1 /* Definition of RISC-V target for GNU compiler.
2    Copyright (C) 2011-2021 Free Software Foundation, Inc.
3    Contributed by Andrew Waterman (andrew@sifive.com).
4    Based on MIPS target for GNU compiler.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24 
25 #include "config/riscv/riscv-opts.h"
26 
27 /* Target CPU builtins.  */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29 
30 /* Target hooks for D language.  */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32 #define TARGET_D_REGISTER_CPU_TARGET_INFO riscv_d_register_target_info
33 
34 #ifdef TARGET_BIG_ENDIAN_DEFAULT
35 #define DEFAULT_ENDIAN_SPEC    "b"
36 #else
37 #define DEFAULT_ENDIAN_SPEC    "l"
38 #endif
39 
40 /* Default target_flags if no switches are specified  */
41 
42 #ifndef TARGET_DEFAULT
43 #define TARGET_DEFAULT 0
44 #endif
45 
46 #ifndef RISCV_TUNE_STRING_DEFAULT
47 #define RISCV_TUNE_STRING_DEFAULT "rocket"
48 #endif
49 
50 extern const char *riscv_expand_arch (int argc, const char **argv);
51 extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
52 extern const char *riscv_default_mtune (int argc, const char **argv);
53 
54 # define EXTRA_SPEC_FUNCTIONS						\
55   { "riscv_expand_arch", riscv_expand_arch },				\
56   { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu },		\
57   { "riscv_default_mtune", riscv_default_mtune },
58 
59 /* Support for a compile-time default CPU, et cetera.  The rules are:
60    --with-arch is ignored if -march or -mcpu is specified.
61    --with-abi is ignored if -mabi is specified.
62    --with-tune is ignored if -mtune or -mcpu is specified.
63 
64    But using default -march/-mtune value if -mcpu don't have valid option.  */
65 #define OPTION_DEFAULT_SPECS \
66   {"tune", "%{!mtune=*:"						\
67 	   "  %{!mcpu=*:-mtune=%(VALUE)}"				\
68 	   "  %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" },	\
69   {"arch", "%{!march=*:"						\
70 	   "  %{!mcpu=*:-march=%(VALUE)}"				\
71 	   "  %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" },	\
72   {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
73 
74 #ifdef IN_LIBGCC2
75 #undef TARGET_64BIT
76 /* Make this compile time constant for libgcc2 */
77 #define TARGET_64BIT           (__riscv_xlen == 64)
78 #endif /* IN_LIBGCC2 */
79 
80 #ifdef HAVE_AS_MISA_SPEC
81 #define ASM_MISA_SPEC "%{misa-spec=*}"
82 #else
83 #define ASM_MISA_SPEC ""
84 #endif
85 
86 /* Reference:
87      https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing  */
88 #define STRINGIZING(s) __STRINGIZING(s)
89 #define __STRINGIZING(s) #s
90 
91 #define MULTILIB_DEFAULTS \
92   {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
93    "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
94 
95 #undef ASM_SPEC
96 #define ASM_SPEC "\
97 %(subtarget_asm_debugging_spec) \
98 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
99 %{march=*} \
100 %{mabi=*} \
101 %{mbig-endian} \
102 %{mlittle-endian} \
103 %(subtarget_asm_spec)" \
104 ASM_MISA_SPEC
105 
106 #undef DRIVER_SELF_SPECS
107 #define DRIVER_SELF_SPECS					\
108 "%{march=*:%:riscv_expand_arch(%*)} "				\
109 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
110 
111 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
112 
113 #define LOCAL_LABEL_PREFIX	"."
114 #define USER_LABEL_PREFIX	""
115 
116 /* Offsets recorded in opcodes are a multiple of this alignment factor.
