1 /* Loop manipulation code for GNU compiler.
2    Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34 
35 static void copy_loops_to (class loop **, int,
36 			   class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44 
45 /* Checks whether basic block BB is dominated by DATA.  */
46 static bool
rpe_enum_p(const_basic_block bb,const void * data)47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49   return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51 
52 /* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
53 
54 static void
remove_bbs(basic_block * bbs,int nbbs)55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57   int i;
58 
59   for (i = 0; i < nbbs; i++)
60     delete_basic_block (bbs[i]);
61 }
62 
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64    into array BBS, that will be allocated large enough to contain them.
65    E->dest must have exactly one predecessor for this to work (it is
66    easy to achieve and we do not put it here because we do not want to
67    alter anything by this function).  The number of basic blocks in the
68    path is returned.  */
69 static int
find_path(edge e,basic_block ** bbs)70 find_path (edge e, basic_block **bbs)
71 {
72   gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73 
74   /* Find bbs in the path.  */
75   *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76   return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 			     n_basic_blocks_for_fn (cfun), e->dest);
78 }
79 
80 /* Fix placement of basic block BB inside loop hierarchy --
81    Let L be a loop to that BB belongs.  Then every successor of BB must either
82      1) belong to some superloop of loop L, or
83      2) be a header of loop K such that K->outer is superloop of L
84    Returns true if we had to move BB into other loop to enforce this condition,
85    false if the placement of BB was already correct (provided that placements
86    of its successors are correct).  */
87 static bool
fix_bb_placement(basic_block bb)88 fix_bb_placement (basic_block bb)
89 {
90   edge e;
91   edge_iterator ei;
92   class loop *loop = current_loops->tree_root, *act;
93 
94   FOR_EACH_EDGE (e, ei, bb->succs)
95     {
96       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 	continue;
98 
99       act = e->dest->loop_father;
100       if (act->header == e->dest)
101 	act = loop_outer (act);
102 
103       if (flow_loop_nested_p (loop, act))
104 	loop = act;
105     }
106 
107   if (loop == bb->loop_father)
108     return false;
109 
110   remove_bb_from_loops (bb);
111   add_bb_to_loop (bb, loop);
112 
113   return true;
114 }
115 
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117    of LOOP to that leads at least one exit edge of LOOP, and set it
118    as the immediate superloop of LOOP.  Return true if the immediate superloop
119    of LOOP changed.
120 
121    IRRED_INVALIDATED is set to true if a change in the loop structures might
122    invalidate the information about irreducible regions.  */
123 
124 static bool
fix_loop_placement(class loop * loop,bool * irred_invalidated)125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
126 {
127   unsigned i;
128   edge e;
129   auto_vec<edge> exits = get_loop_exit_edges (loop);
130   class loop *father = current_loops->tree_root, *act;
131   bool ret = false;
132 
133   FOR_EACH_VEC_ELT (exits, i, e)
134     {
135       act = find_common_loop (loop, e->dest->loop_father);
136       if (flow_loop_nested_p (father, act))
137 	father = act;
138     }
139 
140   if (father != loop_outer (loop))
141     {
142       for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 	act->num_nodes -= loop->num_nodes;
144       flow_loop_tree_node_remove (loop);
145       flow_loop_tree_node_add (father, loop);
146 
147       /* The exit edges of LOOP no longer exits its original immediate
148 	 superloops; remove them from the appropriate exit lists.  */
149       FOR_EACH_VEC_ELT (exits, i, e)
150 	{
151 	  /* We may need to recompute irreducible loops.  */
152 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 	    *irred_invalidated = true;
154 	  rescan_loop_exit (e, false, false);
155 	}
156 
157       ret = true;
158     }
159 
160   return ret;
161 }
162 
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164    enforce condition stated in description of fix_bb_placement. We
165    start from basic block FROM that had some of its successors removed, so that
166    his placement no longer has to be correct, and iteratively fix placement of
167    its predecessors that may change if placement of FROM changed.  Also fix
168    placement of subloops of FROM->loop_father, that might also be altered due
169    to this change; the condition for them is similar, except that instead of
170    successors we consider edges coming out of the loops.
171 
172    If the changes may invalidate the information about irreducible regions,
173    IRRED_INVALIDATED is set to true.
174 
175    If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176    changed loop_father are collected there. */
177 
178 static void
fix_bb_placements(basic_block from,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)179 fix_bb_placements (basic_block from,
180 		   bool *irred_invalidated,
181 		   bitmap loop_closed_ssa_invalidated)
182 {
183   basic_block *queue, *qtop, *qbeg, *qend;
184   class loop *base_loop, *target_loop;
185   edge e;
186 
187   /* We pass through blocks back-reachable from FROM, testing whether some
188      of their successors moved to outer loop.  It may be necessary to
189      iterate several times, but it is finite, as we stop unless we move
190      the basic block up the loop structure.  The whole story is a bit
191      more complicated due to presence of subloops, those are moved using
192      fix_loop_placement.  */
193 
194   base_loop = from->loop_father;
195   /* If we are already in the outermost loop, the basic blocks cannot be moved
196      outside of it.  If FROM is the header of the base loop, it cannot be moved
197      outside of it, either.  In both cases, we can end now.  */
198   if (base_loop == current_loops->tree_root
199       || from == base_loop->header)
200     return;
201 
202   auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203   bitmap_clear (in_queue);
204   bitmap_set_bit (in_queue, from->index);
205   /* Prevent us from going out of the base_loop.  */
206   bitmap_set_bit (in_queue, base_loop->header->index);
207 
208   queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209   qtop = queue + base_loop->num_nodes + 1;
210   qbeg = queue;
211   qend = queue + 1;
212   *qbeg = from;
213 
214   while (qbeg != qend)
215     {
216       edge_iterator ei;
217       from = *qbeg;
218       qbeg++;
219       if (qbeg == qtop)
220 	qbeg = queue;
221       bitmap_clear_bit (in_queue, from->index);
222 
223       if (from->loop_father->header == from)
224 	{
225 	  /* Subloop header, maybe move the loop upward.  */
226 	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 	    continue;
228 	  target_loop = loop_outer (from->loop_father);
229 	  if (loop_closed_ssa_invalidated)
230 	    {
231 	      basic_block *bbs = get_loop_body (from->loop_father);
232 	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 	      free (bbs);
235 	    }
236 	}
237       else
238 	{
239 	  /* Ordinary basic block.  */
240 	  if (!fix_bb_placement (from))
241 	    continue;
242 	  target_loop = from->loop_father;
243 	  if (loop_closed_ssa_invalidated)
244 	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
245 	}
246 
247       FOR_EACH_EDGE (e, ei, from->succs)
248 	{
249 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 	    *irred_invalidated = true;
251 	}
252 
253       /* Something has changed, insert predecessors into queue.  */
254       FOR_EACH_EDGE (e, ei, from->preds)
255 	{
256 	  basic_block pred = e->src;
257 	  class loop *nca;
258 
