in the set (the insertion search succeeded, and
205   --  hence New_Item was not inserted), then the value of New_Item is assigned
206   --  to the existing element. (This insertion operation only raises an
207   --  exception if cursor tampering occurs. It is intended for use when you
208   --  want to insert the item in the set, and you don't care whether an
209   --  equivalent element is already present.)
210
211   procedure Replace (Container : in out Set; New_Item : Element_Type);
212   --  Searches for New_Item in the set; if the search fails (because an
213   --  equivalent element was not in the set), then it raises
214   --  Constraint_Error. Otherwise, the existing element is assigned the value
215   --  New_Item. (This is similar to Insert, but with the opposite exception
216   --  behavior. It is intended for use when you want to assert that the item
217   --  is already in the set.)
218
219   procedure Exclude (Container : in out Set; Item : Element_Type);
220   --  Searches for Item in the set, and if found, removes its node from the
221   --  set and then deallocates it. The search works as follows. The operation
222   --  calls Hash to determine the item's bucket; if the bucket is not empty,
223   --  it calls Equivalent_Elements to compare Item to the element of each node
224   --  in the bucket. (This is the deletion analog of Include. It is intended
225   --  for use when you want to remove the item from the set, but don't care
226   --  whether the item is already in the set.)
227
228   procedure Delete  (Container : in out Set; Item : Element_Type);
229   --  Searches for Item in the set (which involves calling both Hash and
230   --  Equivalent_Elements). If the search fails, then the operation raises
231   --  Constraint_Error. Otherwise it removes the node from the set and then
232   --  deallocates it. (This is the deletion analog of non-conditional
233   --  Insert. It is intended for use when you want to assert that the item is
234   --  already in the set.)
235
236   procedure Delete (Container : in out Set; Position : in out Cursor);
237   --  Removes the node designated by Position from the set, and then
238   --  deallocates the node. The operation calls Hash to determine the bucket,
239   --  and then compares Position to each node in the bucket until there's a
240   --  match (it does not call Equivalent_Elements).
241
242   procedure Union (Target : in out Set; Source : Set);
243   --  The operation first calls Reserve_Capacity if the current capacity is
244   --  less than the sum of the lengths of Source and Target. It then iterates
245   --  over the Source set, and conditionally inserts each element into Target.
246
247   function Union (Left, Right : Set) return Set;
248   --  The operation first copies the Left set to the result, and then iterates
249   --  over the Right set to conditionally insert each element into the result.
250
251   function "or" (Left, Right : Set) return Set renames Union;
252
253   procedure Intersection (Target : in out Set; Source : Set);
254   --  Iterates over the Target set (calling First and Next), calling Find to
255   --  determine whether the element is in Source. If an equivalent element is
256   --  not found in Source, the element is deleted from Target.
257
258   function Intersection (Left, Right : Set) return Set;
259   --  Iterates over the Left set, calling Find to determine whether the
260   --  element is in Right. If an equivalent element is found, it is inserted
261   --  into the result set.
262
263   function "and" (Left, Right : Set) return Set renames Intersection;
264
265   procedure Difference (Target : in out Set; Source : Set);
266   --  Iterates over the Source (calling First and Next), calling Find to
267   --  determine whether the element is in Target. If an equivalent element is
268   --  found, it is deleted from Target.
269
270   function Difference (Left, Right : Set) return Set;
271   --  Iterates over the Left set, calling Find to determine whether the
272   --  element is in the Right set. If an equivalent element is not found, the
273   --  element is inserted into the result set.
274
275   function "-" (Left, Right : Set) return Set renames Difference;
276
277   procedure Symmetric_Difference (Target : in out Set; Source : Set);
278   --  The operation first calls Reserve_Capacity if the current capacity is
279   --  less than the sum of the lengths of Source and Target. It then iterates
280   --  over the Source set, searching for the element in Target (calling Hash
281   --  and Equivalent_Elements). If an equivalent element is found, it is
282   --  removed from Target; otherwise it is inserted into Target.
