1/* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2   This file is consumed by genmatch which produces gimple-match.c
3   and generic-match.c from it.
4
5   Copyright (C) 2014-2021 Free Software Foundation, Inc.
6   Contributed by Richard Biener <rguenther@suse.de>
7   and Prathamesh Kulkarni  <bilbotheelffriend@gmail.com>
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25
26/* Generic tree predicates we inherit.  */
27(define_predicates
28   integer_onep integer_zerop integer_all_onesp integer_minus_onep
29   integer_each_onep integer_truep integer_nonzerop
30   real_zerop real_onep real_minus_onep
31   zerop
32   initializer_each_zero_or_onep
33   CONSTANT_CLASS_P
34   tree_expr_nonnegative_p
35   tree_expr_nonzero_p
36   integer_valued_real_p
37   integer_pow2p
38   uniform_integer_cst_p
39   HONOR_NANS
40   uniform_vector_p)
41
42/* Operator lists.  */
43(define_operator_list tcc_comparison
44  lt   le   eq ne ge   gt   unordered ordered   unlt unle ungt unge uneq ltgt)
45(define_operator_list inverted_tcc_comparison
46  ge   gt   ne eq lt   le   ordered   unordered ge   gt   le   lt   ltgt uneq)
47(define_operator_list inverted_tcc_comparison_with_nans
48  unge ungt ne eq unlt unle ordered   unordered ge   gt   le   lt   ltgt uneq)
49(define_operator_list swapped_tcc_comparison
50  gt   ge   eq ne le   lt   unordered ordered   ungt unge unlt unle uneq ltgt)
51(define_operator_list simple_comparison         lt   le   eq ne ge   gt)
52(define_operator_list swapped_simple_comparison gt   ge   eq ne le   lt)
53
54#include "cfn-operators.pd"
55
56/* Define operand lists for math rounding functions {,i,l,ll}FN,
57   where the versions prefixed with "i" return an int, those prefixed with
58   "l" return a long and those prefixed with "ll" return a long long.
59
60   Also define operand lists:
61
62     X<FN>F for all float functions, in the order i, l, ll
63     X<FN> for all double functions, in the same order
64     X<FN>L for all long double functions, in the same order.  */
65#define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66  (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67				 BUILT_IN_L##FN##F \
68				 BUILT_IN_LL##FN##F) \
69  (define_operator_list X##FN BUILT_IN_I##FN \
70			      BUILT_IN_L##FN \
71			      BUILT_IN_LL##FN) \
72  (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73				 BUILT_IN_L##FN##L \
74				 BUILT_IN_LL##FN##L)
75
76DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81/* Binary operations and their associated IFN_COND_* function.  */
82(define_operator_list UNCOND_BINARY
83  plus minus
84  mult trunc_div trunc_mod rdiv
85  min max
86  bit_and bit_ior bit_xor
87  lshift rshift)
88(define_operator_list COND_BINARY
89  IFN_COND_ADD IFN_COND_SUB
90  IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91  IFN_COND_MIN IFN_COND_MAX
92  IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93  IFN_COND_SHL IFN_COND_SHR)
94
95/* Same for ternary operations.  */
96(define_operator_list UNCOND_TERNARY
97  IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98(define_operator_list COND_TERNARY
99  IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101/* With nop_convert? combine convert? and view_convert? in one pattern
102   plus conditionalize on tree_nop_conversion_p conversions.  */
103(match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106(match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109      && known_eq (TYPE_VECTOR_SUBPARTS (type),
110		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111      && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113/* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114   ABSU_EXPR returns unsigned absolute value of the operand and the operand
115   of the ABSU_EXPR will have the corresponding signed type.  */
116(simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118      && !TYPE_UNSIGNED (TREE_TYPE (@0))
119      && element_precision (type) > element_precision (TREE_TYPE (@0)))
120  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121   (convert (absu:utype @0)))))
122
123#if GIMPLE
124/* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X).  */
125(simplify
126 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
127 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
128      && !TYPE_UNSIGNED (TREE_TYPE (@0))
129      && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
130  (abs @0)))
131#endif
132
133/* Simplifications of operations with one constant operand and
134   simplifications to constants or single values.  */
135
136(for op (plus pointer_plus minus bit_ior bit_xor)
137  (simplify
138    (op @0 integer_zerop)
139    (non_lvalue @0)))
140
141/* 0 +p index -> (type)index */
142(simplify
143 (pointer_plus integer_zerop @1)
144 (non_lvalue (convert @1)))
145
146/* ptr - 0 -> (type)ptr */
147(simplify
148 (pointer_diff @0 integer_zerop)
149 (convert @0))
150
151/* See if ARG1 is zero and X + ARG1 reduces to X.
152   Likewise if the operands are reversed.  */
153(simplify
154 (plus:c @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 0))
156  (non_lvalue @0)))
157
158/* See if ARG1 is zero and X - ARG1 reduces to X.  */
159(simplify
160 (minus @0 real_zerop@1)
161 (if (fold_real_zero_addition_p (type, @1, 1))
162  (non_lvalue @0)))
163
164/* Even if the fold_real_zero_addition_p can't simplify X + 0.0
165   into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
166   or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
167   if not -frounding-math.  For sNaNs the first operation would raise
168   exceptions but turn the result into qNan, so the second operation
169   would not raise it.   */
170(for inner_op (plus minus)
171 (for outer_op (plus minus)
172  (simplify
173   (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
174    (if (real_zerop (@1)
175	 && real_zerop (@2)
176	 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
177     (with { bool inner_plus = ((inner_op == PLUS_EXPR)
178				^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
179	     bool outer_plus
180	       = ((outer_op == PLUS_EXPR)
181		  ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
182      (if (outer_plus && !inner_plus)
183       (outer_op @0 @2)
184       @3))))))
185
186/* Simplify x - x.
187   This is unsafe for certain floats even in non-IEEE formats.
188   In IEEE, it is unsafe because it does wrong for NaNs.
189   Also note that operand_equal_p is always false if an operand
190   is volatile.  */
191(simplify
192 (minus @0 @0)
193 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
194  { build_zero_cst (type); }))
195(simplify
196 (pointer_diff @@0 @0)
197 { build_zero_cst (type); })
198
199(simplify
200 (mult @0 integer_zerop@1)
201 @1)
202
203/* Maybe fold x * 0 to 0.  The expressions aren't the same
204   when x is NaN, since x * 0 is also NaN.  Nor are they the
205   same in modes with signed zeros, since multiplying a
206   negative value by 0 gives -0, not +0.  */
207(simplify
208 (mult @0 real_zerop@1)
209 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
210  @1))
211
212/* In IEEE floating point, x*1 is not equivalent to x for snans.
213   Likewise for complex arithmetic with signed zeros.  */
214(simplify
215 (mult @0 real_onep)
216 (if (!HONOR_SNANS (type)
217      && (!HONOR_SIGNED_ZEROS (type)
218          || !COMPLEX_FLOAT_TYPE_P (type)))
219  (non_lvalue @0)))
220
221/* Transform x * -1.0 into -x.  */
222(simplify
223 (mult @0 real_minus_onep)
224  (if (!HONOR_SNANS (type)
225       && (!HONOR_SIGNED_ZEROS (type)
226           || !COMPLEX_FLOAT_TYPE_P (type)))
227   (negate @0)))
228
229/* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
230(simplify
231 (mult SSA_NAME@1 SSA_NAME@2)
232  (if (INTEGRAL_TYPE_P (type)
233       && get_nonzero_bits (@1) == 1
234       && get_nonzero_bits (@2) == 1)
235   (bit_and @1 @2)))
236
237/* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
238   unless the target has native support for the former but not the latter.  */
239(simplify
240 (mult @0 VECTOR_CST@1)
241 (if (initializer_each_zero_or_onep (@1)
242      && !HONOR_SNANS (type)
243      && !HONOR_SIGNED_ZEROS (type))
244  (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
245   (if (itype
246	&& (!VECTOR_MODE_P (TYPE_MODE (type))
247	    || (VECTOR_MODE_P (TYPE_MODE (itype))
248		&& optab_handler (and_optab,
249				  TYPE_MODE (itype)) != CODE_FOR_nothing)))
250    (view_convert (bit_and:itype (view_convert @0)
251				 (ne @1 { build_zero_cst (type); })))))))
252
253(for cmp (gt ge lt le)
254     outp (convert convert negate negate)
255     outn (negate negate convert convert)
256 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
257 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
258 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
259 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
260 (simplify
261  (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
262  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
263   (outp (abs @0))))
264 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
265 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
266 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
267 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
268 (simplify
269  (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
270  (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
271   (outn (abs @0)))))
272
273/* Transform X * copysign (1.0, X) into abs(X). */
274(simplify
275 (mult:c @0 (COPYSIGN_ALL real_onep @0))
276 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
277  (abs @0)))
278
279/* Transform X * copysign (1.0, -X) into -abs(X). */
280(simplify
281 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
282 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
283  (negate (abs @0))))
284
285/* Transform copysign (CST, X) into copysign (ABS(CST), X). */
286(simplify
287 (COPYSIGN_ALL REAL_CST@0 @1)
288 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
289  (COPYSIGN_ALL (negate @0) @1)))
290
291/* X * 1, X / 1 -> X.  */
292(for op (mult trunc_div ceil_div floor_div round_div exact_div)
293  (simplify
294    (op @0 integer_onep)
295    (non_lvalue @0)))
296
297/* (A / (1 << B)) -> (A >> B).
298   Only for unsigned A.  For signed A, this would not preserve rounding
299   toward zero.
300   For example: (-1 / ( 1 << B)) !=  -1 >> B.
301   Also also widening conversions, like:
302   (A / (unsigned long long) (1U << B)) -> (A >> B)
303   or
304   (A / (unsigned long long) (1 << B)) -> (A >> B).
305   If the left shift is signed, it can be done only if the upper bits
306   of A starting from shift's type sign bit are zero, as
307   (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
308   so it is valid only if A >> 31 is zero.  */
309(simplify
310 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
311 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
312      && (!VECTOR_TYPE_P (type)
313	  || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
314	  || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
315      && (useless_type_conversion_p (type, TREE_TYPE (@1))
316	  || (element_precision (type) >= element_precision (TREE_TYPE (@1))
317	      && (TYPE_UNSIGNED (TREE_TYPE (@1))
318		  || (element_precision (type)
319		      == element_precision (TREE_TYPE (@1)))
320		  || (INTEGRAL_TYPE_P (type)
321		      && (tree_nonzero_bits (@0)
322			  & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
323				      true,
324				      element_precision (type))) == 0)))))
325   (if (!VECTOR_TYPE_P (type)
326	&& useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
327	&& element_precision (TREE_TYPE (@3)) < element_precision (type))
328    (convert (rshift @3 @2))
329    (rshift @0 @2))))
330
331/* Preserve explicit divisions by 0: the C++ front-end wants to detect
332   undefined behavior in constexpr evaluation, and assuming that the division
333   traps enables better optimizations than these anyway.  */
334(for div (trunc_div ceil_div floor_div round_div exact_div)
335 /* 0 / X is always zero.  */
336 (simplify
337  (div integer_zerop@0 @1)
338  /* But not for 0 / 0 so that we can get the proper warnings and errors.  */
339  (if (!integer_zerop (@1))
340   @0))
341 /* X / -1 is -X.  */
342 (simplify
343  (div @0 integer_minus_onep@1)
344  (if (!TYPE_UNSIGNED (type))
345   (negate @0)))
346 /* X / bool_range_Y is X.  */
347 (simplify
348  (div @0 SSA_NAME@1)
349  (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1))
350   @0))
351 /* X / X is one.  */
352 (simplify
353  (div @0 @0)
354  /* But not for 0 / 0 so that we can get the proper warnings and errors.
355     And not for _Fract types where we can't build 1.  */
356  (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
357   { build_one_cst (type); }))
358 /* X / abs (X) is X < 0 ? -1 : 1.  */
359 (simplify
360   (div:C @0 (abs @0))
361   (if (INTEGRAL_TYPE_P (type)
362	&& TYPE_OVERFLOW_UNDEFINED (type))
363    (cond (lt @0 { build_zero_cst (type); })
364          { build_minus_one_cst (type); } { build_one_cst (type); })))
365 /* X / -X is -1.  */
366 (simplify
367   (div:C @0 (negate @0))
368   (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
369	&& TYPE_OVERFLOW_UNDEFINED (type))
370    { build_minus_one_cst (type); })))
371
372/* For unsigned integral types, FLOOR_DIV_EXPR is the same as
373   TRUNC_DIV_EXPR.  Rewrite into the latter in this case.  */
374(simplify
375 (floor_div @0 @1)
376 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
377      && TYPE_UNSIGNED (type))
378  (trunc_div @0 @1)))
379
380/* Combine two successive divisions.  Note that combining ceil_div
381   and floor_div is trickier and combining round_div even more so.  */
382(for div (trunc_div exact_div)
383 (simplify
384  (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
385  (with {
386    wi::overflow_type overflow;
387    wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
388			    TYPE_SIGN (type), &overflow);
389   }
390   (if (div == EXACT_DIV_EXPR
391	|| optimize_successive_divisions_p (@2, @3))
392    (if (!overflow)
393     (div @0 { wide_int_to_tree (type, mul); })
394     (if (TYPE_UNSIGNED (type)
395	  || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
396      { build_zero_cst (type); }))))))
397
398/* Combine successive multiplications.  Similar to above, but handling
399   overflow is different.  */
400(simplify
401 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
402 (with {
403   wi::overflow_type overflow;
404   wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
405			   TYPE_SIGN (type), &overflow);
406  }
407  /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
408     otherwise undefined overflow implies that @0 must be zero.  */
409  (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
410   (mult @0 { wide_int_to_tree (type, mul); }))))
411
412/* Optimize A / A to 1.0 if we don't care about
413   NaNs or Infinities.  */
414(simplify
415 (rdiv @0 @0)
416 (if (FLOAT_TYPE_P (type)
417      && ! HONOR_NANS (type)
418      && ! HONOR_INFINITIES (type))
419  { build_one_cst (type); }))
420
421/* Optimize -A / A to -1.0 if we don't care about
422   NaNs or Infinities.  */
423(simplify
424 (rdiv:C @0 (negate @0))
425 (if (FLOAT_TYPE_P (type)
426      && ! HONOR_NANS (type)
427      && ! HONOR_INFINITIES (type))
428  { build_minus_one_cst (type); }))
429
430/* PR71078: x / abs(x) -> copysign (1.0, x) */
431(simplify
432 (rdiv:C (convert? @0) (convert? (abs @0)))
433  (if (SCALAR_FLOAT_TYPE_P (type)
434       && ! HONOR_NANS (type)
435       && ! HONOR_INFINITIES (type))
436   (switch
437    (if (types_match (type, float_type_node))
438     (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
439    (if (types_match (type, double_type_node))
440     (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
441    (if (types_match (type, long_double_type_node))
442     (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
443
444/* In IEEE floating point, x/1 is not equivalent to x for snans.  */
445(simplify
446 (rdiv @0 real_onep)
447 (if (!HONOR_SNANS (type))
448  (non_lvalue @0)))
449
450/* In IEEE floating point, x/-1 is not equivalent to -x for snans.  */
451(simplify
452 (rdiv @0 real_minus_onep)
453 (if (!HONOR_SNANS (type))
454  (negate @0)))
455
456(if (flag_reciprocal_math)
457 /* Convert (A/B)/C to A/(B*C). */
458 (simplify
459  (rdiv (rdiv:s @0 @1) @2)
460  (rdiv @0 (mult @1 @2)))
461
462 /* Canonicalize x / (C1 * y) to (x * C2) / y.  */
463 (simplify
464  (rdiv @0 (mult:s @1 REAL_CST@2))
465  (with
466   { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
467   (if (tem)
468    (rdiv (mult @0 { tem; } ) @1))))
469
470 /* Convert A/(B/C) to (A/B)*C  */
471 (simplify
472  (rdiv @0 (rdiv:s @1 @2))
473   (mult (rdiv @0 @1) @2)))
474
475/* Simplify x / (- y) to -x / y.  */
476(simplify
477 (rdiv @0 (negate @1))
478 (rdiv (negate @0) @1))
479
480(if (flag_unsafe_math_optimizations)
481 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
482    Since C / x may underflow to zero, do this only for unsafe math.  */
483 (for op (lt le gt ge)
484      neg_op (gt ge lt le)
485  (simplify
486   (op (rdiv REAL_CST@0 @1) real_zerop@2)
487   (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
488    (switch
489     (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
490      (op @1 @2))
491     /* For C < 0, use the inverted operator.  */
492     (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
493      (neg_op @1 @2)))))))
494
495/* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
496(for div (trunc_div ceil_div floor_div round_div exact_div)
497 (simplify
498  (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
499  (if (integer_pow2p (@2)
500       && tree_int_cst_sgn (@2) > 0
501       && tree_nop_conversion_p (type, TREE_TYPE (@0))
502       && wi::to_wide (@2) + wi::to_wide (@1) == 0)
503   (rshift (convert @0)
504	   { build_int_cst (integer_type_node,
505			    wi::exact_log2 (wi::to_wide (@2))); }))))
506
507/* If ARG1 is a constant, we can convert this to a multiply by the
508   reciprocal.  This does not have the same rounding properties,
509   so only do this if -freciprocal-math.  We can actually
510   always safely do it if ARG1 is a power of two, but it's hard to
511   tell if it is or not in a portable manner.  */
512(for cst (REAL_CST COMPLEX_CST VECTOR_CST)
513 (simplify
514  (rdiv @0 cst@1)
515  (if (optimize)
516   (if (flag_reciprocal_math
517	&& !real_zerop (@1))
518    (with
519     { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
520     (if (tem)
521      (mult @0 { tem; } )))
522    (if (cst != COMPLEX_CST)
523     (with { tree inverse = exact_inverse (type, @1); }
524      (if (inverse)
525       (mult @0 { inverse; } ))))))))
526
527(for mod (ceil_mod floor_mod round_mod trunc_mod)
528 /* 0 % X is always zero.  */
529 (simplify
530  (mod integer_zerop@0 @1)
531  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
532  (if (!integer_zerop (@1))
533   @0))
534 /* X % 1 is always zero.  */
535 (simplify
536  (mod @0 integer_onep)
537  { build_zero_cst (type); })
538 /* X % -1 is zero.  */
539 (simplify
540  (mod @0 integer_minus_onep@1)
541  (if (!TYPE_UNSIGNED (type))
542   { build_zero_cst (type); }))
543 /* X % X is zero.  */
544 (simplify
545  (mod @0 @0)
546  /* But not for 0 % 0 so that we can get the proper warnings and errors.  */
547  (if (!integer_zerop (@0))
548   { build_zero_cst (type); }))
549 /* (X % Y) % Y is just X % Y.  */
550 (simplify
551  (mod (mod@2 @0 @1) @1)
552  @2)
553 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2.  */
554 (simplify
555  (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
556  (if (ANY_INTEGRAL_TYPE_P (type)
557       && TYPE_OVERFLOW_UNDEFINED (type)
558       && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
559			     TYPE_SIGN (type)))
560   { build_zero_cst (type); }))
561 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
562    modulo and comparison, since it is simpler and equivalent.  */
563 (for cmp (eq ne)
564  (simplify
565   (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
566   (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
567    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
568     (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
569
570/* X % -C is the same as X % C.  */
571(simplify
572 (trunc_mod @0 INTEGER_CST@1)
573  (if (TYPE_SIGN (type) == SIGNED
574       && !TREE_OVERFLOW (@1)
575       && wi::neg_p (wi::to_wide (@1))
576       && !TYPE_OVERFLOW_TRAPS (type)
577       /* Avoid this transformation if C is INT_MIN, i.e. C == -C.  */
578       && !sign_bit_p (@1, @1))
579   (trunc_mod @0 (negate @1))))
580
581/* X % -Y is the same as X % Y.  */
582(simplify
583 (trunc_mod @0 (convert? (negate @1)))
584 (if (INTEGRAL_TYPE_P (type)
585      && !TYPE_UNSIGNED (type)
586      && !TYPE_OVERFLOW_TRAPS (type)
587      && tree_nop_conversion_p (type, TREE_TYPE (@1))
588      /* Avoid this transformation if X might be INT_MIN or
589	 Y might be -1, because we would then change valid
590	 INT_MIN % -(-1) into invalid INT_MIN % -1.  */
591      && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
592	  || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
593							(TREE_TYPE (@1))))))
594  (trunc_mod @0 (convert @1))))
595
596/* X - (X / Y) * Y is the same as X % Y.  */
597(simplify
598 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
599 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
600  (convert (trunc_mod @0 @1))))
601
602/* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
603   i.e. "X % C" into "X & (C - 1)", if X and C are positive.
604   Also optimize A % (C << N)  where C is a power of 2,
605   to A & ((C << N) - 1).
606   Also optimize "A shift (B % C)", if C is a power of 2, to
607   "A shift (B & (C - 1))".  SHIFT operation include "<<" and ">>"
608   and assume (B % C) is nonnegative as shifts negative values would
609   be UB.  */
610(match (power_of_two_cand @1)
611 INTEGER_CST@1)
612(match (power_of_two_cand @1)
613 (lshift INTEGER_CST@1 @2))
614(for mod (trunc_mod floor_mod)
615 (for shift (lshift rshift)
616  (simplify
617   (shift @0 (mod @1 (power_of_two_cand@2 @3)))
618   (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
619    (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
620						      1); }))))))
621 (simplify
622  (mod @0 (convert? (power_of_two_cand@1 @2)))
623  (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
624       /* Allow any integral conversions of the divisor, except
625	  conversion from narrower signed to wider unsigned type
626	  where if @1 would be negative power of two, the divisor
627	  would not be a power of two.  */
628       && INTEGRAL_TYPE_P (type)
629       && INTEGRAL_TYPE_P (TREE_TYPE (@1))
630       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
631	   || TYPE_UNSIGNED (TREE_TYPE (@1))
632	   || !TYPE_UNSIGNED (type))
633       && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
634   (with { tree utype = TREE_TYPE (@1);
635	   if (!TYPE_OVERFLOW_WRAPS (utype))
636	     utype = unsigned_type_for (utype); }
637    (bit_and @0 (convert (minus (convert:utype @1)
638				{ build_one_cst (utype); })))))))
639
640/* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF.  */
641(simplify
642 (trunc_div (mult @0 integer_pow2p@1) @1)
643 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
644  (bit_and @0 { wide_int_to_tree
645		(type, wi::mask (TYPE_PRECISION (type)
646				 - wi::exact_log2 (wi::to_wide (@1)),
647				 false, TYPE_PRECISION (type))); })))
648
649/* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1.  */
650(simplify
651 (mult (trunc_div @0 integer_pow2p@1) @1)
652 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
653  (bit_and @0 (negate @1))))
654
655/* Simplify (t * 2) / 2) -> t.  */
656(for div (trunc_div ceil_div floor_div round_div exact_div)
657 (simplify
658  (div (mult:c @0 @1) @1)
659  (if (ANY_INTEGRAL_TYPE_P (type))
660   (if (TYPE_OVERFLOW_UNDEFINED (type))
661    @0
662#if GIMPLE
663    (with
664     {
665       bool overflowed = true;
666       wide_int wmin0, wmax0, wmin1, wmax1;
667       if (INTEGRAL_TYPE_P (type)
668	   && get_range_info (@0, &wmin0, &wmax0) == VR_RANGE
669	   && get_range_info (@1, &wmin1, &wmax1) == VR_RANGE)
670	 {
671	   /* If the multiplication can't overflow/wrap around, then
672	      it can be optimized too.  */
673	   wi::overflow_type min_ovf, max_ovf;
674	   wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
675	   wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
676	   if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
677	     {
678	       wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
679	       wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
680	       if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
681		 overflowed = false;
682	     }
683	 }
684     }
685    (if (!overflowed)
686     @0))
687#endif
688   ))))
689
690(for op (negate abs)
691 /* Simplify cos(-x) and cos(|x|) -> cos(x).  Similarly for cosh.  */
692 (for coss (COS COSH)
693  (simplify
694   (coss (op @0))
695    (coss @0)))
696 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer.  */
697 (for pows (POW)
698  (simplify
699   (pows (op @0) REAL_CST@1)
700   (with { HOST_WIDE_INT n; }
701    (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
702     (pows @0 @1)))))
703 /* Likewise for powi.  */
704 (for pows (POWI)
705  (simplify
706   (pows (op @0) INTEGER_CST@1)
707   (if ((wi::to_wide (@1) & 1) == 0)
708    (pows @0 @1))))
709 /* Strip negate and abs from both operands of hypot.  */
710 (for hypots (HYPOT)
711  (simplify
712   (hypots (op @0) @1)
713   (hypots @0 @1))
714  (simplify
715   (hypots @0 (op @1))
716   (hypots @0 @1)))
717 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y).  */
718 (for copysigns (COPYSIGN_ALL)
719  (simplify
720   (copysigns (op @0) @1)
721   (copysigns @0 @1))))
722
723/* abs(x)*abs(x) -> x*x.  Should be valid for all types.  */
724(simplify
725 (mult (abs@1 @0) @1)
726 (mult @0 @0))
727
728/* Convert absu(x)*absu(x) -> x*x.  */
729(simplify
730 (mult (absu@1 @0) @1)
731 (mult (convert@2 @0) @2))
732
733/* cos(copysign(x, y)) -> cos(x).  Similarly for cosh.  */
734(for coss (COS COSH)
735     copysigns (COPYSIGN)
736 (simplify
737  (coss (copysigns @0 @1))
738   (coss @0)))
739
740/* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer.  */
741(for pows (POW)
742     copysigns (COPYSIGN)
743 (simplify
744  (pows (copysigns @0 @2) REAL_CST@1)
745  (with { HOST_WIDE_INT n; }
746   (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
747    (pows @0 @1)))))
748/* Likewise for powi.  */
749(for pows (POWI)
750     copysigns (COPYSIGN)
751 (simplify
752  (pows (copysigns @0 @2) INTEGER_CST@1)
753  (if ((wi::to_wide (@1) & 1) == 0)
754   (pows @0 @1))))
755
756(for hypots (HYPOT)
757     copysigns (COPYSIGN)
758 /* hypot(copysign(x, y), z) -> hypot(x, z).  */
759 (simplify
760  (hypots (copysigns @0 @1) @2)
761  (hypots @0 @2))
762 /* hypot(x, copysign(y, z)) -> hypot(x, y).  */
763 (simplify
764  (hypots @0 (copysigns @1 @2))
765  (hypots @0 @1)))
766
767/* copysign(x, CST) -> [-]abs (x).  */
768(for copysigns (COPYSIGN_ALL)
769 (simplify
770  (copysigns @0 REAL_CST@1)
771  (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
772   (negate (abs @0))
773   (abs @0))))
774
775/* copysign(copysign(x, y), z) -> copysign(x, z).  */
776(for copysigns (COPYSIGN_ALL)
777 (simplify
778  (copysigns (copysigns @0 @1) @2)
779  (copysigns @0 @2)))
780
781/* copysign(x,y)*copysign(x,y) -> x*x.  */
782(for copysigns (COPYSIGN_ALL)
783 (simplify
784  (mult (copysigns@2 @0 @1) @2)
785  (mult @0 @0)))
786
787/* ccos(-x) -> ccos(x).  Similarly for ccosh.  */
788(for ccoss (CCOS CCOSH)
789 (simplify
790  (ccoss (negate @0))
791   (ccoss @0)))
792
793/* cabs(-x) and cos(conj(x)) -> cabs(x).  */
794(for ops (conj negate)
795 (for cabss (CABS)
796  (simplify
797   (cabss (ops @0))
798   (cabss @0))))
799
800/* Fold (a * (1 << b)) into (a << b)  */
801(simplify
802 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
803  (if (! FLOAT_TYPE_P (type)
804       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
805   (lshift @0 @2)))
806
807/* Fold (1 << (C - x)) where C = precision(type) - 1
808   into ((1 << C) >> x). */
809(simplify
810 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
811  (if (INTEGRAL_TYPE_P (type)
812       && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
813       && single_use (@1))
814   (if (TYPE_UNSIGNED (type))
815     (rshift (lshift @0 @2) @3)
816   (with
817    { tree utype = unsigned_type_for (type); }
818    (convert (rshift (lshift (convert:utype @0) @2) @3))))))
819
820/* Fold (C1/X)*C2 into (C1*C2)/X.  */
821(simplify
822 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
823  (if (flag_associative_math
824       && single_use (@3))
825   (with
826    { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
827    (if (tem)
828     (rdiv { tem; } @1)))))
829
830/* Simplify ~X & X as zero.  */
831(simplify
832 (bit_and:c (convert? @0) (convert? (bit_not @0)))
833  { build_zero_cst (type); })
834
835/* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b);  */
836(simplify
837  (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
838  (if (TYPE_UNSIGNED (type))
839    (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
840
841(for bitop (bit_and bit_ior)
842     cmp (eq ne)
843 /* PR35691: Transform
844    (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
845    (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0.  */
846 (simplify
847  (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
848   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
849	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
850	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
851    (cmp (bit_ior @0 (convert @1)) @2)))
852 /* Transform:
853    (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
854    (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1.  */
855 (simplify
856  (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
857   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
858	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
859	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
860    (cmp (bit_and @0 (convert @1)) @2))))
861
862/* Fold (A & ~B) - (A & B) into (A ^ B) - B.  */
863(simplify
864 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
865  (minus (bit_xor @0 @1) @1))
866(simplify
867 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
868 (if (~wi::to_wide (@2) == wi::to_wide (@1))
869  (minus (bit_xor @0 @1) @1)))
870
871/* Fold (A & B) - (A & ~B) into B - (A ^ B).  */
872(simplify
873 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
874  (minus @1 (bit_xor @0 @1)))
875
876/* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y.  */
877(for op (bit_ior bit_xor plus)
878 (simplify
879  (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
880   (bit_xor @0 @1))
881 (simplify
882  (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
883  (if (~wi::to_wide (@2) == wi::to_wide (@1))
884   (bit_xor @0 @1))))
885
886/* PR53979: Transform ((a ^ b) | a) -> (a | b) */
887(simplify
888  (bit_ior:c (bit_xor:c @0 @1) @0)
889  (bit_ior @0 @1))
890
891/* (a & ~b) | (a ^ b)  -->  a ^ b  */
892(simplify
893 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
894 @2)
895
896/* (a & ~b) ^ ~a  -->  ~(a & b)  */
897(simplify
898 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
899 (bit_not (bit_and @0 @1)))
900
901/* (~a & b) ^ a  -->   (a | b)   */
902(simplify
903 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
904 (bit_ior @0 @1))
905
906/* (a | b) & ~(a ^ b)  -->  a & b  */
907(simplify
908 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
909 (bit_and @0 @1))
910
911/* a | ~(a ^ b)  -->  a | ~b  */
912(simplify
913 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
914 (bit_ior @0 (bit_not @1)))
915
916/* (a | b) | (a &^ b)  -->  a | b  */
917(for op (bit_and bit_xor)
918 (simplify
919  (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
920  @2))
921
922/* (a & b) | ~(a ^ b)  -->  ~(a ^ b)  */
923(simplify
924 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
925 @2)
926
927/* ~(~a & b)  -->  a | ~b  */
928(simplify
929 (bit_not (bit_and:cs (bit_not @0) @1))
930 (bit_ior @0 (bit_not @1)))
931
932/* ~(~a | b) --> a & ~b */
933(simplify
934 (bit_not (bit_ior:cs (bit_not @0) @1))
935 (bit_and @0 (bit_not @1)))
936
937/* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
938(simplify
939 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
940 (bit_and @3 (bit_not @2)))
941
942/* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
943(simplify
944 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
945 (bit_ior @3 @2))
946
947#if GIMPLE
948/* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified.  */
949(simplify
950 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
951  (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
952
953/* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified.  */
954(simplify
955 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
956  (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
957
958/* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0.  */
959(simplify
960 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
961 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
962      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
963  (bit_xor @0 @1)))
964#endif
965
966/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
967   ((A & N) + B) & M -> (A + B) & M
968   Similarly if (N & M) == 0,
969   ((A | N) + B) & M -> (A + B) & M
970   and for - instead of + (or unary - instead of +)
971   and/or ^ instead of |.
