1 /* Code for GIMPLE range related routines.
2    Copyright (C) 2019-2021 Free Software Foundation, Inc.
3    Contributed by Andrew MacLeod <amacleod@redhat.com>
4    and Aldy Hernandez <aldyh@redhat.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple-iterator.h"
33 #include "optabs-tree.h"
34 #include "gimple-fold.h"
35 #include "tree-cfg.h"
36 #include "fold-const.h"
37 #include "tree-cfg.h"
38 #include "wide-int.h"
39 #include "fold-const.h"
40 #include "case-cfn-macros.h"
41 #include "omp-general.h"
42 #include "cfgloop.h"
43 #include "tree-ssa-loop.h"
44 #include "tree-scalar-evolution.h"
45 #include "dbgcnt.h"
46 #include "alloc-pool.h"
47 #include "vr-values.h"
48 #include "gimple-range.h"
49 
50 
51 // Adjust the range for a pointer difference where the operands came
52 // from a memchr.
53 //
54 // This notices the following sequence:
55 //
56 //	def = __builtin_memchr (arg, 0, sz)
57 //	n = def - arg
58 //
59 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
60 
61 static void
adjust_pointer_diff_expr(irange & res,const gimple * diff_stmt)62 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
63 {
64   tree op0 = gimple_assign_rhs1 (diff_stmt);
65   tree op1 = gimple_assign_rhs2 (diff_stmt);
66   tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
67   tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
68   gimple *call;
69 
70   if (TREE_CODE (op0) == SSA_NAME
71       && TREE_CODE (op1) == SSA_NAME
72       && (call = SSA_NAME_DEF_STMT (op0))
73       && is_gimple_call (call)
74       && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
75       && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
76       && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
77       && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
78       && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
79       && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
80       && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
81       && integer_zerop (gimple_call_arg (call, 1)))
82     {
83       tree max = vrp_val_max (ptrdiff_type_node);
84       wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
85       tree expr_type = gimple_expr_type (diff_stmt);
86       tree range_min = build_zero_cst (expr_type);
87       tree range_max = wide_int_to_tree (expr_type, wmax - 1);
88       int_range<2> r (range_min, range_max);
89       res.intersect (r);
90     }
91 }
92 
93 // This function looks for situations when walking the use/def chains
94 // may provide additonal contextual range information not exposed on
95 // this statement.  Like knowing the IMAGPART return value from a
96 // builtin function is a boolean result.
97 
98 // We should rework how we're called, as we have an op_unknown entry
99 // for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
100 // function gets called.
101 
102 static void
gimple_range_adjustment(irange & res,const gimple * stmt)103 gimple_range_adjustment (irange &res, const gimple *stmt)
104 {
105   switch (gimple_expr_code (stmt))
106     {
107     case POINTER_DIFF_EXPR:
108       adjust_pointer_diff_expr (res, stmt);
109       return;
110 
111     case IMAGPART_EXPR:
112       {
113 	tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
114 	if (TREE_CODE (name) == SSA_NAME)
115 	  {
116 	    gimple *def_stmt = SSA_NAME_DEF_STMT (name);
117 	    if (def_stmt && is_gimple_call (def_stmt)
118 		&& gimple_call_internal_p (def_stmt))
119 	      {
120 		switch (gimple_call_internal_fn (def_stmt))
121 		  {
122 		  case IFN_ADD_OVERFLOW:
123 		  case IFN_SUB_OVERFLOW:
124 		  case IFN_MUL_OVERFLOW:
125 		  case IFN_ATOMIC_COMPARE_EXCHANGE:
126 		    {
127 		      int_range<2> r;
128 		      r.set_varying (boolean_type_node);
129 		      tree type = TREE_TYPE (gimple_assign_lhs (stmt));
130 		      range_cast (r, type);
131 		      res.intersect (r);
132 		    }
133 		  default:
134 		    break;
135 		  }
136 	      }
137 	  }
138 	break;
139       }
140 
141     default:
142       break;
143     }
144 }
145 
146 // Return a range in R for the tree EXPR.  Return true if a range is
147 // representable, and UNDEFINED/false if not.
148 
149 bool
get_tree_range(irange & r,tree expr)150 get_tree_range (irange &r, tree expr)
151 {
152   tree type;
153   if (TYPE_P (expr))
154     type = expr;
155   else
156     type = TREE_TYPE (expr);
157 
158   // Return false if the type isn't suported.
159   if (!irange::supports_type_p (type))
160     {
161       r.set_undefined ();
162       return false;
163     }
164 
165   switch (TREE_CODE (expr))
166     {
167       case INTEGER_CST:
168 	if (TREE_OVERFLOW_P (expr))
169 	  expr = drop_tree_overflow (expr);
170 	r.set (expr, expr);
171 	return true;
172 
173       case SSA_NAME:
174 	r = gimple_range_global (expr);
175 	return true;
176 
177       case ADDR_EXPR:
178         {
179 	  // Handle &var which can show up in phi arguments.
180 	  bool ov;
181 	  if (tree_single_nonzero_warnv_p (expr, &ov))
182 	    {
183 	      r = range_nonzero (type);
184 	      return true;
185 	    }
186 	  break;
187 	}
188 
189       default:
190         break;
191     }
192   r.set_varying (type);
193   return true;
194 }
195 
196 // Fold this unary statement using R1 as operand1's range, returning
197 // the result in RES.  Return false if the operation fails.
198 
199 bool
gimple_range_fold(irange & res,const gimple * stmt,const irange & r1)200 gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
201 {
202   gcc_checking_assert (gimple_range_handler (stmt));
203 
204   tree type = gimple_expr_type (stmt);
205   // Unary SSA operations require the LHS type as the second range.
206   int_range<2> r2 (type);
207 
208   return gimple_range_fold (res, stmt, r1, r2);
209 }
210 
211 // Fold this binary statement using R1 and R2 as the operands ranges,
212 // returning the result in RES.  Return false if the operation fails.