117    The default for this in 64-bit mode is 8, which causes problems with
118    SFmode register saves.  */
119 #define DWARF_CIE_DATA_ALIGNMENT -4
120 
121 /* The mapping from gcc register number to DWARF 2 CFA column number.  */
122 #define DWARF_FRAME_REGNUM(REGNO) \
123   (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
124 
125 /* The DWARF 2 CFA column which tracks the return address.  */
126 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
127 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
128 
129 /* Describe how we implement __builtin_eh_return.  */
130 #define EH_RETURN_DATA_REGNO(N) \
131   ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
132 
133 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
134 
135 /* Target machine storage layout */
136 
137 #define BITS_BIG_ENDIAN 0
138 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
139 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
140 
141 #define MAX_BITS_PER_WORD 64
142 
143 /* Width of a word, in units (bytes).  */
144 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
145 #ifndef IN_LIBGCC2
146 #define MIN_UNITS_PER_WORD 4
147 #endif
148 
149 /* The `Q' extension is not yet supported.  */
150 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
151 
152 /* The largest type that can be passed in floating-point registers.  */
153 #define UNITS_PER_FP_ARG						\
154   ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E			\
155     || riscv_abi == ABI_LP64)						\
156    ? 0 									\
157    : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
158 
159 /* Set the sizes of the core types.  */
160 #define SHORT_TYPE_SIZE 16
161 #define INT_TYPE_SIZE 32
162 #define LONG_LONG_TYPE_SIZE 64
163 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
164 #define LONG_TYPE_SIZE POINTER_SIZE
165 
166 #define FLOAT_TYPE_SIZE 32
167 #define DOUBLE_TYPE_SIZE 64
168 #define LONG_DOUBLE_TYPE_SIZE 128
169 
170 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
171 #define PARM_BOUNDARY BITS_PER_WORD
172 
173 /* Allocation boundary (in *bits*) for the code of a function.  */
174 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
175 
176 /* The smallest supported stack boundary the calling convention supports.  */
177 #define STACK_BOUNDARY \
178   (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
179 
180 /* The ABI stack alignment.  */
181 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
182 
183 /* There is no point aligning anything to a rounder boundary than this.  */
184 #define BIGGEST_ALIGNMENT 128
185 
186 /* The user-level ISA permits unaligned accesses, but they are not required
187    of the privileged architecture.  */
188 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
189 
190 /* Define this if you wish to imitate the way many other C compilers
191    handle alignment of bitfields and the structures that contain
192    them.
193 
194    The behavior is that the type written for a bit-field (`int',
195    `short', or other integer type) imposes an alignment for the
196    entire structure, as if the structure really did contain an
197    ordinary field of that type.  In addition, the bit-field is placed
198    within the structure so that it would fit within such a field,
199    not crossing a boundary for it.
200 
201    Thus, on most machines, a bit-field whose type is written as `int'
202    would not cross a four-byte boundary, and would force four-byte
203    alignment for the whole structure.  (The alignment used may not
204    be four bytes; it is controlled by the other alignment
205    parameters.)
206 
207    If the macro is defined, its definition should be a C expression;
208    a nonzero value for the expression enables this behavior.  */
209 
210 #define PCC_BITFIELD_TYPE_MATTERS 1
211 
212 /* An integer expression for the size in bits of the largest integer machine
213    mode that should actually be used.  We allow pairs of registers.  */
214 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
215 
216 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition.  */
217 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN)			\
218   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
219     && (TREE_CODE (TYPE) == ARRAY_TYPE					\
220 	|| TREE_CODE (TYPE) == UNION_TYPE				\
221 	|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
222 
223 /* If defined, a C expression to compute the alignment for a static
224    variable.  TYPE is the data type, and ALIGN is the alignment that
225    the object would ordinarily have.  The value of this macro is used
226    instead of that alignment to align the object.
227 
228    If this macro is not defined, then ALIGN is used.
229 
230    One use of this macro is to increase alignment of medium-size
231    data to make it all fit in fewer cache lines.  Another is to
232    cause character arrays to be word-aligned so that `strcpy' calls
233    that copy constants to character arrays can be done inline.  */
234 
235 #define DATA_ALIGNMENT(TYPE, ALIGN)						\
236   RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen,	\
237 			  TYPE, ALIGN)
238 
239 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
240    character arrays to be word-aligned so that `strcpy' calls that copy
241    constants to character arrays can be done inline, and 'strcmp' can be
242    optimised to use word loads. */
243 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
244   RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
245 
246 /* Define if operations between registers always perform the operation
247    on the full register even if a narrower mode is specified.  */
248 #define WORD_REGISTER_OPERATIONS 1
249 
250 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
251    moves.  All other references are zero extended.  */
252 #define LOAD_EXTEND_OP(MODE) \
253   (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
254 
255 /* Define this macro if it is advisable to hold scalars in registers
256    in a wider mode than that declared by the program.  In such cases,
257    the value is constrained to be within the bounds of the declared
258    type, but kept valid in the wider mode.  The signedness of the
259    extension may differ from that of the type.  */
260 
261 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
262   if (GET_MODE_CLASS (MODE) == MODE_INT		\
263       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
264     {						\
265       if ((MODE) == SImode)			\
266 	(UNSIGNEDP) = 0;			\
267       (MODE) = word_mode;			\
268     }
269 
270 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
271    Extensions of pointers to word_mode must be signed.  */
272 #define POINTERS_EXTEND_UNSIGNED false
273 
274 /* Define if loading short immediate values into registers sign extends.  */
275 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
276 
277 /* Standard register usage.  */
278 
279 /* Number of hardware registers.  We have:
280 
281    - 32 integer registers
282    - 32 floating point registers
283    - 2 fake registers:
284 	- ARG_POINTER_REGNUM
285 	- FRAME_POINTER_REGNUM */
286 
287 #define FIRST_PSEUDO_REGISTER 66
288 
289 /* x0, sp, gp, and tp are fixed.  */
290 
291 #define FIXED_REGISTERS							\
292 { /* General registers.  */						\
293   1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
294   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
295   /* Floating-point registers.  */					\
296   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
297   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			\
298   /* Others.  */							\
299   1, 1									\
300 }
301 
302 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
303    The call RTLs themselves clobber ra.  */
304 
305 #define CALL_USED_REGISTERS						\
306 { /* General registers.  */						\
307   1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,			\
308   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,			\
309   /* Floating-point registers.  */					\
310   1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,			\
311   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,			\
312   /* Others.  */							\
313   1, 1									\
314 }
315 
316 /* Select a register mode required for caller save of hard regno REGNO.