259 	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 	    *irred_invalidated = true;
261 
262 	  if (bitmap_bit_p (in_queue, pred->index))
263 	    continue;
264 
265 	  /* If it is subloop, then it either was not moved, or
266 	     the path up the loop tree from base_loop do not contain
267 	     it.  */
268 	  nca = find_common_loop (pred->loop_father, base_loop);
269 	  if (pred->loop_father != base_loop
270 	      && (nca == base_loop
271 		  || nca != pred->loop_father))
272 	    pred = pred->loop_father->header;
273 	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
274 	    {
275 	      /* If PRED is already higher in the loop hierarchy than the
276 		 TARGET_LOOP to that we moved FROM, the change of the position
277 		 of FROM does not affect the position of PRED, so there is no
278 		 point in processing it.  */
279 	      continue;
280 	    }
281 
282 	  if (bitmap_bit_p (in_queue, pred->index))
283 	    continue;
284 
285 	  /* Schedule the basic block.  */
286 	  *qend = pred;
287 	  qend++;
288 	  if (qend == qtop)
289 	    qend = queue;
290 	  bitmap_set_bit (in_queue, pred->index);
291 	}
292     }
293   free (queue);
294 }
295 
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297    and update loop structures and dominators.  Return true if we were able
298    to remove the path, false otherwise (and nothing is affected then).  */
299 bool
remove_path(edge e,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)300 remove_path (edge e, bool *irred_invalidated,
301 	     bitmap loop_closed_ssa_invalidated)
302 {
303   edge ae;
304   basic_block *rem_bbs, *bord_bbs, from, bb;
305   vec<basic_block> dom_bbs;
306   int i, nrem, n_bord_bbs;
307   bool local_irred_invalidated = false;
308   edge_iterator ei;
309   class loop *l, *f;
310 
311   if (! irred_invalidated)
312     irred_invalidated = &local_irred_invalidated;
313 
314   if (!can_remove_branch_p (e))
315     return false;
316 
317   /* Keep track of whether we need to update information about irreducible
318      regions.  This is the case if the removed area is a part of the
319      irreducible region, or if the set of basic blocks that belong to a loop
320      that is inside an irreducible region is changed, or if such a loop is
321      removed.  */
322   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323     *irred_invalidated = true;
324 
325   /* We need to check whether basic blocks are dominated by the edge
326      e, but we only have basic block dominators.  This is easy to
327      fix -- when e->dest has exactly one predecessor, this corresponds
328      to blocks dominated by e->dest, if not, split the edge.  */
329   if (!single_pred_p (e->dest))
330     e = single_pred_edge (split_edge (e));
331 
332   /* It may happen that by removing path we remove one or more loops
333      we belong to.  In this case first unloop the loops, then proceed
334      normally.   We may assume that e->dest is not a header of any loop,
335      as it now has exactly one predecessor.  */
336   for (l = e->src->loop_father; loop_outer (l); l = f)
337     {
338       f = loop_outer (l);
339       if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340         unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
341     }
342 
343   /* Identify the path.  */
344   nrem = find_path (e, &rem_bbs);
345 
346   n_bord_bbs = 0;
347   bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348   auto_sbitmap seen (last_basic_block_for_fn (cfun));
349   bitmap_clear (seen);
350 
351   /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
352   for (i = 0; i < nrem; i++)
353     bitmap_set_bit (seen, rem_bbs[i]->index);
354   if (!*irred_invalidated)
355     FOR_EACH_EDGE (ae, ei, e->src->succs)
356       if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 	  && !bitmap_bit_p (seen, ae->dest->index)
358 	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
359 	{
360 	  *irred_invalidated = true;
361 	  break;
362 	}
363 
364   for (i = 0; i < nrem; i++)
365     {
366       FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 	    && !bitmap_bit_p (seen, ae->dest->index))
369 	  {
370 	    bitmap_set_bit (seen, ae->dest->index);
371 	    bord_bbs[n_bord_bbs++] = ae->dest;
372 
373 	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 	      *irred_invalidated = true;
375 	  }
376     }
377 
378   /* Remove the path.  */
379   from = e->src;
380   remove_branch (e);
381   dom_bbs.create (0);
382 
383   /* Cancel loops contained in the path.  */
384   for (i = 0; i < nrem; i++)
385     if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386       cancel_loop_tree (rem_bbs[i]->loop_father);
387 
388   remove_bbs (rem_bbs, nrem);
389   free (rem_bbs);
390 
391   /* Find blocks whose dominators may be affected.  */
392   bitmap_clear (seen);
393   for (i = 0; i < n_bord_bbs; i++)
394     {
395       basic_block ldom;
396 
397       bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398       if (bitmap_bit_p (seen, bb->index))
399 	continue;
400       bitmap_set_bit (seen, bb->index);
401 
402       for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 	   ldom;
404 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 	  dom_bbs.safe_push (ldom);
407     }
408 
409   /* Recount dominators.  */
410   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411   dom_bbs.release ();
412   free (bord_bbs);
413 
414   /* Fix placements of basic blocks inside loops and the placement of
415      loops in the loop tree.  */
416   fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417   fix_loop_placements (from->loop_father, irred_invalidated);
418 
419   if (local_irred_invalidated
420       && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421     mark_irreducible_loops ();
422 
423   return true;
424 }
425 
426 /* Creates place for a new LOOP in loops structure of FN.  */
427 
428 void
place_new_loop(struct function * fn,class loop * loop)429 place_new_loop (struct function *fn, class loop *loop)
430 {
431   loop->num = number_of_loops (fn);
432   vec_safe_push (loops_for_fn (fn)->larray, loop);
433 }
434 
435 /* Given LOOP structure with filled header and latch, find the body of the
436    corresponding loop and add it to loops tree.  Insert the LOOP as a son of
437    outer.  */
438 
439 void
add_loop(class loop * loop,class loop * outer)440 add_loop (class loop *loop, class loop *outer)
441 {
442   basic_block *bbs;
443   int i, n;
444   class loop *subloop;
445   edge e;
446   edge_iterator ei;
447 
448   /* Add it to loop structure.  */
449   place_new_loop (cfun, loop);
450   flow_loop_tree_node_add (outer, loop);
451 
452   /* Find its nodes.  */
453   bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454   n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
455 
456   for (i = 0; i < n; i++)
457     {
458       if (bbs[i]->loop_father == outer)
459 	{
460 	  remove_bb_from_loops (bbs[i]);
461 	  add_bb_to_loop (bbs[i], loop);
462 	  continue;
463 	}
464 
465       loop->num_nodes++;
466 
467       /* If we find a direct subloop of OUTER, move it to LOOP.  */
468       subloop = bbs[i]->loop_father;
469       if (loop_outer (subloop) == outer
470 	  && subloop->header == bbs[i])
471 	{
472 	  flow_loop_tree_node_remove (subloop);
473 	  flow_loop_tree_node_add (loop, subloop);
474 	}
475     }
476 
477   /* Update the information about loop exit edges.  */
478   for (i = 0; i < n; i++)
479     {
480       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
481 	{
482 	  rescan_loop_exit (e, false, false);
483 	}
484     }
485 
486   free (bbs);
487 }
488 
489 /* Scale profile of loop by P.  */
490 
491 void
scale_loop_frequencies(class loop * loop,profile_probability p)492 scale_loop_frequencies (class loop *loop, profile_probability p)
493 {
494   basic_block *bbs;
495 
496   bbs = get_loop_body (loop);
497   scale_bbs_frequencies (bbs, loop->num_nodes, p);
498   free (bbs);
499 }
500 
501 /* Scale profile in LOOP by P.
