1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
22
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complete only with LTO,
26 otherwise it contains information only about the current unit.
27
28 The information is used to set hot/cold thresholds.
29 - Next speculative indirect call resolution is performed: the local
30 profile pass assigns profile-id to each function and provide us with a
31 histogram specifying the most common target. We look up the callgraph
32 node corresponding to the target and produce a speculative call.
33
34 This call may or may not survive through IPA optimization based on decision
35 of inliner.
36 - Finally we propagate the following flags: unlikely executed, executed
37 once, executed at startup and executed at exit. These flags are used to
38 control code size/performance threshold and code placement (by producing
39 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "tree.h"
45 #include "gimple.h"
46 #include "predict.h"
47 #include "alloc-pool.h"
48 #include "tree-pass.h"
49 #include "cgraph.h"
50 #include "data-streamer.h"
51 #include "gimple-iterator.h"
52 #include "ipa-utils.h"
53 #include "profile.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "symbol-summary.h"
57 #include "tree-vrp.h"
58 #include "ipa-prop.h"
59 #include "ipa-fnsummary.h"
60
61 /* Entry in the histogram. */
62
63 struct histogram_entry
64 {
65 gcov_type count;
66 int time;
67 int size;
68 };
69
70 /* Histogram of profile values.
71 The histogram is represented as an ordered vector of entries allocated via
72 histogram_pool. During construction a separate hashtable is kept to lookup
73 duplicate entries. */
74
75 vec<histogram_entry *> histogram;
76 static object_allocator<histogram_entry> histogram_pool ("IPA histogram");
77
78 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
79
80 struct histogram_hash : nofree_ptr_hash <histogram_entry>
81 {
82 static inline hashval_t hash (const histogram_entry *);
83 static inline int equal (const histogram_entry *, const histogram_entry *);
84 };
85
86 inline hashval_t
hash(const histogram_entry * val)87 histogram_hash::hash (const histogram_entry *val)
88 {
89 return val->count;
90 }
91
92 inline int
equal(const histogram_entry * val,const histogram_entry * val2)93 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
94 {
95 return val->count == val2->count;
96 }
97
98 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
99 HASHTABLE is the on-side hash kept to avoid duplicates. */
100
101 static void
account_time_size(hash_table<histogram_hash> * hashtable,vec<histogram_entry * > & histogram,gcov_type count,int time,int size)102 account_time_size (hash_table<histogram_hash> *hashtable,
103 vec<histogram_entry *> &histogram,
104 gcov_type count, int time, int size)
105 {
106 histogram_entry key = {count, 0, 0};
107 histogram_entry **val = hashtable->find_slot (&key, INSERT);
108
109 if (!*val)
110 {
111 *val = histogram_pool.allocate ();
112 **val = key;
113 histogram.safe_push (*val);
114 }
115 (*val)->time += time;
116 (*val)->size += size;
117 }
118
119 int
cmp_counts(const void * v1,const void * v2)120 cmp_counts (const void *v1, const void *v2)
121 {
122 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
123 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
124 if (h1->count < h2->count)
125 return 1;
126 if (h1->count > h2->count)
127 return -1;
128 return 0;
129 }
130
131 /* Dump HISTOGRAM to FILE. */
132
133 static void
dump_histogram(FILE * file,vec<histogram_entry * > histogram)134 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
135 {
136 unsigned int i;
137 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0,
138 overall_size = 0;
139
140 fprintf (dump_file, "Histogram:\n");
141 for (i = 0; i < histogram.length (); i++)
142 {
143 overall_time += histogram[i]->count * histogram[i]->time;
144 overall_size += histogram[i]->size;
145 }
146 if (!overall_time)
147 overall_time = 1;
148 if (!overall_size)
149 overall_size = 1;
150 for (i = 0; i < histogram.length (); i++)
151 {
152 cumulated_time += histogram[i]->count * histogram[i]->time;
153 cumulated_size += histogram[i]->size;