213 
214 bool
gimple_range_fold(irange & res,const gimple * stmt,const irange & r1,const irange & r2)215 gimple_range_fold (irange &res, const gimple *stmt,
216 		   const irange &r1, const irange &r2)
217 {
218   gcc_checking_assert (gimple_range_handler (stmt));
219 
220   gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
221 					   r1, r2);
222 
223   // If there are any gimple lookups, do those now.
224   gimple_range_adjustment (res, stmt);
225   return true;
226 }
227 
228 // Return the base of the RHS of an assignment.
229 
230 tree
gimple_range_base_of_assignment(const gimple * stmt)231 gimple_range_base_of_assignment (const gimple *stmt)
232 {
233   gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
234   tree op1 = gimple_assign_rhs1 (stmt);
235   if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
236     return get_base_address (TREE_OPERAND (op1, 0));
237   return op1;
238 }
239 
240 // Return the first operand of this statement if it is a valid operand
241 // supported by ranges, otherwise return NULL_TREE.  Special case is
242 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
243 
244 tree
gimple_range_operand1(const gimple * stmt)245 gimple_range_operand1 (const gimple *stmt)
246 {
247   gcc_checking_assert (gimple_range_handler (stmt));
248 
249   switch (gimple_code (stmt))
250     {
251       case GIMPLE_COND:
252 	return gimple_cond_lhs (stmt);
253       case GIMPLE_ASSIGN:
254 	{
255 	  tree base = gimple_range_base_of_assignment (stmt);
256 	  if (base && TREE_CODE (base) == MEM_REF)
257 	    {
258 	      // If the base address is an SSA_NAME, we return it
259 	      // here.  This allows processing of the range of that
260 	      // name, while the rest of the expression is simply
261 	      // ignored.  The code in range_ops will see the
262 	      // ADDR_EXPR and do the right thing.
263 	      tree ssa = TREE_OPERAND (base, 0);
264 	      if (TREE_CODE (ssa) == SSA_NAME)
265 		return ssa;
266 	    }
267 	  return base;
268 	}
269       default:
270 	break;
271     }
272   return NULL;
273 }
274 
275 // Return the second operand of statement STMT, otherwise return NULL_TREE.
276 
277 tree
gimple_range_operand2(const gimple * stmt)278 gimple_range_operand2 (const gimple *stmt)
279 {
280   gcc_checking_assert (gimple_range_handler (stmt));
281 
282   switch (gimple_code (stmt))
283     {
284     case GIMPLE_COND:
285       return gimple_cond_rhs (stmt);
286     case GIMPLE_ASSIGN:
287       if (gimple_num_ops (stmt) >= 3)
288 	return gimple_assign_rhs2 (stmt);
289     default:
290       break;
291     }
292   return NULL_TREE;
293 }
294 
295 // Calculate what we can determine of the range of this unary
296 // statement's operand if the lhs of the expression has the range
297 // LHS_RANGE.  Return false if nothing can be determined.
298 
299 bool
gimple_range_calc_op1(irange & r,const gimple * stmt,const irange & lhs_range)300 gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
301 {
302   gcc_checking_assert (gimple_num_ops (stmt) < 3);
303 
304   // An empty range is viral.
305   tree type = TREE_TYPE (gimple_range_operand1 (stmt));
306   if (lhs_range.undefined_p ())
307     {
308       r.set_undefined ();
309       return true;
310     }
311   // Unary operations require the type of the first operand in the
312   // second range position.
313   int_range<2> type_range (type);
314   return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
315 						 type_range);
316 }
317 
318 // Calculate what we can determine of the range of this statement's
319 // first operand if the lhs of the expression has the range LHS_RANGE
320 // and the second operand has the range OP2_RANGE.  Return false if
321 // nothing can be determined.
322 
323 bool
gimple_range_calc_op1(irange & r,const gimple * stmt,const irange & lhs_range,const irange & op2_range)324 gimple_range_calc_op1 (irange &r, const gimple *stmt,
325 		       const irange &lhs_range, const irange &op2_range)
326 {
327   // Unary operation are allowed to pass a range in for second operand
328   // as there are often additional restrictions beyond the type which
329   // can be imposed.  See operator_cast::op1_range().
330   tree type = TREE_TYPE (gimple_range_operand1 (stmt));
331   // An empty range is viral.
332   if (op2_range.undefined_p () || lhs_range.undefined_p ())
333     {
334       r.set_undefined ();
335       return true;
336     }
337   return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
338 						 op2_range);
339 }
340 
341 // Calculate what we can determine of the range of this statement's
342 // second operand if the lhs of the expression has the range LHS_RANGE
343 // and the first operand has the range OP1_RANGE.  Return false if
344 // nothing can be determined.
345 
346 bool
gimple_range_calc_op2(irange & r,const gimple * stmt,const irange & lhs_range,const irange & op1_range)347 gimple_range_calc_op2 (irange &r, const gimple *stmt,
348 		       const irange &lhs_range, const irange &op1_range)
349 {
350   tree type = TREE_TYPE (gimple_range_operand2 (stmt));
351   // An empty range is viral.
352   if (op1_range.undefined_p () || lhs_range.undefined_p ())
353     {
354       r.set_undefined ();
355       return true;
356     }
357   return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
358 						 op1_range);
359 }
360 
361 // Calculate a range for statement S and return it in R. If NAME is provided it
362 // represents the SSA_NAME on the LHS of the statement. It is only required
363 // if there is more than one lhs/output.  If a range cannot
364 // be calculated, return false.
365 
366 bool
calc_stmt(irange & r,gimple * s,tree name)367 gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
368 {
369   bool res = false;
370   // If name is specified, make sure it is an LHS of S.
371   gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);
372 
373   if (gimple_range_handler (s))
374     res = range_of_range_op (r, s);
375   else if (is_a<gphi *>(s))
376     res = range_of_phi (r, as_a<gphi *> (s));
377   else if (is_a<gcall *>(s))
378     res = range_of_call (r, as_a<gcall *> (s));
379   else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
380     res = range_of_cond_expr (r, as_a<gassign *> (s));
381 
382   if (!res)
383     {
384       // If no name is specified, try the expression kind.