502    If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503    to iterate too many times.
504    Before caling this function, preheader block profile should be already
505    scaled to final count.  This is necessary because loop iterations are
506    determined by comparing header edge count to latch ege count and thus
507    they need to be scaled synchronously.  */
508 
509 void
scale_loop_profile(class loop * loop,profile_probability p,gcov_type iteration_bound)510 scale_loop_profile (class loop *loop, profile_probability p,
511 		    gcov_type iteration_bound)
512 {
513   edge e, preheader_e;
514   edge_iterator ei;
515 
516   if (dump_file && (dump_flags & TDF_DETAILS))
517     {
518       fprintf (dump_file, ";; Scaling loop %i with scale ",
519 	       loop->num);
520       p.dump (dump_file);
521       fprintf (dump_file, " bounding iterations to %i\n",
522 	       (int)iteration_bound);
523     }
524 
525   /* Scale the probabilities.  */
526   scale_loop_frequencies (loop, p);
527 
528   if (iteration_bound == 0)
529     return;
530 
531   gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
532 
533   if (dump_file && (dump_flags & TDF_DETAILS))
534     {
535       fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 	       (int)iterations);
537     }
538 
539   /* See if loop is predicted to iterate too many times.  */
540   if (iterations <= iteration_bound)
541     return;
542 
543   preheader_e = loop_preheader_edge (loop);
544 
545   /* We could handle also loops without preheaders, but bounding is
546      currently used only by optimizers that have preheaders constructed.  */
547   gcc_checking_assert (preheader_e);
548   profile_count count_in = preheader_e->count ();
549 
550   if (count_in > profile_count::zero ()
551       && loop->header->count.initialized_p ())
552     {
553       profile_count count_delta = profile_count::zero ();
554 
555       e = single_exit (loop);
556       if (e)
557 	{
558 	  edge other_e;
559 	  FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 		&& e != other_e)
562 	      break;
563 
564 	  /* Probability of exit must be 1/iterations.  */
565 	  count_delta = e->count ();
566 	  e->probability = profile_probability::always ()
567 				    .apply_scale (1, iteration_bound);
568 	  other_e->probability = e->probability.invert ();
569 
570 	  /* In code below we only handle the following two updates.  */
571 	  if (other_e->dest != loop->header
572 	      && other_e->dest != loop->latch
573 	      && (dump_file && (dump_flags & TDF_DETAILS)))
574 	    {
575 	      fprintf (dump_file, ";; giving up on update of paths from "
576 		       "exit condition to latch\n");
577 	    }
578 	}
579       else
580         if (dump_file && (dump_flags & TDF_DETAILS))
581 	  fprintf (dump_file, ";; Loop has multiple exit edges; "
582 	      		      "giving up on exit condition update\n");
583 
584       /* Roughly speaking we want to reduce the loop body profile by the
585 	 difference of loop iterations.  We however can do better if
586 	 we look at the actual profile, if it is available.  */
587       p = profile_probability::always ();
588 
589       count_in = count_in.apply_scale (iteration_bound, 1);
590       p = count_in.probability_in (loop->header->count);
591       if (!(p > profile_probability::never ()))
592 	p = profile_probability::very_unlikely ();
593 
594       if (p == profile_probability::always ()
595 	  || !p.initialized_p ())
596 	return;
597 
598       /* If latch exists, change its count, since we changed
599 	 probability of exit.  Theoretically we should update everything from
600 	 source of exit edge to latch, but for vectorizer this is enough.  */
601       if (loop->latch && loop->latch != e->src)
602 	loop->latch->count += count_delta;
603 
604       /* Scale the probabilities.  */
605       scale_loop_frequencies (loop, p);
606 
607       /* Change latch's count back.  */
608       if (loop->latch && loop->latch != e->src)
609 	loop->latch->count -= count_delta;
610 
611       if (dump_file && (dump_flags & TDF_DETAILS))
612 	fprintf (dump_file, ";; guessed iterations are now %i\n",
613 		 (int)expected_loop_iterations_unbounded (loop, NULL, true));
614     }
615 }
616 
617 /* Recompute dominance information for basic blocks outside LOOP.  */
618 
619 static void
update_dominators_in_loop(class loop * loop)620 update_dominators_in_loop (class loop *loop)
621 {
622   vec<basic_block> dom_bbs = vNULL;
623   basic_block *body;
624   unsigned i;
625 
626   auto_sbitmap seen (last_basic_block_for_fn (cfun));
627   bitmap_clear (seen);
628   body = get_loop_body (loop);
629 
630   for (i = 0; i < loop->num_nodes; i++)
631     bitmap_set_bit (seen, body[i]->index);
632 
633   for (i = 0; i < loop->num_nodes; i++)
634     {
635       basic_block ldom;
636 
637       for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 	   ldom;
639 	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 	if (!bitmap_bit_p (seen, ldom->index))
641 	  {
642 	    bitmap_set_bit (seen, ldom->index);
643 	    dom_bbs.safe_push (ldom);
644 	  }
645     }
646 
647   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648   free (body);
649   dom_bbs.release ();
650 }
651 
652 /* Creates an if region as shown above. CONDITION is used to create
653    the test for the if.
654 
655    |
656    |     -------------                 -------------
657    |     |  pred_bb  |                 |  pred_bb  |
658    |     -------------                 -------------
659    |           |                             |
660    |           |                             | ENTRY_EDGE
661    |           | ENTRY_EDGE                  V
662    |           |             ====>     -------------
663    |           |                       |  cond_bb  |
664    |           |                       | CONDITION |
665    |           |                       -------------
666    |           V                        /         \
667    |     -------------         e_false /           \ e_true
668    |     |  succ_bb  |                V             V
669    |     -------------         -----------       -----------
670    |                           | false_bb |      | true_bb |
671    |                           -----------       -----------
672    |                                   \           /
673    |                                    \         /
674    |                                     V       V
675    |                                   -------------
676    |                                   |  join_bb  |
677    |                                   -------------
678    |                                         | exit_edge (result)
679    |                                         V
680    |                                    -----------
681    |                                    | succ_bb |
682    |                                    -----------
683    |
684  */
685 
686 edge
create_empty_if_region_on_edge(edge entry_edge,tree condition)687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
688 {
689 
690   basic_block cond_bb, true_bb, false_bb, join_bb;
691   edge e_true, e_false, exit_edge;
692   gcond *cond_stmt;
693   tree simple_cond;
694   gimple_stmt_iterator gsi;
695 
696   cond_bb = split_edge (entry_edge);
697 
698   /* Insert condition in cond_bb.  */
699   gsi = gsi_last_bb (cond_bb);
700   simple_cond =
701     force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 			      false, GSI_NEW_STMT);
703   cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704   gsi = gsi_last_bb (cond_bb);
705   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
706 
707   join_bb = split_edge (single_succ_edge (cond_bb));
708 
709   e_true = single_succ_edge (cond_bb);
710   true_bb = split_edge (e_true);
711 
712   e_false = make_edge (cond_bb, join_bb, 0);
713   false_bb = split_edge (e_false);
714 
715   e_true->flags &= ~EDGE_FALLTHRU;
716   e_true->flags |= EDGE_TRUE_VALUE;
717   e_false->flags &= ~EDGE_FALLTHRU;
718   e_false->flags |= EDGE_FALSE_VALUE;
719 
720   set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721   set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722   set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723   set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
724 
725   exit_edge = single_succ_edge (join_bb);
726 
727   if (single_pred_p (exit_edge->dest))
728     set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
729 
730   return exit_edge;
731 }
732 
733 /* create_empty_loop_on_edge
734    |
735    |    - pred_bb -                   ------ pred_bb ------
736    |   |           |                 | iv0 = initial_value |
737    |    -----|-----                   ---------|-----------
738    |         |                       ______    | entry_edge
739    |         | entry_edge           /      |   |
740    |         |             ====>   |      -V---V- loop_header -------------
741    |         V                     |     | iv_before = phi (iv0, iv_after) |
742    |    - succ_bb -                |      ---|-----------------------------
743    |   |           |               |         |
744    |    -----------                |      ---V--- loop_body ---------------
745    |                               |     | iv_after = iv_before + stride   |
746    |                               |     | if (iv_before < upper_bound)    |
747    |                               |      ---|--------------\--------------
748    |                               |         |               \ exit_e
749    |                               |         V                \
750    |                               |       - loop_latch -      V- succ_bb -
751    |                               |      |              |     |           |
752    |                               |       /-------------       -----------
753    |                                \ ___ /
754 
755    Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756    that is used before the increment of IV. IV_BEFORE should be used for
757    adding code to the body that uses the IV.  OUTER is the outer loop in
758    which the new loop should be inserted.