317    Contrary to what is documented, the default is not the smallest suitable
318    mode but the largest suitable mode for the given (REGNO, NREGS) pair and
319    it quickly creates paradoxical subregs that can be problematic.  */
320 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
321   ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
322 
323 /* Internal macros to classify an ISA register's type.  */
324 
325 #define GP_REG_FIRST 0
326 #define GP_REG_LAST  (TARGET_RVE ? 15 : 31)
327 #define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
328 
329 #define FP_REG_FIRST 32
330 #define FP_REG_LAST  63
331 #define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
332 
333 /* The DWARF 2 CFA column which tracks the return address from a
334    signal handler context.  This means that to maintain backwards
335    compatibility, no hard register can be assigned this column if it
336    would need to be handled by the DWARF unwinder.  */
337 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
338 
339 #define GP_REG_P(REGNO)	\
340   ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
341 #define FP_REG_P(REGNO)  \
342   ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
343 
344 /* True when REGNO is in SIBCALL_REGS set.  */
345 #define SIBCALL_REG_P(REGNO)	\
346   TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
347 
348 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
349 
350 /* Use s0 as the frame pointer if it is so requested.  */
351 #define HARD_FRAME_POINTER_REGNUM 8
352 #define STACK_POINTER_REGNUM 2
353 #define THREAD_POINTER_REGNUM 4
354 
355 /* These two registers don't really exist: they get eliminated to either
356    the stack or hard frame pointer.  */
357 #define ARG_POINTER_REGNUM 64
358 #define FRAME_POINTER_REGNUM 65
359 
360 /* Register in which static-chain is passed to a function.  */
361 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
362 
363 /* Registers used as temporaries in prologue/epilogue code.
364 
365    The prologue registers mustn't conflict with any
366    incoming arguments, the static chain pointer, or the frame pointer.
367    The epilogue temporary mustn't conflict with the return registers,
368    the frame pointer, the EH stack adjustment, or the EH data registers. */
369 
370 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
371 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
372 
373 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
374 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
375   gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
376 
377 #define MCOUNT_NAME "_mcount"
378 
379 #define NO_PROFILE_COUNTERS 1
380 
381 /* Emit rtl for profiling.  Output assembler code to FILE
382    to call "_mcount" for profiling a function entry.  */
383 #define PROFILE_HOOK(LABEL)						\
384   {									\
385     rtx fun, ra;							\
386     ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);		\
387     fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME);			\
388     emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode);		\
389   }
390 
391 /* All the work done in PROFILE_HOOK, but still required.  */
392 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
393 
394 /* Define this macro if it is as good or better to call a constant
395    function address than to call an address kept in a register.  */
396 #define NO_FUNCTION_CSE 1
397 
398 /* Define the classes of registers for register constraints in the
399    machine description.  Also define ranges of constants.
400 
401    One of the classes must always be named ALL_REGS and include all hard regs.
402    If there is more than one class, another class must be named NO_REGS
403    and contain no registers.
404 
405    The name GENERAL_REGS must be the name of a class (or an alias for
406    another name such as ALL_REGS).  This is the class of registers
407    that is allowed by "g" or "r" in a register constraint.
408    Also, registers outside this class are allocated only when
409    instructions express preferences for them.