972   If B is constant and (B & M) == 0, fold into A & M.  */
973(for op (plus minus)
974 (for bitop (bit_and bit_ior bit_xor)
975  (simplify
976   (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
977    (with
978     { tree pmop[2];
979       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
980				       @3, @4, @1, ERROR_MARK, NULL_TREE,
981				       NULL_TREE, pmop); }
982     (if (utype)
983      (convert (bit_and (op (convert:utype { pmop[0]; })
984			    (convert:utype { pmop[1]; }))
985			(convert:utype @2))))))
986  (simplify
987   (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
988    (with
989     { tree pmop[2];
990       tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
991				       NULL_TREE, NULL_TREE, @1, bitop, @3,
992				       @4, pmop); }
993     (if (utype)
994      (convert (bit_and (op (convert:utype { pmop[0]; })
995			    (convert:utype { pmop[1]; }))
996			(convert:utype @2)))))))
997 (simplify
998  (bit_and (op:s @0 @1) INTEGER_CST@2)
999   (with
1000    { tree pmop[2];
1001      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1002				      NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1003				      NULL_TREE, NULL_TREE, pmop); }
1004    (if (utype)
1005     (convert (bit_and (op (convert:utype { pmop[0]; })
1006			   (convert:utype { pmop[1]; }))
1007		       (convert:utype @2)))))))
1008(for bitop (bit_and bit_ior bit_xor)
1009 (simplify
1010  (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1011   (with
1012    { tree pmop[2];
1013      tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1014				      bitop, @2, @3, NULL_TREE, ERROR_MARK,
1015				      NULL_TREE, NULL_TREE, pmop); }
1016    (if (utype)
1017     (convert (bit_and (negate (convert:utype { pmop[0]; }))
1018		       (convert:utype @1)))))))
1019
1020/* X % Y is smaller than Y.  */
1021(for cmp (lt ge)
1022 (simplify
1023  (cmp (trunc_mod @0 @1) @1)
1024  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1025   { constant_boolean_node (cmp == LT_EXPR, type); })))
1026(for cmp (gt le)
1027 (simplify
1028  (cmp @1 (trunc_mod @0 @1))
1029  (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1030   { constant_boolean_node (cmp == GT_EXPR, type); })))
1031
1032/* x | ~0 -> ~0  */
1033(simplify
1034 (bit_ior @0 integer_all_onesp@1)
1035 @1)
1036
1037/* x | 0 -> x  */
1038(simplify
1039 (bit_ior @0 integer_zerop)
1040 @0)
1041
1042/* x & 0 -> 0  */
1043(simplify
1044 (bit_and @0 integer_zerop@1)
1045 @1)
1046
1047/* ~x | x -> -1 */
1048/* ~x ^ x -> -1 */
1049/* ~x + x -> -1 */
1050(for op (bit_ior bit_xor plus)
1051 (simplify
1052  (op:c (convert? @0) (convert? (bit_not @0)))
1053  (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1054
1055/* x ^ x -> 0 */
1056(simplify
1057  (bit_xor @0 @0)
1058  { build_zero_cst (type); })
1059
1060/* Canonicalize X ^ ~0 to ~X.  */
1061(simplify
1062  (bit_xor @0 integer_all_onesp@1)
1063  (bit_not @0))
1064
1065/* x & ~0 -> x  */
1066(simplify
1067 (bit_and @0 integer_all_onesp)
1068  (non_lvalue @0))
1069
1070/* x & x -> x,  x | x -> x  */
1071(for bitop (bit_and bit_ior)
1072 (simplify
1073  (bitop @0 @0)
1074  (non_lvalue @0)))
1075
1076/* x & C -> x if we know that x & ~C == 0.  */
1077#if GIMPLE
1078(simplify
1079 (bit_and SSA_NAME@0 INTEGER_CST@1)
1080 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1081      && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1082  @0))
1083#endif
1084
1085/* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y.  */
1086(simplify
1087 (bit_not (minus (bit_not @0) @1))
1088 (plus @0 @1))
1089(simplify
1090 (bit_not (plus:c (bit_not @0) @1))
1091 (minus @0 @1))
1092
1093/* ~(X - Y) -> ~X + Y.  */
1094(simplify
1095 (bit_not (minus:s @0 @1))
1096 (plus (bit_not @0) @1))
1097(simplify
1098 (bit_not (plus:s @0 INTEGER_CST@1))
1099 (if ((INTEGRAL_TYPE_P (type)
1100       && TYPE_UNSIGNED (type))
1101      || (!TYPE_OVERFLOW_SANITIZED (type)
1102	  && may_negate_without_overflow_p (@1)))
1103  (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1104
1105#if GIMPLE
1106/* ~X + Y -> (Y - X) - 1.  */
1107(simplify
1108 (plus:c (bit_not @0) @1)
1109  (if (ANY_INTEGRAL_TYPE_P (type)
1110       && TYPE_OVERFLOW_WRAPS (type)
1111       /* -1 - X is folded to ~X, so we'd recurse endlessly.  */
1112       && !integer_all_onesp (@1))
1113   (plus (minus @1 @0) { build_minus_one_cst (type); })
1114   (if (INTEGRAL_TYPE_P (type)
1115	&& TREE_CODE (@1) == INTEGER_CST
1116	&& wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1117					      SIGNED))
1118    (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1119
1120/* ~(X >> Y) -> ~X >> Y if ~X can be simplified.  */
1121(simplify
1122 (bit_not (rshift:s @0 @1))
1123  (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1124   (rshift (bit_not! @0) @1)
1125   /* For logical right shifts, this is possible only if @0 doesn't
1126      have MSB set and the logical right shift is changed into
1127      arithmetic shift.  */
1128   (if (!wi::neg_p (tree_nonzero_bits (@0)))
1129    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1130     (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1131#endif
1132
1133/* x + (x & 1) -> (x + 1) & ~1 */
1134(simplify
1135 (plus:c @0 (bit_and:s @0 integer_onep@1))
1136 (bit_and (plus @0 @1) (bit_not @1)))
1137
1138/* x & ~(x & y) -> x & ~y */
1139/* x | ~(x | y) -> x | ~y  */
1140(for bitop (bit_and bit_ior)
1141 (simplify
1142  (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1143  (bitop @0 (bit_not @1))))
1144
1145/* (~x & y) | ~(x | y) -> ~x */
1146(simplify
1147 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1148 @2)
1149
1150/* (x | y) ^ (x | ~y) -> ~x */
1151(simplify
1152 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1153 (bit_not @0))
1154
1155/* (x & y) | ~(x | y) -> ~(x ^ y) */
1156(simplify
1157 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1158 (bit_not (bit_xor @0 @1)))
1159
1160/* (~x | y) ^ (x ^ y) -> x | ~y */
1161(simplify
1162 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1163 (bit_ior @0 (bit_not @1)))
1164
1165/* (x ^ y) | ~(x | y) -> ~(x & y) */
1166(simplify
1167 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1168 (bit_not (bit_and @0 @1)))
1169
1170/* (x | y) & ~x -> y & ~x */
1171/* (x & y) | ~x -> y | ~x */
1172(for bitop (bit_and bit_ior)
1173     rbitop (bit_ior bit_and)
1174 (simplify
1175  (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1176  (bitop @1 @2)))
1177
1178/* (x & y) ^ (x | y) -> x ^ y */
1179(simplify
1180 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1181 (bit_xor @0 @1))
1182
1183/* (x ^ y) ^ (x | y) -> x & y */
1184(simplify
1185 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1186 (bit_and @0 @1))
1187
1188/* (x & y) + (x ^ y) -> x | y */
1189/* (x & y) | (x ^ y) -> x | y */
1190/* (x & y) ^ (x ^ y) -> x | y */
1191(for op (plus bit_ior bit_xor)
1192 (simplify
1193  (op:c (bit_and @0 @1) (bit_xor @0 @1))
1194  (bit_ior @0 @1)))
1195
1196/* (x & y) + (x | y) -> x + y */
1197(simplify
1198 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1199 (plus @0 @1))
1200
1201/* (x + y) - (x | y) -> x & y */
1202(simplify
1203 (minus (plus @0 @1) (bit_ior @0 @1))
1204 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1205      && !TYPE_SATURATING (type))
1206  (bit_and @0 @1)))
1207
1208/* (x + y) - (x & y) -> x | y */
1209(simplify
1210 (minus (plus @0 @1) (bit_and @0 @1))
1211 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1212      && !TYPE_SATURATING (type))
1213  (bit_ior @0 @1)))
1214
1215/* (x | y) - y -> (x & ~y) */
1216(simplify
1217 (minus (bit_ior:cs @0 @1) @1)
1218 (bit_and @0 (bit_not @1)))
1219
1220/* (x | y) - (x ^ y) -> x & y */
1221(simplify
1222 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1223 (bit_and @0 @1))
1224
1225/* (x | y) - (x & y) -> x ^ y */
1226(simplify
1227 (minus (bit_ior @0 @1) (bit_and @0 @1))
1228 (bit_xor @0 @1))
1229
1230/* (x | y) & ~(x & y) -> x ^ y */
1231(simplify
1232 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1233 (bit_xor @0 @1))
1234
1235/* (x | y) & (~x ^ y) -> x & y */
1236(simplify
1237 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1238 (bit_and @0 @1))
1239
1240/* (~x | y) & (x | ~y) -> ~(x ^ y) */
1241(simplify
1242 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1243 (bit_not (bit_xor @0 @1)))
1244
1245/* (~x | y) ^ (x | ~y) -> x ^ y */
1246(simplify
1247 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1248 (bit_xor @0 @1))
1249
1250/* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1251(simplify
1252 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1253                              (nop_convert2? (bit_ior @0 @1))))
1254       integer_all_onesp)
1255 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1256      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1257      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1258      && !TYPE_SATURATING (TREE_TYPE (@2)))
1259 (bit_not (convert (bit_xor @0 @1)))))
1260(simplify
1261 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1262                               integer_all_onesp))
1263       (nop_convert3? (bit_ior @0 @1)))
1264 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1265      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1266      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1267      && !TYPE_SATURATING (TREE_TYPE (@2)))
1268 (bit_not (convert (bit_xor @0 @1)))))
1269(simplify
1270 (minus (nop_convert1? (bit_and @0 @1))
1271       (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1272                               integer_onep)))
1273 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1274      && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1275      && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1276      && !TYPE_SATURATING (TREE_TYPE (@2)))
1277 (bit_not (convert (bit_xor @0 @1)))))
1278
1279/* ~x & ~y -> ~(x | y)
1280   ~x | ~y -> ~(x & y) */
1281(for op (bit_and bit_ior)
1282     rop (bit_ior bit_and)
1283 (simplify
1284  (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1285  (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1286       && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1287   (bit_not (rop (convert @0) (convert @1))))))
1288
1289/* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1290   with a constant, and the two constants have no bits in common,
1291   we should treat this as a BIT_IOR_EXPR since this may produce more
1292   simplifications.  */
1293(for op (bit_xor plus)
1294 (simplify
1295  (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1296      (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1297  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1298       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1299       && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1300   (bit_ior (convert @4) (convert @5)))))
1301
1302/* (X | Y) ^ X -> Y & ~ X*/
1303(simplify
1304 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1305 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1306  (convert (bit_and @1 (bit_not @0)))))
1307
1308/* Convert ~X ^ ~Y to X ^ Y.  */
1309(simplify
1310 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1311 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1312      && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1313  (bit_xor (convert @0) (convert @1))))
1314
1315/* Convert ~X ^ C to X ^ ~C.  */
1316(simplify
1317 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1318 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1319  (bit_xor (convert @0) (bit_not @1))))
1320
1321/* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y.  */
1322(for opo (bit_and bit_xor)
1323     opi (bit_xor bit_and)
1324 (simplify
1325  (opo:c (opi:cs @0 @1) @1)
1326  (bit_and (bit_not @0) @1)))
1327
1328/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1329   operands are another bit-wise operation with a common input.  If so,
1330   distribute the bit operations to save an operation and possibly two if
1331   constants are involved.  For example, convert
1332     (A | B) & (A | C) into A | (B & C)
1333   Further simplification will occur if B and C are constants.  */
1334(for op (bit_and bit_ior bit_xor)
1335     rop (bit_ior bit_and bit_and)
1336 (simplify
1337  (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1338  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1339       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1340   (rop (convert @0) (op (convert @1) (convert @2))))))
1341
1342/* Some simple reassociation for bit operations, also handled in reassoc.  */
1343/* (X & Y) & Y -> X & Y
1344   (X | Y) | Y -> X | Y  */
1345(for op (bit_and bit_ior)
1346 (simplify
1347  (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1348  @2))
1349/* (X ^ Y) ^ Y -> X  */
1350(simplify
1351 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1352 (convert @0))
1353/* (X & Y) & (X & Z) -> (X & Y) & Z
1354   (X | Y) | (X | Z) -> (X | Y) | Z  */
1355(for op (bit_and bit_ior)
1356 (simplify
1357  (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1358  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1359       && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1360   (if (single_use (@5) && single_use (@6))
1361    (op @3 (convert @2))
1362    (if (single_use (@3) && single_use (@4))
1363     (op (convert @1) @5))))))
1364/* (X ^ Y) ^ (X ^ Z) -> Y ^ Z  */
1365(simplify
1366 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1367 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1368      && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1369  (bit_xor (convert @1) (convert @2))))
1370
1371/* Convert abs (abs (X)) into abs (X).
1372   also absu (absu (X)) into absu (X).  */
1373(simplify
1374 (abs (abs@1 @0))
1375 @1)
1376
1377(simplify
1378 (absu (convert@2 (absu@1 @0)))
1379 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1380  @1))
1381
1382/* Convert abs[u] (-X) -> abs[u] (X).  */
1383(simplify
1384 (abs (negate @0))
1385 (abs @0))
1386
1387(simplify
1388 (absu (negate @0))
1389 (absu @0))
1390
1391/* Convert abs[u] (X)  where X is nonnegative -> (X).  */
1392(simplify
1393 (abs tree_expr_nonnegative_p@0)
1394 @0)
1395
1396(simplify
1397 (absu tree_expr_nonnegative_p@0)
1398 (convert @0))
1399
1400/* Simplify (-(X < 0) | 1) * X into abs (X).  */
1401(simplify
1402 (mult:c (bit_ior (negate (convert? (lt @0 integer_zerop))) integer_onep) @0)
1403 (if (INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type))
1404  (abs @0)))
1405
1406/* Similarly (-(X < 0) | 1U) * X into absu (X).  */
1407(simplify
1408 (mult:c (bit_ior (nop_convert (negate (convert? (lt @0 integer_zerop))))
1409		  integer_onep) (nop_convert @0))
1410 (if (INTEGRAL_TYPE_P (type)
1411      && TYPE_UNSIGNED (type)
1412      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1413      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1414  (absu @0)))
1415
1416/* A few cases of fold-const.c negate_expr_p predicate.  */
1417(match negate_expr_p
1418 INTEGER_CST
1419 (if ((INTEGRAL_TYPE_P (type)
1420       && TYPE_UNSIGNED (type))
1421      || (!TYPE_OVERFLOW_SANITIZED (type)
1422	  && may_negate_without_overflow_p (t)))))
1423(match negate_expr_p
1424 FIXED_CST)
1425(match negate_expr_p
1426 (negate @0)
1427 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1428(match negate_expr_p
1429 REAL_CST
1430 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1431/* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1432   ways.  */
1433(match negate_expr_p
1434 VECTOR_CST
1435 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1436(match negate_expr_p
1437 (minus @0 @1)
1438 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1439      || (FLOAT_TYPE_P (type)
1440	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1441	  && !HONOR_SIGNED_ZEROS (type)))))
1442
1443/* (-A) * (-B) -> A * B  */
1444(simplify
1445 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1446  (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1447       && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1448   (mult (convert @0) (convert (negate @1)))))
1449
1450/* -(A + B) -> (-B) - A.  */
1451(simplify
1452 (negate (plus:c @0 negate_expr_p@1))
1453 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1454      && !HONOR_SIGNED_ZEROS (element_mode (type)))
1455  (minus (negate @1) @0)))
1456
1457/* -(A - B) -> B - A.  */
1458(simplify
1459 (negate (minus @0 @1))
1460 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1461      || (FLOAT_TYPE_P (type)
1462	  && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1463	  && !HONOR_SIGNED_ZEROS (type)))
1464  (minus @1 @0)))
1465(simplify
1466 (negate (pointer_diff @0 @1))
1467 (if (TYPE_OVERFLOW_UNDEFINED (type))
1468  (pointer_diff @1 @0)))
1469
1470/* A - B -> A + (-B) if B is easily negatable.  */
1471(simplify
1472 (minus @0 negate_expr_p@1)
1473 (if (!FIXED_POINT_TYPE_P (type))
1474 (plus @0 (negate @1))))
1475
1476/* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1477   when profitable.
1478   For bitwise binary operations apply operand conversions to the
1479   binary operation result instead of to the operands.  This allows
1480   to combine successive conversions and bitwise binary operations.
1481   We combine the above two cases by using a conditional convert.  */
1482(for bitop (bit_and bit_ior bit_xor)
1483 (simplify
1484  (bitop (convert@2 @0) (convert?@3 @1))
1485  (if (((TREE_CODE (@1) == INTEGER_CST
1486	 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1487	 && int_fits_type_p (@1, TREE_TYPE (@0)))
1488	|| types_match (@0, @1))
1489       /* ???  This transform conflicts with fold-const.c doing
1490	  Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1491	  constants (if x has signed type, the sign bit cannot be set
1492	  in c).  This folds extension into the BIT_AND_EXPR.
1493	  Restrict it to GIMPLE to avoid endless recursions.  */
1494       && (bitop != BIT_AND_EXPR || GIMPLE)
1495       && (/* That's a good idea if the conversion widens the operand, thus
1496	      after hoisting the conversion the operation will be narrower.  */
1497	   TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1498	   /* It's also a good idea if the conversion is to a non-integer
1499	      mode.  */
1500	   || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1501	   /* Or if the precision of TO is not the same as the precision
1502	      of its mode.  */
1503	   || !type_has_mode_precision_p (type)
1504	   /* In GIMPLE, getting rid of 2 conversions for one new results
1505	      in smaller IL.  */
1506	   || (GIMPLE
1507	       && TREE_CODE (@1) != INTEGER_CST
1508	       && tree_nop_conversion_p (type, TREE_TYPE (@0))
1509	       && single_use (@2)
1510	       && single_use (@3))))
1511   (convert (bitop @0 (convert @1)))))
1512 /* In GIMPLE, getting rid of 2 conversions for one new results
1513    in smaller IL.  */
1514 (simplify
1515  (convert (bitop:cs@2 (nop_convert:s @0) @1))
1516  (if (GIMPLE
1517       && TREE_CODE (@1) != INTEGER_CST
1518       && tree_nop_conversion_p (type, TREE_TYPE (@2))
1519       && types_match (type, @0))
1520   (bitop @0 (convert @1)))))
1521
1522(for bitop (bit_and bit_ior)
1523     rbitop (bit_ior bit_and)
1524  /* (x | y) & x -> x */
1525  /* (x & y) | x -> x */
1526 (simplify
1527  (bitop:c (rbitop:c @0 @1) @0)
1528  @0)
1529 /* (~x | y) & x -> x & y */
1530 /* (~x & y) | x -> x | y */
1531 (simplify
1532  (bitop:c (rbitop:c (bit_not @0) @1) @0)
1533  (bitop @0 @1)))
1534
1535/* ((x | y) & z) | x -> (z & y) | x */
1536(simplify
1537  (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1538  (bit_ior (bit_and @2 @1) @0))
1539
1540/* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1541(simplify
1542  (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1543  (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1544
1545/* Combine successive equal operations with constants.  */
1546(for bitop (bit_and bit_ior bit_xor)
1547 (simplify
1548  (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1549  (if (!CONSTANT_CLASS_P (@0))
1550   /* This is the canonical form regardless of whether (bitop @1 @2) can be
1551      folded to a constant.  */
1552   (bitop @0 (bitop @1 @2))
1553   /* In this case we have three constants and (bitop @0 @1) doesn't fold
1554      to a constant.  This can happen if @0 or @1 is a POLY_INT_CST and if
1555      the values involved are such that the operation can't be decided at
1556      compile time.  Try folding one of @0 or @1 with @2 to see whether
1557      that combination can be decided at compile time.