759 
760    Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761    inserted on the loop entry edge.  This implies that this function
762    should be used only when the UPPER_BOUND expression is a loop
763    invariant.  */
764 
765 class loop *
create_empty_loop_on_edge(edge entry_edge,tree initial_value,tree stride,tree upper_bound,tree iv,tree * iv_before,tree * iv_after,class loop * outer)766 create_empty_loop_on_edge (edge entry_edge,
767 			   tree initial_value,
768 			   tree stride, tree upper_bound,
769 			   tree iv,
770 			   tree *iv_before,
771 			   tree *iv_after,
772 			   class loop *outer)
773 {
774   basic_block loop_header, loop_latch, succ_bb, pred_bb;
775   class loop *loop;
776   gimple_stmt_iterator gsi;
777   gimple_seq stmts;
778   gcond *cond_expr;
779   tree exit_test;
780   edge exit_e;
781 
782   gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
783 
784   /* Create header, latch and wire up the loop.  */
785   pred_bb = entry_edge->src;
786   loop_header = split_edge (entry_edge);
787   loop_latch = split_edge (single_succ_edge (loop_header));
788   succ_bb = single_succ (loop_latch);
789   make_edge (loop_header, succ_bb, 0);
790   redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
791 
792   /* Set immediate dominator information.  */
793   set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794   set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795   set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
796 
797   /* Initialize a loop structure and put it in a loop hierarchy.  */
798   loop = alloc_loop ();
799   loop->header = loop_header;
800   loop->latch = loop_latch;
801   add_loop (loop, outer);
802 
803   /* TODO: Fix counts.  */
804   scale_loop_frequencies (loop, profile_probability::even ());
805 
806   /* Update dominators.  */
807   update_dominators_in_loop (loop);
808 
809   /* Modify edge flags.  */
810   exit_e = single_exit (loop);
811   exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812   single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
813 
814   /* Construct IV code in loop.  */
815   initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816   if (stmts)
817     {
818       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819       gsi_commit_edge_inserts ();
820     }
821 
822   upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823   if (stmts)
824     {
825       gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826       gsi_commit_edge_inserts ();
827     }
828 
829   gsi = gsi_last_bb (loop_header);
830   create_iv (initial_value, stride, iv, loop, &gsi, false,
831 	     iv_before, iv_after);
832 
833   /* Insert loop exit condition.  */
834   cond_expr = gimple_build_cond
835     (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
836 
837   exit_test = gimple_cond_lhs (cond_expr);
838   exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 					false, GSI_NEW_STMT);
840   gimple_cond_set_lhs (cond_expr, exit_test);
841   gsi = gsi_last_bb (exit_e->src);
842   gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
843 
844   split_block_after_labels (loop_header);
845 
846   return loop;
847 }
848 
849 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
850    latch to header and update loop tree and dominators
851    accordingly. Everything between them plus LATCH_EDGE destination must
852    be dominated by HEADER_EDGE destination, and back-reachable from
853    LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
854    FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
855    TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
856    Returns the newly created loop.  Frequencies and counts in the new loop
857    are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
858 
859 class loop *
loopify(edge latch_edge,edge header_edge,basic_block switch_bb,edge true_edge,edge false_edge,bool redirect_all_edges,profile_probability true_scale,profile_probability false_scale)860 loopify (edge latch_edge, edge header_edge,
861 	 basic_block switch_bb, edge true_edge, edge false_edge,
862 	 bool redirect_all_edges, profile_probability true_scale,
863 	 profile_probability false_scale)
864 {
865   basic_block succ_bb = latch_edge->dest;
866   basic_block pred_bb = header_edge->src;
867   class loop *loop = alloc_loop ();
868   class loop *outer = loop_outer (succ_bb->loop_father);
869   profile_count cnt;
870 
871   loop->header = header_edge->dest;
872   loop->latch = latch_edge->src;
873 
874   cnt = header_edge->count ();
875 
876   /* Redirect edges.  */
877   loop_redirect_edge (latch_edge, loop->header);
878   loop_redirect_edge (true_edge, succ_bb);
879 
880   /* During loop versioning, one of the switch_bb edge is already properly
881      set. Do not redirect it again unless redirect_all_edges is true.  */
882   if (redirect_all_edges)
883     {
884       loop_redirect_edge (header_edge, switch_bb);
885       loop_redirect_edge (false_edge, loop->header);
886 
887       /* Update dominators.  */
888       set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
889       set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
890     }
891 
892   set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
893 
894   /* Compute new loop.  */
895   add_loop (loop, outer);
896 
897   /* Add switch_bb to appropriate loop.  */
898   if (switch_bb->loop_father)
899     remove_bb_from_loops (switch_bb);
900   add_bb_to_loop (switch_bb, outer);
901 
902   /* Fix counts.  */
903   if (redirect_all_edges)
904     {
905       switch_bb->count = cnt;
906     }
907   scale_loop_frequencies (loop, false_scale);
908   scale_loop_frequencies (succ_bb->loop_father, true_scale);
909   update_dominators_in_loop (loop);
910 
911   return loop;
912 }
913 
914 /* Remove the latch edge of a LOOP and update loops to indicate that
915    the LOOP was removed.  After this function, original loop latch will
916    have no successor, which caller is expected to fix somehow.
917 
918    If this may cause the information about irreducible regions to become
919    invalid, IRRED_INVALIDATED is set to true.
920 
921    LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
922    basic blocks that had non-trivial update on their loop_father.*/
923 
924 void
unloop(class loop * loop,bool * irred_invalidated,bitmap loop_closed_ssa_invalidated)925 unloop (class loop *loop, bool *irred_invalidated,
926 	bitmap loop_closed_ssa_invalidated)
927 {
928   basic_block *body;
929   class loop *ploop;
930   unsigned i, n;
931   basic_block latch = loop->latch;
932   bool dummy = false;
933 
934   if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
935     *irred_invalidated = true;
936 
937   /* This is relatively straightforward.  The dominators are unchanged, as
938      loop header dominates loop latch, so the only thing we have to care of
939      is the placement of loops and basic blocks inside the loop tree.  We
940      move them all to the loop->outer, and then let fix_bb_placements do
941      its work.  */
942 
943   body = get_loop_body (loop);
944   n = loop->num_nodes;
945   for (i = 0; i < n; i++)
946     if (body[i]->loop_father == loop)
947       {
948 	remove_bb_from_loops (body[i]);
949 	add_bb_to_loop (body[i], loop_outer (loop));
950       }
951   free (body);
952 
953   while (loop->inner)
954     {
955       ploop = loop->inner;
956       flow_loop_tree_node_remove (ploop);
957       flow_loop_tree_node_add (loop_outer (loop), ploop);
958     }
959 
960   /* Remove the loop and free its data.  */
961   delete_loop (loop);
962 
963   remove_edge (single_succ_edge (latch));
964 
965   /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
966      there is an irreducible region inside the cancelled loop, the flags will
967      be still correct.  */
968   fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
969 }
970 
971 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
972    condition stated in description of fix_loop_placement holds for them.