154 fprintf (file, " %" PRId64": time:%i (%2.2f) size:%i (%2.2f)\n",
155 (int64_t) histogram[i]->count,
156 histogram[i]->time,
157 cumulated_time * 100.0 / overall_time,
158 histogram[i]->size,
159 cumulated_size * 100.0 / overall_size);
160 }
161 }
162
163 /* Structure containing speculative target information from profile. */
164
165 struct speculative_call_target
166 {
167 speculative_call_target (unsigned int id = 0, int prob = 0)
target_idspeculative_call_target168 : target_id (id), target_probability (prob)
169 {
170 }
171
172 /* Profile_id of target obtained from profile. */
173 unsigned int target_id;
174 /* Probability that call will land in function with target_id. */
175 unsigned int target_probability;
176 };
177
178 class speculative_call_summary
179 {
180 public:
speculative_call_summary()181 speculative_call_summary () : speculative_call_targets ()
182 {}
183
184 auto_vec<speculative_call_target> speculative_call_targets;
185
186 void dump (FILE *f);
187
188 };
189
190 /* Class to manage call summaries. */
191
192 class ipa_profile_call_summaries
193 : public call_summary<speculative_call_summary *>
194 {
195 public:
ipa_profile_call_summaries(symbol_table * table)196 ipa_profile_call_summaries (symbol_table *table)
197 : call_summary<speculative_call_summary *> (table)
198 {}
199
200 /* Duplicate info when an edge is cloned. */
201 virtual void duplicate (cgraph_edge *, cgraph_edge *,
202 speculative_call_summary *old_sum,
203 speculative_call_summary *new_sum);
204 };
205
206 static ipa_profile_call_summaries *call_sums = NULL;
207
208 /* Dump all information in speculative call summary to F. */
209
210 void
dump(FILE * f)211 speculative_call_summary::dump (FILE *f)
212 {
213 cgraph_node *n2;
214
215 unsigned spec_count = speculative_call_targets.length ();
216 for (unsigned i = 0; i < spec_count; i++)
217 {
218 speculative_call_target item = speculative_call_targets[i];
219 n2 = find_func_by_profile_id (item.target_id);
220 if (n2)
221 fprintf (f, " The %i speculative target is %s with prob %3.2f\n", i,
222 n2->dump_name (),
223 item.target_probability / (float) REG_BR_PROB_BASE);
224 else
225 fprintf (f, " The %i speculative target is %u with prob %3.2f\n", i,
226 item.target_id,
227 item.target_probability / (float) REG_BR_PROB_BASE);
228 }
229 }
230
231 /* Duplicate info when an edge is cloned. */
232
233 void
duplicate(cgraph_edge *,cgraph_edge *,speculative_call_summary * old_sum,speculative_call_summary * new_sum)234 ipa_profile_call_summaries::duplicate (cgraph_edge *, cgraph_edge *,
235 speculative_call_summary *old_sum,
236 speculative_call_summary *new_sum)
237 {
238 if (!old_sum)
239 return;
240
241 unsigned old_count = old_sum->speculative_call_targets.length ();
242 if (!old_count)
243 return;
244
245 new_sum->speculative_call_targets.reserve_exact (old_count);
246 new_sum->speculative_call_targets.quick_grow_cleared (old_count);
247
248 for (unsigned i = 0; i < old_count; i++)
249 {
250 new_sum->speculative_call_targets[i]
251 = old_sum->speculative_call_targets[i];
252 }
253 }
254
255 /* Collect histogram and speculative target summaries from CFG profiles. */
256
257 static void
ipa_profile_generate_summary(void)258 ipa_profile_generate_summary (void)
259 {
260 struct cgraph_node *node;
261 gimple_stmt_iterator gsi;
262 basic_block bb;
263
264 hash_table<histogram_hash> hashtable (10);
265
266 gcc_checking_assert (!call_sums);
267 call_sums = new ipa_profile_call_summaries (symtab);
268
269 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
270 if (ENTRY_BLOCK_PTR_FOR_FN
271 (DECL_STRUCT_FUNCTION (node->decl))->count.ipa_p ())
272 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
273 {
274 int time = 0;
275 int size = 0;
276 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
277 {
278 gimple *stmt = gsi_stmt (gsi);
279 if (gimple_code (stmt) == GIMPLE_CALL
280 && !gimple_call_fndecl (stmt))
281 {
282 histogram_value h;
283 h = gimple_histogram_value_of_type
284 (DECL_STRUCT_FUNCTION (node->decl),
285 stmt, HIST_TYPE_INDIR_CALL);
286 /* No need to do sanity check: gimple_ic_transform already
287 takes away bad histograms. */
288 if (h)
289 {
290 gcov_type val, count, all;