283
284   function Symmetric_Difference (Left, Right : Set) return Set;
285   --  The operation first iterates over the Left set. It calls Find to
286   --  determine whether the element is in the Right set. If no equivalent
287   --  element is found, the element from Left is inserted into the result. The
288   --  operation then iterates over the Right set, to determine whether the
289   --  element is in the Left set. If no equivalent element is found, the Right
290   --  element is inserted into the result.
291
292   function "xor" (Left, Right : Set) return Set
293     renames Symmetric_Difference;
294
295   function Overlap (Left, Right : Set) return Boolean;
296   --  Iterates over the Left set (calling First and Next), calling Find to
297   --  determine whether the element is in the Right set. If an equivalent
298   --  element is found, the operation immediately returns True. The operation
299   --  returns False if the iteration over Left terminates without finding any
300   --  equivalent element in Right.
301
302   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
303   --  Iterates over Subset (calling First and Next), calling Find to determine
304   --  whether the element is in Of_Set. If no equivalent element is found in
305   --  Of_Set, the operation immediately returns False. The operation returns
306   --  True if the iteration over Subset terminates without finding an element
307   --  not in Of_Set (that is, every element in Subset is equivalent to an
308   --  element in Of_Set).
309
310   function First (Container : Set) return Cursor;
311   --  Returns a cursor that designates the first non-empty bucket, by
312   --  searching from the beginning of the buckets array.
313
314   function Next (Position : Cursor) return Cursor;
315   --  Returns a cursor that designates the node that follows the current one
316   --  designated by Position. If Position designates the last node in its
317   --  bucket, the operation calls Hash to compute the index of this bucket,
318   --  and searches the buckets array for the first non-empty bucket, starting
319   --  from that index; otherwise, it simply follows the link to the next node
320   --  in the same bucket.
321
322   procedure Next (Position : in out Cursor);
323   --  Equivalent to Position := Next (Position)
324
325   function Find
326     (Container : Set;
327      Item      : Element_Type) return Cursor;
328   --  Searches for Item in the set. Find calls Hash to determine the item's
329   --  bucket; if the bucket is not empty, it calls Equivalent_Elements to
330   --  compare Item to each element in the bucket. If the search succeeds, Find
331   --  returns a cursor designating the node containing the equivalent element;
332   --  otherwise, it returns No_Element.
333
334   function Contains (Container : Set; Item : Element_Type) return Boolean;
335   --  Equivalent to Find (Container, Item) /= No_Element
336
337   function Equivalent_Elements (Left, Right : Cursor) return Boolean;
338   --  Returns the result of calling Equivalent_Elements with the elements of
339   --  the nodes designated by cursors Left and Right.
340
341   function Equivalent_Elements
342     (Left  : Cursor;
343      Right : Element_Type) return Boolean;
344   --  Returns the result of calling Equivalent_Elements with element of the
345   --  node designated by Left and element Right.
346
347   function Equivalent_Elements
348     (Left  : Element_Type;
349      Right : Cursor) return Boolean;
350   --  Returns the result of calling Equivalent_Elements with element Left and
351   --  the element of the node designated by Right.
352
353   procedure Iterate
354     (Container : Set;
355      Process   : not null access procedure (Position : Cursor));
356   --  Calls Process for each node in the set
357
358   function Iterate
359     (Container : Set) return Set_Iterator_Interfaces.Forward_Iterator'Class;
360
361   generic
362      type Key_Type (<>) is private;
363
364      with function Key (Element : Element_Type) return Key_Type;
365
366      with function Hash (Key : Key_Type) return Hash_Type;
367
368      with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
369
370   package Generic_Keys is
371
372      function Key (Position : Cursor) return Key_Type;
373      --  Applies generic formal operation Key to the element of the node
374      --  designated by Position.
375
376      function Element (Container : Set; Key : Key_Type) return Element_Type;
377      --  Searches (as per the key-based Find) for the node containing Key, and
378      --  returns the associated element.
379
380      procedure Replace
381        (Container : in out Set;
382         Key       : Key_Type;
383         New_Item  : Element_Type);
384      --  Searches (as per the key-based Find) for the node containing Key, and
385      --  then replaces the element of that node (as per the element-based
386      --  Replace_Element).