973    It is used in case when we removed some edges coming out of LOOP, which
974    may cause the right placement of LOOP inside loop tree to change.
975 
976    IRRED_INVALIDATED is set to true if a change in the loop structures might
977    invalidate the information about irreducible regions.  */
978 
979 static void
fix_loop_placements(class loop * loop,bool * irred_invalidated)980 fix_loop_placements (class loop *loop, bool *irred_invalidated)
981 {
982   class loop *outer;
983 
984   while (loop_outer (loop))
985     {
986       outer = loop_outer (loop);
987       if (!fix_loop_placement (loop, irred_invalidated))
988 	break;
989 
990       /* Changing the placement of a loop in the loop tree may alter the
991 	 validity of condition 2) of the description of fix_bb_placement
992 	 for its preheader, because the successor is the header and belongs
993 	 to the loop.  So call fix_bb_placements to fix up the placement
994 	 of the preheader and (possibly) of its predecessors.  */
995       fix_bb_placements (loop_preheader_edge (loop)->src,
996 			 irred_invalidated, NULL);
997       loop = outer;
998     }
999 }
1000 
1001 /* Duplicate loop bounds and other information we store about
1002    the loop into its duplicate.  */
1003 
1004 void
copy_loop_info(class loop * loop,class loop * target)1005 copy_loop_info (class loop *loop, class loop *target)
1006 {
1007   gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1008   target->any_upper_bound = loop->any_upper_bound;
1009   target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1010   target->any_likely_upper_bound = loop->any_likely_upper_bound;
1011   target->nb_iterations_likely_upper_bound
1012     = loop->nb_iterations_likely_upper_bound;
1013   target->any_estimate = loop->any_estimate;
1014   target->nb_iterations_estimate = loop->nb_iterations_estimate;
1015   target->estimate_state = loop->estimate_state;
1016   target->safelen = loop->safelen;
1017   target->simdlen = loop->simdlen;
1018   target->constraints = loop->constraints;
1019   target->can_be_parallel = loop->can_be_parallel;
1020   target->warned_aggressive_loop_optimizations
1021     |= loop->warned_aggressive_loop_optimizations;
1022   target->dont_vectorize = loop->dont_vectorize;
1023   target->force_vectorize = loop->force_vectorize;
1024   target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1025   target->finite_p = loop->finite_p;
1026   target->unroll = loop->unroll;
1027   target->owned_clique = loop->owned_clique;
1028 }
1029 
1030 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1031    created loop into loops structure.  If AFTER is non-null
1032    the new loop is added at AFTER->next, otherwise in front of TARGETs
1033    sibling list.  */
1034 class loop *
duplicate_loop(class loop * loop,class loop * target,class loop * after)1035 duplicate_loop (class loop *loop, class loop *target, class loop *after)
1036 {
1037   class loop *cloop;
1038   cloop = alloc_loop ();
1039   place_new_loop (cfun, cloop);
1040 
1041   copy_loop_info (loop, cloop);
1042 
1043   /* Mark the new loop as copy of LOOP.  */
1044   set_loop_copy (loop, cloop);
1045 
1046   /* Add it to target.  */
1047   flow_loop_tree_node_add (target, cloop, after);
1048 
1049   return cloop;
1050 }
1051 
1052 /* Copies structure of subloops of LOOP into TARGET loop, placing
1053    newly created loops into loop tree at the end of TARGETs sibling
1054    list in the original order.  */
1055 void
duplicate_subloops(class loop * loop,class loop * target)1056 duplicate_subloops (class loop *loop, class loop *target)
1057 {
1058   class loop *aloop, *cloop, *tail;
1059 
1060   for (tail = target->inner; tail && tail->next; tail = tail->next)
1061     ;
1062   for (aloop = loop->inner; aloop; aloop = aloop->next)
1063     {
1064       cloop = duplicate_loop (aloop, target, tail);
1065       tail = cloop;
1066       gcc_assert(!tail->next);
1067       duplicate_subloops (aloop, cloop);
1068     }
1069 }
1070 
1071 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1072    into TARGET loop, placing newly created loops into loop tree adding
1073    them to TARGETs sibling list at the end in order.  */
1074 static void
copy_loops_to(class loop ** copied_loops,int n,class loop * target)1075 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1076 {
1077   class loop *aloop, *tail;
1078   int i;
1079 
1080   for (tail = target->inner; tail && tail->next; tail = tail->next)
1081     ;
1082   for (i = 0; i < n; i++)
1083     {
1084       aloop = duplicate_loop (copied_loops[i], target, tail);
1085       tail = aloop;
1086       gcc_assert(!tail->next);
1087       duplicate_subloops (copied_loops[i], aloop);
1088     }
1089 }
1090 
1091 /* Redirects edge E to basic block DEST.  */
1092 static void
loop_redirect_edge(edge e,basic_block dest)1093 loop_redirect_edge (edge e, basic_block dest)
1094 {
1095   if (e->dest == dest)
1096     return;
1097 
1098   redirect_edge_and_branch_force (e, dest);
1099 }
1100 
1101 /* Check whether LOOP's body can be duplicated.  */
1102 bool
can_duplicate_loop_p(const class loop * loop)1103 can_duplicate_loop_p (const class loop *loop)
1104 {
1105   int ret;
1106   basic_block *bbs = get_loop_body (loop);
1107 
1108   ret = can_copy_bbs_p (bbs, loop->num_nodes);
1109   free (bbs);
1110 
1111   return ret;
1112 }
1113 
1114 /* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
1115    loop structure and dominators (order of inner subloops is retained).