291 struct cgraph_edge *e = node->get_edge (stmt);
292 if (e && !e->indirect_unknown_callee)
293 continue;
294
295 speculative_call_summary *csum
296 = call_sums->get_create (e);
297
298 for (unsigned j = 0; j < GCOV_TOPN_MAXIMUM_TRACKED_VALUES;
299 j++)
300 {
301 if (!get_nth_most_common_value (NULL, "indirect call",
302 h, &val, &count, &all,
303 j))
304 continue;
305
306 if (val == 0 || count == 0)
307 continue;
308
309 if (count > all)
310 {
311 if (dump_file)
312 fprintf (dump_file,
313 "Probability capped to 1\n");
314 count = all;
315 }
316 speculative_call_target item (
317 val, GCOV_COMPUTE_SCALE (count, all));
318 csum->speculative_call_targets.safe_push (item);
319 }
320
321 gimple_remove_histogram_value
322 (DECL_STRUCT_FUNCTION (node->decl), stmt, h);
323 }
324 }
325 time += estimate_num_insns (stmt, &eni_time_weights);
326 size += estimate_num_insns (stmt, &eni_size_weights);
327 }
328 if (bb->count.ipa_p () && bb->count.initialized_p ())
329 account_time_size (&hashtable, histogram,
330 bb->count.ipa ().to_gcov_type (),
331 time, size);
332 }
333 histogram.qsort (cmp_counts);
334 }
335
336 /* Serialize the speculative summary info for LTO. */
337
338 static void
ipa_profile_write_edge_summary(lto_simple_output_block * ob,speculative_call_summary * csum)339 ipa_profile_write_edge_summary (lto_simple_output_block *ob,
340 speculative_call_summary *csum)
341 {
342 unsigned len = 0;
343
344 len = csum->speculative_call_targets.length ();
345
346 gcc_assert (len <= GCOV_TOPN_MAXIMUM_TRACKED_VALUES);
347
348 streamer_write_hwi_stream (ob->main_stream, len);
349
350 if (len)
351 {
352 unsigned spec_count = csum->speculative_call_targets.length ();
353 for (unsigned i = 0; i < spec_count; i++)
354 {
355 speculative_call_target item = csum->speculative_call_targets[i];
356 gcc_assert (item.target_id);
357 streamer_write_hwi_stream (ob->main_stream, item.target_id);
358 streamer_write_hwi_stream (ob->main_stream, item.target_probability);
359 }
360 }
361 }
362
363 /* Serialize the ipa info for lto. */
364
365 static void
ipa_profile_write_summary(void)366 ipa_profile_write_summary (void)
367 {
368 struct lto_simple_output_block *ob
369 = lto_create_simple_output_block (LTO_section_ipa_profile);
370 unsigned int i;
371
372 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
373 for (i = 0; i < histogram.length (); i++)
374 {
375 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
376 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
377 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
378 }
379
380 if (!call_sums)
381 return;
382
383 /* Serialize speculative targets information. */
384 unsigned int count = 0;
385 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
386 lto_symtab_encoder_iterator lsei;
387 cgraph_node *node;
388
389 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
390 lsei_next_function_in_partition (&lsei))
391 {
392 node = lsei_cgraph_node (lsei);
393 if (node->definition && node->has_gimple_body_p ()
394 && node->indirect_calls)
395 count++;
396 }
397
398 streamer_write_uhwi_stream (ob->main_stream, count);
399
400 /* Process all of the functions. */
401 for (lsei = lsei_start_function_in_partition (encoder);
402 !lsei_end_p (lsei) && count; lsei_next_function_in_partition (&lsei))
403 {
404 cgraph_node *node = lsei_cgraph_node (lsei);
405 if (node->definition && node->has_gimple_body_p ()
406 && node->indirect_calls)
407 {
408 int node_ref = lto_symtab_encoder_encode (encoder, node);
409 streamer_write_uhwi_stream (ob->main_stream, node_ref);
410
411 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
412 {
413 speculative_call_summary *csum = call_sums->get_create (e);
414 ipa_profile_write_edge_summary (ob, csum);
415 }
416 }
417 }
418
419 lto_destroy_simple_output_block (ob);
420 }
421
422 /* Dump all profile summary data for all cgraph nodes and edges to file F. */
423
424 static void
ipa_profile_dump_all_summaries(FILE * f)425 ipa_profile_dump_all_summaries (FILE *f)
426 {
427 fprintf (dump_file,
428 "\n========== IPA-profile speculative targets: ==========\n");
429 cgraph_node *node;
430 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