385       if (!name)
386 	{
387 	  tree t = gimple_expr_type (s);
388 	  if (!irange::supports_type_p (t))
389 	    return false;
390 	  r.set_varying (t);
391 	  return true;
392 	}
393       if (!gimple_range_ssa_p (name))
394 	return false;
395       // We don't understand the stmt, so return the global range.
396       r = gimple_range_global (name);
397       return true;
398     }
399 
400   if (r.undefined_p ())
401     return true;
402 
403   // We sometimes get compatible types copied from operands, make sure
404   // the correct type is being returned.
405   if (name && TREE_TYPE (name) != r.type ())
406     {
407       gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
408       range_cast (r, TREE_TYPE (name));
409     }
410   return true;
411 }
412 
413 // Calculate a range for range_op statement S and return it in R.  If any
414 // If a range cannot be calculated, return false.
415 
416 bool
range_of_range_op(irange & r,gimple * s)417 gimple_ranger::range_of_range_op (irange &r, gimple *s)
418 {
419   int_range_max range1, range2;
420   tree lhs = gimple_get_lhs (s);
421   tree type = gimple_expr_type (s);
422   gcc_checking_assert (irange::supports_type_p (type));
423 
424   tree op1 = gimple_range_operand1 (s);
425   tree op2 = gimple_range_operand2 (s);
426 
427   if (lhs)
428     {
429       // Register potential dependencies for stale value tracking.
430       m_cache.register_dependency (lhs, op1);
431       m_cache.register_dependency (lhs, op2);
432     }
433 
434   if (gimple_code (s) == GIMPLE_ASSIGN
435       && gimple_assign_rhs_code (s) == ADDR_EXPR)
436     return range_of_address (r, s);
437 
438   if (range_of_expr (range1, op1, s))
439     {
440       if (!op2)
441 	return gimple_range_fold (r, s, range1);
442 
443       if (range_of_expr (range2, op2, s))
444 	return gimple_range_fold (r, s, range1, range2);
445     }
446   r.set_varying (type);
447   return true;
448 }
449 
450 // Calculate the range of an assignment containing an ADDR_EXPR.
451 // Return the range in R.
452 // If a range cannot be calculated, set it to VARYING and return true.
453 
454 bool
range_of_address(irange & r,gimple * stmt)455 gimple_ranger::range_of_address (irange &r, gimple *stmt)
456 {
457   gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
458   gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
459 
460   bool strict_overflow_p;
461   tree expr = gimple_assign_rhs1 (stmt);
462   poly_int64 bitsize, bitpos;
463   tree offset;
464   machine_mode mode;
465   int unsignedp, reversep, volatilep;
466   tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
467 				   &bitpos, &offset, &mode, &unsignedp,
468 				   &reversep, &volatilep);
469 
470 
471   if (base != NULL_TREE
472       && TREE_CODE (base) == MEM_REF
473       && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
474     {
475       tree ssa = TREE_OPERAND (base, 0);
476       gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
477       range_of_expr (r, ssa, stmt);
478       range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
479 
480       poly_offset_int off = 0;
481       bool off_cst = false;
482       if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
483 	{
484 	  off = mem_ref_offset (base);
485 	  if (offset)
486 	    off += poly_offset_int::from (wi::to_poly_wide (offset),
487 					  SIGNED);
488 	  off <<= LOG2_BITS_PER_UNIT;
489 	  off += bitpos;
490 	  off_cst = true;
491 	}
492       /* If &X->a is equal to X, the range of X is the result.  */
493       if (off_cst && known_eq (off, 0))
494 	  return true;
495       else if (flag_delete_null_pointer_checks
496 	       && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
497 	{
498 	 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
499 	 allow going from non-NULL pointer to NULL.  */
500 	   if(!range_includes_zero_p (&r))
501 	    return true;
502 	}
503       /* If MEM_REF has a "positive" offset, consider it non-NULL
504 	 always, for -fdelete-null-pointer-checks also "negative"
505 	 ones.  Punt for unknown offsets (e.g. variable ones).  */
506       if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
507 	  && off_cst
508 	  && known_ne (off, 0)
509 	  && (flag_delete_null_pointer_checks || known_gt (off, 0)))
510 	{
511 	  r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
512 	  return true;
513 	}
514       r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
515       return true;
516     }
517 
518   // Handle "= &a".
519   if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
520     {
521       r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
522       return true;
523     }
524 
525   // Otherwise return varying.
526   r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
527   return true;
528 }
529 
530 // Calculate a range for phi statement S and return it in R.
531 // If a range cannot be calculated, return false.
532 
533 bool
range_of_phi(irange & r,gphi * phi)534 gimple_ranger::range_of_phi (irange &r, gphi *phi)
535 {
536   tree phi_def = gimple_phi_result (phi);
537   tree type = TREE_TYPE (phi_def);
538   int_range_max arg_range;
539   unsigned x;
540 
541   if (!irange::supports_type_p (type))
542     return false;
543 
544   // Start with an empty range, unioning in each argument's range.
545   r.set_undefined ();
546   for (x = 0; x < gimple_phi_num_args (phi); x++)
547     {
548       tree arg = gimple_phi_arg_def (phi, x);
549       edge e = gimple_phi_arg_edge (phi, x);
550 
551       // Register potential dependencies for stale value tracking.
552       m_cache.register_dependency (phi_def, arg);
553 
554       range_on_edge (arg_range, e, arg);
555       r.union_ (arg_range);
556       // Once the value reaches varying, stop looking.
557       if (r.varying_p ())
558 	break;
559     }
560 
561   // If SCEV is available, query if this PHI has any knonwn values.