1116    E's destination must be LOOP header for this to work, i.e. it must be entry
1117    or latch edge of this loop; these are unique, as the loops must have
1118    preheaders for this function to work correctly (in case E is latch, the
1119    function unrolls the loop, if E is entry edge, it peels the loop).  Store
1120    edges created by copying ORIG edge from copies corresponding to set bits in
1121    WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1122    are numbered in order given by control flow through them) into TO_REMOVE
1123    array.  Returns false if duplication is
1124    impossible.  */
1125 
1126 bool
duplicate_loop_to_header_edge(class loop * loop,edge e,unsigned int ndupl,sbitmap wont_exit,edge orig,vec<edge> * to_remove,int flags)1127 duplicate_loop_to_header_edge (class loop *loop, edge e,
1128 			       unsigned int ndupl, sbitmap wont_exit,
1129 			       edge orig, vec<edge> *to_remove,
1130 			       int flags)
1131 {
1132   class loop *target, *aloop;
1133   class loop **orig_loops;
1134   unsigned n_orig_loops;
1135   basic_block header = loop->header, latch = loop->latch;
1136   basic_block *new_bbs, *bbs, *first_active;
1137   basic_block new_bb, bb, first_active_latch = NULL;
1138   edge ae, latch_edge;
1139   edge spec_edges[2], new_spec_edges[2];
1140   const int SE_LATCH = 0;
1141   const int SE_ORIG = 1;
1142   unsigned i, j, n;
1143   int is_latch = (latch == e->src);
1144   profile_probability *scale_step = NULL;
1145   profile_probability scale_main = profile_probability::always ();
1146   profile_probability scale_act = profile_probability::always ();
1147   profile_count after_exit_num = profile_count::zero (),
1148 	        after_exit_den = profile_count::zero ();
1149   bool scale_after_exit = false;
1150   int add_irreducible_flag;
1151   basic_block place_after;
1152   bitmap bbs_to_scale = NULL;
1153   bitmap_iterator bi;
1154 
1155   gcc_assert (e->dest == loop->header);
1156   gcc_assert (ndupl > 0);
1157 
1158   if (orig)
1159     {
1160       /* Orig must be edge out of the loop.  */
1161       gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1162       gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1163     }
1164 
1165   n = loop->num_nodes;
1166   bbs = get_loop_body_in_dom_order (loop);
1167   gcc_assert (bbs[0] == loop->header);
1168   gcc_assert (bbs[n  - 1] == loop->latch);
1169 
1170   /* Check whether duplication is possible.  */
1171   if (!can_copy_bbs_p (bbs, loop->num_nodes))
1172     {
1173       free (bbs);
1174       return false;
1175     }
1176   new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1177 
1178   /* In case we are doing loop peeling and the loop is in the middle of
1179      irreducible region, the peeled copies will be inside it too.  */
1180   add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1181   gcc_assert (!is_latch || !add_irreducible_flag);
1182 
1183   /* Find edge from latch.  */
1184   latch_edge = loop_latch_edge (loop);
1185 
1186   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1187     {
1188       /* Calculate coefficients by that we have to scale counts
1189 	 of duplicated loop bodies.  */
1190       profile_count count_in = header->count;
1191       profile_count count_le = latch_edge->count ();
1192       profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1193       profile_probability prob_pass_thru = count_le.probability_in (count_in);
1194       profile_probability prob_pass_wont_exit =
1195 	      (count_le + count_out_orig).probability_in (count_in);
1196 
1197       if (orig && orig->probability.initialized_p ()
1198 	  && !(orig->probability == profile_probability::always ()))
1199 	{
1200 	  /* The blocks that are dominated by a removed exit edge ORIG have
1201 	     frequencies scaled by this.  */
1202 	  if (orig->count ().initialized_p ())
1203 	    {
1204 	      after_exit_num = orig->src->count;
1205 	      after_exit_den = after_exit_num - orig->count ();
1206 	      scale_after_exit = true;
1207 	    }
1208 	  bbs_to_scale = BITMAP_ALLOC (NULL);
1209 	  for (i = 0; i < n; i++)
1210 	    {
1211 	      if (bbs[i] != orig->src
1212 		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1213 		bitmap_set_bit (bbs_to_scale, i);
1214 	    }
1215 	}
1216 
1217       scale_step = XNEWVEC (profile_probability, ndupl);
1218 
1219       for (i = 1; i <= ndupl; i++)
1220 	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1221 				? prob_pass_wont_exit
1222 				: prob_pass_thru;
1223 
1224       /* Complete peeling is special as the probability of exit in last
1225 	 copy becomes 1.  */
1226       if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1227 	{
1228 	  profile_count wanted_count = e->count ();
1229 
1230 	  gcc_assert (!is_latch);
1231 	  /* First copy has count of incoming edge.  Each subsequent
1232 	     count should be reduced by prob_pass_wont_exit.  Caller
1233 	     should've managed the flags so all except for original loop
1234 	     has won't exist set.  */
1235 	  scale_act = wanted_count.probability_in (count_in);
1236 	  /* Now simulate the duplication adjustments and compute header
1237 	     frequency of the last copy.  */
1238 	  for (i = 0; i < ndupl; i++)
1239 	    wanted_count = wanted_count.apply_probability (scale_step [i]);
1240 	  scale_main = wanted_count.probability_in (count_in);
1241 	}
1242       /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1243 	 First iteration will be original loop followed by duplicated bodies.
1244 	 It is necessary to scale down the original so we get right overall
1245 	 number of iterations.  */
1246       else if (is_latch)
1247 	{
1248 	  profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1249 							? prob_pass_wont_exit
1250 							: prob_pass_thru;
1251 	  profile_probability p = prob_pass_main;
1252 	  profile_count scale_main_den = count_in;
1253 	  for (i = 0; i < ndupl; i++)
1254 	    {
1255 	      scale_main_den += count_in.apply_probability (p);
1256 	      p = p * scale_step[i];
1257 	    }
1258 	  /* If original loop is executed COUNT_IN times, the unrolled
1259 	     loop will account SCALE_MAIN_DEN times.  */
1260 	  scale_main = count_in.probability_in (scale_main_den);
1261 	  scale_act = scale_main * prob_pass_main;
1262 	}
1263       else
1264 	{
1265 	  profile_count preheader_count = e->count ();
1266 	  for (i = 0; i < ndupl; i++)
1267 	    scale_main = scale_main * scale_step[i];
1268 	  scale_act = preheader_count.probability_in (count_in);
1269 	}
1270     }
1271 
1272   /* Loop the new bbs will belong to.  */
1273   target = e->src->loop_father;
1274 
1275   /* Original loops.  */
1276   n_orig_loops = 0;
1277   for (aloop = loop->inner; aloop; aloop = aloop->next)
1278     n_orig_loops++;
1279   orig_loops = XNEWVEC (class loop *, n_orig_loops);
1280   for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1281     orig_loops[i] = aloop;
1282 
1283   set_loop_copy (loop, target);
1284 
1285   first_active = XNEWVEC (basic_block, n);
1286   if (is_latch)
1287     {
1288       memcpy (first_active, bbs, n * sizeof (basic_block));
1289       first_active_latch = latch;
1290     }
1291 
1292   spec_edges[SE_ORIG] = orig;
1293   spec_edges[SE_LATCH] = latch_edge;
1294 
1295   place_after = e->src;
1296   for (j = 0; j < ndupl; j++)
1297     {
1298       /* Copy loops.  */
1299       copy_loops_to (orig_loops, n_orig_loops, target);
1300 
1301       /* Copy bbs.  */
1302       copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1303 		place_after, true);
1304       place_after = new_spec_edges[SE_LATCH]->src;
1305 
1306       if (flags & DLTHE_RECORD_COPY_NUMBER)
1307 	for (i = 0; i < n; i++)
1308 	  {
1309 	    gcc_assert (!new_bbs[i]->aux);
1310 	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
1311 	  }
1312 
1313       /* Note whether the blocks and edges belong to an irreducible loop.  */
1314       if (add_irreducible_flag)
1315 	{