431 {
432 fprintf (f, "\nSummary for node %s:\n", node->dump_name ());
433 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
434 {
435 fprintf (f, " Summary for %s of indirect edge %d:\n",
436 e->caller->dump_name (), e->lto_stmt_uid);
437 speculative_call_summary *csum = call_sums->get_create (e);
438 csum->dump (f);
439 }
440 }
441 fprintf (f, "\n\n");
442 }
443
444 /* Read speculative targets information about edge for LTO WPA. */
445
446 static void
ipa_profile_read_edge_summary(class lto_input_block * ib,cgraph_edge * edge)447 ipa_profile_read_edge_summary (class lto_input_block *ib, cgraph_edge *edge)
448 {
449 unsigned i, len;
450
451 len = streamer_read_hwi (ib);
452 gcc_assert (len <= GCOV_TOPN_MAXIMUM_TRACKED_VALUES);
453 speculative_call_summary *csum = call_sums->get_create (edge);
454
455 for (i = 0; i < len; i++)
456 {
457 unsigned int target_id = streamer_read_hwi (ib);
458 int target_probability = streamer_read_hwi (ib);
459 speculative_call_target item (target_id, target_probability);
460 csum->speculative_call_targets.safe_push (item);
461 }
462 }
463
464 /* Read profile speculative targets section information for LTO WPA. */
465
466 static void
ipa_profile_read_summary_section(struct lto_file_decl_data * file_data,class lto_input_block * ib)467 ipa_profile_read_summary_section (struct lto_file_decl_data *file_data,
468 class lto_input_block *ib)
469 {
470 if (!ib)
471 return;
472
473 lto_symtab_encoder_t encoder = file_data->symtab_node_encoder;
474
475 unsigned int count = streamer_read_uhwi (ib);
476
477 unsigned int i;
478 unsigned int index;
479 cgraph_node * node;
480
481 for (i = 0; i < count; i++)
482 {
483 index = streamer_read_uhwi (ib);
484 encoder = file_data->symtab_node_encoder;
485 node
486 = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder, index));
487
488 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
489 ipa_profile_read_edge_summary (ib, e);
490 }
491 }
492
493 /* Deserialize the IPA histogram and speculative targets summary info for LTO.
494 */
495
496 static void
ipa_profile_read_summary(void)497 ipa_profile_read_summary (void)
498 {
499 struct lto_file_decl_data ** file_data_vec
500 = lto_get_file_decl_data ();
501 struct lto_file_decl_data * file_data;
502 int j = 0;
503
504 hash_table<histogram_hash> hashtable (10);
505
506 gcc_checking_assert (!call_sums);
507 call_sums = new ipa_profile_call_summaries (symtab);
508
509 while ((file_data = file_data_vec[j++]))
510 {
511 const char *data;
512 size_t len;
513 class lto_input_block *ib
514 = lto_create_simple_input_block (file_data,
515 LTO_section_ipa_profile,
516 &data, &len);
517 if (ib)
518 {
519 unsigned int num = streamer_read_uhwi (ib);
520 unsigned int n;
521 for (n = 0; n < num; n++)
522 {
523 gcov_type count = streamer_read_gcov_count (ib);
524 int time = streamer_read_uhwi (ib);
525 int size = streamer_read_uhwi (ib);
526 account_time_size (&hashtable, histogram,
527 count, time, size);
528 }
529
530 ipa_profile_read_summary_section (file_data, ib);
531
532 lto_destroy_simple_input_block (file_data,
533 LTO_section_ipa_profile,
534 ib, data, len);
535 }
536 }
537 histogram.qsort (cmp_counts);
538 }
539
540 /* Data used by ipa_propagate_frequency. */
541
542 struct ipa_propagate_frequency_data
543 {
544 cgraph_node *function_symbol;
545 bool maybe_unlikely_executed;
546 bool maybe_executed_once;
547 bool only_called_at_startup;
548 bool only_called_at_exit;
549 };
550
551 /* Worker for ipa_propagate_frequency_1. */
552
553 static bool
ipa_propagate_frequency_1(struct cgraph_node * node,void * data)554 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
555 {
556 struct ipa_propagate_frequency_data *d;
557 struct cgraph_edge *edge;
558
559 d = (struct ipa_propagate_frequency_data *)data;
560 for (edge = node->callers;
561 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
562 || d->only_called_at_startup || d->only_called_at_exit);
563 edge = edge->next_caller)
564 {
565 if (edge->caller != d->function_symbol)
566 {
567 d->only_called_at_startup &= edge->caller->only_called_at_startup;
568 /* It makes sense to put main() together with the static constructors.