562   if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
563     {
564       value_range loop_range;
565       class loop *l = loop_containing_stmt (phi);
566       if (l && loop_outer (l))
567         {
568 	  range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi);
569 	  if (!loop_range.varying_p ())
570 	    {
571 	      if (dump_file && (dump_flags & TDF_DETAILS))
572 		{
573 		  fprintf (dump_file, "   Loops range found for ");
574 		  print_generic_expr (dump_file, phi_def, TDF_SLIM);
575 		  fprintf (dump_file, ": ");
576 		  loop_range.dump (dump_file);
577 		  fprintf (dump_file, " and calculated range :");
578 		  r.dump (dump_file);
579 		  fprintf (dump_file, "\n");
580 		}
581 	      r.intersect (loop_range);
582 	    }
583 	}
584     }
585 
586   return true;
587 }
588 
589 // Calculate a range for call statement S and return it in R.
590 // If a range cannot be calculated, return false.
591 
592 bool
range_of_call(irange & r,gcall * call)593 gimple_ranger::range_of_call (irange &r, gcall *call)
594 {
595   tree type = gimple_call_return_type (call);
596   tree lhs = gimple_call_lhs (call);
597   bool strict_overflow_p;
598 
599   if (!irange::supports_type_p (type))
600     return false;
601 
602   if (range_of_builtin_call (r, call))
603     ;
604   else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
605     r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
606   else if (gimple_call_nonnull_result_p (call)
607 	   || gimple_call_nonnull_arg (call))
608     r = range_nonzero (type);
609   else
610     r.set_varying (type);
611 
612   // If there is an LHS, intersect that with what is known.
613   if (lhs)
614     {
615       value_range def;
616       def = gimple_range_global (lhs);
617       r.intersect (def);
618     }
619   return true;
620 }
621 
622 // Return the range of a __builtin_ubsan* in CALL and set it in R.
623 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
624 // MULT_EXPR).
625 
626 static void
range_of_builtin_ubsan_call(range_query & query,irange & r,gcall * call,tree_code code)627 range_of_builtin_ubsan_call (range_query &query, irange &r, gcall *call,
628 			     tree_code code)
629 {
630   gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
631 		       || code == MULT_EXPR);
632   tree type = gimple_call_return_type (call);
633   range_operator *op = range_op_handler (code, type);
634   gcc_checking_assert (op);
635   int_range_max ir0, ir1;
636   tree arg0 = gimple_call_arg (call, 0);
637   tree arg1 = gimple_call_arg (call, 1);
638   query.range_of_expr (ir0, arg0, call);
639   query.range_of_expr (ir1, arg1, call);
640 
641   bool saved_flag_wrapv = flag_wrapv;
642   // Pretend the arithmetic is wrapping.  If there is any overflow,
643   // we'll complain, but will actually do wrapping operation.
644   flag_wrapv = 1;
645   op->fold_range (r, type, ir0, ir1);
646   flag_wrapv = saved_flag_wrapv;
647 
648   // If for both arguments vrp_valueize returned non-NULL, this should
649   // have been already folded and if not, it wasn't folded because of
650   // overflow.  Avoid removing the UBSAN_CHECK_* calls in that case.
651   if (r.singleton_p ())
652     r.set_varying (type);
653 }
654 
655 // For a builtin in CALL, return a range in R if known and return
656 // TRUE.  Otherwise return FALSE.
657 
658 bool
range_of_builtin_call(range_query & query,irange & r,gcall * call)659 range_of_builtin_call (range_query &query, irange &r, gcall *call)
660 {
661   combined_fn func = gimple_call_combined_fn (call);
662   if (func == CFN_LAST)
663     return false;
664 
665   tree type = gimple_call_return_type (call);
666   tree arg;
667   int mini, maxi, zerov = 0, prec;
668   scalar_int_mode mode;
669 
670   switch (func)
671     {
672     case CFN_BUILT_IN_CONSTANT_P:
673       if (cfun->after_inlining)
674 	{
675 	  r.set_zero (type);
676 	  // r.equiv_clear ();
677 	  return true;
678 	}
679       arg = gimple_call_arg (call, 0);
680       if (query.range_of_expr (r, arg, call) && r.singleton_p ())
681 	{
682 	  r.set (build_one_cst (type), build_one_cst (type));
683 	  return true;
684 	}
685       break;
686 
687     CASE_CFN_FFS:
688     CASE_CFN_POPCOUNT:
689       // __builtin_ffs* and __builtin_popcount* return [0, prec].
690       arg = gimple_call_arg (call, 0);
691       prec = TYPE_PRECISION (TREE_TYPE (arg));
692       mini = 0;
693       maxi = prec;
694       query.range_of_expr (r, arg, call);
695       // If arg is non-zero, then ffs or popcount are non-zero.
696       if (!range_includes_zero_p (&r))
697 	mini = 1;
698       // If some high bits are known to be zero, decrease the maximum.
699       if (!r.undefined_p ())
700 	{
701 	  if (TYPE_SIGN (r.type ()) == SIGNED)
702 	    range_cast (r, unsigned_type_for (r.type ()));
703 	  wide_int max = r.upper_bound ();
704 	  maxi = wi::floor_log2 (max) + 1;
705 	}
706       r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
707       return true;
708 
709     CASE_CFN_PARITY:
710       r.set (build_zero_cst (type), build_one_cst (type));
711       return true;
712 
713     CASE_CFN_CLZ:
714       // __builtin_c[lt]z* return [0, prec-1], except when the
715       // argument is 0, but that is undefined behavior.
716       //
717       // For __builtin_c[lt]z* consider argument of 0 always undefined
718       // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
719       arg = gimple_call_arg (call, 0);
720       prec = TYPE_PRECISION (TREE_TYPE (arg));
721       mini = 0;
722       maxi = prec - 1;
723       mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
724       if (gimple_call_internal_p (call))
725 	{
726 	  if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
727 	      && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
728 	    {
729 	      // Only handle the single common value.
730 	      if (zerov == prec)
731 		maxi = prec;
732 	      else
733 		// Magic value to give up, unless we can prove arg is non-zero.