387
388      procedure Exclude (Container : in out Set; Key : Key_Type);
389      --  Searches for Key in the set, and if found, removes its node from the
390      --  set and then deallocates it. The search works by first calling Hash
391      --  (on Key) to determine the bucket; if the bucket is not empty, it
392      --  calls Equivalent_Keys to compare parameter Key to the value of
393      --  generic formal operation Key applied to element of each node in the
394      --  bucket.
395
396      procedure Delete (Container : in out Set; Key : Key_Type);
397      --  Deletes the node containing Key as per Exclude, with the difference
398      --  that Constraint_Error is raised if Key is not found.
399
400      function Find (Container : Set; Key : Key_Type) return Cursor;
401      --  Searches for the node containing Key, and returns a cursor
402      --  designating the node. The search works by first calling Hash (on Key)
403      --  to determine the bucket. If the bucket is not empty, the search
404      --  compares Key to the element of each node in the bucket, and returns
405      --  the matching node. The comparison itself works by applying the
406      --  generic formal Key operation to the element of the node, and then
407      --  calling generic formal operation Equivalent_Keys.
408
409      function Contains (Container : Set; Key : Key_Type) return Boolean;
410      --  Equivalent to Find (Container, Key) /= No_Element
411
412      procedure Update_Element_Preserving_Key
413        (Container : in out Set;
414         Position  : Cursor;
415         Process   : not null access
416                       procedure (Element : in out Element_Type));
417      --  Calls Process with the element of the node designated by Position,
418      --  but with the restriction that the key-value of the element is not
419      --  modified. The operation first makes a copy of the value returned by
420      --  applying generic formal operation Key on the element of the node, and
421      --  then calls Process with the element. The operation verifies that the
422      --  key-part has not been modified by calling generic formal operation
423      --  Equivalent_Keys to compare the saved key-value to the value returned
424      --  by applying generic formal operation Key to the post-Process value of
425      --  element. If the key values compare equal then the operation
426      --  completes. Otherwise, the node is removed from the set and
427      --  Program_Error is raised.
428
429      type Reference_Type (Element : not null access Element_Type) is private
430        with Implicit_Dereference => Element;
431
432      function Reference_Preserving_Key
433        (Container : aliased in out Set;
434         Position  : Cursor) return Reference_Type;
435
436      function Constant_Reference
437        (Container : aliased Set;
438         Key       : Key_Type) return Constant_Reference_Type;
439
440      function Reference_Preserving_Key
441        (Container : aliased in out Set;
442         Key       : Key_Type) return Reference_Type;
443
444   private
445      use Ada.Streams;
446      type Set_Access is access all Set;
447      for Set_Access'Storage_Size use 0;
448
449      --  Key_Preserving references must carry information to allow removal
450      --  of elements whose value may have been altered improperly, i.e. have
451      --  been given values incompatible with the hash-code of the previous
452      --  value, and are thus in the wrong bucket. (RM 18.7 (96.6/3))
453
454      --  We cannot store the key directly because it is an unconstrained type.
455      --  To avoid using additional dynamic allocation we store the old cursor
456      --  which simplifies possible removal. This is not possible for some
457      --  other set types.
458
459      --  The mechanism is different for Update_Element_Preserving_Key, as
460      --  in that case the check that buckets have not changed is performed
461      --  at the time of the update, not when the reference is finalized.