1558
1559      Keep the existing form if both folds fail, to avoid endless
1560      oscillation.  */
1561   (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1562    (if (cst1)
1563     (bitop @1 { cst1; })
1564     (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1565      (if (cst2)
1566       (bitop @0 { cst2; }))))))))
1567
1568/* Try simple folding for X op !X, and X op X with the help
1569   of the truth_valued_p and logical_inverted_value predicates.  */
1570(match truth_valued_p
1571 @0
1572 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1573(for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1574 (match truth_valued_p
1575  (op @0 @1)))
1576(match truth_valued_p
1577  (truth_not @0))
1578
1579(match (logical_inverted_value @0)
1580 (truth_not @0))
1581(match (logical_inverted_value @0)
1582 (bit_not truth_valued_p@0))
1583(match (logical_inverted_value @0)
1584 (eq @0 integer_zerop))
1585(match (logical_inverted_value @0)
1586 (ne truth_valued_p@0 integer_truep))
1587(match (logical_inverted_value @0)
1588 (bit_xor truth_valued_p@0 integer_truep))
1589
1590/* X & !X -> 0.  */
1591(simplify
1592 (bit_and:c @0 (logical_inverted_value @0))
1593 { build_zero_cst (type); })
1594/* X | !X and X ^ !X -> 1, , if X is truth-valued.  */
1595(for op (bit_ior bit_xor)
1596 (simplify
1597  (op:c truth_valued_p@0 (logical_inverted_value @0))
1598  { constant_boolean_node (true, type); }))
1599/* X ==/!= !X is false/true.  */
1600(for op (eq ne)
1601 (simplify
1602  (op:c truth_valued_p@0 (logical_inverted_value @0))
1603  { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1604
1605/* ~~x -> x */
1606(simplify
1607  (bit_not (bit_not @0))
1608  @0)
1609
1610/* Convert ~ (-A) to A - 1.  */
1611(simplify
1612 (bit_not (convert? (negate @0)))
1613 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1614      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1615  (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1616
1617/* Convert - (~A) to A + 1.  */
1618(simplify
1619 (negate (nop_convert? (bit_not @0)))
1620 (plus (view_convert @0) { build_each_one_cst (type); }))
1621
1622/* Convert ~ (A - 1) or ~ (A + -1) to -A.  */
1623(simplify
1624 (bit_not (convert? (minus @0 integer_each_onep)))
1625 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1626      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1627  (convert (negate @0))))
1628(simplify
1629 (bit_not (convert? (plus @0 integer_all_onesp)))
1630 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1631      || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1632  (convert (negate @0))))
1633
1634/* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify.  */
1635(simplify
1636 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1637 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1638  (convert (bit_xor @0 (bit_not @1)))))
1639(simplify
1640 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1641 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1642  (convert (bit_xor @0 @1))))
1643
1644/* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical.  */
1645(simplify
1646 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1647 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1648  (bit_not (bit_xor (view_convert @0) @1))))
1649
1650/* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1651(simplify
1652 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1653 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1654
1655/* Fold A - (A & B) into ~B & A.  */
1656(simplify
1657 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1658 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1659      && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1660  (convert (bit_and (bit_not @1) @0))))
1661
1662/* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0  */
1663(for cmp (gt lt ge le)
1664(simplify
1665 (mult (convert (cmp @0 @1)) @2)
1666  (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1667   (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1668
1669/* For integral types with undefined overflow and C != 0 fold
1670   x * C EQ/NE y * C into x EQ/NE y.  */
1671(for cmp (eq ne)
1672 (simplify
1673  (cmp (mult:c @0 @1) (mult:c @2 @1))
1674  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1675       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1676       && tree_expr_nonzero_p (@1))
1677   (cmp @0 @2))))
1678
1679/* For integral types with wrapping overflow and C odd fold
1680   x * C EQ/NE y * C into x EQ/NE y.  */
1681(for cmp (eq ne)
1682 (simplify
1683  (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1684  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1685       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1686       && (TREE_INT_CST_LOW (@1) & 1) != 0)
1687   (cmp @0 @2))))
1688
1689/* For integral types with undefined overflow and C != 0 fold
1690   x * C RELOP y * C into:
1691
1692   x RELOP y for nonnegative C
1693   y RELOP x for negative C  */
1694(for cmp (lt gt le ge)
1695 (simplify
1696  (cmp (mult:c @0 @1) (mult:c @2 @1))
1697  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1698       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1699   (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1700    (cmp @0 @2)
1701   (if (TREE_CODE (@1) == INTEGER_CST
1702	&& wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1703    (cmp @2 @0))))))
1704
1705/* (X - 1U) <= INT_MAX-1U into (int) X > 0.  */
1706(for cmp (le gt)
1707     icmp (gt le)
1708 (simplify
1709  (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1710   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1711	&& TYPE_UNSIGNED (TREE_TYPE (@0))
1712	&& TYPE_PRECISION (TREE_TYPE (@0)) > 1
1713	&& (wi::to_wide (@2)
1714	    == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1715    (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1716     (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1717
1718/* X / 4 < Y / 4 iff X < Y when the division is known to be exact.  */
1719(for cmp (simple_comparison)
1720 (simplify
1721  (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1722  (if (element_precision (@3) >= element_precision (@0)
1723       && types_match (@0, @1))
1724   (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1725    (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1726     (cmp @1 @0)
1727     (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1728      (with
1729       {
1730	tree utype = unsigned_type_for (TREE_TYPE (@0));
1731       }
1732       (cmp (convert:utype @1) (convert:utype @0)))))
1733    (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1734     (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1735      (cmp @0 @1)
1736      (with
1737       {
1738	tree utype = unsigned_type_for (TREE_TYPE (@0));
1739       }
1740       (cmp (convert:utype @0) (convert:utype @1)))))))))
1741
1742/* X / C1 op C2 into a simple range test.  */
1743(for cmp (simple_comparison)
1744 (simplify
1745  (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1746  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1747       && integer_nonzerop (@1)
1748       && !TREE_OVERFLOW (@1)
1749       && !TREE_OVERFLOW (@2))
1750   (with { tree lo, hi; bool neg_overflow;
1751	   enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1752						   &neg_overflow); }
1753    (switch
1754     (if (code == LT_EXPR || code == GE_EXPR)
1755       (if (TREE_OVERFLOW (lo))
1756	{ build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1757	(if (code == LT_EXPR)
1758	 (lt @0 { lo; })
1759	 (ge @0 { lo; }))))
1760     (if (code == LE_EXPR || code == GT_EXPR)
1761       (if (TREE_OVERFLOW (hi))
1762	{ build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1763	(if (code == LE_EXPR)
1764	 (le @0 { hi; })
1765	 (gt @0 { hi; }))))
1766     (if (!lo && !hi)
1767      { build_int_cst (type, code == NE_EXPR); })
1768     (if (code == EQ_EXPR && !hi)
1769      (ge @0 { lo; }))
1770     (if (code == EQ_EXPR && !lo)
1771      (le @0 { hi; }))
1772     (if (code == NE_EXPR && !hi)
1773      (lt @0 { lo; }))
1774     (if (code == NE_EXPR && !lo)
1775      (gt @0 { hi; }))
1776     (if (GENERIC)
1777      { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1778			   lo, hi); })
1779     (with
1780      {
1781	tree etype = range_check_type (TREE_TYPE (@0));
1782	if (etype)
1783	  {
1784	    hi = fold_convert (etype, hi);
1785	    lo = fold_convert (etype, lo);
1786	    hi = const_binop (MINUS_EXPR, etype, hi, lo);
1787	  }
1788      }
1789      (if (etype && hi && !TREE_OVERFLOW (hi))
1790       (if (code == EQ_EXPR)
1791	(le (minus (convert:etype @0) { lo; }) { hi; })
1792	(gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1793
1794/* X + Z < Y + Z is the same as X < Y when there is no overflow.  */
1795(for op (lt le ge gt)
1796 (simplify
1797  (op (plus:c @0 @2) (plus:c @1 @2))
1798  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1799       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1800   (op @0 @1))))
1801/* For equality and subtraction, this is also true with wrapping overflow.  */
1802(for op (eq ne minus)
1803 (simplify
1804  (op (plus:c @0 @2) (plus:c @1 @2))
1805  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1806       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1807	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1808   (op @0 @1))))
1809
1810/* X - Z < Y - Z is the same as X < Y when there is no overflow.  */
1811(for op (lt le ge gt)
1812 (simplify
1813  (op (minus @0 @2) (minus @1 @2))
1814  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1815       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1816   (op @0 @1))))
1817/* For equality and subtraction, this is also true with wrapping overflow.  */
1818(for op (eq ne minus)
1819 (simplify
1820  (op (minus @0 @2) (minus @1 @2))
1821  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1822       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1823	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1824   (op @0 @1))))
1825/* And for pointers...  */
1826(for op (simple_comparison)
1827 (simplify
1828  (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1829  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1830   (op @0 @1))))
1831(simplify
1832 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1833 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1834      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1835  (pointer_diff @0 @1)))
1836
1837/* Z - X < Z - Y is the same as Y < X when there is no overflow.  */
1838(for op (lt le ge gt)
1839 (simplify
1840  (op (minus @2 @0) (minus @2 @1))
1841  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1842       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1843   (op @1 @0))))
1844/* For equality and subtraction, this is also true with wrapping overflow.  */
1845(for op (eq ne minus)
1846 (simplify
1847  (op (minus @2 @0) (minus @2 @1))
1848  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1849       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1850	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1851   (op @1 @0))))
1852/* And for pointers...  */
1853(for op (simple_comparison)
1854 (simplify
1855  (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1856  (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1857   (op @1 @0))))
1858(simplify
1859 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1860 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1861      && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1862  (pointer_diff @1 @0)))
1863
1864/* X + Y < Y is the same as X < 0 when there is no overflow.  */
1865(for op (lt le gt ge)
1866 (simplify
1867  (op:c (plus:c@2 @0 @1) @1)
1868  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1869       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1870       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1871       && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1872   (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1873/* For equality, this is also true with wrapping overflow.  */
1874(for op (eq ne)
1875 (simplify
1876  (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1877  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1878       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1879	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1880       && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1881       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1882       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1883   (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1884 (simplify
1885  (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1886  (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1887       && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1888       && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1889   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1890
1891/* X - Y < X is the same as Y > 0 when there is no overflow.
1892   For equality, this is also true with wrapping overflow.  */
1893(for op (simple_comparison)
1894 (simplify
1895  (op:c @0 (minus@2 @0 @1))
1896  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1897       && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1898	   || ((op == EQ_EXPR || op == NE_EXPR)
1899	       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1900       && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1901   (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1902
1903/* Transform:
1904   (X / Y) == 0 -> X < Y if X, Y are unsigned.
1905   (X / Y) != 0 -> X >= Y, if X, Y are unsigned.  */
1906(for cmp (eq ne)
1907     ocmp (lt ge)
1908 (simplify
1909  (cmp (trunc_div @0 @1) integer_zerop)
1910  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1911       /* Complex ==/!= is allowed, but not </>=.  */
1912       && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1913       && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1914   (ocmp @0 @1))))
1915
1916/* X == C - X can never be true if C is odd.  */
1917(for cmp (eq ne)
1918 (simplify
1919  (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1920  (if (TREE_INT_CST_LOW (@1) & 1)
1921   { constant_boolean_node (cmp == NE_EXPR, type); })))
1922
1923/* Arguments on which one can call get_nonzero_bits to get the bits
1924   possibly set.  */
1925(match with_possible_nonzero_bits
1926 INTEGER_CST@0)
1927(match with_possible_nonzero_bits
1928 SSA_NAME@0
1929 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1930/* Slightly extended version, do not make it recursive to keep it cheap.  */
1931(match (with_possible_nonzero_bits2 @0)
1932 with_possible_nonzero_bits@0)
1933(match (with_possible_nonzero_bits2 @0)
1934 (bit_and:c with_possible_nonzero_bits@0 @2))
1935
1936/* Same for bits that are known to be set, but we do not have
1937   an equivalent to get_nonzero_bits yet.  */
1938(match (with_certain_nonzero_bits2 @0)
1939 INTEGER_CST@0)
1940(match (with_certain_nonzero_bits2 @0)
1941 (bit_ior @1 INTEGER_CST@0))
1942
1943/* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0.  */
1944(for cmp (eq ne)
1945 (simplify
1946  (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1947  (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1948   { constant_boolean_node (cmp == NE_EXPR, type); })))
1949
1950/* ((X inner_op C0) outer_op C1)
1951   With X being a tree where value_range has reasoned certain bits to always be
1952   zero throughout its computed value range,
1953   inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1954   where zero_mask has 1's for all bits that are sure to be 0 in
1955   and 0's otherwise.
1956   if (inner_op == '^') C0 &= ~C1;
1957   if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1958   if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1959*/
1960(for inner_op (bit_ior bit_xor)
1961     outer_op (bit_xor bit_ior)
1962(simplify
1963 (outer_op
1964  (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1965 (with
1966  {
1967    bool fail = false;
1968    wide_int zero_mask_not;
1969    wide_int C0;
1970    wide_int cst_emit;
1971
1972    if (TREE_CODE (@2) == SSA_NAME)
1973      zero_mask_not = get_nonzero_bits (@2);
1974    else
1975      fail = true;
1976
1977    if (inner_op == BIT_XOR_EXPR)
1978      {
1979	C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1980	cst_emit = C0 | wi::to_wide (@1);
1981      }
1982    else
1983      {
1984	C0 = wi::to_wide (@0);
1985	cst_emit = C0 ^ wi::to_wide (@1);
1986      }
1987  }
1988  (if (!fail && (C0 & zero_mask_not) == 0)
1989   (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1990   (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1991    (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1992
1993/* Associate (p +p off1) +p off2 as (p +p (off1 + off2)).  */
1994(simplify
1995  (pointer_plus (pointer_plus:s @0 @1) @3)
1996  (pointer_plus @0 (plus @1 @3)))
1997
1998/* Pattern match
1999     tem1 = (long) ptr1;
2000     tem2 = (long) ptr2;
2001     tem3 = tem2 - tem1;
2002     tem4 = (unsigned long) tem3;
2003     tem5 = ptr1 + tem4;
2004   and produce
2005     tem5 = ptr2;  */
2006(simplify
2007  (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2008  /* Conditionally look through a sign-changing conversion.  */
2009  (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2010       && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2011	    || (GENERIC && type == TREE_TYPE (@1))))
2012   @1))
2013(simplify
2014  (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2015  (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2016   (convert @1)))
2017
2018/* Pattern match
2019     tem = (sizetype) ptr;
2020     tem = tem & algn;
2021     tem = -tem;
2022     ... = ptr p+ tem;
2023   and produce the simpler and easier to analyze with respect to alignment
2024     ... = ptr & ~algn;  */
2025(simplify
2026  (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2027  (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2028   (bit_and @0 { algn; })))
2029
2030/* Try folding difference of addresses.  */
2031(simplify
2032 (minus (convert ADDR_EXPR@0) (convert @1))
2033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2034  (with { poly_int64 diff; }
2035   (if (ptr_difference_const (@0, @1, &diff))
2036    { build_int_cst_type (type, diff); }))))
2037(simplify
2038 (minus (convert @0) (convert ADDR_EXPR@1))
2039 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2040  (with { poly_int64 diff; }
2041   (if (ptr_difference_const (@0, @1, &diff))
2042    { build_int_cst_type (type, diff); }))))
2043(simplify
2044 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2045 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2046      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2047  (with { poly_int64 diff; }
2048   (if (ptr_difference_const (@0, @1, &diff))
2049    { build_int_cst_type (type, diff); }))))
2050(simplify
2051 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2052 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2053      && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2054  (with { poly_int64 diff; }
2055   (if (ptr_difference_const (@0, @1, &diff))
2056    { build_int_cst_type (type, diff); }))))
2057
2058/* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst].  */
2059(simplify
2060 (convert (pointer_diff @0 INTEGER_CST@1))
2061 (if (POINTER_TYPE_P (type))
2062  { build_fold_addr_expr_with_type
2063      (build2 (MEM_REF, char_type_node, @0,
2064	       wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2065	       type); }))
2066
2067/* If arg0 is derived from the address of an object or function, we may
2068   be able to fold this expression using the object or function's
2069   alignment.  */
2070(simplify
2071 (bit_and (convert? @0) INTEGER_CST@1)
2072 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2073      && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2074  (with
2075   {
2076     unsigned int align;
2077     unsigned HOST_WIDE_INT bitpos;
2078     get_pointer_alignment_1 (@0, &align, &bitpos);
2079   }
2080   (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2081    { wide_int_to_tree (type, (wi::to_wide (@1)
2082			       & (bitpos / BITS_PER_UNIT))); }))))
2083
2084(match min_value
2085 INTEGER_CST
2086 (if (INTEGRAL_TYPE_P (type)
2087      && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2088
2089(match max_value
2090 INTEGER_CST
2091 (if (INTEGRAL_TYPE_P (type)
2092      && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2093
2094/* x >  y  &&  x != XXX_MIN  -->  x > y
2095   x >  y  &&  x == XXX_MIN  -->  false . */
2096(for eqne (eq ne)
2097 (simplify
2098  (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2099   (switch
2100    (if (eqne == EQ_EXPR)
2101     { constant_boolean_node (false, type); })
2102    (if (eqne == NE_EXPR)
2103     @2)
2104    )))
2105
2106/* x <  y  &&  x != XXX_MAX  -->  x < y
2107   x <  y  &&  x == XXX_MAX  -->  false.  */
2108(for eqne (eq ne)
2109 (simplify
2110  (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2111   (switch
2112    (if (eqne == EQ_EXPR)
2113     { constant_boolean_node (false, type); })
2114    (if (eqne == NE_EXPR)
2115     @2)
2116    )))
2117
2118/* x <=  y  &&  x == XXX_MIN  -->  x == XXX_MIN.  */
2119(simplify
2120 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2121  @2)
2122
2123/* x >=  y  &&  x == XXX_MAX  -->  x == XXX_MAX.  */
2124(simplify
2125 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2126  @2)
2127
2128/* x >  y  ||  x != XXX_MIN   -->  x != XXX_MIN.  */
2129(simplify
2130 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2131  @2)
2132
2133/* x <=  y  ||  x != XXX_MIN   -->  true.  */
2134(simplify
2135 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2136  { constant_boolean_node (true, type); })
2137
2138/* x <=  y  ||  x == XXX_MIN   -->  x <= y.  */
2139(simplify
2140 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2141  @2)
2142
2143/* x <  y  ||  x != XXX_MAX   -->  x != XXX_MAX.  */
2144(simplify
2145 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2146  @2)
2147
2148/* x >=  y  ||  x != XXX_MAX   -->  true
2149   x >=  y  ||  x == XXX_MAX   -->  x >= y.  */
2150(for eqne (eq ne)
2151 (simplify
2152  (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2153   (switch
2154    (if (eqne == EQ_EXPR)
2155     @2)
2156    (if (eqne == NE_EXPR)
2157     { constant_boolean_node (true, type); }))))
2158
2159/* y == XXX_MIN || x < y --> x <= y - 1 */
2160(simplify
2161 (bit_ior:c (eq:s @1 min_value) (lt:s @0 @1))
2162  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2163       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2164  (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2165
2166/* y != XXX_MIN && x >= y --> x > y - 1 */
2167(simplify
2168 (bit_and:c (ne:s @1 min_value) (ge:s @0 @1))
2169  (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2170       && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2171  (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2172
2173/* Convert (X == CST1) && (X OP2 CST2) to a known value
2174   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2175
2176(for code1 (eq ne)
2177 (for code2 (eq ne lt gt le ge)
2178  (simplify
2179   (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2180    (with
2181     {
2182      int cmp = tree_int_cst_compare (@1, @2);
2183      bool val;
2184      switch (code2)
2185	 {
2186	case EQ_EXPR: val = (cmp == 0); break;
2187	case NE_EXPR: val = (cmp != 0); break;
2188	case LT_EXPR: val = (cmp < 0); break;
2189	case GT_EXPR: val = (cmp > 0); break;
2190	case LE_EXPR: val = (cmp <= 0); break;
2191	case GE_EXPR: val = (cmp >= 0); break;
2192	default: gcc_unreachable ();
2193	}
2194     }
2195     (switch
2196      (if (code1 == EQ_EXPR && val) @3)
2197      (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2198      (if (code1 == NE_EXPR && !val) @4))))))
2199
2200/* Convert (X OP1 CST1) && (X OP2 CST2).  */
2201
2202(for code1 (lt le gt ge)
2203 (for code2 (lt le gt ge)
2204  (simplify
2205  (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2206   (with
2207    {
2208     int cmp = tree_int_cst_compare (@1, @2);
2209    }
2210    (switch
2211     /* Choose the more restrictive of two < or <= comparisons.  */
2212     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2213	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2214      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2215       @3
2216       @4))
2217     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2218     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2219	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2220      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2221       @3
2222       @4))
2223     /* Check for singleton ranges.  */
2224     (if (cmp == 0
2225	  && ((code1 == LE_EXPR && code2 == GE_EXPR)
2226	    || (code1 == GE_EXPR && code2 == LE_EXPR)))
2227      (eq @0 @1))
2228     /* Check for disjoint ranges.  */
2229     (if (cmp <= 0
2230	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2231	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2232      { constant_boolean_node (false, type); })
2233     (if (cmp >= 0
2234	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2235	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2236      { constant_boolean_node (false, type); })
2237     )))))
2238
2239/* Convert (X == CST1) || (X OP2 CST2) to a known value
2240   based on CST1 OP2 CST2.  Similarly for (X != CST1).  */
2241
2242(for code1 (eq ne)
2243 (for code2 (eq ne lt gt le ge)
2244  (simplify
2245   (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2246    (with
2247     {
2248      int cmp = tree_int_cst_compare (@1, @2);
2249      bool val;
2250      switch (code2)
2251	{
2252	case EQ_EXPR: val = (cmp == 0); break;
2253	case NE_EXPR: val = (cmp != 0); break;
2254	case LT_EXPR: val = (cmp < 0); break;
2255	case GT_EXPR: val = (cmp > 0); break;
2256	case LE_EXPR: val = (cmp <= 0); break;
2257	case GE_EXPR: val = (cmp >= 0); break;
2258	default: gcc_unreachable ();
2259	}
2260     }
2261     (switch
2262      (if (code1 == EQ_EXPR && val) @4)
2263      (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2264      (if (code1 == NE_EXPR && !val) @3))))))
2265
2266/* Convert (X OP1 CST1) || (X OP2 CST2).  */
2267
2268(for code1 (lt le gt ge)
2269 (for code2 (lt le gt ge)
2270  (simplify
2271  (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2272   (with
2273    {
2274     int cmp = tree_int_cst_compare (@1, @2);
2275    }
2276    (switch
2277     /* Choose the more restrictive of two < or <= comparisons.  */
2278     (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2279	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2280      (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2281       @4
2282       @3))
2283     /* Likewise chose the more restrictive of two > or >= comparisons.  */
2284     (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2285	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2286      (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2287       @4
2288       @3))
2289     /* Check for singleton ranges.  */
2290     (if (cmp == 0
2291	  && ((code1 == LT_EXPR && code2 == GT_EXPR)
2292	      || (code1 == GT_EXPR && code2 == LT_EXPR)))
2293      (ne @0 @2))
2294     /* Check for disjoint ranges.  */
2295     (if (cmp >= 0
2296	  && (code1 == LT_EXPR || code1 == LE_EXPR)
2297	  && (code2 == GT_EXPR || code2 == GE_EXPR))
2298      { constant_boolean_node (true, type); })
2299     (if (cmp <= 0
2300	  && (code1 == GT_EXPR || code1 == GE_EXPR)
2301	  && (code2 == LT_EXPR || code2 == LE_EXPR))
2302      { constant_boolean_node (true, type); })
2303     )))))
2304
2305/* We can't reassociate at all for saturating types.  */
2306(if (!TYPE_SATURATING (type))
2307
2308 /* Contract negates.  */
2309 /* A + (-B) -> A - B */
2310 (simplify
2311  (plus:c @0 (convert? (negate @1)))
2312  /* Apply STRIP_NOPS on the negate.  */
2313  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2314       && !TYPE_OVERFLOW_SANITIZED (type))
2315   (with
2316    {
2317     tree t1 = type;
2318     if (INTEGRAL_TYPE_P (type)
2319	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2320       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2321    }
2322    (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2323 /* A - (-B) -> A + B */
2324 (simplify
2325  (minus @0 (convert? (negate @1)))
2326  (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2327       && !TYPE_OVERFLOW_SANITIZED (type))
2328   (with
2329    {
2330     tree t1 = type;
2331     if (INTEGRAL_TYPE_P (type)
2332	 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2333       t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2334    }
2335    (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2336 /* -(T)(-A) -> (T)A
2337    Sign-extension is ok except for INT_MIN, which thankfully cannot
2338    happen without overflow.  */
2339 (simplify
2340  (negate (convert (negate @1)))
2341  (if (INTEGRAL_TYPE_P (type)
2342       && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2343	   || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2344	       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2345       && !TYPE_OVERFLOW_SANITIZED (type)
2346       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2347   (convert @1)))
2348 (simplify
2349  (negate (convert negate_expr_p@1))
2350  (if (SCALAR_FLOAT_TYPE_P (type)
2351       && ((DECIMAL_FLOAT_TYPE_P (type)
2352	    == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2353	    && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2354	   || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2355   (convert (negate @1))))
2356 (simplify
2357  (negate (nop_convert? (negate @1)))
2358  (if (!TYPE_OVERFLOW_SANITIZED (type)
2359       && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2360   (view_convert @1)))
2361
2362 /* We can't reassociate floating-point unless -fassociative-math
2363    or fixed-point plus or minus because of saturation to +-Inf.  */
2364 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2365      && !FIXED_POINT_TYPE_P (type))
2366
2367  /* Match patterns that allow contracting a plus-minus pair
2368     irrespective of overflow issues.  */
2369  /* (A +- B) - A       ->  +- B */
2370  /* (A +- B) -+ B      ->  A */
2371  /* A - (A +- B)       -> -+ B */
2372  /* A +- (B -+ A)      ->  +- B */
2373  (simplify
2374   (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2375   (view_convert @1))
2376  (simplify
2377   (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2378   (if (!ANY_INTEGRAL_TYPE_P (type)
2379	|| TYPE_OVERFLOW_WRAPS (type))
2380   (negate (view_convert @1))
2381   (view_convert (negate @1))))
2382  (simplify
2383   (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2384   (view_convert @0))
2385  (simplify
2386   (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2387    (if (!ANY_INTEGRAL_TYPE_P (type)
2388	 || TYPE_OVERFLOW_WRAPS (type))
2389     (negate (view_convert @1))
2390     (view_convert (negate @1))))
2391  (simplify
2392   (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2393   (view_convert @1))
2394  /* (A +- B) + (C - A)   -> C +- B */
2395  /* (A +  B) - (A - C)   -> B + C */
2396  /* More cases are handled with comparisons.  */
2397  (simplify
2398   (plus:c (plus:c @0 @1) (minus @2 @0))
2399   (plus @2 @1))
2400  (simplify
2401   (plus:c (minus @0 @1) (minus @2 @0))
2402   (minus @2 @1))
2403  (simplify
2404   (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2405   (if (TYPE_OVERFLOW_UNDEFINED (type)
2406	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2407    (pointer_diff @2 @1)))
2408  (simplify
2409   (minus (plus:c @0 @1) (minus @0 @2))
2410   (plus @1 @2))
2411
2412  /* (A +- CST1) +- CST2 -> A + CST3
2413     Use view_convert because it is safe for vectors and equivalent for
2414     scalars.  */
2415  (for outer_op (plus minus)
2416   (for inner_op (plus minus)
2417	neg_inner_op (minus plus)
2418    (simplify
2419     (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2420	       CONSTANT_CLASS_P@2)
2421     /* If one of the types wraps, use that one.  */
2422     (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2423      /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2424	 forever if something doesn't simplify into a constant.  */
2425      (if (!CONSTANT_CLASS_P (@0))
2426       (if (outer_op == PLUS_EXPR)
2427	(plus (view_convert @0) (inner_op @2 (view_convert @1)))
2428	(minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2429      (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2430	   || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2431       (if (outer_op == PLUS_EXPR)
2432	(view_convert (plus @0 (inner_op (view_convert @2) @1)))
2433	(view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2434       /* If the constant operation overflows we cannot do the transform
2435	  directly as we would introduce undefined overflow, for example
2436	  with (a - 1) + INT_MIN.  */
2437       (if (types_match (type, @0))
2438	(with { tree cst = const_binop (outer_op == inner_op
2439					? PLUS_EXPR : MINUS_EXPR,
2440					type, @1, @2); }
2441	 (if (cst && !TREE_OVERFLOW (cst))
2442	  (inner_op @0 { cst; } )
2443	  /* X+INT_MAX+1 is X-INT_MIN.  */
2444	  (if (INTEGRAL_TYPE_P (type) && cst
2445	       && wi::to_wide (cst) == wi::min_value (type))
2446	   (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2447	   /* Last resort, use some unsigned type.  */
2448	   (with { tree utype = unsigned_type_for (type); }
2449	    (if (utype)
2450	     (view_convert (inner_op
2451			    (view_convert:utype @0)
2452			    (view_convert:utype
2453			     { drop_tree_overflow (cst); }))))))))))))))
2454
2455  /* (CST1 - A) +- CST2 -> CST3 - A  */
2456  (for outer_op (plus minus)
2457   (simplify
2458    (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2459    /* If one of the types wraps, use that one.  */
2460    (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2461     /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2462	forever if something doesn't simplify into a constant.  */
2463     (if (!CONSTANT_CLASS_P (@0))
2464      (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2465     (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2466	  || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2467      (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2468      (if (types_match (type, @0))
2469       (with { tree cst = const_binop (outer_op, type, @1, @2); }
2470	(if (cst && !TREE_OVERFLOW (cst))
2471	 (minus { cst; } @0))))))))
2472
2473  /* CST1 - (CST2 - A) -> CST3 + A
2474     Use view_convert because it is safe for vectors and equivalent for
2475     scalars.  */
2476  (simplify
2477   (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2478   /* If one of the types wraps, use that one.  */
2479   (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2480    /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2481      forever if something doesn't simplify into a constant.  */
2482    (if (!CONSTANT_CLASS_P (@0))
2483     (plus (view_convert @0) (minus @1 (view_convert @2))))
2484    (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2485	 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2486     (view_convert (plus @0 (minus (view_convert @1) @2)))
2487     (if (types_match (type, @0))
2488      (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2489       (if (cst && !TREE_OVERFLOW (cst))
2490	(plus { cst; } @0)))))))
2491
2492/* ((T)(A)) + CST -> (T)(A + CST)  */
2493#if GIMPLE
2494  (simplify
2495   (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2496    (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2497         && TREE_CODE (type) == INTEGER_TYPE
2498         && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2499         && int_fits_type_p (@1, TREE_TYPE (@0)))
2500     /* Perform binary operation inside the cast if the constant fits
2501        and (A + CST)'s range does not overflow.  */
2502     (with
2503      {
2504	wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2505			  max_ovf = wi::OVF_OVERFLOW;
2506        tree inner_type = TREE_TYPE (@0);
2507
2508	wide_int w1
2509	  = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2510			    TYPE_SIGN (inner_type));
2511
2512        wide_int wmin0, wmax0;
2513        if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2514          {
2515            wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2516            wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2517          }
2518      }
2519     (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2520      (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2521     )))
2522#endif
2523
2524/* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2  */
2525#if GIMPLE
2526  (for op (plus minus)
2527   (simplify
2528    (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2529     (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2530	  && TREE_CODE (type) == INTEGER_TYPE
2531	  && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2532	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2533	  && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2534	  && TYPE_OVERFLOW_WRAPS (type))
2535       (plus (convert @0) (op @2 (convert @1))))))
2536#endif
2537
2538/* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2539   to a simple value.  */
2540#if GIMPLE
2541  (for op (plus minus)
2542   (simplify
2543    (op (convert @0) (convert @1))
2544     (if (INTEGRAL_TYPE_P (type)
2545	  && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2546	  && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2547	  && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2548	  && !TYPE_OVERFLOW_TRAPS (type)
2549	  && !TYPE_OVERFLOW_SANITIZED (type))
2550      (convert (op! @0 @1)))))
2551#endif
2552
2553  /* ~A + A -> -1 */
2554  (simplify
2555   (plus:c (bit_not @0) @0)
2556   (if (!TYPE_OVERFLOW_TRAPS (type))
2557    { build_all_ones_cst (type); }))
2558
2559  /* ~A + 1 -> -A */
2560  (simplify
2561   (plus (convert? (bit_not @0)) integer_each_onep)
2562   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2563    (negate (convert @0))))
2564
2565  /* -A - 1 -> ~A */
2566  (simplify
2567   (minus (convert? (negate @0)) integer_each_onep)
2568   (if (!TYPE_OVERFLOW_TRAPS (type)
2569	&& tree_nop_conversion_p (type, TREE_TYPE (@0)))
2570    (bit_not (convert @0))))
2571
2572  /* -1 - A -> ~A */
2573  (simplify
2574   (minus integer_all_onesp @0)
2575   (bit_not @0))
2576
2577  /* (T)(P + A) - (T)P -> (T) A */
2578  (simplify
2579   (minus (convert (plus:c @@0 @1))
2580    (convert? @0))
2581   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2582	/* For integer types, if A has a smaller type
2583	   than T the result depends on the possible
2584	   overflow in P + A.