410 
411    The classes must be numbered in nondecreasing order; that is,
412    a larger-numbered class must never be contained completely
413    in a smaller-numbered class.
414 
415    For any two classes, it is very desirable that there be another
416    class that represents their union.  */
417 
418 enum reg_class
419 {
420   NO_REGS,			/* no registers in set */
421   SIBCALL_REGS,			/* registers used by indirect sibcalls */
422   JALR_REGS,			/* registers used by indirect calls */
423   GR_REGS,			/* integer registers */
424   FP_REGS,			/* floating-point registers */
425   FRAME_REGS,			/* arg pointer and frame pointer */
426   ALL_REGS,			/* all registers */
427   LIM_REG_CLASSES		/* max value + 1 */
428 };
429 
430 #define N_REG_CLASSES (int) LIM_REG_CLASSES
431 
432 #define GENERAL_REGS GR_REGS
433 
434 /* An initializer containing the names of the register classes as C
435    string constants.  These names are used in writing some of the
436    debugging dumps.  */
437 
438 #define REG_CLASS_NAMES							\
439 {									\
440   "NO_REGS",								\
441   "SIBCALL_REGS",							\
442   "JALR_REGS",								\
443   "GR_REGS",								\
444   "FP_REGS",								\
445   "FRAME_REGS",								\
446   "ALL_REGS"								\
447 }
448 
449 /* An initializer containing the contents of the register classes,
450    as integers which are bit masks.  The Nth integer specifies the
451    contents of class N.  The way the integer MASK is interpreted is
452    that register R is in the class if `MASK & (1 << R)' is 1.
453 
454    When the machine has more than 32 registers, an integer does not
455    suffice.  Then the integers are replaced by sub-initializers,
456    braced groupings containing several integers.  Each
457    sub-initializer must be suitable as an initializer for the type
458    `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
459 
460 #define REG_CLASS_CONTENTS						\
461 {									\
462   { 0x00000000, 0x00000000, 0x00000000 },	/* NO_REGS */		\
463   { 0xf003fcc0, 0x00000000, 0x00000000 },	/* SIBCALL_REGS */	\
464   { 0xffffffc0, 0x00000000, 0x00000000 },	/* JALR_REGS */		\
465   { 0xffffffff, 0x00000000, 0x00000000 },	/* GR_REGS */		\
466   { 0x00000000, 0xffffffff, 0x00000000 },	/* FP_REGS */		\
467   { 0x00000000, 0x00000000, 0x00000003 },	/* FRAME_REGS */	\
468   { 0xffffffff, 0xffffffff, 0x00000003 }	/* ALL_REGS */		\
469 }
470 
471 /* A C expression whose value is a register class containing hard
472    register REGNO.  In general there is more that one such class;
473    choose a class which is "minimal", meaning that no smaller class
474    also contains the register.  */
475 
476 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
477 
478 /* A macro whose definition is the name of the class to which a
479    valid base register must belong.  A base register is one used in
480    an address which is the register value plus a displacement.  */
481 
482 #define BASE_REG_CLASS GR_REGS
483 
484 /* A macro whose definition is the name of the class to which a
485    valid index register must belong.  An index register is one used
486    in an address where its value is either multiplied by a scale
487    factor or added to another register (as well as added to a
488    displacement).  */
489 
490 #define INDEX_REG_CLASS NO_REGS
491 
492 /* We generally want to put call-clobbered registers ahead of
493    call-saved ones.  (IRA expects this.)  */
494 
495 #define REG_ALLOC_ORDER							\
496 { \
497   /* Call-clobbered GPRs.  */						\
498   15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1,		\
499   /* Call-saved GPRs.  */						\
500   8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,	       			\
501   /* GPRs that can never be exposed to the register allocator.  */	\
502   0, 2, 3, 4,								\
503   /* Call-clobbered FPRs.  */						\
504   47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49,	\
505   60, 61, 62, 63,							\
506   /* Call-saved FPRs.  */						\
507   40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,			\
508   /* None of the remaining classes have defined call-saved		\
509      registers.  */							\
510   64, 65								\
511 }
512 
513 /* True if VALUE is a signed 12-bit number.  */
514 
515 #define SMALL_OPERAND(VALUE) \
516   ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
517 
518 /* True if VALUE can be loaded into a register using LUI.  */
519 
520 #define LUI_OPERAND(VALUE)						\
521   (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH)	\
522    || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
523 
524 /* Stack layout; function entry, exit and calling.  */
525 
526 #define STACK_GROWS_DOWNWARD 1
527 
528 #define FRAME_GROWS_DOWNWARD 1
529 
530 #define RETURN_ADDR_RTX riscv_return_addr
531 
532 #define ELIMINABLE_REGS							\
533 {{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},				\
534  { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},			\
535  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
536  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}				\
537 
538 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
539   (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
540 
541 /* Allocate stack space for arguments at the beginning of each function.  */
542 #define ACCUMULATE_OUTGOING_ARGS 1
543 
544 /* The argument pointer always points to the first argument.  */
545 #define FIRST_PARM_OFFSET(FNDECL) 0
546 
547 #define REG_PARM_STACK_SPACE(FNDECL) 0
548 
549 /* Define this if it is the responsibility of the caller to
550    allocate the area reserved for arguments passed in registers.