1316 	  for (i = 0; i < n; i++)
1317 	    new_bbs[i]->flags |= BB_DUPLICATED;
1318 	  for (i = 0; i < n; i++)
1319 	    {
1320 	      edge_iterator ei;
1321 	      new_bb = new_bbs[i];
1322 	      if (new_bb->loop_father == target)
1323 		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1324 
1325 	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
1326 		if ((ae->dest->flags & BB_DUPLICATED)
1327 		    && (ae->src->loop_father == target
1328 			|| ae->dest->loop_father == target))
1329 		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1330 	    }
1331 	  for (i = 0; i < n; i++)
1332 	    new_bbs[i]->flags &= ~BB_DUPLICATED;
1333 	}
1334 
1335       /* Redirect the special edges.  */
1336       if (is_latch)
1337 	{
1338 	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1339 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1340 					  loop->header);
1341 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1342 	  latch = loop->latch = new_bbs[n - 1];
1343 	  e = latch_edge = new_spec_edges[SE_LATCH];
1344 	}
1345       else
1346 	{
1347 	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1348 					  loop->header);
1349 	  redirect_edge_and_branch_force (e, new_bbs[0]);
1350 	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1351 	  e = new_spec_edges[SE_LATCH];
1352 	}
1353 
1354       /* Record exit edge in this copy.  */
1355       if (orig && bitmap_bit_p (wont_exit, j + 1))
1356 	{
1357 	  if (to_remove)
1358 	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
1359 	  force_edge_cold (new_spec_edges[SE_ORIG], true);
1360 
1361 	  /* Scale the frequencies of the blocks dominated by the exit.  */
1362 	  if (bbs_to_scale && scale_after_exit)
1363 	    {
1364 	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1365 		scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1366 						     after_exit_den);
1367 	    }
1368 	}
1369 
1370       /* Record the first copy in the control flow order if it is not
1371 	 the original loop (i.e. in case of peeling).  */
1372       if (!first_active_latch)
1373 	{
1374 	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
1375 	  first_active_latch = new_bbs[n - 1];
1376 	}
1377 
1378       /* Set counts and frequencies.  */
1379       if (flags & DLTHE_FLAG_UPDATE_FREQ)
1380 	{
1381 	  scale_bbs_frequencies (new_bbs, n, scale_act);
1382 	  scale_act = scale_act * scale_step[j];
1383 	}
1384     }
1385   free (new_bbs);
1386   free (orig_loops);
1387 
1388   /* Record the exit edge in the original loop body, and update the frequencies.  */
1389   if (orig && bitmap_bit_p (wont_exit, 0))
1390     {
1391       if (to_remove)
1392 	to_remove->safe_push (orig);
1393       force_edge_cold (orig, true);
1394 
1395       /* Scale the frequencies of the blocks dominated by the exit.  */
1396       if (bbs_to_scale && scale_after_exit)
1397 	{
1398 	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1399 	    scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1400 						 after_exit_den);
1401 	}
1402     }
1403 
1404   /* Update the original loop.  */
1405   if (!is_latch)
1406     set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1407   if (flags & DLTHE_FLAG_UPDATE_FREQ)
1408     {
1409       scale_bbs_frequencies (bbs, n, scale_main);
1410       free (scale_step);
1411     }
1412 
1413   /* Update dominators of outer blocks if affected.  */
1414   for (i = 0; i < n; i++)
1415     {
1416       basic_block dominated, dom_bb;
1417       vec<basic_block> dom_bbs;
1418       unsigned j;
1419 
1420       bb = bbs[i];
1421       bb->aux = 0;
1422 
1423       dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1424       FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1425 	{
1426 	  if (flow_bb_inside_loop_p (loop, dominated))
1427 	    continue;
1428 	  dom_bb = nearest_common_dominator (
1429 			CDI_DOMINATORS, first_active[i], first_active_latch);
1430 	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1431 	}
1432       dom_bbs.release ();
1433     }
1434   free (first_active);
1435 
1436   free (bbs);
1437   BITMAP_FREE (bbs_to_scale);
1438 
1439   return true;
1440 }
1441 
1442 /* A callback for make_forwarder block, to redirect all edges except for
1443    MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
1444    whether to redirect it.  */
1445 
1446 edge mfb_kj_edge;
1447 bool
mfb_keep_just(edge e)1448 mfb_keep_just (edge e)
1449 {
1450   return e != mfb_kj_edge;
1451 }
1452 
1453 /* True when a candidate preheader BLOCK has predecessors from LOOP.  */
1454 
1455 static bool
has_preds_from_loop(basic_block block,class loop * loop)1456 has_preds_from_loop (basic_block block, class loop *loop)
1457 {
1458   edge e;
1459   edge_iterator ei;
1460 
1461   FOR_EACH_EDGE (e, ei, block->preds)
1462     if (e->src->loop_father == loop)
1463       return true;
1464   return false;
1465 }
1466 
1467 /* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
1468    CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1469    entry; otherwise we also force preheader block to have only one successor.
1470    When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1471    to be a fallthru predecessor to the loop header and to have only
1472    predecessors from outside of the loop.
1473    The function also updates dominators.  */
1474 
1475 basic_block
create_preheader(class loop * loop,int flags)1476 create_preheader (class loop *loop, int flags)
1477 {
1478   edge e;
1479   basic_block dummy;
1480   int nentry = 0;
1481   bool irred = false;
1482   bool latch_edge_was_fallthru;
1483   edge one_succ_pred = NULL, single_entry = NULL;
1484   edge_iterator ei;
1485 
1486   FOR_EACH_EDGE (e, ei, loop->header->preds)
1487     {
1488       if (e->src == loop->latch)
1489 	continue;
1490       irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1491       nentry++;
1492       single_entry = e;
1493       if (single_succ_p (e->src))
1494 	one_succ_pred = e;
1495     }
1496   gcc_assert (nentry);
1497   if (nentry == 1)
1498     {
1499       bool need_forwarder_block = false;
1500 
1501       /* We do not allow entry block to be the loop preheader, since we
1502 	     cannot emit code there.  */
1503       if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1504         need_forwarder_block = true;
1505       else
1506         {
1507           /* If we want simple preheaders, also force the preheader to have
1508 	     just a single successor and a normal edge.  */
1509           if ((flags & CP_SIMPLE_PREHEADERS)
1510 	      && ((single_entry->flags & EDGE_COMPLEX)
1511 		  || !single_succ_p (single_entry->src)))
1512             need_forwarder_block = true;
1513           /* If we want fallthru preheaders, also create forwarder block when
1514              preheader ends with a jump or has predecessors from loop.  */
1515           else if ((flags & CP_FALLTHRU_PREHEADERS)
1516                    && (JUMP_P (BB_END (single_entry->src))
1517                        || has_preds_from_loop (single_entry->src, loop)))
1518             need_forwarder_block = true;
1519         }
1520       if (! need_forwarder_block)
1521 	return NULL;
1522     }
1523 
1524   mfb_kj_edge = loop_latch_edge (loop);
1525   latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1526   if (nentry == 1
1527       && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1528   	  || (single_entry->flags & EDGE_CROSSING) == 0))
1529     dummy = split_edge (single_entry);
1530   else
1531     {
1532       edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1533       dummy = fallthru->src;
1534       loop->header = fallthru->dest;
1535     }
1536 
1537   /* Try to be clever in placing the newly created preheader.  The idea is to
1538      avoid breaking any "fallthruness" relationship between blocks.
1539 
1540      The preheader was created just before the header and all incoming edges
1541      to the header were redirected to the preheader, except the latch edge.