569 It will be executed for sure, but rest of functions called from
570 main are definitely not at startup only. */
571 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
572 d->only_called_at_startup = 0;
573 d->only_called_at_exit &= edge->caller->only_called_at_exit;
574 }
575
576 /* When profile feedback is available, do not try to propagate too hard;
577 counts are already good guide on function frequencies and roundoff
578 errors can make us to push function into unlikely section even when
579 it is executed by the train run. Transfer the function only if all
580 callers are unlikely executed. */
581 if (profile_info
582 && !(edge->callee->count.ipa () == profile_count::zero ())
583 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
584 || (edge->caller->inlined_to
585 && edge->caller->inlined_to->frequency
586 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
587 d->maybe_unlikely_executed = false;
588 if (edge->count.ipa ().initialized_p ()
589 && !edge->count.ipa ().nonzero_p ())
590 continue;
591 switch (edge->caller->frequency)
592 {
593 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
594 break;
595 case NODE_FREQUENCY_EXECUTED_ONCE:
596 {
597 if (dump_file && (dump_flags & TDF_DETAILS))
598 fprintf (dump_file, " Called by %s that is executed once\n",
599 edge->caller->dump_name ());
600 d->maybe_unlikely_executed = false;
601 ipa_call_summary *s = ipa_call_summaries->get (edge);
602 if (s != NULL && s->loop_depth)
603 {
604 d->maybe_executed_once = false;
605 if (dump_file && (dump_flags & TDF_DETAILS))
606 fprintf (dump_file, " Called in loop\n");
607 }
608 break;
609 }
610 case NODE_FREQUENCY_HOT:
611 case NODE_FREQUENCY_NORMAL:
612 if (dump_file && (dump_flags & TDF_DETAILS))
613 fprintf (dump_file, " Called by %s that is normal or hot\n",
614 edge->caller->dump_name ());
615 d->maybe_unlikely_executed = false;
616 d->maybe_executed_once = false;
617 break;
618 }
619 }
620 return edge != NULL;
621 }
622
623 /* Return ture if NODE contains hot calls. */
624
625 bool
contains_hot_call_p(struct cgraph_node * node)626 contains_hot_call_p (struct cgraph_node *node)
627 {
628 struct cgraph_edge *e;
629 for (e = node->callees; e; e = e->next_callee)
630 if (e->maybe_hot_p ())
631 return true;
632 else if (!e->inline_failed
633 && contains_hot_call_p (e->callee))
634 return true;
635 for (e = node->indirect_calls; e; e = e->next_callee)
636 if (e->maybe_hot_p ())
637 return true;
638 return false;
639 }
640
641 /* See if the frequency of NODE can be updated based on frequencies of its
642 callers. */
643 bool
ipa_propagate_frequency(struct cgraph_node * node)644 ipa_propagate_frequency (struct cgraph_node *node)
645 {
646 struct ipa_propagate_frequency_data d = {node, true, true, true, true};
647 bool changed = false;
648
649 /* We cannot propagate anything useful about externally visible functions
650 nor about virtuals. */
651 if (!node->local
652 || node->alias
653 || (opt_for_fn (node->decl, flag_devirtualize)
654 && DECL_VIRTUAL_P (node->decl)))
655 return false;
656 gcc_assert (node->analyzed);
657 if (dump_file && (dump_flags & TDF_DETAILS))
658 fprintf (dump_file, "Processing frequency %s\n", node->dump_name ());
659
660 node->call_for_symbol_and_aliases (ipa_propagate_frequency_1, &d,
661 true);
662
663 if ((d.only_called_at_startup && !d.only_called_at_exit)
664 && !node->only_called_at_startup)
665 {
666 node->only_called_at_startup = true;
667 if (dump_file)
668 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
669 node->dump_name ());
670 changed = true;
671 }
672 if ((d.only_called_at_exit && !d.only_called_at_startup)
673 && !node->only_called_at_exit)
674 {
675 node->only_called_at_exit = true;
676 if (dump_file)