551    If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
552    of this macro is to determine whether the space is included in
553    `crtl->outgoing_args_size'.  */
554 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
555 
556 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
557 
558 /* Symbolic macros for the registers used to return integer and floating
559    point values.  */
560 
561 #define GP_RETURN GP_ARG_FIRST
562 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
563 
564 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
565 
566 /* Symbolic macros for the first/last argument registers.  */
567 
568 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
569 #define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
570 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
571 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
572 #define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
573 
574 #define CALLEE_SAVED_REG_NUMBER(REGNO)			\
575   ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 :		\
576    (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
577 
578 #define LIBCALL_VALUE(MODE) \
579   riscv_function_value (NULL_TREE, NULL_TREE, MODE)
580 
581 #define FUNCTION_VALUE(VALTYPE, FUNC) \
582   riscv_function_value (VALTYPE, FUNC, VOIDmode)
583 
584 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
585 
586 /* 1 if N is a possible register number for function argument passing.
587    We have no FP argument registers when soft-float.  */
588 
589 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI.  */
590 #define FUNCTION_ARG_REGNO_P(N)						\
591   (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST)				\
592    || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
593 
594 typedef struct {
595   /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
596   unsigned int num_gprs;
597 
598   /* Number of floating-point registers used so far, likewise.  */
599   unsigned int num_fprs;
600 } CUMULATIVE_ARGS;
601 
602 /* Initialize a variable CUM of type CUMULATIVE_ARGS
603    for a call to a function whose data type is FNTYPE.
604    For a library call, FNTYPE is 0.  */
605 
606 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
607   memset (&(CUM), 0, sizeof (CUM))
608 
609 #define EPILOGUE_USES(REGNO)	riscv_epilogue_uses (REGNO)
610 
611 /* Align based on stack boundary, which might have been set by the user.  */
612 #define RISCV_STACK_ALIGN(LOC) \
613   (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
614 
615 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
616    the stack pointer does not matter.  The value is tested only in
617    functions that have frame pointers.
618    No definition is equivalent to always zero.  */
619 
620 #define EXIT_IGNORE_STACK 1
621 
622 
623 /* Trampolines are a block of code followed by two pointers.  */
624 
625 #define TRAMPOLINE_CODE_SIZE 16
626 #define TRAMPOLINE_SIZE		\
627   ((Pmode == SImode)		\
628    ? TRAMPOLINE_CODE_SIZE	\
629    : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
630 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
631 
632 /* Addressing modes, and classification of registers for them.  */
633 
634 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
635 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
636   riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
637 
638 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
639    and check its validity for a certain class.
640    We have two alternate definitions for each of them.
641    The usual definition accepts all pseudo regs; the other rejects them all.
642    The symbol REG_OK_STRICT causes the latter definition to be used.
643 
644    Most source files want to accept pseudo regs in the hope that
645    they will get allocated to the class that the insn wants them to be in.