2585	   E.g. T=size_t, A=(unsigned)429497295, P>0.
2586	   However, if an overflow in P + A would cause
2587	   undefined behavior, we can assume that there
2588	   is no overflow.  */
2589	|| (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2590	    && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2591    (convert @1)))
2592  (simplify
2593   (minus (convert (pointer_plus @@0 @1))
2594    (convert @0))
2595   (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2596	/* For pointer types, if the conversion of A to the
2597	   final type requires a sign- or zero-extension,
2598	   then we have to punt - it is not defined which
2599	   one is correct.  */
2600	|| (POINTER_TYPE_P (TREE_TYPE (@0))
2601	    && TREE_CODE (@1) == INTEGER_CST
2602	    && tree_int_cst_sign_bit (@1) == 0))
2603    (convert @1)))
2604   (simplify
2605    (pointer_diff (pointer_plus @@0 @1) @0)
2606    /* The second argument of pointer_plus must be interpreted as signed, and
2607       thus sign-extended if necessary.  */
2608    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2609     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2610	second arg is unsigned even when we need to consider it as signed,
2611	we don't want to diagnose overflow here.  */
2612     (convert (view_convert:stype @1))))
2613
2614  /* (T)P - (T)(P + A) -> -(T) A */
2615  (simplify
2616   (minus (convert? @0)
2617    (convert (plus:c @@0 @1)))
2618   (if (INTEGRAL_TYPE_P (type)
2619	&& TYPE_OVERFLOW_UNDEFINED (type)
2620	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2621    (with { tree utype = unsigned_type_for (type); }
2622     (convert (negate (convert:utype @1))))
2623    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2624	 /* For integer types, if A has a smaller type
2625	    than T the result depends on the possible
2626	    overflow in P + A.
2627	    E.g. T=size_t, A=(unsigned)429497295, P>0.
2628	    However, if an overflow in P + A would cause
2629	    undefined behavior, we can assume that there
2630	    is no overflow.  */
2631	 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2632	     && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2633     (negate (convert @1)))))
2634  (simplify
2635   (minus (convert @0)
2636    (convert (pointer_plus @@0 @1)))
2637   (if (INTEGRAL_TYPE_P (type)
2638	&& TYPE_OVERFLOW_UNDEFINED (type)
2639	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2640    (with { tree utype = unsigned_type_for (type); }
2641     (convert (negate (convert:utype @1))))
2642    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2643	 /* For pointer types, if the conversion of A to the
2644	    final type requires a sign- or zero-extension,
2645	    then we have to punt - it is not defined which
2646	    one is correct.  */
2647	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2648	     && TREE_CODE (@1) == INTEGER_CST
2649	     && tree_int_cst_sign_bit (@1) == 0))
2650     (negate (convert @1)))))
2651   (simplify
2652    (pointer_diff @0 (pointer_plus @@0 @1))
2653    /* The second argument of pointer_plus must be interpreted as signed, and
2654       thus sign-extended if necessary.  */
2655    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2656     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2657	second arg is unsigned even when we need to consider it as signed,
2658	we don't want to diagnose overflow here.  */
2659     (negate (convert (view_convert:stype @1)))))
2660
2661  /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2662  (simplify
2663   (minus (convert (plus:c @@0 @1))
2664    (convert (plus:c @0 @2)))
2665   (if (INTEGRAL_TYPE_P (type)
2666	&& TYPE_OVERFLOW_UNDEFINED (type)
2667	&& element_precision (type) <= element_precision (TREE_TYPE (@1))
2668	&& element_precision (type) <= element_precision (TREE_TYPE (@2)))
2669    (with { tree utype = unsigned_type_for (type); }
2670     (convert (minus (convert:utype @1) (convert:utype @2))))
2671    (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2672	  == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2673	 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2674	     /* For integer types, if A has a smaller type
2675		than T the result depends on the possible
2676		overflow in P + A.
2677		E.g. T=size_t, A=(unsigned)429497295, P>0.
2678		However, if an overflow in P + A would cause
2679		undefined behavior, we can assume that there
2680		is no overflow.  */
2681	     || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2682		 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2683		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2684		 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2685     (minus (convert @1) (convert @2)))))
2686  (simplify
2687   (minus (convert (pointer_plus @@0 @1))
2688    (convert (pointer_plus @0 @2)))
2689   (if (INTEGRAL_TYPE_P (type)
2690	&& TYPE_OVERFLOW_UNDEFINED (type)
2691	&& element_precision (type) <= element_precision (TREE_TYPE (@1)))
2692    (with { tree utype = unsigned_type_for (type); }
2693     (convert (minus (convert:utype @1) (convert:utype @2))))
2694    (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2695	 /* For pointer types, if the conversion of A to the
2696	    final type requires a sign- or zero-extension,
2697	    then we have to punt - it is not defined which
2698	    one is correct.  */
2699	 || (POINTER_TYPE_P (TREE_TYPE (@0))
2700	     && TREE_CODE (@1) == INTEGER_CST
2701	     && tree_int_cst_sign_bit (@1) == 0
2702	     && TREE_CODE (@2) == INTEGER_CST
2703	     && tree_int_cst_sign_bit (@2) == 0))
2704     (minus (convert @1) (convert @2)))))
2705   (simplify
2706    (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2707     (pointer_diff @0 @1))
2708   (simplify
2709    (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2710    /* The second argument of pointer_plus must be interpreted as signed, and
2711       thus sign-extended if necessary.  */
2712    (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2713     /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2714	second arg is unsigned even when we need to consider it as signed,
2715	we don't want to diagnose overflow here.  */
2716     (minus (convert (view_convert:stype @1))
2717	    (convert (view_convert:stype @2)))))))
2718
2719/* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2720    Modeled after fold_plusminus_mult_expr.  */
2721(if (!TYPE_SATURATING (type)
2722     && (!FLOAT_TYPE_P (type) || flag_associative_math))
2723 (for plusminus (plus minus)
2724  (simplify
2725   (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2726   (if (!ANY_INTEGRAL_TYPE_P (type)
2727	|| TYPE_OVERFLOW_WRAPS (type)
2728	|| (INTEGRAL_TYPE_P (type)
2729	    && tree_expr_nonzero_p (@0)
2730	    && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2731    (if (single_use (@3) || single_use (@4))
2732     /* If @1 +- @2 is constant require a hard single-use on either
2733	original operand (but not on both).  */
2734     (mult (plusminus @1 @2) @0)
2735#if GIMPLE
2736     (mult! (plusminus @1 @2) @0)
2737#endif
2738  )))
2739  /* We cannot generate constant 1 for fract.  */
2740  (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2741   (simplify
2742    (plusminus @0 (mult:c@3 @0 @2))
2743    (if ((!ANY_INTEGRAL_TYPE_P (type)
2744	  || TYPE_OVERFLOW_WRAPS (type)
2745	  /* For @0 + @0*@2 this transformation would introduce UB
2746	     (where there was none before) for @0 in [-1,0] and @2 max.
2747	     For @0 - @0*@2 this transformation would introduce UB
2748	     for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1.  */
2749	  || (INTEGRAL_TYPE_P (type)
2750	      && ((tree_expr_nonzero_p (@0)
2751		   && expr_not_equal_to (@0,
2752				wi::minus_one (TYPE_PRECISION (type))))
2753		  || (plusminus == PLUS_EXPR
2754		      ? expr_not_equal_to (@2,
2755			    wi::max_value (TYPE_PRECISION (type), SIGNED))
2756		      /* Let's ignore the @0 -1 and @2 min case.  */
2757		      : (expr_not_equal_to (@2,
2758			    wi::min_value (TYPE_PRECISION (type), SIGNED))
2759			 && expr_not_equal_to (@2,
2760				wi::min_value (TYPE_PRECISION (type), SIGNED)
2761				+ 1))))))
2762	 && single_use (@3))
2763     (mult (plusminus { build_one_cst (type); } @2) @0)))
2764   (simplify
2765    (plusminus (mult:c@3 @0 @2) @0)
2766    (if ((!ANY_INTEGRAL_TYPE_P (type)
2767	  || TYPE_OVERFLOW_WRAPS (type)
2768	  /* For @0*@2 + @0 this transformation would introduce UB
2769	     (where there was none before) for @0 in [-1,0] and @2 max.
2770	     For @0*@2 - @0 this transformation would introduce UB
2771	     for @0 0 and @2 min.  */
2772	  || (INTEGRAL_TYPE_P (type)
2773	      && ((tree_expr_nonzero_p (@0)
2774		   && (plusminus == MINUS_EXPR
2775		       || expr_not_equal_to (@0,
2776				wi::minus_one (TYPE_PRECISION (type)))))
2777		  || expr_not_equal_to (@2,
2778			(plusminus == PLUS_EXPR
2779			 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2780			 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2781	 && single_use (@3))
2782     (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2783
2784#if GIMPLE
2785/* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2786   (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)).  */
2787(simplify
2788 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2789  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2790       && tree_fits_uhwi_p (@1)
2791       && tree_to_uhwi (@1) < element_precision (type)
2792       && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2793	   || optab_handler (smul_optab,
2794			     TYPE_MODE (type)) != CODE_FOR_nothing))
2795   (with { tree t = type;
2796	   if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2797	   wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2798					     element_precision (type));
2799	   w += 1;
2800	   tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2801					: t, w);
2802	   cst = build_uniform_cst (t, cst); }
2803    (convert (mult (convert:t @0) { cst; })))))
2804(simplify
2805 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2806  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2807       && tree_fits_uhwi_p (@1)
2808       && tree_to_uhwi (@1) < element_precision (type)
2809       && tree_fits_uhwi_p (@2)
2810       && tree_to_uhwi (@2) < element_precision (type)
2811       && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2812	   || optab_handler (smul_optab,
2813			     TYPE_MODE (type)) != CODE_FOR_nothing))
2814   (with { tree t = type;
2815	   if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2816	   unsigned int prec = element_precision (type);
2817	   wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2818	   w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2819	   tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2820					: t, w);
2821	   cst = build_uniform_cst (t, cst); }
2822    (convert (mult (convert:t @0) { cst; })))))
2823#endif
2824
2825/* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax().  */
2826
2827(for minmax (min max FMIN_ALL FMAX_ALL)
2828 (simplify
2829  (minmax @0 @0)
2830  @0))
2831/* min(max(x,y),y) -> y.  */
2832(simplify
2833 (min:c (max:c @0 @1) @1)
2834 @1)
2835/* max(min(x,y),y) -> y.  */
2836(simplify
2837 (max:c (min:c @0 @1) @1)
2838 @1)
2839/* max(a,-a) -> abs(a).  */
2840(simplify
2841 (max:c @0 (negate @0))
2842 (if (TREE_CODE (type) != COMPLEX_TYPE
2843      && (! ANY_INTEGRAL_TYPE_P (type)
2844	  || TYPE_OVERFLOW_UNDEFINED (type)))
2845  (abs @0)))
2846/* min(a,-a) -> -abs(a).  */
2847(simplify
2848 (min:c @0 (negate @0))
2849 (if (TREE_CODE (type) != COMPLEX_TYPE
2850      && (! ANY_INTEGRAL_TYPE_P (type)
2851	  || TYPE_OVERFLOW_UNDEFINED (type)))
2852  (negate (abs @0))))
2853(simplify
2854 (min @0 @1)
2855 (switch
2856  (if (INTEGRAL_TYPE_P (type)
2857       && TYPE_MIN_VALUE (type)
2858       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2859   @1)
2860  (if (INTEGRAL_TYPE_P (type)
2861       && TYPE_MAX_VALUE (type)
2862       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2863   @0)))
2864(simplify
2865 (max @0 @1)
2866 (switch
2867  (if (INTEGRAL_TYPE_P (type)
2868       && TYPE_MAX_VALUE (type)
2869       && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2870   @1)
2871  (if (INTEGRAL_TYPE_P (type)
2872       && TYPE_MIN_VALUE (type)
2873       && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2874   @0)))
2875
2876/* max (a, a + CST) -> a + CST where CST is positive.  */
2877/* max (a, a + CST) -> a where CST is negative.  */
2878(simplify
2879 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2880  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2881   (if (tree_int_cst_sgn (@1) > 0)
2882    @2
2883    @0)))
2884
2885/* min (a, a + CST) -> a where CST is positive.  */
2886/* min (a, a + CST) -> a + CST where CST is negative. */
2887(simplify
2888 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2889  (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2890   (if (tree_int_cst_sgn (@1) > 0)
2891    @0
2892    @2)))
2893
2894/* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2895   and the outer convert demotes the expression back to x's type.  */
2896(for minmax (min max)
2897 (simplify
2898  (convert (minmax@0 (convert @1) INTEGER_CST@2))
2899  (if (INTEGRAL_TYPE_P (type)
2900       && types_match (@1, type) && int_fits_type_p (@2, type)
2901       && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2902       && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2903   (minmax @1 (convert @2)))))
2904
2905(for minmax (FMIN_ALL FMAX_ALL)
2906 /* If either argument is NaN, return the other one.  Avoid the
2907    transformation if we get (and honor) a signalling NaN.  */
2908 (simplify
2909  (minmax:c @0 REAL_CST@1)
2910  (if (real_isnan (TREE_REAL_CST_PTR (@1))
2911       && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2912   @0)))
2913/* Convert fmin/fmax to MIN_EXPR/MAX_EXPR.  C99 requires these
2914   functions to return the numeric arg if the other one is NaN.
2915   MIN and MAX don't honor that, so only transform if -ffinite-math-only
2916   is set.  C99 doesn't require -0.0 to be handled, so we don't have to
2917   worry about it either.  */
2918(if (flag_finite_math_only)
2919 (simplify
2920  (FMIN_ALL @0 @1)
2921  (min @0 @1))
2922 (simplify
2923  (FMAX_ALL @0 @1)
2924  (max @0 @1)))
2925/* min (-A, -B) -> -max (A, B)  */
2926(for minmax (min max FMIN_ALL FMAX_ALL)
2927     maxmin (max min FMAX_ALL FMIN_ALL)
2928 (simplify
2929  (minmax (negate:s@2 @0) (negate:s@3 @1))
2930  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2931       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2932           && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2933   (negate (maxmin @0 @1)))))
2934/* MIN (~X, ~Y) -> ~MAX (X, Y)
2935   MAX (~X, ~Y) -> ~MIN (X, Y)  */
2936(for minmax (min max)
2937 maxmin (max min)
2938 (simplify
2939  (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2940  (bit_not (maxmin @0 @1))))
2941
2942/* MIN (X, Y) == X -> X <= Y  */
2943(for minmax (min min max max)
2944     cmp    (eq  ne  eq  ne )
2945     out    (le  gt  ge  lt )
2946 (simplify
2947  (cmp:c (minmax:c @0 @1) @0)
2948  (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2949   (out @0 @1))))
2950/* MIN (X, 5) == 0 -> X == 0
2951   MIN (X, 5) == 7 -> false  */
2952(for cmp (eq ne)
2953 (simplify
2954  (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2955  (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2956		 TYPE_SIGN (TREE_TYPE (@0))))
2957   { constant_boolean_node (cmp == NE_EXPR, type); }
2958   (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2959		  TYPE_SIGN (TREE_TYPE (@0))))
2960    (cmp @0 @2)))))
2961(for cmp (eq ne)
2962 (simplify
2963  (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2964  (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2965		 TYPE_SIGN (TREE_TYPE (@0))))
2966   { constant_boolean_node (cmp == NE_EXPR, type); }
2967   (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2968		  TYPE_SIGN (TREE_TYPE (@0))))
2969    (cmp @0 @2)))))
2970/* MIN (X, C1) < C2 -> X < C2 || C1 < C2  */
2971(for minmax (min     min     max     max     min     min     max     max    )
2972     cmp    (lt      le      gt      ge      gt      ge      lt      le     )
2973     comb   (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2974 (simplify
2975  (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2976  (comb (cmp @0 @2) (cmp @1 @2))))
2977
2978/* X <= MAX(X, Y) -> true
2979   X > MAX(X, Y) -> false
2980   X >= MIN(X, Y) -> true
2981   X < MIN(X, Y) -> false */
2982(for minmax (min     min     max     max     )
2983     cmp    (ge      lt      le      gt      )
2984 (simplify
2985  (cmp @0 (minmax:c @0 @1))
2986  { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
2987
2988/* Undo fancy way of writing max/min or other ?: expressions,
2989   like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2990   People normally use ?: and that is what we actually try to optimize.  */
2991(for cmp (simple_comparison)
2992 (simplify
2993  (minus @0 (bit_and:c (minus @0 @1)
2994		       (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2995  (if (INTEGRAL_TYPE_P (type)
2996       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2997       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2998       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2999       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3000	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3001       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3002   (cond (cmp @2 @3) @1 @0)))
3003 (simplify
3004  (plus:c @0 (bit_and:c (minus @1 @0)
3005			(convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3006  (if (INTEGRAL_TYPE_P (type)
3007       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3008       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3009       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3010       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3011	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3012       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3013   (cond (cmp @2 @3) @1 @0)))
3014 /* Similarly with ^ instead of - though in that case with :c.  */
3015 (simplify
3016  (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
3017			   (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3018  (if (INTEGRAL_TYPE_P (type)
3019       && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3020       && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3021       && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3022       && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3023	   || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3024       && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3025   (cond (cmp @2 @3) @1 @0))))
3026
3027/* Simplifications of shift and rotates.  */
3028
3029(for rotate (lrotate rrotate)
3030 (simplify
3031  (rotate integer_all_onesp@0 @1)
3032  @0))
3033
3034/* Optimize -1 >> x for arithmetic right shifts.  */
3035(simplify
3036 (rshift integer_all_onesp@0 @1)
3037 (if (!TYPE_UNSIGNED (type))
3038  @0))
3039
3040/* Optimize (x >> c) << c into x & (-1<<c).  */
3041(simplify
3042 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3043 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3044  /* It doesn't matter if the right shift is arithmetic or logical.  */
3045  (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3046
3047(simplify
3048 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3049 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3050      /* Allow intermediate conversion to integral type with whatever sign, as
3051	 long as the low TYPE_PRECISION (type)
3052	 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved.  */
3053      && INTEGRAL_TYPE_P (type)
3054      && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3055      && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3056      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3057      && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3058	  || wi::geu_p (wi::to_wide (@1),
3059			TYPE_PRECISION (type)
3060			- TYPE_PRECISION (TREE_TYPE (@2)))))
3061  (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3062
3063/* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3064   types.  */
3065(simplify
3066 (rshift (lshift @0 INTEGER_CST@1) @1)
3067 (if (TYPE_UNSIGNED (type)
3068      && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3069  (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3070
3071/* Optimize x >> x into 0 */
3072(simplify
3073 (rshift @0 @0)
3074  { build_zero_cst (type); })
3075
3076(for shiftrotate (lrotate rrotate lshift rshift)
3077 (simplify
3078  (shiftrotate @0 integer_zerop)
3079  (non_lvalue @0))
3080 (simplify
3081  (shiftrotate integer_zerop@0 @1)
3082  @0)
3083 /* Prefer vector1 << scalar to vector1 << vector2
3084    if vector2 is uniform.  */
3085 (for vec (VECTOR_CST CONSTRUCTOR)
3086  (simplify
3087   (shiftrotate @0 vec@1)
3088   (with { tree tem = uniform_vector_p (@1); }
3089    (if (tem)
3090     (shiftrotate @0 { tem; }))))))
3091
3092/* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3093   Y is 0.  Similarly for X >> Y.  */
3094#if GIMPLE
3095(for shift (lshift rshift)
3096 (simplify
3097  (shift @0 SSA_NAME@1)
3098   (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3099    (with {
3100      int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3101      int prec = TYPE_PRECISION (TREE_TYPE (@1));
3102     }
3103     (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3104      @0)))))
3105#endif
3106
3107/* Rewrite an LROTATE_EXPR by a constant into an
3108   RROTATE_EXPR by a new constant.  */
3109(simplify
3110 (lrotate @0 INTEGER_CST@1)
3111 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3112			    build_int_cst (TREE_TYPE (@1),
3113					   element_precision (type)), @1); }))
3114
3115/* Turn (a OP c1) OP c2 into a OP (c1+c2).  */
3116(for op (lrotate rrotate rshift lshift)
3117 (simplify
3118  (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3119  (with { unsigned int prec = element_precision (type); }
3120   (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3121        && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3122        && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3123	&& wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3124    (with { unsigned int low = (tree_to_uhwi (@1)
3125				+ tree_to_uhwi (@2)); }
3126     /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3127        being well defined.  */
3128     (if (low >= prec)
3129      (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3130       (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3131       (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3132        { build_zero_cst (type); }
3133        (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3134      (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3135
3136
3137/* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd.  */
3138(simplify
3139 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3140  (if ((wi::to_wide (@1) & 1) != 0)
3141   (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3142   { build_zero_cst (type); }))
3143
3144/* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3145   either to false if D is smaller (unsigned comparison) than C, or to
3146   x == log2 (D) - log2 (C).  Similarly for right shifts.  */
3147(for cmp (ne eq)
3148     icmp (eq ne)
3149 (simplify
3150  (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3151   (with { int c1 = wi::clz (wi::to_wide (@1));
3152	   int c2 = wi::clz (wi::to_wide (@2)); }
3153    (if (c1 < c2)
3154     { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3155     (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3156 (simplify
3157  (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3158   (if (tree_int_cst_sgn (@1) > 0)
3159    (with { int c1 = wi::clz (wi::to_wide (@1));
3160	    int c2 = wi::clz (wi::to_wide (@2)); }
3161     (if (c1 > c2)
3162      { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3163      (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3164
3165/* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3166   (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3167   if CST2 != 0.  */
3168(for cmp (ne eq)
3169 (simplify
3170  (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3171  (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3172   (if (cand < 0
3173	|| (!integer_zerop (@2)
3174	    && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3175    { constant_boolean_node (cmp == NE_EXPR, type); }
3176    (if (!integer_zerop (@2)
3177	 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3178     (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3179
3180/* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3181        (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3182   if the new mask might be further optimized.  */
3183(for shift (lshift rshift)
3184 (simplify
3185  (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3186           INTEGER_CST@2)
3187   (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3188	&& TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3189	&& tree_fits_uhwi_p (@1)
3190	&& tree_to_uhwi (@1) > 0
3191	&& tree_to_uhwi (@1) < TYPE_PRECISION (type))
3192    (with
3193     {
3194       unsigned int shiftc = tree_to_uhwi (@1);
3195       unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3196       unsigned HOST_WIDE_INT newmask, zerobits = 0;
3197       tree shift_type = TREE_TYPE (@3);
3198       unsigned int prec;
3199
3200       if (shift == LSHIFT_EXPR)
3201	 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3202       else if (shift == RSHIFT_EXPR
3203		&& type_has_mode_precision_p (shift_type))
3204	 {
3205	   prec = TYPE_PRECISION (TREE_TYPE (@3));
3206	   tree arg00 = @0;
3207	   /* See if more bits can be proven as zero because of
3208	      zero extension.  */
3209	   if (@3 != @0
3210	       && TYPE_UNSIGNED (TREE_TYPE (@0)))
3211	     {
3212	       tree inner_type = TREE_TYPE (@0);
3213	       if (type_has_mode_precision_p (inner_type)
3214		   && TYPE_PRECISION (inner_type) < prec)
3215		 {
3216		   prec = TYPE_PRECISION (inner_type);
3217		   /* See if we can shorten the right shift.  */
3218		   if (shiftc < prec)
3219		     shift_type = inner_type;
3220		   /* Otherwise X >> C1 is all zeros, so we'll optimize
3221		      it into (X, 0) later on by making sure zerobits
3222		      is all ones.  */
3223		 }
3224	     }
3225	   zerobits = HOST_WIDE_INT_M1U;
3226	   if (shiftc < prec)
3227	     {
3228	       zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3229	       zerobits <<= prec - shiftc;
3230	     }
3231	   /* For arithmetic shift if sign bit could be set, zerobits
3232	      can contain actually sign bits, so no transformation is
3233	      possible, unless MASK masks them all away.  In that
3234	      case the shift needs to be converted into logical shift.  */
3235	   if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3236	       && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3237	     {
3238	       if ((mask & zerobits) == 0)
3239		 shift_type = unsigned_type_for (TREE_TYPE (@3));
3240	       else
3241		 zerobits = 0;
3242	     }
3243	 }
3244     }
3245     /* ((X << 16) & 0xff00) is (X, 0).  */
3246     (if ((mask & zerobits) == mask)
3247      { build_int_cst (type, 0); }
3248      (with { newmask = mask | zerobits; }
3249       (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3250        (with
3251	 {
3252	   /* Only do the transformation if NEWMASK is some integer
3253	      mode's mask.  */
3254	   for (prec = BITS_PER_UNIT;
3255	        prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3256	     if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3257	       break;
3258	 }
3259	 (if (prec < HOST_BITS_PER_WIDE_INT
3260	      || newmask == HOST_WIDE_INT_M1U)
3261	  (with
3262	   { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3263	   (if (!tree_int_cst_equal (newmaskt, @2))
3264	    (if (shift_type != TREE_TYPE (@3))
3265	     (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3266	     (bit_and @4 { newmaskt; })))))))))))))