677 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
678 node->dump_name ());
679 changed = true;
680 }
681
682 /* With profile we can decide on hot/normal based on count. */
683 if (node->count. ipa().initialized_p ())
684 {
685 bool hot = false;
686 if (!(node->count. ipa() == profile_count::zero ())
687 && node->count. ipa() >= get_hot_bb_threshold ())
688 hot = true;
689 if (!hot)
690 hot |= contains_hot_call_p (node);
691 if (hot)
692 {
693 if (node->frequency != NODE_FREQUENCY_HOT)
694 {
695 if (dump_file)
696 fprintf (dump_file, "Node %s promoted to hot.\n",
697 node->dump_name ());
698 node->frequency = NODE_FREQUENCY_HOT;
699 return true;
700 }
701 return false;
702 }
703 else if (node->frequency == NODE_FREQUENCY_HOT)
704 {
705 if (dump_file)
706 fprintf (dump_file, "Node %s reduced to normal.\n",
707 node->dump_name ());
708 node->frequency = NODE_FREQUENCY_NORMAL;
709 changed = true;
710 }
711 }
712 /* These come either from profile or user hints; never update them. */
713 if (node->frequency == NODE_FREQUENCY_HOT
714 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
715 return changed;
716 if (d.maybe_unlikely_executed)
717 {
718 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
719 if (dump_file)
720 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
721 node->dump_name ());
722 changed = true;
723 }
724 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
725 {
726 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
727 if (dump_file)
728 fprintf (dump_file, "Node %s promoted to executed once.\n",
729 node->dump_name ());
730 changed = true;
731 }
732 return changed;
733 }
734
735 /* Check that number of arguments of N agrees with E.
736 Be conservative when summaries are not present. */
737
738 static bool
check_argument_count(struct cgraph_node * n,struct cgraph_edge * e)739 check_argument_count (struct cgraph_node *n, struct cgraph_edge *e)
740 {
741 if (!ipa_node_params_sum || !ipa_edge_args_sum)
742 return true;
743 class ipa_node_params *info = IPA_NODE_REF (n->function_symbol ());
744 if (!info)
745 return true;
746 ipa_edge_args *e_info = IPA_EDGE_REF (e);
747 if (!e_info)
748 return true;
749 if (ipa_get_param_count (info) != ipa_get_cs_argument_count (e_info)
750 && (ipa_get_param_count (info) >= ipa_get_cs_argument_count (e_info)
751 || !stdarg_p (TREE_TYPE (n->decl))))
752 return false;
753 return true;
754 }
755
756 /* Simple ipa profile pass propagating frequencies across the callgraph. */
757
758 static unsigned int
ipa_profile(void)759 ipa_profile (void)
760 {
761 struct cgraph_node **order;
762 struct cgraph_edge *e;
763 int order_pos;
764 bool something_changed = false;
765 int i;
766 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
767 struct cgraph_node *n,*n2;
768 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
769 int nmismatch = 0, nimpossible = 0;
770 bool node_map_initialized = false;
771 gcov_type threshold;
772
773 if (dump_file)
774 dump_histogram (dump_file, histogram);
775 for (i = 0; i < (int)histogram.length (); i++)
776 {
777 overall_time += histogram[i]->count * histogram[i]->time;
778 overall_size += histogram[i]->size;
779 }
780 threshold = 0;
781 if (overall_time)
782 {
783 gcc_assert (overall_size);
784
785 cutoff = (overall_time * param_hot_bb_count_ws_permille + 500) / 1000;
786 for (i = 0; cumulated < cutoff; i++)
787 {
788 cumulated += histogram[i]->count * histogram[i]->time;
789 threshold = histogram[i]->count;
790 }
791 if (!threshold)
792 threshold = 1;
793 if (dump_file)
794 {
795 gcov_type cumulated_time = 0, cumulated_size = 0;
796
797 for (i = 0;
798 i < (int)histogram.length () && histogram[i]->count >= threshold;
799 i++)
800 {
801 cumulated_time += histogram[i]->count * histogram[i]->time;
802 cumulated_size += histogram[i]->size;