646    Some source files that are used after register allocation
647    need to be strict.  */
648 
649 #ifndef REG_OK_STRICT
650 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
651   riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
652 #else
653 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
654   riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
655 #endif
656 
657 #define REG_OK_FOR_INDEX_P(X) 0
658 
659 /* Maximum number of registers that can appear in a valid memory address.  */
660 
661 #define MAX_REGS_PER_ADDRESS 1
662 
663 #define CONSTANT_ADDRESS_P(X) \
664   (CONSTANT_P (X) && memory_address_p (SImode, X))
665 
666 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
667    'the start of the function that this code is output in'.  */
668 
669 #define ASM_OUTPUT_LABELREF(FILE,NAME)					\
670   do {									\
671     if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)			\
672       asm_fprintf ((FILE), "%U%s",					\
673 		   XSTR (XEXP (DECL_RTL (current_function_decl),	\
674 			       0), 0));					\
675     else								\
676       asm_fprintf ((FILE), "%U%s", (NAME));				\
677   } while (0)
678 
679 #define JUMP_TABLES_IN_TEXT_SECTION 0
680 #define CASE_VECTOR_MODE SImode
681 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
682 
683 /* The load-address macro is used for PC-relative addressing of symbols
684    that bind locally.  Don't use it for symbols that should be addressed
685    via the GOT.  Also, avoid it for CM_MEDLOW, where LUI addressing
686    currently results in more opportunities for linker relaxation.  */
687 #define USE_LOAD_ADDRESS_MACRO(sym)					\
688   (!TARGET_EXPLICIT_RELOCS &&						\
689    ((flag_pic								\
690      && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym))		\
691 	 || ((GET_CODE (sym) == CONST)					\
692 	     && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0))			\
693 	     && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0)))))		\
694      || riscv_cmodel == CM_MEDANY))
695 
696 /* Define this as 1 if `char' should by default be signed; else as 0.  */
697 #define DEFAULT_SIGNED_CHAR 0
698 
699 #define MOVE_MAX UNITS_PER_WORD
700 #define MAX_MOVE_MAX 8
701 
702 /* The SPARC port says:
703    Nonzero if access to memory by bytes is slow and undesirable.
704    For RISC chips, it means that access to memory by bytes is no
705    better than access by words when possible, so grab a whole word
706    and maybe make use of that.  */
707 #define SLOW_BYTE_ACCESS 1
708 
709 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
710    in the md file instead.  */
711 #define SHIFT_COUNT_TRUNCATED 0
712 
713 /* Specify the machine mode that pointers have.
714    After generation of rtl, the compiler makes no further distinction
715    between pointers and any other objects of this machine mode.  */
716 
717 #define Pmode word_mode
718 
719 /* Give call MEMs SImode since it is the "most permissive" mode
720    for both 32-bit and 64-bit targets.  */
721 
722 #define FUNCTION_MODE SImode
723 
724 /* A C expression for the cost of a branch instruction.  A value of 2
725    seems to minimize code size.  */
726 
727 #define BRANCH_COST(speed_p, predictable_p) \
728   ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
729 
730 /* True if the target optimizes short forward branches around integer
731    arithmetic instructions into predicated operations, e.g., for
732    conditional-move operations.  The macro assumes that all branch
733    instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
734    support this feature.  The macro further assumes that any integer
735    arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
736    SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
737    counterparts, including C.MV and C.LI) can be in the branch shadow.  */
738 
739 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
740 