3267
3268/* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3269   (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1).  */
3270(for shift (lshift rshift)
3271 (for bit_op (bit_and bit_xor bit_ior)
3272  (simplify
3273   (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3274   (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3275    (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3276     (if (mask)
3277      (bit_op (shift (convert @0) @1) { mask; })))))))
3278
3279/* ~(~X >> Y) -> X >> Y (for arithmetic shift).  */
3280(simplify
3281 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3282  (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3283       && (element_precision (TREE_TYPE (@0))
3284	   <= element_precision (TREE_TYPE (@1))
3285	   || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3286   (with
3287    { tree shift_type = TREE_TYPE (@0); }
3288     (convert (rshift (convert:shift_type @1) @2)))))
3289
3290/* ~(~X >>r Y) -> X >>r Y
3291   ~(~X <<r Y) -> X <<r Y */
3292(for rotate (lrotate rrotate)
3293 (simplify
3294  (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3295   (if ((element_precision (TREE_TYPE (@0))
3296	 <= element_precision (TREE_TYPE (@1))
3297	 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3298        && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3299	    || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3300    (with
3301     { tree rotate_type = TREE_TYPE (@0); }
3302      (convert (rotate (convert:rotate_type @1) @2))))))
3303
3304/* Simplifications of conversions.  */
3305
3306/* Basic strip-useless-type-conversions / strip_nops.  */
3307(for cvt (convert view_convert float fix_trunc)
3308 (simplify
3309  (cvt @0)
3310  (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3311       || (GENERIC && type == TREE_TYPE (@0)))
3312   @0)))
3313
3314/* Contract view-conversions.  */
3315(simplify
3316  (view_convert (view_convert @0))
3317  (view_convert @0))
3318
3319/* For integral conversions with the same precision or pointer
3320   conversions use a NOP_EXPR instead.  */
3321(simplify
3322  (view_convert @0)
3323  (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3324       && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3325       && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3326   (convert @0)))
3327
3328/* Strip inner integral conversions that do not change precision or size, or
3329   zero-extend while keeping the same size (for bool-to-char).  */
3330(simplify
3331  (view_convert (convert@0 @1))
3332  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3333       && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3334       && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3335       && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3336	   || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3337	       && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3338   (view_convert @1)))
3339
3340/* Simplify a view-converted empty constructor.  */
3341(simplify
3342  (view_convert CONSTRUCTOR@0)
3343  (if (TREE_CODE (@0) != SSA_NAME
3344       && CONSTRUCTOR_NELTS (@0) == 0)
3345   { build_zero_cst (type); }))
3346
3347/* Re-association barriers around constants and other re-association
3348   barriers can be removed.  */
3349(simplify
3350 (paren CONSTANT_CLASS_P@0)
3351 @0)
3352(simplify
3353 (paren (paren@1 @0))
3354 @1)
3355
3356/* Handle cases of two conversions in a row.  */
3357(for ocvt (convert float fix_trunc)
3358 (for icvt (convert float)
3359  (simplify
3360   (ocvt (icvt@1 @0))
3361   (with
3362    {
3363      tree inside_type = TREE_TYPE (@0);
3364      tree inter_type = TREE_TYPE (@1);
3365      int inside_int = INTEGRAL_TYPE_P (inside_type);
3366      int inside_ptr = POINTER_TYPE_P (inside_type);
3367      int inside_float = FLOAT_TYPE_P (inside_type);
3368      int inside_vec = VECTOR_TYPE_P (inside_type);
3369      unsigned int inside_prec = TYPE_PRECISION (inside_type);
3370      int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3371      int inter_int = INTEGRAL_TYPE_P (inter_type);
3372      int inter_ptr = POINTER_TYPE_P (inter_type);
3373      int inter_float = FLOAT_TYPE_P (inter_type);
3374      int inter_vec = VECTOR_TYPE_P (inter_type);
3375      unsigned int inter_prec = TYPE_PRECISION (inter_type);
3376      int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3377      int final_int = INTEGRAL_TYPE_P (type);
3378      int final_ptr = POINTER_TYPE_P (type);
3379      int final_float = FLOAT_TYPE_P (type);
3380      int final_vec = VECTOR_TYPE_P (type);
3381      unsigned int final_prec = TYPE_PRECISION (type);
3382      int final_unsignedp = TYPE_UNSIGNED (type);
3383    }
3384   (switch
3385    /* In addition to the cases of two conversions in a row
3386       handled below, if we are converting something to its own
3387       type via an object of identical or wider precision, neither
3388       conversion is needed.  */
3389    (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3390	  || (GENERIC
3391	      && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3392	 && (((inter_int || inter_ptr) && final_int)
3393	     || (inter_float && final_float))
3394	 && inter_prec >= final_prec)
3395     (ocvt @0))
3396
3397    /* Likewise, if the intermediate and initial types are either both
3398       float or both integer, we don't need the middle conversion if the
3399       former is wider than the latter and doesn't change the signedness
3400       (for integers).  Avoid this if the final type is a pointer since
3401       then we sometimes need the middle conversion.  */
3402    (if (((inter_int && inside_int) || (inter_float && inside_float))
3403	 && (final_int || final_float)
3404	 && inter_prec >= inside_prec
3405	 && (inter_float || inter_unsignedp == inside_unsignedp))
3406     (ocvt @0))
3407
3408    /* If we have a sign-extension of a zero-extended value, we can
3409       replace that by a single zero-extension.  Likewise if the
3410       final conversion does not change precision we can drop the
3411       intermediate conversion.  */
3412    (if (inside_int && inter_int && final_int
3413	 && ((inside_prec < inter_prec && inter_prec < final_prec
3414	      && inside_unsignedp && !inter_unsignedp)
3415	     || final_prec == inter_prec))
3416     (ocvt @0))
3417
3418    /* Two conversions in a row are not needed unless:
3419	- some conversion is floating-point (overstrict for now), or
3420	- some conversion is a vector (overstrict for now), or
3421	- the intermediate type is narrower than both initial and
3422	  final, or
3423	- the intermediate type and innermost type differ in signedness,
3424	  and the outermost type is wider than the intermediate, or
3425	- the initial type is a pointer type and the precisions of the
3426	  intermediate and final types differ, or
3427	- the final type is a pointer type and the precisions of the
3428	  initial and intermediate types differ.  */
3429    (if (! inside_float && ! inter_float && ! final_float
3430	 && ! inside_vec && ! inter_vec && ! final_vec
3431	 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3432	 && ! (inside_int && inter_int
3433	       && inter_unsignedp != inside_unsignedp
3434	       && inter_prec < final_prec)
3435	 && ((inter_unsignedp && inter_prec > inside_prec)
3436	     == (final_unsignedp && final_prec > inter_prec))
3437	 && ! (inside_ptr && inter_prec != final_prec)
3438	 && ! (final_ptr && inside_prec != inter_prec))
3439     (ocvt @0))
3440
3441    /* A truncation to an unsigned type (a zero-extension) should be
3442       canonicalized as bitwise and of a mask.  */
3443    (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion.  */
3444	 && final_int && inter_int && inside_int
3445	 && final_prec == inside_prec
3446	 && final_prec > inter_prec
3447	 && inter_unsignedp)
3448     (convert (bit_and @0 { wide_int_to_tree
3449	                      (inside_type,
3450			       wi::mask (inter_prec, false,
3451					 TYPE_PRECISION (inside_type))); })))
3452
3453    /* If we are converting an integer to a floating-point that can
3454       represent it exactly and back to an integer, we can skip the
3455       floating-point conversion.  */
3456    (if (GIMPLE /* PR66211 */
3457	 && inside_int && inter_float && final_int &&
3458	 (unsigned) significand_size (TYPE_MODE (inter_type))
3459	 >= inside_prec - !inside_unsignedp)
3460     (convert @0)))))))
3461
3462/* If we have a narrowing conversion to an integral type that is fed by a
3463   BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3464   masks off bits outside the final type (and nothing else).  */
3465(simplify
3466  (convert (bit_and @0 INTEGER_CST@1))
3467  (if (INTEGRAL_TYPE_P (type)
3468       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3469       && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3470       && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3471						    TYPE_PRECISION (type)), 0))
3472   (convert @0)))
3473
3474
3475/* (X /[ex] A) * A -> X.  */
3476(simplify
3477  (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3478  (convert @0))
3479
3480/* Simplify (A / B) * B + (A % B) -> A.  */
3481(for div (trunc_div ceil_div floor_div round_div)
3482     mod (trunc_mod ceil_mod floor_mod round_mod)
3483  (simplify
3484   (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3485   @0))
3486
3487/* ((X /[ex] A) +- B) * A  -->  X +- A * B.  */
3488(for op (plus minus)
3489 (simplify
3490  (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3491  (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3492       && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3493   (with
3494     {
3495       wi::overflow_type overflow;
3496       wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3497			       TYPE_SIGN (type), &overflow);
3498     }
3499     (if (types_match (type, TREE_TYPE (@2))
3500 	 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3501      (op @0 { wide_int_to_tree (type, mul); })
3502      (with { tree utype = unsigned_type_for (type); }
3503       (convert (op (convert:utype @0)
3504		    (mult (convert:utype @1) (convert:utype @2))))))))))
3505
3506/* Canonicalization of binary operations.  */
3507
3508/* Convert X + -C into X - C.  */
3509(simplify
3510 (plus @0 REAL_CST@1)
3511 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3512  (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3513   (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3514    (minus @0 { tem; })))))
3515
3516/* Convert x+x into x*2.  */
3517(simplify
3518 (plus @0 @0)
3519 (if (SCALAR_FLOAT_TYPE_P (type))
3520  (mult @0 { build_real (type, dconst2); })
3521  (if (INTEGRAL_TYPE_P (type))
3522   (mult @0 { build_int_cst (type, 2); }))))
3523
3524/* 0 - X  ->  -X.  */
3525(simplify
3526 (minus integer_zerop @1)
3527 (negate @1))
3528(simplify
3529 (pointer_diff integer_zerop @1)
3530 (negate (convert @1)))
3531
3532/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
3533   ARG0 is zero and X + ARG0 reduces to X, since that would mean
3534   (-ARG1 + ARG0) reduces to -ARG1.  */
3535(simplify
3536 (minus real_zerop@0 @1)
3537 (if (fold_real_zero_addition_p (type, @0, 0))
3538  (negate @1)))
3539
3540/* Transform x * -1 into -x.  */
3541(simplify
3542 (mult @0 integer_minus_onep)
3543 (negate @0))
3544
3545/* Reassociate (X * CST) * Y to (X * Y) * CST.  This does not introduce
3546   signed overflow for CST != 0 && CST != -1.  */
3547(simplify
3548 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3549 (if (TREE_CODE (@2) != INTEGER_CST
3550      && single_use (@3)
3551      && !integer_zerop (@1) && !integer_minus_onep (@1))
3552  (mult (mult @0 @2) @1)))
3553
3554/* True if we can easily extract the real and imaginary parts of a complex
3555   number.  */
3556(match compositional_complex
3557 (convert? (complex @0 @1)))
3558
3559/* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations.  */
3560(simplify
3561 (complex (realpart @0) (imagpart @0))
3562 @0)
3563(simplify
3564 (realpart (complex @0 @1))
3565 @0)
3566(simplify
3567 (imagpart (complex @0 @1))
3568 @1)
3569
3570/* Sometimes we only care about half of a complex expression.  */
3571(simplify
3572 (realpart (convert?:s (conj:s @0)))
3573 (convert (realpart @0)))
3574(simplify
3575 (imagpart (convert?:s (conj:s @0)))
3576 (convert (negate (imagpart @0))))
3577(for part (realpart imagpart)
3578 (for op (plus minus)
3579  (simplify
3580   (part (convert?:s@2 (op:s @0 @1)))
3581   (convert (op (part @0) (part @1))))))
3582(simplify
3583 (realpart (convert?:s (CEXPI:s @0)))
3584 (convert (COS @0)))
3585(simplify
3586 (imagpart (convert?:s (CEXPI:s @0)))
3587 (convert (SIN @0)))
3588
3589/* conj(conj(x)) -> x  */
3590(simplify
3591 (conj (convert? (conj @0)))
3592 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3593  (convert @0)))
3594
3595/* conj({x,y}) -> {x,-y}  */
3596(simplify
3597 (conj (convert?:s (complex:s @0 @1)))
3598 (with { tree itype = TREE_TYPE (type); }
3599  (complex (convert:itype @0) (negate (convert:itype @1)))))
3600
3601/* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c.  */
3602(for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3603 (simplify
3604  (bswap (bswap @0))
3605  @0)
3606 (simplify
3607  (bswap (bit_not (bswap @0)))
3608  (bit_not @0))
3609 (for bitop (bit_xor bit_ior bit_and)
3610  (simplify
3611   (bswap (bitop:c (bswap @0) @1))
3612   (bitop @0 (bswap @1)))))
3613
3614
3615/* Combine COND_EXPRs and VEC_COND_EXPRs.  */
3616
3617/* Simplify constant conditions.
3618   Only optimize constant conditions when the selected branch
3619   has the same type as the COND_EXPR.  This avoids optimizing
3620   away "c ? x : throw", where the throw has a void type.
3621   Note that we cannot throw away the fold-const.c variant nor
3622   this one as we depend on doing this transform before possibly
3623   A ? B : B -> B triggers and the fold-const.c one can optimize
3624   0 ? A : B to B even if A has side-effects.  Something
3625   genmatch cannot handle.  */
3626(simplify
3627 (cond INTEGER_CST@0 @1 @2)
3628 (if (integer_zerop (@0))
3629  (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3630   @2)
3631  (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3632   @1)))
3633(simplify
3634 (vec_cond VECTOR_CST@0 @1 @2)
3635 (if (integer_all_onesp (@0))
3636  @1
3637  (if (integer_zerop (@0))
3638   @2)))
3639
3640#if GIMPLE
3641/* Sink unary operations to branches, but only if we do fold both.  */
3642(for op (negate bit_not abs absu)
3643 (simplify
3644  (op (vec_cond:s @0 @1 @2))
3645  (vec_cond @0 (op! @1) (op! @2))))
3646
3647/* Sink binary operation to branches, but only if we can fold it.  */
3648(for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
3649	 lshift rshift rdiv trunc_div ceil_div floor_div round_div
3650	 trunc_mod ceil_mod floor_mod round_mod min max)
3651/* (c ? a : b) op (c ? d : e)  -->  c ? (a op d) : (b op e) */
3652 (simplify
3653  (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
3654  (vec_cond @0 (op! @1 @3) (op! @2 @4)))
3655
3656/* (c ? a : b) op d  -->  c ? (a op d) : (b op d) */
3657 (simplify
3658  (op (vec_cond:s @0 @1 @2) @3)
3659  (vec_cond @0 (op! @1 @3) (op! @2 @3)))
3660 (simplify
3661  (op @3 (vec_cond:s @0 @1 @2))
3662  (vec_cond @0 (op! @3 @1) (op! @3 @2))))
3663#endif
3664
3665/* (v ? w : 0) ? a : b is just (v & w) ? a : b
3666   Currently disabled after pass lvec because ARM understands
3667   VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR.  */
3668(simplify
3669 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
3670 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3671  (vec_cond (bit_and @0 @3) @1 @2)))
3672(simplify
3673 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
3674 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3675  (vec_cond (bit_ior @0 @3) @1 @2)))
3676(simplify
3677 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
3678 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3679  (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
3680(simplify
3681 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
3682 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
3683  (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
3684
3685/* c1 ? c2 ? a : b : b  -->  (c1 & c2) ? a : b  */
3686(simplify
3687 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
3688 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3689  (vec_cond (bit_and @0 @1) @2 @3)))
3690(simplify
3691 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
3692 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3693  (vec_cond (bit_ior @0 @1) @2 @3)))
3694(simplify
3695 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
3696 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3697  (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
3698(simplify
3699 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
3700 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
3701  (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
3702
3703/* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
3704   types are compatible.  */
3705(simplify
3706 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
3707 (if (VECTOR_BOOLEAN_TYPE_P (type)
3708      && types_match (type, TREE_TYPE (@0)))
3709  (if (integer_zerop (@1) && integer_all_onesp (@2))
3710   (bit_not @0)
3711   (if (integer_all_onesp (@1) && integer_zerop (@2))
3712    @0))))
3713
3714/* Simplification moved from fold_cond_expr_with_comparison.  It may also
3715   be extended.  */
3716/* This pattern implements two kinds simplification:
3717
3718   Case 1)
3719   (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3720     1) Conversions are type widening from smaller type.
3721     2) Const c1 equals to c2 after canonicalizing comparison.
3722     3) Comparison has tree code LT, LE, GT or GE.
3723   This specific pattern is needed when (cmp (convert x) c) may not
3724   be simplified by comparison patterns because of multiple uses of
3725   x.  It also makes sense here because simplifying across multiple
3726   referred var is always benefitial for complicated cases.
3727
3728   Case 2)
3729   (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2).  */
3730(for cmp (lt le gt ge eq)
3731 (simplify
3732  (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3733  (with
3734   {
3735     tree from_type = TREE_TYPE (@1);
3736     tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3737     enum tree_code code = ERROR_MARK;
3738
3739     if (INTEGRAL_TYPE_P (from_type)
3740	 && int_fits_type_p (@2, from_type)
3741	 && (types_match (c1_type, from_type)
3742	     || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3743		 && (TYPE_UNSIGNED (from_type)
3744		     || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3745	 && (types_match (c2_type, from_type)
3746	     || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3747		 && (TYPE_UNSIGNED (from_type)
3748		     || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3749       {
3750	 if (cmp != EQ_EXPR)
3751	   {
3752	     if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3753	       {
3754		 /* X <= Y - 1 equals to X < Y.  */
3755		 if (cmp == LE_EXPR)
3756		   code = LT_EXPR;
3757		 /* X > Y - 1 equals to X >= Y.  */
3758		 if (cmp == GT_EXPR)
3759		   code = GE_EXPR;
3760	       }
3761	     if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3762	       {
3763		 /* X < Y + 1 equals to X <= Y.  */
3764		 if (cmp == LT_EXPR)
3765		   code = LE_EXPR;
3766		 /* X >= Y + 1 equals to X > Y.  */
3767		 if (cmp == GE_EXPR)
3768		   code = GT_EXPR;
3769	       }
3770	     if (code != ERROR_MARK
3771		 || wi::to_widest (@2) == wi::to_widest (@3))
3772	       {
3773		 if (cmp == LT_EXPR || cmp == LE_EXPR)
3774		   code = MIN_EXPR;
3775		 if (cmp == GT_EXPR || cmp == GE_EXPR)
3776		   code = MAX_EXPR;
3777	       }
3778	   }
3779	 /* Can do A == C1 ? A : C2  ->  A == C1 ? C1 : C2?  */
3780	 else if (int_fits_type_p (@3, from_type))
3781	   code = EQ_EXPR;
3782       }
3783   }
3784   (if (code == MAX_EXPR)
3785    (convert (max @1 (convert @2)))
3786    (if (code == MIN_EXPR)
3787     (convert (min @1 (convert @2)))
3788     (if (code == EQ_EXPR)
3789      (convert (cond (eq @1 (convert @3))
3790		     (convert:from_type @3) (convert:from_type @2)))))))))
3791
3792/* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3793
3794     1) OP is PLUS or MINUS.
3795     2) CMP is LT, LE, GT or GE.
3796     3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3797
3798   This pattern also handles special cases like:
3799
3800     A) Operand x is a unsigned to signed type conversion and c1 is
3801	integer zero.  In this case,
3802	  (signed type)x  < 0  <=>  x  > MAX_VAL(signed type)
3803	  (signed type)x >= 0  <=>  x <= MAX_VAL(signed type)
3804     B) Const c1 may not equal to (C3 op' C2).  In this case we also
3805	check equality for (c1+1) and (c1-1) by adjusting comparison
3806	code.
3807
3808   TODO: Though signed type is handled by this pattern, it cannot be
3809   simplified at the moment because C standard requires additional
3810   type promotion.  In order to match&simplify it here, the IR needs
3811   to be cleaned up by other optimizers, i.e, VRP.  */
3812(for op (plus minus)
3813 (for cmp (lt le gt ge)
3814  (simplify
3815   (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3816   (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3817    (if (types_match (from_type, to_type)
3818	 /* Check if it is special case A).  */
3819	 || (TYPE_UNSIGNED (from_type)
3820	     && !TYPE_UNSIGNED (to_type)
3821	     && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3822	     && integer_zerop (@1)
3823	     && (cmp == LT_EXPR || cmp == GE_EXPR)))
3824     (with
3825      {
3826	wi::overflow_type overflow = wi::OVF_NONE;
3827	enum tree_code code, cmp_code = cmp;
3828	wide_int real_c1;
3829	wide_int c1 = wi::to_wide (@1);
3830	wide_int c2 = wi::to_wide (@2);
3831	wide_int c3 = wi::to_wide (@3);
3832	signop sgn = TYPE_SIGN (from_type);
3833
3834	/* Handle special case A), given x of unsigned type:
3835	    ((signed type)x  < 0) <=> (x  > MAX_VAL(signed type))
3836	    ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type))  */
3837	if (!types_match (from_type, to_type))
3838	  {
3839	    if (cmp_code == LT_EXPR)
3840	      cmp_code = GT_EXPR;
3841	    if (cmp_code == GE_EXPR)
3842	      cmp_code = LE_EXPR;
3843	    c1 = wi::max_value (to_type);
3844	  }
3845	/* To simplify this pattern, we require c3 = (c1 op c2).  Here we
3846	   compute (c3 op' c2) and check if it equals to c1 with op' being
3847	   the inverted operator of op.  Make sure overflow doesn't happen
3848	   if it is undefined.  */
3849	if (op == PLUS_EXPR)
3850	  real_c1 = wi::sub (c3, c2, sgn, &overflow);
3851	else
3852	  real_c1 = wi::add (c3, c2, sgn, &overflow);
3853
3854	code = cmp_code;
3855	if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3856	  {
3857	    /* Check if c1 equals to real_c1.  Boundary condition is handled
3858	       by adjusting comparison operation if necessary.  */
3859	    if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3860		&& !overflow)
3861	      {
3862		/* X <= Y - 1 equals to X < Y.  */
3863		if (cmp_code == LE_EXPR)
3864		  code = LT_EXPR;
3865		/* X > Y - 1 equals to X >= Y.  */
3866		if (cmp_code == GT_EXPR)
3867		  code = GE_EXPR;
3868	      }
3869	    if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3870		&& !overflow)
3871	      {
3872		/* X < Y + 1 equals to X <= Y.  */
3873		if (cmp_code == LT_EXPR)
3874		  code = LE_EXPR;
3875		/* X >= Y + 1 equals to X > Y.  */
3876		if (cmp_code == GE_EXPR)
3877		  code = GT_EXPR;
3878	      }
3879	    if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3880	      {
3881		if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3882		  code = MIN_EXPR;
3883		if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3884		  code = MAX_EXPR;
3885	      }
3886	  }
3887      }
3888      (if (code == MAX_EXPR)
3889       (op (max @X { wide_int_to_tree (from_type, real_c1); })
3890	   { wide_int_to_tree (from_type, c2); })
3891       (if (code == MIN_EXPR)
3892	(op (min @X { wide_int_to_tree (from_type, real_c1); })
3893	    { wide_int_to_tree (from_type, c2); })))))))))
3894
3895(for cnd (cond vec_cond)
3896 /* A ? B : (A ? X : C) -> A ? B : C.  */
3897 (simplify
3898  (cnd @0 (cnd @0 @1 @2) @3)
3899  (cnd @0 @1 @3))
3900 (simplify
3901  (cnd @0 @1 (cnd @0 @2 @3))
3902  (cnd @0 @1 @3))
3903 /* A ? B : (!A ? C : X) -> A ? B : C.  */
3904 /* ???  This matches embedded conditions open-coded because genmatch
3905    would generate matching code for conditions in separate stmts only.
3906    The following is still important to merge then and else arm cases
3907    from if-conversion.  */
3908 (simplify
3909  (cnd @0 @1 (cnd @2 @3 @4))
3910  (if (inverse_conditions_p (@0, @2))
3911   (cnd @0 @1 @3)))
3912 (simplify
3913  (cnd @0 (cnd @1 @2 @3) @4)
3914  (if (inverse_conditions_p (@0, @1))
3915   (cnd @0 @3 @4)))
3916
3917 /* A ? B : B -> B.  */
3918 (simplify
3919  (cnd @0 @1 @1)
3920  @1)
3921
3922 /* !A ? B : C -> A ? C : B.  */
3923 (simplify
3924  (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3925  (cnd @0 @2 @1)))
3926
3927/* -(type)!A -> (type)A - 1.  */
3928(simplify
3929 (negate (convert?:s (logical_inverted_value:s @0)))
3930 (if (INTEGRAL_TYPE_P (type)
3931      && TREE_CODE (type) != BOOLEAN_TYPE
3932      && TYPE_PRECISION (type) > 1
3933      && TREE_CODE (@0) == SSA_NAME
3934      && ssa_name_has_boolean_range (@0))
3935  (plus (convert:type @0) { build_all_ones_cst (type); })))
3936
3937/* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3938   return all -1 or all 0 results.  */
3939/* ??? We could instead convert all instances of the vec_cond to negate,
3940   but that isn't necessarily a win on its own.  */
3941(simplify
3942 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3943 (if (VECTOR_TYPE_P (type)
3944      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3945		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3946      && (TYPE_MODE (TREE_TYPE (type))
3947          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3948  (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3949
3950/* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0).  */
3951(simplify
3952 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3953 (if (VECTOR_TYPE_P (type)
3954      && known_eq (TYPE_VECTOR_SUBPARTS (type),
3955		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3956      && (TYPE_MODE (TREE_TYPE (type))
3957          == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3958  (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3959
3960
3961/* Simplifications of comparisons.  */
3962
3963/* See if we can reduce the magnitude of a constant involved in a
3964   comparison by changing the comparison code.  This is a canonicalization
3965   formerly done by maybe_canonicalize_comparison_1.  */
3966(for cmp  (le gt)
3967     acmp (lt ge)
3968 (simplify
3969  (cmp @0 uniform_integer_cst_p@1)
3970  (with { tree cst = uniform_integer_cst_p (@1); }
3971   (if (tree_int_cst_sgn (cst) == -1)
3972     (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3973				   wide_int_to_tree (TREE_TYPE (cst),
3974						     wi::to_wide (cst)
3975						     + 1)); })))))
3976(for cmp  (ge lt)
3977     acmp (gt le)
3978 (simplify
3979  (cmp @0 uniform_integer_cst_p@1)
3980  (with { tree cst = uniform_integer_cst_p (@1); }
3981   (if (tree_int_cst_sgn (cst) == 1)
3982    (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3983				  wide_int_to_tree (TREE_TYPE (cst),
3984				  wi::to_wide (cst) - 1)); })))))
3985
3986/* We can simplify a logical negation of a comparison to the
3987   inverted comparison.  As we cannot compute an expression
3988   operator using invert_tree_comparison we have to simulate
3989   that with expression code iteration.  */
3990(for cmp (tcc_comparison)
3991     icmp (inverted_tcc_comparison)
3992     ncmp (inverted_tcc_comparison_with_nans)
3993 /* Ideally we'd like to combine the following two patterns
3994    and handle some more cases by using
3995      (logical_inverted_value (cmp @0 @1))
3996    here but for that genmatch would need to "inline" that.