803 }
804 fprintf (dump_file, "Determined min count: %" PRId64
805 " Time:%3.2f%% Size:%3.2f%%\n",
806 (int64_t)threshold,
807 cumulated_time * 100.0 / overall_time,
808 cumulated_size * 100.0 / overall_size);
809 }
810
811 if (in_lto_p)
812 {
813 if (dump_file)
814 fprintf (dump_file, "Setting hotness threshold in LTO mode.\n");
815 set_hot_bb_threshold (threshold);
816 }
817 }
818 histogram.release ();
819 histogram_pool.release ();
820
821 /* Produce speculative calls: we saved common target from profiling into
822 e->target_id. Now, at link time, we can look up corresponding
823 function node and produce speculative call. */
824
825 gcc_checking_assert (call_sums);
826
827 if (dump_file)
828 {
829 if (!node_map_initialized)
830 init_node_map (false);
831 node_map_initialized = true;
832
833 ipa_profile_dump_all_summaries (dump_file);
834 }
835
836 FOR_EACH_DEFINED_FUNCTION (n)
837 {
838 bool update = false;
839
840 if (!opt_for_fn (n->decl, flag_ipa_profile))
841 continue;
842
843 for (e = n->indirect_calls; e; e = e->next_callee)
844 {
845 if (n->count.initialized_p ())
846 nindirect++;
847
848 speculative_call_summary *csum = call_sums->get_create (e);
849 unsigned spec_count = csum->speculative_call_targets.length ();
850 if (spec_count)
851 {
852 if (!node_map_initialized)
853 init_node_map (false);
854 node_map_initialized = true;
855 ncommon++;
856
857 if (in_lto_p)
858 {
859 if (dump_file)
860 {
861 fprintf (dump_file,
862 "Updating hotness threshold in LTO mode.\n");
863 fprintf (dump_file, "Updated min count: %" PRId64 "\n",
864 (int64_t) threshold / spec_count);
865 }
866 set_hot_bb_threshold (threshold / spec_count);
867 }
868
869 unsigned speculative_id = 0;
870 profile_count orig = e->count;
871 for (unsigned i = 0; i < spec_count; i++)
872 {
873 speculative_call_target item
874 = csum->speculative_call_targets[i];
875 n2 = find_func_by_profile_id (item.target_id);
876 if (n2)
877 {
878 if (dump_file)
879 {
880 fprintf (dump_file,
881 "Indirect call -> direct call from"
882 " other module %s => %s, prob %3.2f\n",
883 n->dump_name (),
884 n2->dump_name (),
885 item.target_probability
886 / (float) REG_BR_PROB_BASE);
887 }
888 if (item.target_probability < REG_BR_PROB_BASE / 2)
889 {
890 nuseless++;
891 if (dump_file)
892 fprintf (dump_file,
893 "Not speculating: "
894 "probability is too low.\n");
895 }
896 else if (!e->maybe_hot_p ())
897 {
898 nuseless++;
899 if (dump_file)
900 fprintf (dump_file,
901 "Not speculating: call is cold.\n");
902 }
903 else if (n2->get_availability () <= AVAIL_INTERPOSABLE
904 && n2->can_be_discarded_p ())
905 {
906 nuseless++;
907 if (dump_file)
908 fprintf (dump_file,
909 "Not speculating: target is overwritable "
910 "and can be discarded.\n");
911 }
912 else if (!check_argument_count (n2, e))
913 {
914 nmismatch++;
915 if (dump_file)
916 fprintf (dump_file,
917 "Not speculating: "
918 "parameter count mismatch\n");
919 }
920 else if (e->indirect_info->polymorphic
921 && !opt_for_fn (n->decl, flag_devirtualize)
922 && !possible_polymorphic_call_target_p (e, n2))
923 {
924 nimpossible++;
925 if (dump_file)
926 fprintf (dump_file,
927 "Not speculating: "
928 "function is not in the polymorphic "
929 "call target list\n");
930 }
931 else
932 {
933 /* Target may be overwritable, but profile says that
934 control flow goes to this particular implementation
935 of N2. Speculate on the local alias to allow
936 inlining. */
937 if (!n2->can_be_discarded_p ())
938 {
939 cgraph_node *alias;
940 alias = dyn_cast<cgraph_node *>
941 (n2->noninterposable_alias ());
942 if (alias)
943 n2 = alias;
944 }
945 nconverted++;
946 profile_probability prob
947 = profile_probability::from_reg_br_prob_base
948 (item.target_probability).adjusted ();