734 		mini = -2;
735 	    }
736 	}
737 
738       query.range_of_expr (r, arg, call);
739       // From clz of minimum we can compute result maximum.
740       if (r.constant_p ())
741 	{
742 	  int newmaxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
743 	  // Argument is unsigned, so do nothing if it is [0, ...] range.
744 	  if (newmaxi != prec)
745 	    {
746 	      mini = 0;
747 	      maxi = newmaxi;
748 	    }
749 	}
750       else if (!range_includes_zero_p (&r))
751 	{
752 	  maxi = prec - 1;
753 	  mini = 0;
754 	}
755       if (mini == -2)
756 	break;
757       // From clz of maximum we can compute result minimum.
758       if (r.constant_p ())
759 	{
760 	  int newmini = prec - 1 - wi::floor_log2 (r.upper_bound ());
761 	  if (newmini == prec)
762 	    {
763 	      // Argument range is [0, 0].  If CLZ_DEFINED_VALUE_AT_ZERO
764 	      // is 2 with VALUE of prec, return [prec, prec], otherwise
765 	      // ignore the range.
766 	      if (maxi == prec)
767 		mini = prec;
768 	    }
769 	  else
770 	    mini = newmini;
771 	}
772       if (mini == -2)
773 	break;
774       r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
775       return true;
776 
777     CASE_CFN_CTZ:
778       // __builtin_ctz* return [0, prec-1], except for when the
779       // argument is 0, but that is undefined behavior.
780       //
781       // For __builtin_ctz* consider argument of 0 always undefined
782       // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
783       arg = gimple_call_arg (call, 0);
784       prec = TYPE_PRECISION (TREE_TYPE (arg));
785       mini = 0;
786       maxi = prec - 1;
787       mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
788       if (gimple_call_internal_p (call))
789 	{
790 	  if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
791 	      && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
792 	    {
793 	      // Handle only the two common values.
794 	      if (zerov == -1)
795 		mini = -1;
796 	      else if (zerov == prec)
797 		maxi = prec;
798 	      else
799 		// Magic value to give up, unless we can prove arg is non-zero.
800 		mini = -2;
801 	    }
802 	}
803       query.range_of_expr (r, arg, call);
804       if (!r.undefined_p ())
805 	{
806 	  if (r.lower_bound () != 0)
807 	    {
808 	      mini = 0;
809 	      maxi = prec - 1;
810 	    }
811 	  // If some high bits are known to be zero, we can decrease
812 	  // the maximum.
813 	  wide_int max = r.upper_bound ();
814 	  if (max == 0)
815 	    {
816 	      // Argument is [0, 0].  If CTZ_DEFINED_VALUE_AT_ZERO
817 	      // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
818 	      // Otherwise ignore the range.
819 	      if (mini == -1)
820 		maxi = -1;
821 	      else if (maxi == prec)
822 		mini = prec;
823 	    }
824 	  // If value at zero is prec and 0 is in the range, we can't lower
825 	  // the upper bound.  We could create two separate ranges though,
826 	  // [0,floor_log2(max)][prec,prec] though.
827 	  else if (maxi != prec)
828 	    maxi = wi::floor_log2 (max);
829 	}
830       if (mini == -2)
831 	break;
832       r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
833       return true;
834 
835     CASE_CFN_CLRSB:
836       arg = gimple_call_arg (call, 0);
837       prec = TYPE_PRECISION (TREE_TYPE (arg));
838       r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
839       return true;
840     case CFN_UBSAN_CHECK_ADD:
841       range_of_builtin_ubsan_call (query, r, call, PLUS_EXPR);
842       return true;
843     case CFN_UBSAN_CHECK_SUB:
844       range_of_builtin_ubsan_call (query, r, call, MINUS_EXPR);
845       return true;
846     case CFN_UBSAN_CHECK_MUL:
847       range_of_builtin_ubsan_call (query, r, call, MULT_EXPR);
848       return true;
849 
850     case CFN_GOACC_DIM_SIZE:
851     case CFN_GOACC_DIM_POS:
852       // Optimizing these two internal functions helps the loop
853       // optimizer eliminate outer comparisons.  Size is [1,N]
854       // and pos is [0,N-1].
855       {
856 	bool is_pos = func == CFN_GOACC_DIM_POS;
857 	int axis = oacc_get_ifn_dim_arg (call);
858 	int size = oacc_get_fn_dim_size (current_function_decl, axis);
859 	if (!size)
860 	  // If it's dynamic, the backend might know a hardware limitation.
861 	  size = targetm.goacc.dim_limit (axis);
862 
863 	r.set (build_int_cst (type, is_pos ? 0 : 1),
864 	       size
865 	       ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
866 	return true;
867       }
868 
869     case CFN_BUILT_IN_STRLEN:
870       if (tree lhs = gimple_call_lhs (call))
871 	if (ptrdiff_type_node
872 	    && (TYPE_PRECISION (ptrdiff_type_node)
873 		== TYPE_PRECISION (TREE_TYPE (lhs))))
874 	  {
875 	    tree type = TREE_TYPE (lhs);
876 	    tree max = vrp_val_max (ptrdiff_type_node);
877 	    wide_int wmax
878 	      = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
879 	    tree range_min = build_zero_cst (type);
880 	    // To account for the terminating NULL, the maximum length
881 	    // is one less than the maximum array size, which in turn
882 	    // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
883 	    // smaller than the former type).
884 	    // FIXME: Use max_object_size() - 1 here.
885 	    tree range_max = wide_int_to_tree (type, wmax - 2);
886 	    r.set (range_min, range_max);
887 	    return true;
888 	  }
889       break;
890     default:
891       break;
892     }
893   return false;
894 }
895 
896 
897 bool
range_of_builtin_call(irange & r,gcall * call)898 gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
899 {
900   return ::range_of_builtin_call (*this, r, call);
901 }
902 
903 // Calculate a range for COND_EXPR statement S and return it in R.
904 // If a range cannot be calculated, return false.