3997    For now implement what forward_propagate_comparison did.  */
3998 (simplify
3999  (bit_not (cmp @0 @1))
4000  (if (VECTOR_TYPE_P (type)
4001       || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4002   /* Comparison inversion may be impossible for trapping math,
4003      invert_tree_comparison will tell us.  But we can't use
4004      a computed operator in the replacement tree thus we have
4005      to play the trick below.  */
4006   (with { enum tree_code ic = invert_tree_comparison
4007             (cmp, HONOR_NANS (@0)); }
4008    (if (ic == icmp)
4009     (icmp @0 @1)
4010     (if (ic == ncmp)
4011      (ncmp @0 @1))))))
4012 (simplify
4013  (bit_xor (cmp @0 @1) integer_truep)
4014  (with { enum tree_code ic = invert_tree_comparison
4015            (cmp, HONOR_NANS (@0)); }
4016   (if (ic == icmp)
4017    (icmp @0 @1)
4018    (if (ic == ncmp)
4019     (ncmp @0 @1))))))
4020
4021/* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4022   ??? The transformation is valid for the other operators if overflow
4023   is undefined for the type, but performing it here badly interacts
4024   with the transformation in fold_cond_expr_with_comparison which
4025   attempts to synthetize ABS_EXPR.  */
4026(for cmp (eq ne)
4027 (for sub (minus pointer_diff)
4028  (simplify
4029   (cmp (sub@2 @0 @1) integer_zerop)
4030   (if (single_use (@2))
4031    (cmp @0 @1)))))
4032
4033/* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4034   (x >= 0) ^ (y >= 0) to (x ^ y) < 0.  */
4035(for cmp (lt ge)
4036 (simplify
4037  (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4038   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4039	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
4040	&& types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4041    (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4042/* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4043   (x >= 0) ^ (y < 0) to (x ^ y) >= 0.  */
4044(simplify
4045 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4046  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4047       && !TYPE_UNSIGNED (TREE_TYPE (@0))
4048       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4049   (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4050
4051/* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4052   signed arithmetic case.  That form is created by the compiler
4053   often enough for folding it to be of value.  One example is in
4054   computing loop trip counts after Operator Strength Reduction.  */
4055(for cmp (simple_comparison)
4056     scmp (swapped_simple_comparison)
4057 (simplify
4058  (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4059  /* Handle unfolded multiplication by zero.  */
4060  (if (integer_zerop (@1))
4061   (cmp @1 @2)
4062   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4063	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4064	&& single_use (@3))
4065    /* If @1 is negative we swap the sense of the comparison.  */
4066    (if (tree_int_cst_sgn (@1) < 0)
4067     (scmp @0 @2)
4068     (cmp @0 @2))))))
4069
4070/* For integral types with undefined overflow fold
4071   x * C1 == C2 into x == C2 / C1 or false.
4072   If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4073   Z / 2^n Z.  */
4074(for cmp (eq ne)
4075 (simplify
4076  (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4077  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4078       && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4079       && wi::to_wide (@1) != 0)
4080   (with { widest_int quot; }
4081    (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4082			    TYPE_SIGN (TREE_TYPE (@0)), &quot))
4083     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4084     { constant_boolean_node (cmp == NE_EXPR, type); }))
4085   (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4086	&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4087	&& (wi::bit_and (wi::to_wide (@1), 1) == 1))
4088    (cmp @0
4089     {
4090       tree itype = TREE_TYPE (@0);
4091       int p = TYPE_PRECISION (itype);
4092       wide_int m = wi::one (p + 1) << p;
4093       wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4094       wide_int i = wide_int::from (wi::mod_inv (a, m),
4095				    p, TYPE_SIGN (itype));
4096       wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4097     })))))
4098
4099/* Simplify comparison of something with itself.  For IEEE
4100   floating-point, we can only do some of these simplifications.  */
4101(for cmp (eq ge le)
4102 (simplify
4103  (cmp @0 @0)
4104  (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4105       || ! HONOR_NANS (@0))
4106   { constant_boolean_node (true, type); }
4107   (if (cmp != EQ_EXPR)
4108    (eq @0 @0)))))
4109(for cmp (ne gt lt)
4110 (simplify
4111  (cmp @0 @0)
4112  (if (cmp != NE_EXPR
4113       || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4114       || ! HONOR_NANS (@0))
4115   { constant_boolean_node (false, type); })))
4116(for cmp (unle unge uneq)
4117 (simplify
4118  (cmp @0 @0)
4119  { constant_boolean_node (true, type); }))
4120(for cmp (unlt ungt)
4121 (simplify
4122  (cmp @0 @0)
4123  (unordered @0 @0)))
4124(simplify
4125 (ltgt @0 @0)
4126 (if (!flag_trapping_math)
4127  { constant_boolean_node (false, type); }))
4128
4129/* x == ~x -> false */
4130/* x != ~x -> true */
4131(for cmp (eq ne)
4132 (simplify
4133  (cmp:c @0 (bit_not @0))
4134  { constant_boolean_node (cmp == NE_EXPR, type); }))
4135
4136/* Fold ~X op ~Y as Y op X.  */
4137(for cmp (simple_comparison)
4138 (simplify
4139  (cmp (bit_not@2 @0) (bit_not@3 @1))
4140  (if (single_use (@2) && single_use (@3))
4141   (cmp @1 @0))))
4142
4143/* Fold ~X op C as X op' ~C, where op' is the swapped comparison.  */
4144(for cmp (simple_comparison)
4145     scmp (swapped_simple_comparison)
4146 (simplify
4147  (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4148  (if (single_use (@2)
4149       && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4150   (scmp @0 (bit_not @1)))))
4151
4152(for cmp (simple_comparison)
4153 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2.  */
4154 (simplify
4155  (cmp (convert@2 @0) (convert? @1))
4156  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4157       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4158	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4159       && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4160	   == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4161   (with
4162    {
4163      tree type1 = TREE_TYPE (@1);
4164      if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4165        {
4166	  REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4167	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4168	      && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4169	    type1 = float_type_node;
4170	  if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4171	      && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4172	    type1 = double_type_node;
4173        }
4174      tree newtype
4175        = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4176	   ? TREE_TYPE (@0) : type1);
4177    }
4178    (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4179     (cmp (convert:newtype @0) (convert:newtype @1))))))
4180
4181 (simplify
4182  (cmp @0 REAL_CST@1)
4183  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
4184  (switch
4185   /* a CMP (-0) -> a CMP 0  */
4186   (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
4187    (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
4188   /* x != NaN is always true, other ops are always false.  */
4189   (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4190	&& ! HONOR_SNANS (@1))
4191    { constant_boolean_node (cmp == NE_EXPR, type); })
4192   /* Fold comparisons against infinity.  */
4193   (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
4194	&& MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
4195    (with
4196     {
4197       REAL_VALUE_TYPE max;
4198       enum tree_code code = cmp;
4199       bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4200       if (neg)
4201         code = swap_tree_comparison (code);
4202     }
4203     (switch
4204      /* x > +Inf is always false, if we ignore NaNs or exceptions.  */
4205      (if (code == GT_EXPR
4206	   && !(HONOR_NANS (@0) && flag_trapping_math))
4207       { constant_boolean_node (false, type); })
4208      (if (code == LE_EXPR)
4209       /* x <= +Inf is always true, if we don't care about NaNs.  */
4210       (if (! HONOR_NANS (@0))
4211	{ constant_boolean_node (true, type); }
4212	/* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4213	   an "invalid" exception.  */
4214	(if (!flag_trapping_math)
4215	 (eq @0 @0))))
4216      /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4217	 for == this introduces an exception for x a NaN.  */
4218      (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4219	   || code == GE_EXPR)
4220       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4221	(if (neg)
4222	 (lt @0 { build_real (TREE_TYPE (@0), max); })
4223	 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4224      /* x < +Inf is always equal to x <= DBL_MAX.  */
4225      (if (code == LT_EXPR)
4226       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4227	(if (neg)
4228	 (ge @0 { build_real (TREE_TYPE (@0), max); })
4229	 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4230      /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4231	 an exception for x a NaN so use an unordered comparison.  */
4232      (if (code == NE_EXPR)
4233       (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4234	(if (! HONOR_NANS (@0))
4235	 (if (neg)
4236	  (ge @0 { build_real (TREE_TYPE (@0), max); })
4237	  (le @0 { build_real (TREE_TYPE (@0), max); }))
4238	 (if (neg)
4239	  (unge @0 { build_real (TREE_TYPE (@0), max); })
4240	  (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4241
4242 /* If this is a comparison of a real constant with a PLUS_EXPR
4243    or a MINUS_EXPR of a real constant, we can convert it into a
4244    comparison with a revised real constant as long as no overflow
4245    occurs when unsafe_math_optimizations are enabled.  */
4246 (if (flag_unsafe_math_optimizations)
4247  (for op (plus minus)
4248   (simplify
4249    (cmp (op @0 REAL_CST@1) REAL_CST@2)
4250    (with
4251     {
4252       tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4253			       TREE_TYPE (@1), @2, @1);
4254     }
4255     (if (tem && !TREE_OVERFLOW (tem))
4256      (cmp @0 { tem; }))))))
4257
4258 /* Likewise, we can simplify a comparison of a real constant with
4259    a MINUS_EXPR whose first operand is also a real constant, i.e.
4260    (c1 - x) < c2 becomes x > c1-c2.  Reordering is allowed on
4261    floating-point types only if -fassociative-math is set.  */
4262 (if (flag_associative_math)
4263  (simplify
4264   (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4265   (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4266    (if (tem && !TREE_OVERFLOW (tem))
4267     (cmp { tem; } @1)))))
4268
4269 /* Fold comparisons against built-in math functions.  */
4270 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4271  (for sq (SQRT)
4272   (simplify
4273    (cmp (sq @0) REAL_CST@1)
4274    (switch
4275     (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4276      (switch
4277       /* sqrt(x) < y is always false, if y is negative.  */
4278       (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4279	{ constant_boolean_node (false, type); })
4280       /* sqrt(x) > y is always true, if y is negative and we
4281	  don't care about NaNs, i.e. negative values of x.  */
4282       (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4283	{ constant_boolean_node (true, type); })
4284       /* sqrt(x) > y is the same as x >= 0, if y is negative.  */
4285       (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4286     (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4287      (switch
4288       /* sqrt(x) < 0 is always false.  */
4289       (if (cmp == LT_EXPR)
4290	{ constant_boolean_node (false, type); })
4291       /* sqrt(x) >= 0 is always true if we don't care about NaNs.  */
4292       (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4293	{ constant_boolean_node (true, type); })
4294       /* sqrt(x) <= 0 -> x == 0.  */
4295       (if (cmp == LE_EXPR)
4296	(eq @0 @1))
4297       /* Otherwise sqrt(x) cmp 0 -> x cmp 0.  Here cmp can be >=, >,
4298          == or !=.  In the last case:
4299
4300	    (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4301
4302	  if x is negative or NaN.  Due to -funsafe-math-optimizations,
4303	  the results for other x follow from natural arithmetic.  */
4304       (cmp @0 @1)))
4305     (if ((cmp == LT_EXPR
4306	   || cmp == LE_EXPR
4307	   || cmp == GT_EXPR
4308	   || cmp == GE_EXPR)
4309	  && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4310	  /* Give up for -frounding-math.  */
4311	  && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4312      (with
4313       {
4314	 REAL_VALUE_TYPE c2;
4315	 enum tree_code ncmp = cmp;
4316	 const real_format *fmt
4317	   = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4318	 real_arithmetic (&c2, MULT_EXPR,
4319			  &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4320	 real_convert (&c2, fmt, &c2);
4321	 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4322	    then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR.  */
4323	 if (!REAL_VALUE_ISINF (c2))
4324	   {
4325	     tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4326					build_real (TREE_TYPE (@0), c2));
4327	     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4328	       ncmp = ERROR_MARK;
4329	     else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4330		      && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4331	       ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4332	     else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4333		      && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4334	       ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4335	     else
4336	       {
4337		 /* With rounding to even, sqrt of up to 3 different values
4338		    gives the same normal result, so in some cases c2 needs
4339		    to be adjusted.  */
4340		 REAL_VALUE_TYPE c2alt, tow;
4341		 if (cmp == LT_EXPR || cmp == GE_EXPR)
4342		   tow = dconst0;
4343		 else
4344		   real_inf (&tow);
4345		 real_nextafter (&c2alt, fmt, &c2, &tow);
4346		 real_convert (&c2alt, fmt, &c2alt);
4347		 if (REAL_VALUE_ISINF (c2alt))
4348		   ncmp = ERROR_MARK;
4349		 else
4350		   {
4351		     c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4352					   build_real (TREE_TYPE (@0), c2alt));
4353		     if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4354		       ncmp = ERROR_MARK;
4355		     else if (real_equal (&TREE_REAL_CST (c3),
4356					  &TREE_REAL_CST (@1)))
4357		       c2 = c2alt;
4358		   }
4359	       }
4360	   }
4361       }
4362       (if (cmp == GT_EXPR || cmp == GE_EXPR)
4363	(if (REAL_VALUE_ISINF (c2))
4364	 /* sqrt(x) > y is x == +Inf, when y is very large.  */
4365	 (if (HONOR_INFINITIES (@0))
4366	  (eq @0 { build_real (TREE_TYPE (@0), c2); })
4367	  { constant_boolean_node (false, type); })
4368	 /* sqrt(x) > c is the same as x > c*c.  */
4369	 (if (ncmp != ERROR_MARK)
4370	  (if (ncmp == GE_EXPR)
4371	   (ge @0 { build_real (TREE_TYPE (@0), c2); })
4372	   (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4373	/* else if (cmp == LT_EXPR || cmp == LE_EXPR)  */
4374	(if (REAL_VALUE_ISINF (c2))
4375	 (switch
4376	  /* sqrt(x) < y is always true, when y is a very large
4377	     value and we don't care about NaNs or Infinities.  */
4378	  (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4379	   { constant_boolean_node (true, type); })
4380	  /* sqrt(x) < y is x != +Inf when y is very large and we
4381	     don't care about NaNs.  */
4382	  (if (! HONOR_NANS (@0))
4383	   (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4384	  /* sqrt(x) < y is x >= 0 when y is very large and we
4385	     don't care about Infinities.  */
4386	  (if (! HONOR_INFINITIES (@0))
4387	   (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4388	  /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large.  */
4389	  (if (GENERIC)
4390	   (truth_andif
4391	    (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4392	    (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4393	 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs.  */
4394	 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4395	  (if (ncmp == LT_EXPR)
4396	   (lt @0 { build_real (TREE_TYPE (@0), c2); })
4397	   (le @0 { build_real (TREE_TYPE (@0), c2); }))
4398	  /* sqrt(x) < c is the same as x >= 0 && x < c*c.  */
4399	  (if (ncmp != ERROR_MARK && GENERIC)
4400	   (if (ncmp == LT_EXPR)
4401	    (truth_andif
4402	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4403	     (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4404	    (truth_andif
4405	     (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4406	     (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4407   /* Transform sqrt(x) cmp sqrt(y) -> x cmp y.  */
4408   (simplify
4409    (cmp (sq @0) (sq @1))
4410      (if (! HONOR_NANS (@0))
4411	(cmp @0 @1))))))
4412
4413/* Optimize various special cases of (FTYPE) N CMP (FTYPE) M.  */
4414(for cmp  (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
4415     icmp (lt le eq ne ge gt unordered ordered lt   le   gt   ge   eq   ne)
4416 (simplify
4417  (cmp (float@0 @1) (float @2))
4418   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
4419	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4420    (with
4421     {
4422       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4423       tree type1 = TREE_TYPE (@1);
4424       bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4425       tree type2 = TREE_TYPE (@2);
4426       bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4427     }
4428     (if (fmt.can_represent_integral_type_p (type1)
4429	  && fmt.can_represent_integral_type_p (type2))
4430      (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4431       { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4432       (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4433            && type1_signed_p >= type2_signed_p)
4434        (icmp @1 (convert @2))
4435        (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4436             && type1_signed_p <= type2_signed_p)
4437         (icmp (convert:type2 @1) @2)
4438         (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4439              && type1_signed_p == type2_signed_p)
4440	  (icmp @1 @2))))))))))
4441
4442/* Optimize various special cases of (FTYPE) N CMP CST.  */
4443(for cmp  (lt le eq ne ge gt)
4444     icmp (le le eq ne ge ge)
4445 (simplify
4446  (cmp (float @0) REAL_CST@1)
4447   (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4448	&& ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4449    (with
4450     {
4451       tree itype = TREE_TYPE (@0);
4452       format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4453       const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4454       /* Be careful to preserve any potential exceptions due to
4455	  NaNs.  qNaNs are ok in == or != context.
4456	  TODO: relax under -fno-trapping-math or
4457	  -fno-signaling-nans.  */
4458       bool exception_p
4459         = real_isnan (cst) && (cst->signalling
4460				|| (cmp != EQ_EXPR && cmp != NE_EXPR));
4461     }
4462     /* TODO: allow non-fitting itype and SNaNs when
4463	-fno-trapping-math.  */
4464     (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4465      (with
4466       {
4467	 signop isign = TYPE_SIGN (itype);
4468	 REAL_VALUE_TYPE imin, imax;
4469	 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4470	 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4471
4472	 REAL_VALUE_TYPE icst;
4473	 if (cmp == GT_EXPR || cmp == GE_EXPR)
4474	   real_ceil (&icst, fmt, cst);
4475	 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4476	   real_floor (&icst, fmt, cst);
4477	 else
4478	   real_trunc (&icst, fmt, cst);
4479
4480	 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4481
4482	 bool overflow_p = false;
4483	 wide_int icst_val
4484	   = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4485       }
4486       (switch
4487	/* Optimize cases when CST is outside of ITYPE's range.  */
4488	(if (real_compare (LT_EXPR, cst, &imin))
4489	 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4490				  type); })
4491	(if (real_compare (GT_EXPR, cst, &imax))
4492	 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4493				  type); })
4494	/* Remove cast if CST is an integer representable by ITYPE.  */
4495	(if (cst_int_p)
4496	 (cmp @0 { gcc_assert (!overflow_p);
4497		   wide_int_to_tree (itype, icst_val); })
4498	)
4499	/* When CST is fractional, optimize
4500	    (FTYPE) N == CST -> 0
4501	    (FTYPE) N != CST -> 1.  */
4502	(if (cmp == EQ_EXPR || cmp == NE_EXPR)
4503	 { constant_boolean_node (cmp == NE_EXPR, type); })
4504	/* Otherwise replace with sensible integer constant.  */
4505	(with
4506	 {
4507	   gcc_checking_assert (!overflow_p);
4508	 }
4509	 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4510
4511/* Fold A /[ex] B CMP C to A CMP B * C.  */
4512(for cmp (eq ne)
4513 (simplify
4514  (cmp (exact_div @0 @1) INTEGER_CST@2)
4515  (if (!integer_zerop (@1))
4516   (if (wi::to_wide (@2) == 0)
4517    (cmp @0 @2)
4518    (if (TREE_CODE (@1) == INTEGER_CST)
4519     (with
4520      {
4521	wi::overflow_type ovf;
4522	wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4523				 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4524      }
4525      (if (ovf)
4526       { constant_boolean_node (cmp == NE_EXPR, type); }
4527       (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4528(for cmp (lt le gt ge)
4529 (simplify
4530  (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4531  (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4532   (with
4533    {
4534      wi::overflow_type ovf;
4535      wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4536			       TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4537    }
4538    (if (ovf)
4539     { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4540					TYPE_SIGN (TREE_TYPE (@2)))
4541			      != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4542     (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4543
4544/* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4545
4546   For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4547   For large C (more than min/B+2^size), this is also true, with the
4548   multiplication computed modulo 2^size.
4549   For intermediate C, this just tests the sign of A.  */
4550(for cmp  (lt le gt ge)
4551     cmp2 (ge ge lt lt)
4552 (simplify
4553  (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4554  (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4555       && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4556       && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4557   (with
4558    {
4559      tree utype = TREE_TYPE (@2);
4560      wide_int denom = wi::to_wide (@1);
4561      wide_int right = wi::to_wide (@2);
4562      wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4563      wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4564      bool small = wi::leu_p (right, smax);
4565      bool large = wi::geu_p (right, smin);
4566    }
4567    (if (small || large)
4568     (cmp (convert:utype @0) (mult @2 (convert @1)))
4569     (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4570
4571/* Unordered tests if either argument is a NaN.  */
4572(simplify
4573 (bit_ior (unordered @0 @0) (unordered @1 @1))
4574 (if (types_match (@0, @1))
4575  (unordered @0 @1)))
4576(simplify
4577 (bit_and (ordered @0 @0) (ordered @1 @1))
4578 (if (types_match (@0, @1))
4579  (ordered @0 @1)))
4580(simplify
4581 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4582 @2)
4583(simplify
4584 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4585 @2)
4586
4587/* Simple range test simplifications.  */
4588/* A < B || A >= B -> true.  */
4589(for test1 (lt le le le ne ge)
4590     test2 (ge gt ge ne eq ne)
4591 (simplify
4592  (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4593  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4594       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4595   { constant_boolean_node (true, type); })))
4596/* A < B && A >= B -> false.  */
4597(for test1 (lt lt lt le ne eq)
4598     test2 (ge gt eq gt eq gt)
4599 (simplify
4600  (bit_and:c (test1 @0 @1) (test2 @0 @1))
4601  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4602       || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4603   { constant_boolean_node (false, type); })))
4604
4605/* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4606   A & (2**N - 1) >  2**K - 1 -> A & (2**N - 2**K) != 0
4607
4608   Note that comparisons
4609     A & (2**N - 1) <  2**K   -> A & (2**N - 2**K) == 0
4610     A & (2**N - 1) >= 2**K   -> A & (2**N - 2**K) != 0
4611   will be canonicalized to above so there's no need to
4612   consider them here.
4613 */
4614
4615(for cmp (le gt)
4616     eqcmp (eq ne)
4617 (simplify
4618  (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4619  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4620   (with
4621    {
4622     tree ty = TREE_TYPE (@0);
4623     unsigned prec = TYPE_PRECISION (ty);
4624     wide_int mask = wi::to_wide (@2, prec);
4625     wide_int rhs = wi::to_wide (@3, prec);
4626     signop sgn = TYPE_SIGN (ty);
4627    }
4628    (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4629	 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4630      (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4631	     { build_zero_cst (ty); }))))))
4632
4633/* -A CMP -B -> B CMP A.  */
4634(for cmp (tcc_comparison)
4635     scmp (swapped_tcc_comparison)
4636 (simplify
4637  (cmp (negate @0) (negate @1))
4638  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4639       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4640	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4641   (scmp @0 @1)))
4642 (simplify
4643  (cmp (negate @0) CONSTANT_CLASS_P@1)
4644  (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4645       || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4646	   && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4647   (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4648    (if (tem && !TREE_OVERFLOW (tem))
4649     (scmp @0 { tem; }))))))
4650
4651/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0.  */
4652(for op (eq ne)
4653 (simplify
4654  (op (abs @0) zerop@1)
4655  (op @0 @1)))
4656
4657/* From fold_sign_changed_comparison and fold_widened_comparison.
4658   FIXME: the lack of symmetry is disturbing.  */
4659(for cmp (simple_comparison)
4660 (simplify
4661  (cmp (convert@0 @00) (convert?@1 @10))
4662  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4663       /* Disable this optimization if we're casting a function pointer
4664	  type on targets that require function pointer canonicalization.  */
4665       && !(targetm.have_canonicalize_funcptr_for_compare ()
4666	    && ((POINTER_TYPE_P (TREE_TYPE (@00))
4667		 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4668		|| (POINTER_TYPE_P (TREE_TYPE (@10))
4669		    && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4670       && single_use (@0))
4671   (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4672	&& (TREE_CODE (@10) == INTEGER_CST
4673	    || @1 != @10)
4674	&& (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4675	    || cmp == NE_EXPR
4676	    || cmp == EQ_EXPR)
4677	&& !POINTER_TYPE_P (TREE_TYPE (@00)))
4678    /* ???  The special-casing of INTEGER_CST conversion was in the original
4679       code and here to avoid a spurious overflow flag on the resulting
4680       constant which fold_convert produces.  */
4681    (if (TREE_CODE (@1) == INTEGER_CST)
4682     (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4683				TREE_OVERFLOW (@1)); })
4684     (cmp @00 (convert @1)))
4685
4686    (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4687     /* If possible, express the comparison in the shorter mode.  */
4688     (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4689	   || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4690	   || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4691	       && TYPE_UNSIGNED (TREE_TYPE (@00))))
4692	  && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4693	      || ((TYPE_PRECISION (TREE_TYPE (@00))
4694		   >= TYPE_PRECISION (TREE_TYPE (@10)))
4695		  && (TYPE_UNSIGNED (TREE_TYPE (@00))
4696		      == TYPE_UNSIGNED (TREE_TYPE (@10))))
4697	      || (TREE_CODE (@10) == INTEGER_CST
4698		  && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4699		  && int_fits_type_p (@10, TREE_TYPE (@00)))))
4700      (cmp @00 (convert @10))
4701      (if (TREE_CODE (@10) == INTEGER_CST
4702	   && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4703	   && !int_fits_type_p (@10, TREE_TYPE (@00)))
4704       (with
4705	{
4706	  tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4707	  tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4708	  bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4709	  bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4710	}
4711	(if (above || below)
4712	 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4713	  { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4714	  (if (cmp == LT_EXPR || cmp == LE_EXPR)
4715	   { constant_boolean_node (above ? true : false, type); }
4716	   (if (cmp == GT_EXPR || cmp == GE_EXPR)
4717	    { constant_boolean_node (above ? false : true, type); }))))))))))))
4718
4719(for cmp (eq ne)
4720 (simplify
4721  /* SSA names are canonicalized to 2nd place.  */
4722  (cmp addr@0 SSA_NAME@1)
4723  (with
4724   { poly_int64 off; tree base; }
4725   /* A local variable can never be pointed to by
4726      the default SSA name of an incoming parameter.  */
4727   (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4728	&& TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4729	&& (base = get_base_address (TREE_OPERAND (@0, 0)))
4730	&& TREE_CODE (base) == VAR_DECL
4731	&& auto_var_in_fn_p (base, current_function_decl))
4732    (if (cmp == NE_EXPR)
4733     { constant_boolean_node (true, type); }
4734     { constant_boolean_node (false, type); })
4735    /* If the address is based on @1 decide using the offset.  */
4736    (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4737	 && TREE_CODE (base) == MEM_REF
4738	 && TREE_OPERAND (base, 0) == @1)
4739     (with { off += mem_ref_offset (base).force_shwi (); }
4740      (if (known_ne (off, 0))
4741       { constant_boolean_node (cmp == NE_EXPR, type); }
4742       (if (known_eq (off, 0))
4743        { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4744
4745/* Equality compare simplifications from fold_binary  */
4746(for cmp (eq ne)
4747
4748 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4749    Similarly for NE_EXPR.  */
4750 (simplify
4751  (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4752  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4753       && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4754   { constant_boolean_node (cmp == NE_EXPR, type); }))
4755
4756 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y.  */
4757 (simplify
4758  (cmp (bit_xor @0 @1) integer_zerop)
4759  (cmp @0 @1))
4760
4761 /* (X ^ Y) == Y becomes X == 0.
4762    Likewise (X ^ Y) == X becomes Y == 0.  */
4763 (simplify
4764  (cmp:c (bit_xor:c @0 @1) @0)
4765  (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4766
4767 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2).  */
4768 (simplify
4769  (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4770  (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4771   (cmp @0 (bit_xor @1 (convert @2)))))
4772
4773 (simplify
4774  (cmp (convert? addr@0) integer_zerop)
4775  (if (tree_single_nonzero_warnv_p (@0, NULL))
4776   { constant_boolean_node (cmp == NE_EXPR, type); }))
4777
4778 /* (X & C) op (Y & C) into (X ^ Y) & C op 0.  */
4779 (simplify
4780  (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
4781  (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
4782
4783/* (X < 0) != (Y < 0) into (X ^ Y) < 0.
4784   (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
4785   (X < 0) == (Y < 0) into (X ^ Y) >= 0.