462
463      package Impl is new Helpers.Generic_Implementation;
464
465      type Reference_Control_Type is
466         new Impl.Reference_Control_Type with
467      record
468         Container : Set_Access;
469         Index     : Hash_Type;
470         Old_Pos   : Cursor;
471         Old_Hash  : Hash_Type;
472      end record;
473
474      overriding procedure Finalize (Control : in out Reference_Control_Type);
475      pragma Inline (Finalize);
476
477      type Reference_Type (Element : not null access Element_Type) is record
478         Control  : Reference_Control_Type;
479      end record;
480
481      procedure Read
482        (Stream : not null access Root_Stream_Type'Class;
483         Item   : out Reference_Type);
484
485      for Reference_Type'Read use Read;
486
487      procedure Write
488        (Stream : not null access Root_Stream_Type'Class;
489         Item   : Reference_Type);
490
491      for Reference_Type'Write use Write;
492   end Generic_Keys;
493
494private
495   pragma Inline (Next);
496
497   type Node_Type;
498   type Node_Access is access Node_Type;
499
500   type Node_Type is limited record
501      Element : aliased Element_Type;
502      Next    : Node_Access;
503   end record;
504
505   package HT_Types is
506     new Hash_Tables.Generic_Hash_Table_Types (Node_Type, Node_Access);
507
508   type Set is new Ada.Finalization.Controlled with record
509      HT : HT_Types.Hash_Table_Type;
510   end record with Put_Image => Put_Image;
511
512   procedure Put_Image
513     (S : in out Ada.Strings.Text_Output.Sink'Class; V : Set);
514
515   overriding procedure Adjust (Container : in out Set);
516
517   overriding procedure Finalize (Container : in out Set);
518
519   use HT_Types, HT_Types.Implementation;
520   use Ada.Finalization;
521   use Ada.Streams;
522
523   procedure Write
524     (Stream    : not null access Root_Stream_Type'Class;
525      Container : Set);
526
527   for Set'Write use Write;
528
529   procedure Read
530     (Stream    : not null access Root_Stream_Type'Class;
531      Container : out Set);
532
533   for Set'Read use Read;
534
535   type Set_Access is access all Set;
536   for Set_Access'Storage_Size use 0;
537
538   type Cursor is record
539      Container : Set_Access;
540      Node      : Node_Access;
541      Position  : Hash_Type := Hash_Type'Last;
542   end record;
543
544   procedure Write
545     (Stream : not null access Root_Stream_Type'Class;
546      Item   : Cursor);
547
548   for Cursor'Write use Write;
549
550   procedure Read
551     (Stream : not null access Root_Stream_Type'Class;
552      Item   : out Cursor);
553
554   for Cursor'Read use Read;
555
556   subtype Reference_Control_Type is Implementation.Reference_Control_Type;
557   --  It is necessary to rename this here, so that the compiler can find it
558
559   type Constant_Reference_Type
560     (Element : not null access constant Element_Type) is
561      record
562         Control : Reference_Control_Type :=
563           raise Program_Error with "uninitialized reference";
564         --  The RM says, "The default initialization of an object of
565         --  type Constant_Reference_Type or Reference_Type propagates
566         --  Program_Error."
567      end record;
568
569   procedure Read
570     (Stream : not null access Root_Stream_Type'Class;
571      Item   : out Constant_Reference_Type);
572
573   for Constant_Reference_Type'Read use Read;
574
575   procedure Write
576     (Stream : not null access Root_Stream_Type'Class;
577      Item   : Constant_Reference_Type);
578
579   for Constant_Reference_Type'Write use Write;
580
581   --  Three operations are used to optimize in the expansion of "for ... of"
582   --  loops: the Next(Cursor) procedure in the visible part, and the following
583   --  Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
584   --  details.
585
586   function Pseudo_Reference
587     (Container : aliased Set'Class) return Reference_Control_Type;
588   pragma Inline (Pseudo_Reference);
589   --  Creates an object of type Reference_Control_Type pointing to the
590   --  container, and increments the Lock. Finalization of this object will
591   --  decrement the Lock.
592
593   type Element_Access is access all Element_Type with
594     Storage_Size => 0;
595
596   function Get_Element_Access
597     (Position : Cursor) return not null Element_Access;
598   --  Returns a pointer to the element designated by Position.
599
600   Empty_Set : constant Set := (Controlled with others => <>);
601
602   No_Element : constant Cursor :=
603     (Container => null, Node => null, Position => Hash_Type'Last);
604
605   type Iterator is new Limited_Controlled and
606     Set_Iterator_Interfaces.Forward_Iterator with
607   record
608      Container : Set_Access;
609   end record
610     with Disable_Controlled => not T_Check;
611
612   overriding function First (Object : Iterator) return Cursor;
613
614   overriding function Next
615     (Object   : Iterator;
616      Position : Cursor) return Cursor;
617   overriding procedure Finalize (Object : in out Iterator);
618
619end Ada.Containers.Hashed_Sets;
620