741 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
742 
743 /* Control the assembler format that we output.  */
744 
745 /* Output to assembler file text saying following lines
746    may contain character constants, extra white space, comments, etc.  */
747 
748 #ifndef ASM_APP_ON
749 #define ASM_APP_ON " #APP\n"
750 #endif
751 
752 /* Output to assembler file text saying following lines
753    no longer contain unusual constructs.  */
754 
755 #ifndef ASM_APP_OFF
756 #define ASM_APP_OFF " #NO_APP\n"
757 #endif
758 
759 #define REGISTER_NAMES						\
760 { "zero","ra",  "sp",  "gp",  "tp",  "t0",  "t1",  "t2",	\
761   "s0",  "s1",  "a0",  "a1",  "a2",  "a3",  "a4",  "a5",	\
762   "a6",  "a7",  "s2",  "s3",  "s4",  "s5",  "s6",  "s7",	\
763   "s8",  "s9",  "s10", "s11", "t3",  "t4",  "t5",  "t6",	\
764   "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7",	\
765   "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5",	\
766   "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",	\
767   "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11",	\
768   "arg", "frame", }
769 
770 #define ADDITIONAL_REGISTER_NAMES					\
771 {									\
772   { "x0",	 0 + GP_REG_FIRST },					\
773   { "x1",	 1 + GP_REG_FIRST },					\
774   { "x2",	 2 + GP_REG_FIRST },					\
775   { "x3",	 3 + GP_REG_FIRST },					\
776   { "x4",	 4 + GP_REG_FIRST },					\
777   { "x5",	 5 + GP_REG_FIRST },					\
778   { "x6",	 6 + GP_REG_FIRST },					\
779   { "x7",	 7 + GP_REG_FIRST },					\
780   { "x8",	 8 + GP_REG_FIRST },					\
781   { "x9",	 9 + GP_REG_FIRST },					\
782   { "x10",	10 + GP_REG_FIRST },					\
783   { "x11",	11 + GP_REG_FIRST },					\
784   { "x12",	12 + GP_REG_FIRST },					\
785   { "x13",	13 + GP_REG_FIRST },					\
786   { "x14",	14 + GP_REG_FIRST },					\
787   { "x15",	15 + GP_REG_FIRST },					\
788   { "x16",	16 + GP_REG_FIRST },					\
789   { "x17",	17 + GP_REG_FIRST },					\
790   { "x18",	18 + GP_REG_FIRST },					\
791   { "x19",	19 + GP_REG_FIRST },					\
792   { "x20",	20 + GP_REG_FIRST },					\
793   { "x21",	21 + GP_REG_FIRST },					\
794   { "x22",	22 + GP_REG_FIRST },					\
795   { "x23",	23 + GP_REG_FIRST },					\
796   { "x24",	24 + GP_REG_FIRST },					\
797   { "x25",	25 + GP_REG_FIRST },					\
798   { "x26",	26 + GP_REG_FIRST },					\
799   { "x27",	27 + GP_REG_FIRST },					\
800   { "x28",	28 + GP_REG_FIRST },					\
801   { "x29",	29 + GP_REG_FIRST },					\
802   { "x30",	30 + GP_REG_FIRST },					\
803   { "x31",	31 + GP_REG_FIRST },					\
804   { "f0",	 0 + FP_REG_FIRST },					\
805   { "f1",	 1 + FP_REG_FIRST },					\
806   { "f2",	 2 + FP_REG_FIRST },					\
807   { "f3",	 3 + FP_REG_FIRST },					\
808   { "f4",	 4 + FP_REG_FIRST },					\
809   { "f5",	 5 + FP_REG_FIRST },					\
810   { "f6",	 6 + FP_REG_FIRST },					\
811   { "f7",	 7 + FP_REG_FIRST },					\
812   { "f8",	 8 + FP_REG_FIRST },					\
813   { "f9",	 9 + FP_REG_FIRST },					\
814   { "f10",	10 + FP_REG_FIRST },					\
815   { "f11",	11 + FP_REG_FIRST },					\
816   { "f12",	12 + FP_REG_FIRST },					\
817   { "f13",	13 + FP_REG_FIRST },					\
818   { "f14",	14 + FP_REG_FIRST },					\
819   { "f15",	15 + FP_REG_FIRST },					\
820   { "f16",	16 + FP_REG_FIRST },					\
821   { "f17",	17 + FP_REG_FIRST },					\
822   { "f18",	18 + FP_REG_FIRST },					\
823   { "f19",	19 + FP_REG_FIRST },					\
824   { "f20",	20 + FP_REG_FIRST },					\
825   { "f21",	21 + FP_REG_FIRST },					\
826   { "f22",	22 + FP_REG_FIRST },					\
827   { "f23",	23 + FP_REG_FIRST },					\
828   { "f24",	24 + FP_REG_FIRST },					\
829   { "f25",	25 + FP_REG_FIRST },					\
830   { "f26",	26 + FP_REG_FIRST },					\
831   { "f27",	27 + FP_REG_FIRST },					\
832   { "f28",	28 + FP_REG_FIRST },					\
833   { "f29",	29 + FP_REG_FIRST },					\
834   { "f30",	30 + FP_REG_FIRST },					\
835   { "f31",	31 + FP_REG_FIRST },					\
836 }
837 
838 /* Globalizing directive for a label.  */
839 #define GLOBAL_ASM_OP "\t.globl\t"