905 
906 bool
range_of_cond_expr(irange & r,gassign * s)907 gimple_ranger::range_of_cond_expr  (irange &r, gassign *s)
908 {
909   int_range_max cond_range, range1, range2;
910   tree cond = gimple_assign_rhs1 (s);
911   tree op1 = gimple_assign_rhs2 (s);
912   tree op2 = gimple_assign_rhs3 (s);
913 
914   gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
915   gcc_checking_assert (useless_type_conversion_p  (TREE_TYPE (op1),
916 						   TREE_TYPE (op2)));
917   if (!irange::supports_type_p (TREE_TYPE (op1)))
918     return false;
919 
920   range_of_expr (cond_range, cond, s);
921   range_of_expr (range1, op1, s);
922   range_of_expr (range2, op2, s);
923 
924   // If the condition is known, choose the appropriate expression.
925   if (cond_range.singleton_p ())
926     {
927       // False, pick second operand.
928       if (cond_range.zero_p ())
929 	r = range2;
930       else
931 	r = range1;
932     }
933   else
934     {
935       r = range1;
936       r.union_ (range2);
937     }
938   return true;
939 }
940 
941 bool
range_of_expr(irange & r,tree expr,gimple * stmt)942 gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
943 {
944   if (!gimple_range_ssa_p (expr))
945     return get_tree_range (r, expr);
946 
947   // If there is no statement, just get the global value.
948   if (!stmt || is_gimple_debug (stmt))
949     {
950       if (!m_cache.get_global_range (r, expr))
951         r = gimple_range_global (expr);
952       return true;
953     }
954 
955   basic_block bb = gimple_bb (stmt);
956   gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
957 
958   // If name is defined in this block, try to get an range from S.
959   if (def_stmt && gimple_bb (def_stmt) == bb)
960     range_of_stmt (r, def_stmt, expr);
961   else
962     // Otherwise OP comes from outside this block, use range on entry.
963     range_on_entry (r, bb, expr);
964 
965   // No range yet, see if there is a dereference in the block.
966   // We don't care if it's between the def and a use within a block
967   // because the entire block must be executed anyway.
968   // FIXME:?? For non-call exceptions we could have a statement throw
969   // which causes an early block exit.
970   // in which case we may need to walk from S back to the def/top of block
971   // to make sure the deref happens between S and there before claiming
972   // there is a deref.   Punt for now.
973   if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
974       m_cache.m_non_null.non_null_deref_p (expr, bb))
975     r = range_nonzero (TREE_TYPE (expr));
976 
977   return true;
978 }
979 
980 // Return the range of NAME on entry to block BB in R.
981 
982 void
range_on_entry(irange & r,basic_block bb,tree name)983 gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
984 {
985   int_range_max entry_range;
986   gcc_checking_assert (gimple_range_ssa_p (name));
987 
988   // Start with any known range
989   range_of_stmt (r, SSA_NAME_DEF_STMT (name), name);
990 
991   // Now see if there is any on_entry value which may refine it.
992   if (m_cache.block_range (entry_range, bb, name))
993     r.intersect (entry_range);
994 }
995 
996 // Calculate the range for NAME at the end of block BB and return it in R.
997 // Return false if no range can be calculated.
998 
999 void
range_on_exit(irange & r,basic_block bb,tree name)1000 gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1001 {
1002   // on-exit from the exit block?
1003   gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
1004   gcc_checking_assert (gimple_range_ssa_p (name));
1005 
1006   gimple *s = last_stmt (bb);
1007   // If there is no statement in the block and this isn't the entry
1008   // block, go get the range_on_entry for this block.  For the entry
1009   // block, a NULL stmt will return the global value for NAME.
1010   if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1011     range_on_entry (r, bb, name);
1012   else
1013     range_of_expr (r, name, s);
1014   gcc_checking_assert (r.undefined_p ()
1015 		       || range_compatible_p (r.type (), TREE_TYPE (name)));
1016 }
1017 
1018 // Calculate a range for NAME on edge E and return it in R.
1019 
1020 bool
range_on_edge(irange & r,edge e,tree name)1021 gimple_ranger::range_on_edge (irange &r, edge e, tree name)
1022 {
1023   int_range_max edge_range;
1024   gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));
1025 
1026   // PHI arguments can be constants, catch these here.
1027   if (!gimple_range_ssa_p (name))
1028     return range_of_expr (r, name);
1029 
1030   range_on_exit (r, e->src, name);
1031   gcc_checking_assert  (r.undefined_p ()
1032 			|| range_compatible_p (r.type(), TREE_TYPE (name)));
1033 
1034   // Check to see if NAME is defined on edge e.
1035   if (m_cache.outgoing_edge_range_p (edge_range, e, name))
1036     r.intersect (edge_range);
1037 
1038   return true;
1039 }
1040 
1041 // Calculate a range for statement S and return it in R.  If NAME is
1042 // provided it represents the SSA_NAME on the LHS of the statement.
1043 // It is only required if there is more than one lhs/output.  Check
1044 // the global cache for NAME first to see if the evaluation can be
1045 // avoided.  If a range cannot be calculated, return false and UNDEFINED.
1046 
1047 bool
range_of_stmt(irange & r,gimple * s,tree name)1048 gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1049 {
1050   r.set_undefined ();
1051 
1052   if (!name)
1053     name = gimple_get_lhs (s);
1054 
1055   // If no name, simply call the base routine.
1056   if (!name)
1057     return calc_stmt (r, s, NULL_TREE);
1058 
1059   if (!gimple_range_ssa_p (name))
1060     return false;
1061 
1062   // Check if the stmt has already been processed, and is not stale.
1063   if (m_cache.get_non_stale_global_range (r, name))
1064     return true;
1065 
1066   // Otherwise calculate a new value.
1067   int_range_max tmp;
1068   calc_stmt (tmp, s, name);
1069 
1070   // Combine the new value with the old value.  This is required because
1071   // the way value propagation works, when the IL changes on the fly we
1072   // can sometimes get different results.  See PR 97741.