4786   (X >= 0) == (Y >= 0) into (X ^ Y) >= 0.  */
4787(for cmp (eq ne)
4788     ncmp (ge lt)
4789 (for sgncmp (ge lt)
4790  (simplify
4791   (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
4792   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4793	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
4794	&& types_match (@0, @1))
4795    (ncmp (bit_xor @0 @1) @2)))))
4796/* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
4797   (X < 0) != (Y >= 0) into (X ^ Y) >= 0.  */
4798(for cmp (eq ne)
4799     ncmp (lt ge)
4800 (simplify
4801  (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
4802   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4803	&& !TYPE_UNSIGNED (TREE_TYPE (@0))
4804	&& types_match (@0, @1))
4805    (ncmp (bit_xor @0 @1) @2))))
4806
4807/* If we have (A & C) == C where C is a power of 2, convert this into
4808   (A & C) != 0.  Similarly for NE_EXPR.  */
4809(for cmp (eq ne)
4810     icmp (ne eq)
4811 (simplify
4812  (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4813  (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4814
4815/* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4816   convert this into a shift followed by ANDing with D.  */
4817(simplify
4818 (cond
4819  (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4820  INTEGER_CST@2 integer_zerop)
4821 (if (integer_pow2p (@2))
4822  (with {
4823     int shift = (wi::exact_log2 (wi::to_wide (@2))
4824		  - wi::exact_log2 (wi::to_wide (@1)));
4825   }
4826   (if (shift > 0)
4827    (bit_and
4828     (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4829    (bit_and
4830     (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4831     @2)))))
4832
4833/* If we have (A & C) != 0 where C is the sign bit of A, convert
4834   this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
4835(for cmp (eq ne)
4836     ncmp (ge lt)
4837 (simplify
4838  (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4839  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4840       && type_has_mode_precision_p (TREE_TYPE (@0))
4841       && element_precision (@2) >= element_precision (@0)
4842       && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4843   (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4844    (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4845
4846/* If we have A < 0 ? C : 0 where C is a power of 2, convert
4847   this into a right shift or sign extension followed by ANDing with C.  */
4848(simplify
4849 (cond
4850  (lt @0 integer_zerop)
4851  INTEGER_CST@1 integer_zerop)
4852 (if (integer_pow2p (@1)
4853      && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4854  (with {
4855    int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4856   }
4857   (if (shift >= 0)
4858    (bit_and
4859     (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4860     @1)
4861    /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4862       sign extension followed by AND with C will achieve the effect.  */
4863    (bit_and (convert @0) @1)))))
4864
4865/* When the addresses are not directly of decls compare base and offset.
4866   This implements some remaining parts of fold_comparison address
4867   comparisons but still no complete part of it.  Still it is good
4868   enough to make fold_stmt not regress when not dispatching to fold_binary.  */
4869(for cmp (simple_comparison)
4870 (simplify
4871  (cmp (convert1?@2 addr@0) (convert2? addr@1))
4872  (with
4873   {
4874     poly_int64 off0, off1;
4875     tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4876     tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4877     if (base0 && TREE_CODE (base0) == MEM_REF)
4878       {
4879	 off0 += mem_ref_offset (base0).force_shwi ();
4880         base0 = TREE_OPERAND (base0, 0);
4881       }
4882     if (base1 && TREE_CODE (base1) == MEM_REF)
4883       {
4884	 off1 += mem_ref_offset (base1).force_shwi ();
4885         base1 = TREE_OPERAND (base1, 0);
4886       }
4887   }
4888   (if (base0 && base1)
4889    (with
4890     {
4891       int equal = 2;
4892       /* Punt in GENERIC on variables with value expressions;
4893	  the value expressions might point to fields/elements
4894	  of other vars etc.  */
4895       if (GENERIC
4896	   && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4897	       || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4898	 ;
4899       else if (decl_in_symtab_p (base0)
4900		&& decl_in_symtab_p (base1))
4901         equal = symtab_node::get_create (base0)
4902	           ->equal_address_to (symtab_node::get_create (base1));
4903       else if ((DECL_P (base0)
4904		 || TREE_CODE (base0) == SSA_NAME
4905		 || TREE_CODE (base0) == STRING_CST)
4906		&& (DECL_P (base1)
4907		    || TREE_CODE (base1) == SSA_NAME
4908		    || TREE_CODE (base1) == STRING_CST))
4909         equal = (base0 == base1);
4910       if (equal == 0)
4911	 {
4912	   HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4913	   off0.is_constant (&ioff0);
4914	   off1.is_constant (&ioff1);
4915	   if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4916	       || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4917	       || (TREE_CODE (base0) == STRING_CST
4918		   && TREE_CODE (base1) == STRING_CST
4919		   && ioff0 >= 0 && ioff1 >= 0
4920		   && ioff0 < TREE_STRING_LENGTH (base0)
4921		   && ioff1 < TREE_STRING_LENGTH (base1)
4922		   /* This is a too conservative test that the STRING_CSTs
4923		      will not end up being string-merged.  */
4924		   && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4925			       TREE_STRING_POINTER (base1) + ioff1,
4926			       MIN (TREE_STRING_LENGTH (base0) - ioff0,
4927				    TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4928	     ;
4929	   else if (!DECL_P (base0) || !DECL_P (base1))
4930	     equal = 2;
4931	   else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4932	     equal = 2;
4933	   /* If this is a pointer comparison, ignore for now even
4934	      valid equalities where one pointer is the offset zero
4935	      of one object and the other to one past end of another one.  */
4936	   else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4937	     ;
4938	   /* Assume that automatic variables can't be adjacent to global
4939	      variables.  */
4940	   else if (is_global_var (base0) != is_global_var (base1))
4941	     ;
4942	   else
4943	     {
4944	       tree sz0 = DECL_SIZE_UNIT (base0);
4945	       tree sz1 = DECL_SIZE_UNIT (base1);
4946	       /* If sizes are unknown, e.g. VLA or not representable,
4947		  punt.  */
4948	       if (!tree_fits_poly_int64_p (sz0)
4949		   || !tree_fits_poly_int64_p (sz1))
4950		 equal = 2;
4951	       else
4952		 {
4953		   poly_int64 size0 = tree_to_poly_int64 (sz0);
4954		   poly_int64 size1 = tree_to_poly_int64 (sz1);
4955		   /* If one offset is pointing (or could be) to the beginning
4956		      of one object and the other is pointing to one past the
4957		      last byte of the other object, punt.  */
4958		   if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4959		     equal = 2;
4960		   else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4961		     equal = 2;
4962		   /* If both offsets are the same, there are some cases
4963		      we know that are ok.  Either if we know they aren't
4964		      zero, or if we know both sizes are no zero.  */
4965		   if (equal == 2
4966		       && known_eq (off0, off1)
4967		       && (known_ne (off0, 0)
4968			   || (known_ne (size0, 0) && known_ne (size1, 0))))
4969		     equal = 0;
4970		 }
4971	     }
4972	 }
4973     }
4974     (if (equal == 1
4975	  && (cmp == EQ_EXPR || cmp == NE_EXPR
4976	      /* If the offsets are equal we can ignore overflow.  */
4977	      || known_eq (off0, off1)
4978	      || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4979		 /* Or if we compare using pointers to decls or strings.  */
4980	      || (POINTER_TYPE_P (TREE_TYPE (@2))
4981		  && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4982      (switch
4983       (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4984	{ constant_boolean_node (known_eq (off0, off1), type); })
4985       (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4986	{ constant_boolean_node (known_ne (off0, off1), type); })
4987       (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4988	{ constant_boolean_node (known_lt (off0, off1), type); })
4989       (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4990	{ constant_boolean_node (known_le (off0, off1), type); })
4991       (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4992	{ constant_boolean_node (known_ge (off0, off1), type); })
4993       (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4994	{ constant_boolean_node (known_gt (off0, off1), type); }))
4995      (if (equal == 0)
4996	(switch
4997	 (if (cmp == EQ_EXPR)
4998	  { constant_boolean_node (false, type); })
4999	 (if (cmp == NE_EXPR)
5000	  { constant_boolean_node (true, type); })))))))))
5001
5002/* Simplify pointer equality compares using PTA.  */
5003(for neeq (ne eq)
5004 (simplify
5005  (neeq @0 @1)
5006  (if (POINTER_TYPE_P (TREE_TYPE (@0))
5007       && ptrs_compare_unequal (@0, @1))
5008   { constant_boolean_node (neeq != EQ_EXPR, type); })))
5009
5010/* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5011   and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5012   Disable the transform if either operand is pointer to function.
5013   This broke pr22051-2.c for arm where function pointer
5014   canonicalizaion is not wanted.  */
5015
5016(for cmp (ne eq)
5017 (simplify
5018  (cmp (convert @0) INTEGER_CST@1)
5019  (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5020	 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5021	 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5022	 /* Don't perform this optimization in GENERIC if @0 has reference
5023	    type when sanitizing.  See PR101210.  */
5024	 && !(GENERIC
5025	      && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5026	      && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5027	|| (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5028	    && POINTER_TYPE_P (TREE_TYPE (@1))
5029	    && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5030       && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5031   (cmp @0 (convert @1)))))
5032
5033/* Non-equality compare simplifications from fold_binary  */
5034(for cmp (lt gt le ge)
5035 /* Comparisons with the highest or lowest possible integer of
5036    the specified precision will have known values.  */
5037 (simplify
5038  (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5039  (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5040	|| POINTER_TYPE_P (TREE_TYPE (@1))
5041	|| VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5042       && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5043   (with
5044    {
5045      tree cst = uniform_integer_cst_p (@1);
5046      tree arg1_type = TREE_TYPE (cst);
5047      unsigned int prec = TYPE_PRECISION (arg1_type);
5048      wide_int max = wi::max_value (arg1_type);
5049      wide_int signed_max = wi::max_value (prec, SIGNED);
5050      wide_int min = wi::min_value (arg1_type);
5051    }
5052    (switch
5053     (if (wi::to_wide (cst) == max)
5054      (switch
5055       (if (cmp == GT_EXPR)
5056	{ constant_boolean_node (false, type); })
5057       (if (cmp == GE_EXPR)
5058	(eq @2 @1))
5059       (if (cmp == LE_EXPR)
5060	{ constant_boolean_node (true, type); })
5061       (if (cmp == LT_EXPR)
5062	(ne @2 @1))))
5063     (if (wi::to_wide (cst) == min)
5064      (switch
5065       (if (cmp == LT_EXPR)
5066        { constant_boolean_node (false, type); })
5067       (if (cmp == LE_EXPR)
5068        (eq @2 @1))
5069       (if (cmp == GE_EXPR)
5070        { constant_boolean_node (true, type); })
5071       (if (cmp == GT_EXPR)
5072        (ne @2 @1))))
5073     (if (wi::to_wide (cst) == max - 1)
5074      (switch
5075       (if (cmp == GT_EXPR)
5076	(eq @2 { build_uniform_cst (TREE_TYPE (@1),
5077				    wide_int_to_tree (TREE_TYPE (cst),
5078						      wi::to_wide (cst)
5079						      + 1)); }))
5080       (if (cmp == LE_EXPR)
5081	(ne @2 { build_uniform_cst (TREE_TYPE (@1),
5082				    wide_int_to_tree (TREE_TYPE (cst),
5083						      wi::to_wide (cst)
5084						      + 1)); }))))
5085     (if (wi::to_wide (cst) == min + 1)
5086      (switch
5087       (if (cmp == GE_EXPR)
5088        (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5089				    wide_int_to_tree (TREE_TYPE (cst),
5090						      wi::to_wide (cst)
5091						      - 1)); }))
5092       (if (cmp == LT_EXPR)
5093        (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5094				    wide_int_to_tree (TREE_TYPE (cst),
5095						      wi::to_wide (cst)
5096						      - 1)); }))))
5097     (if (wi::to_wide (cst) == signed_max
5098	  && TYPE_UNSIGNED (arg1_type)
5099	  /* We will flip the signedness of the comparison operator
5100	     associated with the mode of @1, so the sign bit is
5101	     specified by this mode.  Check that @1 is the signed
5102	     max associated with this sign bit.  */
5103	  && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5104	  /* signed_type does not work on pointer types.  */
5105	  && INTEGRAL_TYPE_P (arg1_type))
5106      /* The following case also applies to X < signed_max+1
5107	 and X >= signed_max+1 because previous transformations.  */
5108      (if (cmp == LE_EXPR || cmp == GT_EXPR)
5109       (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5110       	(switch
5111	 (if (cst == @1 && cmp == LE_EXPR)
5112	  (ge (convert:st @0) { build_zero_cst (st); }))
5113	 (if (cst == @1 && cmp == GT_EXPR)
5114	  (lt (convert:st @0) { build_zero_cst (st); }))
5115	 (if (cmp == LE_EXPR)
5116	  (ge (view_convert:st @0) { build_zero_cst (st); }))
5117	 (if (cmp == GT_EXPR)
5118	  (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5119
5120(for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5121 /* If the second operand is NaN, the result is constant.  */
5122 (simplify
5123  (cmp @0 REAL_CST@1)
5124  (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5125       && (cmp != LTGT_EXPR || ! flag_trapping_math))
5126   { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5127			    ? false : true, type); })))
5128
5129/* Fold UNORDERED if either operand must be NaN, or neither can be.  */
5130(simplify
5131  (unordered @0 @1)
5132  (switch
5133    (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5134	{ constant_boolean_node (true, type); })
5135    (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5136	{ constant_boolean_node (false, type); })))
5137
5138/* Fold ORDERED if either operand must be NaN, or neither can be.  */
5139(simplify
5140  (ordered @0 @1)
5141  (switch
5142    (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5143	{ constant_boolean_node (false, type); })
5144    (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5145	{ constant_boolean_node (true, type); })))
5146
5147/* bool_var != 0 becomes bool_var.  */
5148(simplify
5149 (ne @0 integer_zerop)
5150 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5151      && types_match (type, TREE_TYPE (@0)))
5152  (non_lvalue @0)))
5153/* bool_var == 1 becomes bool_var.  */
5154(simplify
5155 (eq @0 integer_onep)
5156 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5157      && types_match (type, TREE_TYPE (@0)))
5158  (non_lvalue @0)))
5159/* Do not handle
5160   bool_var == 0 becomes !bool_var or
5161   bool_var != 1 becomes !bool_var
5162   here because that only is good in assignment context as long
5163   as we require a tcc_comparison in GIMPLE_CONDs where we'd
5164   replace if (x == 0) with tem = ~x; if (tem != 0) which is
5165   clearly less optimal and which we'll transform again in forwprop.  */
5166
5167/* When one argument is a constant, overflow detection can be simplified.
5168   Currently restricted to single use so as not to interfere too much with
5169   ADD_OVERFLOW detection in tree-ssa-math-opts.c.
5170   CONVERT?(CONVERT?(A) + CST) CMP A  ->  A CMP' CST' */
5171(for cmp (lt le ge gt)
5172     out (gt gt le le)
5173 (simplify
5174  (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5175  (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5176       && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5177       && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5178       && wi::to_wide (@1) != 0
5179       && single_use (@2))
5180   (with {
5181     unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5182     signop sign = TYPE_SIGN (TREE_TYPE (@0));
5183    }
5184    (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5185			        wi::max_value (prec, sign)
5186				- wi::to_wide (@1)); })))))
5187
5188/* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5189   However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
5190   expects the long form, so we restrict the transformation for now.  */
5191(for cmp (gt le)
5192 (simplify
5193  (cmp:c (minus@2 @0 @1) @0)
5194  (if (single_use (@2)
5195       && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5196       && TYPE_UNSIGNED (TREE_TYPE (@0)))
5197   (cmp @1 @0))))
5198
5199/* Optimize A - B + -1 >= A into B >= A for unsigned comparisons.  */
5200(for cmp (ge lt)
5201 (simplify
5202  (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
5203   (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5204	&& TYPE_UNSIGNED (TREE_TYPE (@0)))
5205    (cmp @1 @0))))
5206
5207/* Testing for overflow is unnecessary if we already know the result.  */
5208/* A - B > A  */
5209(for cmp (gt le)
5210     out (ne eq)
5211 (simplify
5212  (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
5213  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5214       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5215   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5216/* A + B < A  */
5217(for cmp (lt ge)
5218     out (ne eq)
5219 (simplify
5220  (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
5221  (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5222       && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5223   (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5224
5225/* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5226   Simplify it to __builtin_mul_overflow (A, B, <unused>).  */
5227(for cmp (lt ge)
5228     out (ne eq)
5229 (simplify
5230  (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5231  (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5232   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5233    (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5234
5235/* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5236   is at least twice as wide as type of A and B, simplify to
5237   __builtin_mul_overflow (A, B, <unused>).  */
5238(for cmp (eq ne)
5239 (simplify
5240  (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5241       integer_zerop)
5242  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5243       && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5244       && TYPE_UNSIGNED (TREE_TYPE (@0))
5245       && (TYPE_PRECISION (TREE_TYPE (@3))
5246	   >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5247       && tree_fits_uhwi_p (@2)
5248       && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5249       && types_match (@0, @1)
5250       && type_has_mode_precision_p (TREE_TYPE (@0))
5251       && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5252	   != CODE_FOR_nothing))
5253   (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5254    (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5255
5256/* Simplification of math builtins.  These rules must all be optimizations
5257   as well as IL simplifications.  If there is a possibility that the new
5258   form could be a pessimization, the rule should go in the canonicalization
5259   section that follows this one.
5260
5261   Rules can generally go in this section if they satisfy one of
5262   the following:
5263
5264   - the rule describes an identity
5265
5266   - the rule replaces calls with something as simple as addition or
5267     multiplication
5268
5269   - the rule contains unary calls only and simplifies the surrounding
5270     arithmetic.  (The idea here is to exclude non-unary calls in which
5271     one operand is constant and in which the call is known to be cheap
5272     when the operand has that value.)  */
5273
5274(if (flag_unsafe_math_optimizations)
5275 /* Simplify sqrt(x) * sqrt(x) -> x.  */
5276 (simplify
5277  (mult (SQRT_ALL@1 @0) @1)
5278  (if (!tree_expr_maybe_signaling_nan_p (@0))
5279   @0))
5280
5281 (for op (plus minus)
5282  /* Simplify (A / C) +- (B / C) -> (A +- B) / C.  */
5283  (simplify
5284   (op (rdiv @0 @1)
5285       (rdiv @2 @1))
5286   (rdiv (op @0 @2) @1)))
5287
5288 (for cmp (lt le gt ge)
5289      neg_cmp (gt ge lt le)
5290  /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0.  */
5291  (simplify
5292   (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5293   (with
5294    { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5295    (if (tem
5296	 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5297	      || (real_zerop (tem) && !real_zerop (@1))))
5298     (switch
5299      (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5300       (cmp @0 { tem; }))
5301      (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5302       (neg_cmp @0 { tem; })))))))
5303
5304 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y).  */
5305 (for root (SQRT CBRT)
5306  (simplify
5307   (mult (root:s @0) (root:s @1))
5308    (root (mult @0 @1))))
5309
5310 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5311 (for exps (EXP EXP2 EXP10 POW10)
5312  (simplify
5313   (mult (exps:s @0) (exps:s @1))
5314    (exps (plus @0 @1))))
5315
5316 /* Simplify a/root(b/c) into a*root(c/b).  */
5317 (for root (SQRT CBRT)
5318  (simplify
5319   (rdiv @0 (root:s (rdiv:s @1 @2)))
5320    (mult @0 (root (rdiv @2 @1)))))
5321
5322 /* Simplify x/expN(y) into x*expN(-y).  */
5323 (for exps (EXP EXP2 EXP10 POW10)
5324  (simplify
5325   (rdiv @0 (exps:s @1))
5326    (mult @0 (exps (negate @1)))))
5327
5328 (for logs (LOG LOG2 LOG10 LOG10)
5329      exps (EXP EXP2 EXP10 POW10)
5330  /* logN(expN(x)) -> x.  */
5331  (simplify
5332   (logs (exps @0))
5333   @0)
5334  /* expN(logN(x)) -> x.  */
5335  (simplify
5336   (exps (logs @0))
5337   @0))
5338
5339 /* Optimize logN(func()) for various exponential functions.  We
5340    want to determine the value "x" and the power "exponent" in
5341    order to transform logN(x**exponent) into exponent*logN(x).  */
5342 (for logs (LOG  LOG   LOG   LOG2 LOG2  LOG2  LOG10 LOG10)
5343      exps (EXP2 EXP10 POW10 EXP  EXP10 POW10 EXP   EXP2)
5344  (simplify
5345   (logs (exps @0))
5346   (if (SCALAR_FLOAT_TYPE_P (type))
5347    (with {
5348      tree x;
5349      switch (exps)
5350	{
5351	CASE_CFN_EXP:
5352	  /* Prepare to do logN(exp(exponent)) -> exponent*logN(e).  */
5353	  x = build_real_truncate (type, dconst_e ());
5354	  break;
5355	CASE_CFN_EXP2:
5356	  /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2).  */
5357	  x = build_real (type, dconst2);
5358	  break;
5359	CASE_CFN_EXP10:
5360	CASE_CFN_POW10:
5361	  /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10).  */
5362	  {
5363	    REAL_VALUE_TYPE dconst10;
5364	    real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5365	    x = build_real (type, dconst10);
5366	  }
5367	  break;
5368	default:
5369	  gcc_unreachable ();
5370	}
5371      }
5372     (mult (logs { x; }) @0)))))
5373
5374 (for logs (LOG LOG
5375            LOG2 LOG2
5376	    LOG10 LOG10)
5377      exps (SQRT CBRT)
5378  (simplify
5379   (logs (exps @0))
5380   (if (SCALAR_FLOAT_TYPE_P (type))
5381    (with {
5382      tree x;
5383      switch (exps)
5384	{
5385	CASE_CFN_SQRT:
5386	  /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x).  */
5387	  x = build_real (type, dconsthalf);
5388	  break;
5389	CASE_CFN_CBRT:
5390	  /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x).  */
5391	  x = build_real_truncate (type, dconst_third ());
5392	  break;
5393	default:
5394	  gcc_unreachable ();
5395	}
5396      }
5397     (mult { x; } (logs @0))))))
5398
5399 /* logN(pow(x,exponent)) -> exponent*logN(x).  */
5400 (for logs (LOG LOG2 LOG10)
5401      pows (POW)
5402  (simplify
5403   (logs (pows @0 @1))
5404   (mult @1 (logs @0))))
5405
5406 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5407    or if C is a positive power of 2,
5408    pow(C,x) -> exp2(log2(C)*x).  */
5409#if GIMPLE
5410 (for pows (POW)
5411      exps (EXP)
5412      logs (LOG)
5413      exp2s (EXP2)
5414      log2s (LOG2)
5415  (simplify
5416   (pows REAL_CST@0 @1)
5417   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5418	&& real_isfinite (TREE_REAL_CST_PTR (@0))
5419	/* As libmvec doesn't have a vectorized exp2, defer optimizing
5420	   the use_exp2 case until after vectorization.  It seems actually
5421	   beneficial for all constants to postpone this until later,
5422	   because exp(log(C)*x), while faster, will have worse precision
5423	   and if x folds into a constant too, that is unnecessary
5424	   pessimization.  */
5425	&& canonicalize_math_after_vectorization_p ())
5426    (with {
5427       const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5428       bool use_exp2 = false;
5429       if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
5430	   && value->cl == rvc_normal)
5431	 {
5432	   REAL_VALUE_TYPE frac_rvt = *value;
5433	   SET_REAL_EXP (&frac_rvt, 1);
5434	   if (real_equal (&frac_rvt, &dconst1))
5435	     use_exp2 = true;
5436	 }
5437     }
5438     (if (!use_exp2)
5439      (if (optimize_pow_to_exp (@0, @1))
5440       (exps (mult (logs @0) @1)))
5441      (exp2s (mult (log2s @0) @1)))))))
5442#endif
5443
5444 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0.  */
5445 (for pows (POW)
5446      exps (EXP EXP2 EXP10 POW10)
5447      logs (LOG LOG2 LOG10 LOG10)
5448  (simplify
5449   (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
5450   (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5451	&& real_isfinite (TREE_REAL_CST_PTR (@0)))
5452    (exps (plus (mult (logs @0) @1) @2)))))
5453
5454 (for sqrts (SQRT)
5455      cbrts (CBRT)
5456      pows (POW)
5457      exps (EXP EXP2 EXP10 POW10)
5458  /* sqrt(expN(x)) -> expN(x*0.5).  */
5459  (simplify
5460   (sqrts (exps @0))
5461   (exps (mult @0 { build_real (type, dconsthalf); })))
5462  /* cbrt(expN(x)) -> expN(x/3).  */
5463  (simplify
5464   (cbrts (exps @0))
5465   (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
5466  /* pow(expN(x), y) -> expN(x*y).  */
5467  (simplify
5468   (pows (exps @0) @1)
5469   (exps (mult @0 @1))))
5470
5471 /* tan(atan(x)) -> x.  */
5472 (for tans (TAN)
5473      atans (ATAN)
5474  (simplify
5475   (tans (atans @0))
5476   @0)))
5477
5478 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5479 (for sins (SIN)
5480      atans (ATAN)
5481      sqrts (SQRT)
5482      copysigns (COPYSIGN)
5483  (simplify
5484   (sins (atans:s @0))
5485   (with
5486     {
5487      REAL_VALUE_TYPE r_cst;
5488      build_sinatan_real (&r_cst, type);
5489      tree t_cst = build_real (type, r_cst);
5490      tree t_one = build_one_cst (type);
5491     }
5492    (if (SCALAR_FLOAT_TYPE_P (type))
5493     (cond (lt (abs @0) { t_cst; })
5494      (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5495      (copysigns { t_one; } @0))))))
5496
5497/* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5498 (for coss (COS)
5499      atans (ATAN)
5500      sqrts (SQRT)
5501      copysigns (COPYSIGN)
5502  (simplify
5503   (coss (atans:s @0))
5504   (with
5505     {
5506      REAL_VALUE_TYPE r_cst;
5507      build_sinatan_real (&r_cst, type);
5508      tree t_cst = build_real (type, r_cst);
5509      tree t_one = build_one_cst (type);
5510      tree t_zero = build_zero_cst (type);
5511     }
5512    (if (SCALAR_FLOAT_TYPE_P (type))
5513     (cond (lt (abs @0) { t_cst; })
5514      (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5515      (copysigns { t_zero; } @0))))))
5516
5517 (if (!flag_errno_math)
5518  /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5519  (for sinhs (SINH)
5520       atanhs (ATANH)
5521       sqrts (SQRT)
5522   (simplify
5523    (sinhs (atanhs:s @0))
5524    (with { tree t_one = build_one_cst (type); }
5525    (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5526
5527  /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5528  (for coshs (COSH)
5529       atanhs (ATANH)
5530       sqrts (SQRT)
5531   (simplify
5532    (coshs (atanhs:s @0))
5533    (with { tree t_one = build_one_cst (type); }
5534    (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5535
5536/* cabs(x+0i) or cabs(0+xi) -> abs(x).  */
5537(simplify
5538 (CABS (complex:C @0 real_zerop@1))
5539 (abs @0))
5540
5541/* trunc(trunc(x)) -> trunc(x), etc.  */
5542(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5543 (simplify
5544  (fns (fns @0))
5545  (fns @0)))
5546/* f(x) -> x if x is integer valued and f does nothing for such values.  */
5547(for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5548 (simplify
5549  (fns integer_valued_real_p@0)
5550  @0))
5551
5552/* hypot(x,0) and hypot(0,x) -> abs(x).  */
5553(simplify
5554 (HYPOT:c @0 real_zerop@1)
5555 (abs @0))
5556
5557/* pow(1,x) -> 1.  */
5558(simplify
5559 (POW real_onep@0 @1)
5560 @0)
5561
5562(simplify
5563 /* copysign(x,x) -> x.  */
5564 (COPYSIGN_ALL @0 @0)
5565 @0)
5566
5567(simplify
5568 /* copysign(x,-x) -> -x.  */
5569 (COPYSIGN_ALL @0 (negate@1 @0))
5570 @1)
5571
5572(simplify
5573 /* copysign(x,y) -> fabs(x) if y is nonnegative.  */
5574 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5575 (abs @0))
5576
5577(for scale (LDEXP SCALBN SCALBLN)
5578 /* ldexp(0, x) -> 0.  */
5579 (simplify
5580  (scale real_zerop@0 @1)
5581  @0)
5582 /* ldexp(x, 0) -> x.  */
5583 (simplify
5584  (scale @0 integer_zerop@1)
5585  @0)
5586 /* ldexp(x, y) -> x if x is +-Inf or NaN.  */
5587 (simplify
5588  (scale REAL_CST@0 @1)
5589  (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5590   @0)))
5591
5592/* Canonicalization of sequences of math builtins.  These rules represent
5593   IL simplifications but are not necessarily optimizations.
5594
5595   The sincos pass is responsible for picking "optimal" implementations
5596   of math builtins, which may be more complicated and can sometimes go
5597   the other way, e.g. converting pow into a sequence of sqrts.