840 
841 /* This is how to store into the string LABEL
842    the symbol_ref name of an internal numbered label where
843    PREFIX is the class of label and NUM is the number within the class.
844    This is suitable for output with `assemble_name'.  */
845 
846 #undef ASM_GENERATE_INTERNAL_LABEL
847 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
848   sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
849 
850 /* This is how to output an element of a case-vector that is absolute.  */
851 
852 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)				\
853   fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
854 
855 /* This is how to output an element of a PIC case-vector. */
856 
857 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)		\
858   fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n",				\
859 	   LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
860 
861 /* This is how to output an assembler line
862    that says to advance the location counter
863    to a multiple of 2**LOG bytes.  */
864 
865 #define ASM_OUTPUT_ALIGN(STREAM,LOG)					\
866   fprintf (STREAM, "\t.align\t%d\n", (LOG))
867 
868 /* Define the strings to put out for each section in the object file.  */
869 #define TEXT_SECTION_ASM_OP	"\t.text"	/* instructions */
870 #define DATA_SECTION_ASM_OP	"\t.data"	/* large data */
871 #define READONLY_DATA_SECTION_ASM_OP	"\t.section\t.rodata"
872 #define BSS_SECTION_ASM_OP	"\t.bss"
873 #define SBSS_SECTION_ASM_OP	"\t.section\t.sbss,\"aw\",@nobits"
874 #define SDATA_SECTION_ASM_OP	"\t.section\t.sdata,\"aw\",@progbits"
875 
876 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)				\
877 do									\
878   {									\
879     fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n",		\
880 	     reg_names[STACK_POINTER_REGNUM],				\
881 	     reg_names[STACK_POINTER_REGNUM],				\
882 	     TARGET_64BIT ? "sd" : "sw",				\
883 	     reg_names[REGNO],						\
884 	     reg_names[STACK_POINTER_REGNUM]);				\
885   }									\
886 while (0)
887 
888 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)				\
889 do									\
890   {									\
891     fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n",		\
892 	     TARGET_64BIT ? "ld" : "lw",				\
893 	     reg_names[REGNO],						\
894 	     reg_names[STACK_POINTER_REGNUM],				\
895 	     reg_names[STACK_POINTER_REGNUM],				\
896 	     reg_names[STACK_POINTER_REGNUM]);				\
897   }									\
898 while (0)
899 
900 #define ASM_COMMENT_START "#"
901 
902 #undef SIZE_TYPE
903 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
904 
905 #undef PTRDIFF_TYPE
906 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
907 
908 /* The maximum number of bytes copied by one iteration of a cpymemsi loop.  */
909 
910 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
911 
912 /* The maximum number of bytes that can be copied by a straight-line
913    cpymemsi implementation.  */
914 
915 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
916 
917 /* If a memory-to-memory move would take MOVE_RATIO or more simple
918    move-instruction pairs, we will do a cpymem or libcall instead.
919    Do not use move_by_pieces at all when strict alignment is not
920    in effect but the target has slow unaligned accesses; in this
921    case, cpymem or libcall is more efficient.  */
922 
923 #define MOVE_RATIO(speed)						\
924   (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 :		\
925    (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD :	\
926    CLEAR_RATIO (speed) / 2)
927 
928 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
929    of the length of a memset call, but use the default otherwise.  */
930 
931 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
932 
933 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
934    optimizing for size adjust the ratio to account for the overhead of
935    loading the constant and replicating it across the word.  */
936 
937 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
938 
939 #ifndef USED_FOR_TARGET
940 extern const enum reg_class riscv_regno_to_class[];
941 extern bool riscv_slow_unaligned_access_p;
942 extern unsigned riscv_stack_boundary;
943 #endif
944 
945 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
946   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
947 
948 #define XLEN_SPEC \
949   "%{march=rv32*:32}" \
950   "%{march=rv64*:64}" \
951 
952 #define ABI_SPEC \
953   "%{mabi=ilp32:ilp32}" \
954   "%{mabi=ilp32e:ilp32e}" \
955   "%{mabi=ilp32f:ilp32f}" \
956   "%{mabi=ilp32d:ilp32d}" \
957   "%{mabi=lp64:lp64}" \
958   "%{mabi=lp64f:lp64f}" \
959   "%{mabi=lp64d:lp64d}" \
960 
961 /* ISA constants needed for code generation.  */
962 #define OPCODE_LW    0x2003
963 #define OPCODE_LD    0x3003
964 #define OPCODE_AUIPC 0x17
965 #define OPCODE_JALR  0x67
966 #define OPCODE_LUI   0x37
967 #define OPCODE_ADDI  0x13
968 #define SHIFT_RD  7
969 #define SHIFT_RS1 15
970 #define SHIFT_IMM 20
971 #define IMM_BITS 12
972 #define C_S_BITS 5
973 #define C_SxSP_BITS 6
974 
975 #define IMM_REACH (1LL << IMM_BITS)
976 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
977 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
978 
979 #define SWSP_REACH (4LL << C_SxSP_BITS)
980 #define SDSP_REACH (8LL << C_SxSP_BITS)
981 
982 /* This is the maximum value that can be represented in a compressed load/store
983    offset (an unsigned 5-bit value scaled by 4).  */
984 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
985 
986 /* Called from RISCV_REORG, this is defined in riscv-sr.c.  */
987 
988 extern void riscv_remove_unneeded_save_restore_calls (void);
989 
990 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
991 
992 #endif /* ! GCC_RISCV_H */
993