1073   r.intersect (tmp);
1074   m_cache.set_global_range (name, r);
1075 
1076   // Pointers which resolve to non-zero at the defintion point do not need
1077   // tracking in the cache as they will never change.  See PR 98866.
1078   if (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ())
1079     m_cache.set_range_invariant (name);
1080 
1081   return true;
1082 }
1083 
1084 // This routine will export whatever global ranges are known to GCC
1085 // SSA_RANGE_NAME_INFO fields.
1086 
1087 void
export_global_ranges()1088 gimple_ranger::export_global_ranges ()
1089 {
1090   unsigned x;
1091   int_range_max r;
1092   if (dump_file)
1093     {
1094       fprintf (dump_file, "Exported global range table\n");
1095       fprintf (dump_file, "===========================\n");
1096     }
1097 
1098   for ( x = 1; x < num_ssa_names; x++)
1099     {
1100       tree name = ssa_name (x);
1101       if (name && !SSA_NAME_IN_FREE_LIST (name)
1102 	  && gimple_range_ssa_p (name)
1103 	  && m_cache.get_global_range (r, name)
1104 	  && !r.varying_p())
1105 	{
1106 	  // Make sure the new range is a subset of the old range.
1107 	  int_range_max old_range;
1108 	  old_range = gimple_range_global (name);
1109 	  old_range.intersect (r);
1110 	  /* Disable this while we fix tree-ssa/pr61743-2.c.  */
1111 	  //gcc_checking_assert (old_range == r);
1112 
1113 	  // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
1114 	  if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
1115 	    {
1116 	      value_range vr = r;
1117 	      set_range_info (name, vr);
1118 	      if (dump_file)
1119 		{
1120 		  print_generic_expr (dump_file, name , TDF_SLIM);
1121 		  fprintf (dump_file, " --> ");
1122 		  vr.dump (dump_file);
1123 		  fprintf (dump_file, "\n");
1124 		  fprintf (dump_file, "         irange : ");
1125 		  r.dump (dump_file);
1126 		  fprintf (dump_file, "\n");
1127 		}
1128 	    }
1129 	}
1130     }
1131 }
1132 
1133 // Print the known table values to file F.
1134 
1135 void
dump(FILE * f)1136 gimple_ranger::dump (FILE *f)
1137 {
1138   basic_block bb;
1139 
1140   FOR_EACH_BB_FN (bb, cfun)
1141     {
1142       unsigned x;
1143       edge_iterator ei;
1144       edge e;
1145       int_range_max range;
1146       fprintf (f, "\n=========== BB %d ============\n", bb->index);
1147       m_cache.dump (f, bb);
1148 
1149       dump_bb (f, bb, 4, TDF_NONE);
1150 
1151       // Now find any globals defined in this block.
1152       for (x = 1; x < num_ssa_names; x++)
1153 	{
1154 	  tree name = ssa_name (x);
1155 	  if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
1156 	      gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
1157 	      m_cache.get_global_range (range, name))
1158 	    {
1159 	      if (!range.varying_p ())
1160 	       {
1161 		 print_generic_expr (f, name, TDF_SLIM);
1162 		 fprintf (f, " : ");
1163 		 range.dump (f);
1164 		 fprintf (f, "\n");
1165 	       }
1166 
1167 	    }
1168 	}
1169 
1170       // And now outgoing edges, if they define anything.
1171       FOR_EACH_EDGE (e, ei, bb->succs)
1172 	{
1173 	  for (x = 1; x < num_ssa_names; x++)
1174 	    {
1175 	      tree name = gimple_range_ssa_p (ssa_name (x));
1176 	      if (name && m_cache.outgoing_edge_range_p (range, e, name))
1177 		{
1178 		  gimple *s = SSA_NAME_DEF_STMT (name);
1179 		  // Only print the range if this is the def block, or
1180 		  // the on entry cache for either end of the edge is
1181 		  // set.
1182 		  if ((s && bb == gimple_bb (s)) ||
1183 		      m_cache.block_range (range, bb, name, false) ||
1184 		      m_cache.block_range (range, e->dest, name, false))
1185 		    {
1186 		      range_on_edge (range, e, name);
1187 		      if (!range.varying_p ())
1188 			{
1189 			  fprintf (f, "%d->%d ", e->src->index,
1190 				   e->dest->index);
1191 			  char c = ' ';
1192 			  if (e->flags & EDGE_TRUE_VALUE)
1193 			    fprintf (f, " (T)%c", c);
1194 			  else if (e->flags & EDGE_FALSE_VALUE)
1195 			    fprintf (f, " (F)%c", c);
1196 			  else
1197 			    fprintf (f, "     ");
1198 			  print_generic_expr (f, name, TDF_SLIM);
1199 			  fprintf(f, " : \t");
1200 			  range.dump(f);
1201 			  fprintf (f, "\n");
1202 			}
1203 		    }
1204 		}
1205 	    }
1206 	}
1207     }
1208 
1209   m_cache.dump (dump_file, (dump_flags & TDF_DETAILS) != 0);
1210 }
1211 
1212 // If SCEV has any information about phi node NAME, return it as a range in R.
1213 
1214 void
range_of_ssa_name_with_loop_info(irange & r,tree name,class loop * l,gphi * phi)1215 gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
1216 						 class loop *l, gphi *phi)
1217 {
1218   gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1219   tree min, max, type = TREE_TYPE (name);
1220   if (bounds_of_var_in_loop (&min, &max, this, l, phi, name))
1221     {
1222       // ?? We could do better here.  Since MIN/MAX can only be an
1223       // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call
1224       // the ranger and solve anything not an integer.
1225       if (TREE_CODE (min) != INTEGER_CST)
1226 	min = vrp_val_min (type);
1227       if (TREE_CODE (max) != INTEGER_CST)
1228 	max = vrp_val_max (type);
1229       r.set (min, max);
1230     }
1231   else
1232     r.set_varying (type);
1233 }
1234 
1235 // --------------------------------------------------------------------------
1236 // trace_ranger implementation.