1542      So the only problematic case is when this latch edge was a fallthru
1543      edge: it is not anymore after the preheader creation so we have broken
1544      the fallthruness.  We're therefore going to look for a better place.  */
1545   if (latch_edge_was_fallthru)
1546     {
1547       if (one_succ_pred)
1548 	e = one_succ_pred;
1549       else
1550 	e = EDGE_PRED (dummy, 0);
1551 
1552       move_block_after (dummy, e->src);
1553     }
1554 
1555   if (irred)
1556     {
1557       dummy->flags |= BB_IRREDUCIBLE_LOOP;
1558       single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1559     }
1560 
1561   if (dump_file)
1562     fprintf (dump_file, "Created preheader block for loop %i\n",
1563 	     loop->num);
1564 
1565   if (flags & CP_FALLTHRU_PREHEADERS)
1566     gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1567                 && !JUMP_P (BB_END (dummy)));
1568 
1569   return dummy;
1570 }
1571 
1572 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
1573 
1574 void
create_preheaders(int flags)1575 create_preheaders (int flags)
1576 {
1577   class loop *loop;
1578 
1579   if (!current_loops)
1580     return;
1581 
1582   FOR_EACH_LOOP (loop, 0)
1583     create_preheader (loop, flags);
1584   loops_state_set (LOOPS_HAVE_PREHEADERS);
1585 }
1586 
1587 /* Forces all loop latches to have only single successor.  */
1588 
1589 void
force_single_succ_latches(void)1590 force_single_succ_latches (void)
1591 {
1592   class loop *loop;
1593   edge e;
1594 
1595   FOR_EACH_LOOP (loop, 0)
1596     {
1597       if (loop->latch != loop->header && single_succ_p (loop->latch))
1598 	continue;
1599 
1600       e = find_edge (loop->latch, loop->header);
1601       gcc_checking_assert (e != NULL);
1602 
1603       split_edge (e);
1604     }
1605   loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1606 }
1607 
1608 /* This function is called from loop_version.  It splits the entry edge
1609    of the loop we want to version, adds the versioning condition, and
1610    adjust the edges to the two versions of the loop appropriately.
1611    e is an incoming edge. Returns the basic block containing the
1612    condition.
1613 
1614    --- edge e ---- > [second_head]
1615 
1616    Split it and insert new conditional expression and adjust edges.
1617 
1618     --- edge e ---> [cond expr] ---> [first_head]
1619 			|
1620 			+---------> [second_head]
1621 
1622   THEN_PROB is the probability of then branch of the condition.
1623   ELSE_PROB is the probability of else branch. Note that they may be both
1624   REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1625   IFN_LOOP_DIST_ALIAS.  */
1626 
1627 static basic_block
lv_adjust_loop_entry_edge(basic_block first_head,basic_block second_head,edge e,void * cond_expr,profile_probability then_prob,profile_probability else_prob)1628 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1629 			   edge e, void *cond_expr,
1630 			   profile_probability then_prob,
1631 			   profile_probability else_prob)
1632 {
1633   basic_block new_head = NULL;
1634   edge e1;
1635 
1636   gcc_assert (e->dest == second_head);
1637 
1638   /* Split edge 'e'. This will create a new basic block, where we can
1639      insert conditional expr.  */
1640   new_head = split_edge (e);
1641 
1642   lv_add_condition_to_bb (first_head, second_head, new_head,
1643 			  cond_expr);
1644 
1645   /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
1646   e = single_succ_edge (new_head);
1647   e1 = make_edge (new_head, first_head,
1648 		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1649   e1->probability = then_prob;
1650   e->probability = else_prob;
1651 
1652   set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1653   set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1654 
1655   /* Adjust loop header phi nodes.  */
1656   lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1657 
1658   return new_head;
1659 }
1660 
1661 /* Main entry point for Loop Versioning transformation.
1662 
1663    This transformation given a condition and a loop, creates
1664    -if (condition) { loop_copy1 } else { loop_copy2 },
1665    where loop_copy1 is the loop transformed in one way, and loop_copy2
1666    is the loop transformed in another way (or unchanged). COND_EXPR
1667    may be a run time test for things that were not resolved by static
1668    analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1669 
1670    If non-NULL, CONDITION_BB is set to the basic block containing the
1671    condition.
1672 
1673    THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
1674    is the ratio by that the frequencies in the original loop should
1675    be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
1676    new loop should be scaled.
1677 
1678    If PLACE_AFTER is true, we place the new loop after LOOP in the
1679    instruction stream, otherwise it is placed before LOOP.  */
1680 
1681 class loop *
loop_version(class loop * loop,void * cond_expr,basic_block * condition_bb,profile_probability then_prob,profile_probability else_prob,profile_probability then_scale,profile_probability else_scale,bool place_after)1682 loop_version (class loop *loop,
1683 	      void *cond_expr, basic_block *condition_bb,
1684 	      profile_probability then_prob, profile_probability else_prob,
1685 	      profile_probability then_scale, profile_probability else_scale,
1686 	      bool place_after)
1687 {
1688   basic_block first_head, second_head;
1689   edge entry, latch_edge, true_edge, false_edge;
1690   int irred_flag;
1691   class loop *nloop;
1692   basic_block cond_bb;
1693 
1694   /* Record entry and latch edges for the loop */
1695   entry = loop_preheader_edge (loop);
1696   irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1697   entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1698 
1699   /* Note down head of loop as first_head.  */
1700   first_head = entry->dest;
1701 
1702   /* Duplicate loop.  */
1703   if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1704 					       NULL, NULL, NULL, 0))
1705     {
1706       entry->flags |= irred_flag;
1707       return NULL;
1708     }
1709 
1710   /* After duplication entry edge now points to new loop head block.
1711      Note down new head as second_head.  */
1712   second_head = entry->dest;
1713 
1714   /* Split loop entry edge and insert new block with cond expr.  */
1715   cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
1716 					entry, cond_expr, then_prob, else_prob);
1717   if (condition_bb)
1718     *condition_bb = cond_bb;
1719 
1720   if (!cond_bb)
1721     {
1722       entry->flags |= irred_flag;
1723       return NULL;
1724     }
1725 
1726   latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1727 
1728   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1729   nloop = loopify (latch_edge,
1730 		   single_pred_edge (get_bb_copy (loop->header)),
1731 		   cond_bb, true_edge, false_edge,
1732 		   false /* Do not redirect all edges.  */,
1733 		   then_scale, else_scale);
1734 
1735   copy_loop_info (loop, nloop);
1736   set_loop_copy (loop, nloop);
1737 
1738   /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
1739   lv_flush_pending_stmts (latch_edge);
1740 
1741   /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
1742   extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1743   lv_flush_pending_stmts (false_edge);
1744   /* Adjust irreducible flag.  */
1745   if (irred_flag)
1746     {
1747       cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1748       loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1749       loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1750       single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1751     }
1752 
1753   if (place_after)
1754     {
1755       basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1756       unsigned i;
1757 
1758       after = loop->latch;
1759 
1760       for (i = 0; i < nloop->num_nodes; i++)
1761 	{
1762 	  move_block_after (bbs[i], after);
1763 	  after = bbs[i];
1764 	}
1765       free (bbs);
1766     }
1767 
1768   /* At this point condition_bb is loop preheader with two successors,
1769      first_head and second_head.   Make sure that loop preheader has only
1770      one successor.  */
1771   split_edge (loop_preheader_edge (loop));
1772   split_edge (loop_preheader_edge (nloop));
1773 
1774   return nloop;
1775 }
1776