949 e->make_speculative (n2,
950 orig.apply_probability (prob),
951 speculative_id);
952 update = true;
953 speculative_id++;
954 }
955 }
956 else
957 {
958 if (dump_file)
959 fprintf (dump_file,
960 "Function with profile-id %i not found.\n",
961 item.target_id);
962 nunknown++;
963 }
964 }
965 }
966 }
967 if (update)
968 ipa_update_overall_fn_summary (n);
969 }
970 if (node_map_initialized)
971 del_node_map ();
972 if (dump_file && nindirect)
973 fprintf (dump_file,
974 "%i indirect calls trained.\n"
975 "%i (%3.2f%%) have common target.\n"
976 "%i (%3.2f%%) targets was not found.\n"
977 "%i (%3.2f%%) targets had parameter count mismatch.\n"
978 "%i (%3.2f%%) targets was not in polymorphic call target list.\n"
979 "%i (%3.2f%%) speculations seems useless.\n"
980 "%i (%3.2f%%) speculations produced.\n",
981 nindirect,
982 ncommon, ncommon * 100.0 / nindirect,
983 nunknown, nunknown * 100.0 / nindirect,
984 nmismatch, nmismatch * 100.0 / nindirect,
985 nimpossible, nimpossible * 100.0 / nindirect,
986 nuseless, nuseless * 100.0 / nindirect,
987 nconverted, nconverted * 100.0 / nindirect);
988
989 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
990 order_pos = ipa_reverse_postorder (order);
991 for (i = order_pos - 1; i >= 0; i--)
992 {
993 if (order[i]->local
994 && opt_for_fn (order[i]->decl, flag_ipa_profile)
995 && ipa_propagate_frequency (order[i]))
996 {
997 for (e = order[i]->callees; e; e = e->next_callee)
998 if (e->callee->local && !e->callee->aux)
999 {
1000 something_changed = true;
1001 e->callee->aux = (void *)1;
1002 }
1003 }
1004 order[i]->aux = NULL;
1005 }
1006
1007 while (something_changed)
1008 {
1009 something_changed = false;
1010 for (i = order_pos - 1; i >= 0; i--)
1011 {
1012 if (order[i]->aux
1013 && opt_for_fn (order[i]->decl, flag_ipa_profile)
1014 && ipa_propagate_frequency (order[i]))
1015 {
1016 for (e = order[i]->callees; e; e = e->next_callee)
1017 if (e->callee->local && !e->callee->aux)
1018 {
1019 something_changed = true;
1020 e->callee->aux = (void *)1;
1021 }
1022 }
1023 order[i]->aux = NULL;
1024 }
1025 }
1026 free (order);
1027
1028 if (dump_file && (dump_flags & TDF_DETAILS))
1029 symtab->dump (dump_file);
1030
1031 delete call_sums;
1032 call_sums = NULL;
1033
1034 return 0;
1035 }
1036
1037 namespace {
1038
1039 const pass_data pass_data_ipa_profile =
1040 {
1041 IPA_PASS, /* type */
1042 "profile_estimate", /* name */
1043 OPTGROUP_NONE, /* optinfo_flags */
1044 TV_IPA_PROFILE, /* tv_id */
1045 0, /* properties_required */
1046 0, /* properties_provided */
1047 0, /* properties_destroyed */
1048 0, /* todo_flags_start */
1049 0, /* todo_flags_finish */
1050 };
1051
1052 class pass_ipa_profile : public ipa_opt_pass_d
1053 {
1054 public:
pass_ipa_profile(gcc::context * ctxt)1055 pass_ipa_profile (gcc::context *ctxt)
1056 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
1057 ipa_profile_generate_summary, /* generate_summary */
1058 ipa_profile_write_summary, /* write_summary */
1059 ipa_profile_read_summary, /* read_summary */
1060 NULL, /* write_optimization_summary */
1061 NULL, /* read_optimization_summary */
1062 NULL, /* stmt_fixup */
1063 0, /* function_transform_todo_flags_start */
1064 NULL, /* function_transform */
1065 NULL) /* variable_transform */
1066 {}
1067
1068 /* opt_pass methods: */
gate(function *)1069 virtual bool gate (function *) { return flag_ipa_profile || in_lto_p; }
execute(function *)1070 virtual unsigned int execute (function *) { return ipa_profile (); }
1071
1072 }; // class pass_ipa_profile
1073
1074 } // anon namespace
1075
1076 ipa_opt_pass_d *
make_pass_ipa_profile(gcc::context * ctxt)1077 make_pass_ipa_profile (gcc::context *ctxt)
1078 {
1079 return new pass_ipa_profile (ctxt);
1080 }
1081