1237 
1238 
trace_ranger()1239 trace_ranger::trace_ranger ()
1240 {
1241   indent = 0;
1242   trace_count = 0;
1243 }
1244 
1245 // If dumping, return true and print the prefix for the next output line.
1246 
1247 bool
dumping(unsigned counter,bool trailing)1248 trace_ranger::dumping (unsigned counter, bool trailing)
1249 {
1250   if (dump_file && (dump_flags & TDF_DETAILS))
1251     {
1252       // Print counter index as well as INDENT spaces.
1253       if (!trailing)
1254 	fprintf (dump_file, " %-7u ", counter);
1255       else
1256 	fprintf (dump_file, "         ");
1257       unsigned x;
1258       for (x = 0; x< indent; x++)
1259 	fputc (' ', dump_file);
1260       return true;
1261     }
1262   return false;
1263 }
1264 
1265 // After calling a routine, if dumping, print the CALLER, NAME, and RESULT,
1266 // returning RESULT.
1267 
1268 bool
trailer(unsigned counter,const char * caller,bool result,tree name,const irange & r)1269 trace_ranger::trailer (unsigned counter, const char *caller, bool result,
1270 		       tree name, const irange &r)
1271 {
1272   if (dumping (counter, true))
1273     {
1274       indent -= bump;
1275       fputs(result ? "TRUE : " : "FALSE : ", dump_file);
1276       fprintf (dump_file, "(%u) ", counter);
1277       fputs (caller, dump_file);
1278       fputs (" (",dump_file);
1279       if (name)
1280 	print_generic_expr (dump_file, name, TDF_SLIM);
1281       fputs (") ",dump_file);
1282       if (result)
1283 	{
1284 	  r.dump (dump_file);
1285 	  fputc('\n', dump_file);
1286 	}
1287       else
1288 	fputc('\n', dump_file);
1289       // Marks the end of a request.
1290       if (indent == 0)
1291 	fputc('\n', dump_file);
1292     }
1293   return result;
1294 }
1295 
1296 // Tracing version of range_on_edge.  Call it with printing wrappers.
1297 
1298 bool
range_on_edge(irange & r,edge e,tree name)1299 trace_ranger::range_on_edge (irange &r, edge e, tree name)
1300 {
1301   unsigned idx = ++trace_count;
1302   if (dumping (idx))
1303     {
1304       fprintf (dump_file, "range_on_edge (");
1305       print_generic_expr (dump_file, name, TDF_SLIM);
1306       fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
1307       indent += bump;
1308     }
1309 
1310   bool res = gimple_ranger::range_on_edge (r, e, name);
1311   trailer (idx, "range_on_edge", true, name, r);
1312   return res;
1313 }
1314 
1315 // Tracing version of range_on_entry.  Call it with printing wrappers.
1316 
1317 void
range_on_entry(irange & r,basic_block bb,tree name)1318 trace_ranger::range_on_entry (irange &r, basic_block bb, tree name)
1319 {
1320   unsigned idx = ++trace_count;
1321   if (dumping (idx))
1322     {
1323       fprintf (dump_file, "range_on_entry (");
1324       print_generic_expr (dump_file, name, TDF_SLIM);
1325       fprintf (dump_file, ") to BB %d\n", bb->index);
1326       indent += bump;
1327     }
1328 
1329   gimple_ranger::range_on_entry (r, bb, name);
1330 
1331   trailer (idx, "range_on_entry", true, name, r);
1332 }
1333 
1334 // Tracing version of range_on_exit.  Call it with printing wrappers.
1335 
1336 void
range_on_exit(irange & r,basic_block bb,tree name)1337 trace_ranger::range_on_exit (irange &r, basic_block bb, tree name)
1338 {
1339   unsigned idx = ++trace_count;
1340   if (dumping (idx))
1341     {
1342       fprintf (dump_file, "range_on_exit (");
1343       print_generic_expr (dump_file, name, TDF_SLIM);
1344       fprintf (dump_file, ") from BB %d\n", bb->index);
1345       indent += bump;
1346     }
1347 
1348   gimple_ranger::range_on_exit (r, bb, name);
1349 
1350   trailer (idx, "range_on_exit", true, name, r);
1351 }
1352 
1353 // Tracing version of range_of_stmt.  Call it with printing wrappers.
1354 
1355 bool
range_of_stmt(irange & r,gimple * s,tree name)1356 trace_ranger::range_of_stmt (irange &r, gimple *s, tree name)
1357 {
1358   bool res;
1359   unsigned idx = ++trace_count;
1360   if (dumping (idx))
1361     {
1362       fprintf (dump_file, "range_of_stmt (");
1363       if (name)
1364 	print_generic_expr (dump_file, name, TDF_SLIM);
1365       fputs (") at stmt ", dump_file);
1366       print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1367       indent += bump;
1368     }
1369 
1370   res = gimple_ranger::range_of_stmt (r, s, name);
1371 
1372   return trailer (idx, "range_of_stmt", res, name, r);
1373 }
1374 
1375 // Tracing version of range_of_expr.  Call it with printing wrappers.
1376 
1377 bool
range_of_expr(irange & r,tree name,gimple * s)1378 trace_ranger::range_of_expr (irange &r, tree name, gimple *s)
1379 {
1380   bool res;
1381   unsigned idx = ++trace_count;
1382   if (dumping (idx))
1383     {
1384       fprintf (dump_file, "range_of_expr(");
1385       print_generic_expr (dump_file, name, TDF_SLIM);
1386       fputs (")", dump_file);
1387       if (s)
1388 	{
1389 	  fputs (" at stmt ", dump_file);
1390 	  print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
1391 	}
1392       else
1393 	fputs ("\n", dump_file);
1394       indent += bump;
1395     }
1396 
1397   res = gimple_ranger::range_of_expr (r, name, s);
1398 
1399   return trailer (idx, "range_of_expr", res, name, r);
1400 }
1401