5598   We only want to do these canonicalizations before the pass has run.  */
5599
5600(if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5601 /* Simplify tan(x) * cos(x) -> sin(x). */
5602 (simplify
5603  (mult:c (TAN:s @0) (COS:s @0))
5604   (SIN @0))
5605
5606 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5607 (simplify
5608  (mult:c @0 (POW:s @0 REAL_CST@1))
5609  (if (!TREE_OVERFLOW (@1))
5610   (POW @0 (plus @1 { build_one_cst (type); }))))
5611
5612 /* Simplify sin(x) / cos(x) -> tan(x). */
5613 (simplify
5614  (rdiv (SIN:s @0) (COS:s @0))
5615   (TAN @0))
5616
5617 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5618 (simplify
5619  (rdiv (SINH:s @0) (COSH:s @0))
5620   (TANH @0))
5621
5622 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
5623 (simplify
5624   (rdiv (TANH:s @0) (SINH:s @0))
5625   (rdiv {build_one_cst (type);} (COSH @0)))
5626
5627 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5628 (simplify
5629  (rdiv (COS:s @0) (SIN:s @0))
5630   (rdiv { build_one_cst (type); } (TAN @0)))
5631
5632 /* Simplify sin(x) / tan(x) -> cos(x). */
5633 (simplify
5634  (rdiv (SIN:s @0) (TAN:s @0))
5635  (if (! HONOR_NANS (@0)
5636       && ! HONOR_INFINITIES (@0))
5637   (COS @0)))
5638
5639 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5640 (simplify
5641  (rdiv (TAN:s @0) (SIN:s @0))
5642  (if (! HONOR_NANS (@0)
5643       && ! HONOR_INFINITIES (@0))
5644   (rdiv { build_one_cst (type); } (COS @0))))
5645
5646 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5647 (simplify
5648  (mult (POW:s @0 @1) (POW:s @0 @2))
5649   (POW @0 (plus @1 @2)))
5650
5651 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5652 (simplify
5653  (mult (POW:s @0 @1) (POW:s @2 @1))
5654   (POW (mult @0 @2) @1))
5655
5656 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5657 (simplify
5658  (mult (POWI:s @0 @1) (POWI:s @2 @1))
5659   (POWI (mult @0 @2) @1))
5660
5661 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5662 (simplify
5663  (rdiv (POW:s @0 REAL_CST@1) @0)
5664  (if (!TREE_OVERFLOW (@1))
5665   (POW @0 (minus @1 { build_one_cst (type); }))))
5666
5667 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5668 (simplify
5669  (rdiv @0 (POW:s @1 @2))
5670   (mult @0 (POW @1 (negate @2))))
5671
5672 (for sqrts (SQRT)
5673      cbrts (CBRT)
5674      pows (POW)
5675  /* sqrt(sqrt(x)) -> pow(x,1/4).  */
5676  (simplify
5677   (sqrts (sqrts @0))
5678   (pows @0 { build_real (type, dconst_quarter ()); }))
5679  /* sqrt(cbrt(x)) -> pow(x,1/6).  */
5680  (simplify
5681   (sqrts (cbrts @0))
5682   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5683  /* cbrt(sqrt(x)) -> pow(x,1/6).  */
5684  (simplify
5685   (cbrts (sqrts @0))
5686   (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5687  /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative.  */
5688  (simplify
5689   (cbrts (cbrts tree_expr_nonnegative_p@0))
5690   (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5691  /* sqrt(pow(x,y)) -> pow(|x|,y*0.5).  */
5692  (simplify
5693   (sqrts (pows @0 @1))
5694   (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5695  /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative.  */
5696  (simplify
5697   (cbrts (pows tree_expr_nonnegative_p@0 @1))
5698   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5699  /* pow(sqrt(x),y) -> pow(x,y*0.5).  */
5700  (simplify
5701   (pows (sqrts @0) @1)
5702   (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5703  /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative.  */
5704  (simplify
5705   (pows (cbrts tree_expr_nonnegative_p@0) @1)
5706   (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5707  /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative.  */
5708  (simplify
5709   (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5710   (pows @0 (mult @1 @2))))
5711
5712 /* cabs(x+xi) -> fabs(x)*sqrt(2).  */
5713 (simplify
5714  (CABS (complex @0 @0))
5715  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5716
5717 /* hypot(x,x) -> fabs(x)*sqrt(2).  */
5718 (simplify
5719  (HYPOT @0 @0)
5720  (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5721
5722 /* cexp(x+yi) -> exp(x)*cexpi(y).  */
5723 (for cexps (CEXP)
5724      exps (EXP)
5725      cexpis (CEXPI)
5726  (simplify
5727   (cexps compositional_complex@0)
5728   (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
5729    (complex
5730     (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5731     (mult @1 (imagpart @2)))))))
5732
5733(if (canonicalize_math_p ())
5734 /* floor(x) -> trunc(x) if x is nonnegative.  */
5735 (for floors (FLOOR_ALL)
5736      truncs (TRUNC_ALL)
5737  (simplify
5738   (floors tree_expr_nonnegative_p@0)
5739   (truncs @0))))
5740
5741(match double_value_p
5742 @0
5743 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5744(for froms (BUILT_IN_TRUNCL
5745	    BUILT_IN_FLOORL
5746	    BUILT_IN_CEILL
5747	    BUILT_IN_ROUNDL
5748	    BUILT_IN_NEARBYINTL
5749	    BUILT_IN_RINTL)
5750     tos (BUILT_IN_TRUNC
5751	  BUILT_IN_FLOOR
5752	  BUILT_IN_CEIL
5753	  BUILT_IN_ROUND
5754	  BUILT_IN_NEARBYINT
5755	  BUILT_IN_RINT)
5756 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double.  */
5757 (if (optimize && canonicalize_math_p ())
5758  (simplify
5759   (froms (convert double_value_p@0))
5760   (convert (tos @0)))))
5761
5762(match float_value_p
5763 @0
5764 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5765(for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5766	    BUILT_IN_FLOORL BUILT_IN_FLOOR
5767	    BUILT_IN_CEILL BUILT_IN_CEIL
5768	    BUILT_IN_ROUNDL BUILT_IN_ROUND
5769	    BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5770	    BUILT_IN_RINTL BUILT_IN_RINT)
5771     tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5772	  BUILT_IN_FLOORF BUILT_IN_FLOORF
5773	  BUILT_IN_CEILF BUILT_IN_CEILF
5774	  BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5775	  BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5776	  BUILT_IN_RINTF BUILT_IN_RINTF)
5777 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5778    if x is a float.  */
5779 (if (optimize && canonicalize_math_p ()
5780      && targetm.libc_has_function (function_c99_misc, NULL_TREE))
5781  (simplify
5782   (froms (convert float_value_p@0))
5783   (convert (tos @0)))))
5784
5785(for froms (XFLOORL XCEILL XROUNDL XRINTL)
5786     tos (XFLOOR XCEIL XROUND XRINT)
5787 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double.  */
5788 (if (optimize && canonicalize_math_p ())
5789  (simplify
5790   (froms (convert double_value_p@0))
5791   (tos @0))))
5792
5793(for froms (XFLOORL XCEILL XROUNDL XRINTL
5794	    XFLOOR XCEIL XROUND XRINT)
5795     tos (XFLOORF XCEILF XROUNDF XRINTF)
5796 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5797    if x is a float.  */
5798 (if (optimize && canonicalize_math_p ())
5799  (simplify
5800   (froms (convert float_value_p@0))
5801   (tos @0))))
5802
5803(if (canonicalize_math_p ())
5804 /* xfloor(x) -> fix_trunc(x) if x is nonnegative.  */
5805 (for floors (IFLOOR LFLOOR LLFLOOR)
5806  (simplify
5807   (floors tree_expr_nonnegative_p@0)
5808   (fix_trunc @0))))
5809
5810(if (canonicalize_math_p ())
5811 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued.  */
5812 (for fns (IFLOOR LFLOOR LLFLOOR
5813	   ICEIL LCEIL LLCEIL
5814	   IROUND LROUND LLROUND)
5815  (simplify
5816   (fns integer_valued_real_p@0)
5817   (fix_trunc @0)))
5818 (if (!flag_errno_math)
5819  /* xrint(x) -> fix_trunc(x), etc., if x is integer valued.  */
5820  (for rints (IRINT LRINT LLRINT)
5821   (simplify
5822    (rints integer_valued_real_p@0)
5823    (fix_trunc @0)))))
5824
5825(if (canonicalize_math_p ())
5826 (for ifn (IFLOOR ICEIL IROUND IRINT)
5827      lfn (LFLOOR LCEIL LROUND LRINT)
5828      llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5829  /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5830     sizeof (int) == sizeof (long).  */
5831  (if (TYPE_PRECISION (integer_type_node)
5832       == TYPE_PRECISION (long_integer_type_node))
5833   (simplify
5834    (ifn @0)
5835    (lfn:long_integer_type_node @0)))
5836  /* Canonicalize llround (x) to lround (x) on LP64 targets where
5837     sizeof (long long) == sizeof (long).  */
5838  (if (TYPE_PRECISION (long_long_integer_type_node)
5839       == TYPE_PRECISION (long_integer_type_node))
5840   (simplify
5841    (llfn @0)
5842    (lfn:long_integer_type_node @0)))))
5843
5844/* cproj(x) -> x if we're ignoring infinities.  */
5845(simplify
5846 (CPROJ @0)
5847 (if (!HONOR_INFINITIES (type))
5848   @0))
5849
5850/* If the real part is inf and the imag part is known to be
5851   nonnegative, return (inf + 0i).  */
5852(simplify
5853 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5854 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5855  { build_complex_inf (type, false); }))
5856
5857/* If the imag part is inf, return (inf+I*copysign(0,imag)).  */
5858(simplify
5859 (CPROJ (complex @0 REAL_CST@1))
5860 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5861  { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5862
5863(for pows (POW)
5864     sqrts (SQRT)
5865     cbrts (CBRT)
5866 (simplify
5867  (pows @0 REAL_CST@1)
5868  (with {
5869    const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5870    REAL_VALUE_TYPE tmp;
5871   }
5872   (switch
5873    /* pow(x,0) -> 1.  */
5874    (if (real_equal (value, &dconst0))
5875     { build_real (type, dconst1); })
5876    /* pow(x,1) -> x.  */
5877    (if (real_equal (value, &dconst1))
5878     @0)
5879    /* pow(x,-1) -> 1/x.  */
5880    (if (real_equal (value, &dconstm1))
5881     (rdiv { build_real (type, dconst1); } @0))
5882    /* pow(x,0.5) -> sqrt(x).  */
5883    (if (flag_unsafe_math_optimizations
5884	 && canonicalize_math_p ()
5885	 && real_equal (value, &dconsthalf))
5886     (sqrts @0))
5887    /* pow(x,1/3) -> cbrt(x).  */
5888    (if (flag_unsafe_math_optimizations
5889	 && canonicalize_math_p ()
5890	 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5891	     real_equal (value, &tmp)))
5892     (cbrts @0))))))
5893
5894/* powi(1,x) -> 1.  */
5895(simplify
5896 (POWI real_onep@0 @1)
5897 @0)
5898
5899(simplify
5900 (POWI @0 INTEGER_CST@1)
5901 (switch
5902  /* powi(x,0) -> 1.  */
5903  (if (wi::to_wide (@1) == 0)
5904   { build_real (type, dconst1); })
5905  /* powi(x,1) -> x.  */
5906  (if (wi::to_wide (@1) == 1)
5907   @0)
5908  /* powi(x,-1) -> 1/x.  */
5909  (if (wi::to_wide (@1) == -1)
5910   (rdiv { build_real (type, dconst1); } @0))))
5911
5912/* Narrowing of arithmetic and logical operations.
5913
5914   These are conceptually similar to the transformations performed for
5915   the C/C++ front-ends by shorten_binary_op and shorten_compare.  Long
5916   term we want to move all that code out of the front-ends into here.  */
5917
5918/* Convert (outertype)((innertype0)a+(innertype1)b)
5919   into ((newtype)a+(newtype)b) where newtype
5920   is the widest mode from all of these.  */
5921(for op (plus minus mult rdiv)
5922 (simplify
5923   (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5924   /* If we have a narrowing conversion of an arithmetic operation where
5925      both operands are widening conversions from the same type as the outer
5926      narrowing conversion.  Then convert the innermost operands to a
5927      suitable unsigned type (to avoid introducing undefined behavior),
5928      perform the operation and convert the result to the desired type.  */
5929   (if (INTEGRAL_TYPE_P (type)
5930	&& op != MULT_EXPR
5931	&& op != RDIV_EXPR
5932	/* We check for type compatibility between @0 and @1 below,
5933	   so there's no need to check that @2/@4 are integral types.  */
5934	&& INTEGRAL_TYPE_P (TREE_TYPE (@1))
5935	&& INTEGRAL_TYPE_P (TREE_TYPE (@3))
5936	/* The precision of the type of each operand must match the
5937	   precision of the mode of each operand, similarly for the
5938	   result.  */
5939	&& type_has_mode_precision_p (TREE_TYPE (@1))
5940	&& type_has_mode_precision_p (TREE_TYPE (@2))
5941	&& type_has_mode_precision_p (type)
5942	/* The inner conversion must be a widening conversion.  */
5943	&& TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5944	&& types_match (@1, type)
5945	&& (types_match (@1, @2)
5946	    /* Or the second operand is const integer or converted const
5947	       integer from valueize.  */
5948	    || TREE_CODE (@2) == INTEGER_CST))
5949     (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5950       (op @1 (convert @2))
5951       (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5952	(convert (op (convert:utype @1)
5953		     (convert:utype @2)))))
5954     (if (FLOAT_TYPE_P (type)
5955	  && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5956	       == DECIMAL_FLOAT_TYPE_P (type))
5957      (with { tree arg0 = strip_float_extensions (@1);
5958	      tree arg1 = strip_float_extensions (@2);
5959	      tree itype = TREE_TYPE (@0);
5960	      tree ty1 = TREE_TYPE (arg0);
5961	      tree ty2 = TREE_TYPE (arg1);
5962	      enum tree_code code = TREE_CODE (itype); }
5963	(if (FLOAT_TYPE_P (ty1)
5964	     && FLOAT_TYPE_P (ty2))
5965	 (with { tree newtype = type;
5966		 if (TYPE_MODE (ty1) == SDmode
5967		     || TYPE_MODE (ty2) == SDmode
5968		     || TYPE_MODE (type) == SDmode)
5969		   newtype = dfloat32_type_node;
5970		 if (TYPE_MODE (ty1) == DDmode
5971		     || TYPE_MODE (ty2) == DDmode
5972		     || TYPE_MODE (type) == DDmode)
5973		   newtype = dfloat64_type_node;
5974		 if (TYPE_MODE (ty1) == TDmode
5975		     || TYPE_MODE (ty2) == TDmode
5976		     || TYPE_MODE (type) == TDmode)
5977		   newtype = dfloat128_type_node; }
5978	  (if ((newtype == dfloat32_type_node
5979		|| newtype == dfloat64_type_node
5980		|| newtype == dfloat128_type_node)
5981	      && newtype == type
5982	      && types_match (newtype, type))
5983	    (op (convert:newtype @1) (convert:newtype @2))
5984	    (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5985		      newtype = ty1;
5986		    if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5987		      newtype = ty2; }
5988	       /* Sometimes this transformation is safe (cannot
5989		  change results through affecting double rounding
5990		  cases) and sometimes it is not.  If NEWTYPE is
5991		  wider than TYPE, e.g. (float)((long double)double
5992		  + (long double)double) converted to
5993		  (float)(double + double), the transformation is
5994		  unsafe regardless of the details of the types
5995		  involved; double rounding can arise if the result
5996		  of NEWTYPE arithmetic is a NEWTYPE value half way
5997		  between two representable TYPE values but the
5998		  exact value is sufficiently different (in the
5999		  right direction) for this difference to be
6000		  visible in ITYPE arithmetic.  If NEWTYPE is the
6001		  same as TYPE, however, the transformation may be
6002		  safe depending on the types involved: it is safe
6003		  if the ITYPE has strictly more than twice as many
6004		  mantissa bits as TYPE, can represent infinities
6005		  and NaNs if the TYPE can, and has sufficient
6006		  exponent range for the product or ratio of two
6007		  values representable in the TYPE to be within the
6008		  range of normal values of ITYPE.  */
6009	      (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6010		   && (flag_unsafe_math_optimizations
6011		       || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6012			   && real_can_shorten_arithmetic (TYPE_MODE (itype),
6013							   TYPE_MODE (type))
6014			   && !excess_precision_type (newtype)))
6015		   && !types_match (itype, newtype))
6016		 (convert:type (op (convert:newtype @1)
6017				   (convert:newtype @2)))
6018	 )))) )
6019   ))
6020)))
6021
6022/* This is another case of narrowing, specifically when there's an outer
6023   BIT_AND_EXPR which masks off bits outside the type of the innermost
6024   operands.   Like the previous case we have to convert the operands
6025   to unsigned types to avoid introducing undefined behavior for the
6026   arithmetic operation.  */
6027(for op (minus plus)
6028 (simplify
6029  (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6030  (if (INTEGRAL_TYPE_P (type)
6031       /* We check for type compatibility between @0 and @1 below,
6032	  so there's no need to check that @1/@3 are integral types.  */
6033       && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6034       && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6035       /* The precision of the type of each operand must match the
6036	  precision of the mode of each operand, similarly for the
6037	  result.  */
6038       && type_has_mode_precision_p (TREE_TYPE (@0))
6039       && type_has_mode_precision_p (TREE_TYPE (@1))
6040       && type_has_mode_precision_p (type)
6041       /* The inner conversion must be a widening conversion.  */
6042       && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6043       && types_match (@0, @1)
6044       && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6045	   <= TYPE_PRECISION (TREE_TYPE (@0)))
6046       && (wi::to_wide (@4)
6047	   & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6048		       true, TYPE_PRECISION (type))) == 0)
6049   (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6050    (with { tree ntype = TREE_TYPE (@0); }
6051     (convert (bit_and (op @0 @1) (convert:ntype @4))))
6052    (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6053     (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6054	       (convert:utype @4))))))))
6055
6056/* Transform (@0 < @1 and @0 < @2) to use min,
6057   (@0 > @1 and @0 > @2) to use max */
6058(for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6059     op    (lt      le      gt      ge      lt      le      gt      ge     )
6060     ext   (min     min     max     max     max     max     min     min    )
6061 (simplify
6062  (logic (op:cs @0 @1) (op:cs @0 @2))
6063  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6064       && TREE_CODE (@0) != INTEGER_CST)
6065   (op @0 (ext @1 @2)))))
6066
6067(simplify
6068 /* signbit(x) -> 0 if x is nonnegative.  */
6069 (SIGNBIT tree_expr_nonnegative_p@0)
6070 { integer_zero_node; })
6071
6072(simplify
6073 /* signbit(x) -> x<0 if x doesn't have signed zeros.  */
6074 (SIGNBIT @0)
6075 (if (!HONOR_SIGNED_ZEROS (@0))
6076  (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
6077
6078/* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1.  */
6079(for cmp (eq ne)
6080 (for op (plus minus)
6081      rop (minus plus)
6082  (simplify
6083   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6084   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6085	&& !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6086	&& !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
6087	&& !TYPE_SATURATING (TREE_TYPE (@0)))
6088    (with { tree res = int_const_binop (rop, @2, @1); }
6089     (if (TREE_OVERFLOW (res)
6090	  && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6091      { constant_boolean_node (cmp == NE_EXPR, type); }
6092      (if (single_use (@3))
6093       (cmp @0 { TREE_OVERFLOW (res)
6094		 ? drop_tree_overflow (res) : res; }))))))))
6095(for cmp (lt le gt ge)
6096 (for op (plus minus)
6097      rop (minus plus)
6098  (simplify
6099   (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6100   (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6101	&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6102    (with { tree res = int_const_binop (rop, @2, @1); }
6103     (if (TREE_OVERFLOW (res))
6104      {
6105	fold_overflow_warning (("assuming signed overflow does not occur "
6106				"when simplifying conditional to constant"),
6107			       WARN_STRICT_OVERFLOW_CONDITIONAL);
6108        bool less = cmp == LE_EXPR || cmp == LT_EXPR;
6109	/* wi::ges_p (@2, 0) should be sufficient for a signed type.  */
6110	bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
6111				  TYPE_SIGN (TREE_TYPE (@1)))
6112			!= (op == MINUS_EXPR);
6113	constant_boolean_node (less == ovf_high, type);
6114      }
6115      (if (single_use (@3))
6116       (with
6117	{
6118	  fold_overflow_warning (("assuming signed overflow does not occur "
6119				  "when changing X +- C1 cmp C2 to "
6120				  "X cmp C2 -+ C1"),
6121				 WARN_STRICT_OVERFLOW_COMPARISON);
6122	}
6123	(cmp @0 { res; })))))))))
6124
6125/* Canonicalizations of BIT_FIELD_REFs.  */
6126
6127(simplify
6128 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
6129 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
6130
6131(simplify
6132 (BIT_FIELD_REF (view_convert @0) @1 @2)
6133 (BIT_FIELD_REF @0 @1 @2))
6134
6135(simplify
6136 (BIT_FIELD_REF @0 @1 integer_zerop)
6137 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
6138  (view_convert @0)))
6139
6140(simplify
6141 (BIT_FIELD_REF @0 @1 @2)
6142 (switch
6143  (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
6144       && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6145   (switch
6146    (if (integer_zerop (@2))
6147     (view_convert (realpart @0)))
6148    (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6149     (view_convert (imagpart @0)))))
6150  (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6151       && INTEGRAL_TYPE_P (type)
6152       /* On GIMPLE this should only apply to register arguments.  */
6153       && (! GIMPLE || is_gimple_reg (@0))
6154       /* A bit-field-ref that referenced the full argument can be stripped.  */
6155       && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
6156	    && integer_zerop (@2))
6157	   /* Low-parts can be reduced to integral conversions.
6158	      ???  The following doesn't work for PDP endian.  */
6159	   || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
6160	       /* But only do this after vectorization.  */
6161	       && canonicalize_math_after_vectorization_p ()
6162	       /* Don't even think about BITS_BIG_ENDIAN.  */
6163	       && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
6164	       && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
6165	       && compare_tree_int (@2, (BYTES_BIG_ENDIAN
6166					 ? (TYPE_PRECISION (TREE_TYPE (@0))
6167					    - TYPE_PRECISION (type))
6168					 : 0)) == 0)))
6169   (convert @0))))
6170
6171/* Simplify vector extracts.  */
6172
6173(simplify
6174 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
6175 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
6176      && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
6177          || (VECTOR_TYPE_P (type)
6178	      && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
6179  (with
6180   {
6181     tree ctor = (TREE_CODE (@0) == SSA_NAME
6182		  ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6183     tree eltype = TREE_TYPE (TREE_TYPE (ctor));
6184     unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
6185     unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
6186     unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
6187   }
6188   (if (n != 0
6189	&& (idx % width) == 0
6190	&& (n % width) == 0
6191	&& known_le ((idx + n) / width,
6192		     TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
6193    (with
6194     {
6195       idx = idx / width;
6196       n = n / width;
6197       /* Constructor elements can be subvectors.  */
6198       poly_uint64 k = 1;
6199       if (CONSTRUCTOR_NELTS (ctor) != 0)
6200         {
6201           tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
6202	   if (TREE_CODE (cons_elem) == VECTOR_TYPE)
6203	     k = TYPE_VECTOR_SUBPARTS (cons_elem);
6204	 }
6205       unsigned HOST_WIDE_INT elt, count, const_k;
6206     }
6207     (switch
6208      /* We keep an exact subset of the constructor elements.  */
6209      (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
6210       (if (CONSTRUCTOR_NELTS (ctor) == 0)
6211        { build_constructor (type, NULL); }
6212	(if (count == 1)
6213	 (if (elt < CONSTRUCTOR_NELTS (ctor))
6214	  (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
6215	  { build_zero_cst (type); })
6216	 /* We don't want to emit new CTORs unless the old one goes away.
6217	    ???  Eventually allow this if the CTOR ends up constant or
6218	    uniform.  */
6219	 (if (single_use (@0))
6220	  {
6221	    vec<constructor_elt, va_gc> *vals;
6222	    vec_alloc (vals, count);
6223	    for (unsigned i = 0;
6224		 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6225	      CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
6226				      CONSTRUCTOR_ELT (ctor, elt + i)->value);
6227	    build_constructor (type, vals);
6228	  }))))
6229      /* The bitfield references a single constructor element.  */
6230      (if (k.is_constant (&const_k)
6231	   && idx + n <= (idx / const_k + 1) * const_k)
6232       (switch
6233	(if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6234	 { build_zero_cst (type); })
6235	(if (n == const_k)
6236	 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6237	(BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6238		       @1 { bitsize_int ((idx % const_k) * width); })))))))))
6239
6240/* Simplify a bit extraction from a bit insertion for the cases with
6241   the inserted element fully covering the extraction or the insertion
6242   not touching the extraction.  */
6243(simplify
6244 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6245 (with
6246  {
6247    unsigned HOST_WIDE_INT isize;
6248    if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6249      isize = TYPE_PRECISION (TREE_TYPE (@1));
6250    else
6251      isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6252  }
6253  (switch
6254   (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6255	&& wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6256		      wi::to_wide (@ipos) + isize))
6257    (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6258                                                 wi::to_wide (@rpos)
6259						 - wi::to_wide (@ipos)); }))
6260   (if (wi::geu_p (wi::to_wide (@ipos),
6261		   wi::to_wide (@rpos) + wi::to_wide (@rsize))
6262	|| wi::geu_p (wi::to_wide (@rpos),
6263		      wi::to_wide (@ipos) + isize))
6264    (BIT_FIELD_REF @0 @rsize @rpos)))))
6265
6266(if (canonicalize_math_after_vectorization_p ())
6267 (for fmas (FMA)
6268  (simplify
6269   (fmas:c (negate @0) @1 @2)
6270   (IFN_FNMA @0 @1 @2))
6271  (simplify
6272   (fmas @0 @1 (negate @2))
6273   (IFN_FMS @0 @1 @2))
6274  (simplify
6275   (fmas:c (negate @0) @1 (negate @2))
6276   (IFN_FNMS @0 @1 @2))
6277  (simplify
6278   (negate (fmas@3 @0 @1 @2))
6279   (if (single_use (@3))
6280    (IFN_FNMS @0 @1 @2))))
6281
6282 (simplify
6283  (IFN_FMS:c (negate @0) @1 @2)
6284  (IFN_FNMS @0 @1 @2))
6285 (simplify
6286  (IFN_FMS @0 @1 (negate @2))
6287  (IFN_FMA @0 @1 @2))
6288 (simplify
6289  (IFN_FMS:c (negate @0) @1 (negate @2))
6290  (IFN_FNMA @0 @1 @2))
6291 (simplify
6292  (negate (IFN_FMS@3 @0 @1 @2))
6293   (if (single_use (@3))
6294    (IFN_FNMA @0 @1 @2)))
6295
6296 (simplify
6297  (IFN_FNMA:c (negate @0) @1 @2)
6298  (IFN_FMA @0 @1 @2))
6299 (simplify
6300  (IFN_FNMA @0 @1 (negate @2))
6301  (IFN_FNMS @0 @1 @2))
6302 (simplify
6303  (IFN_FNMA:c (negate @0) @1 (negate @2))
6304  (IFN_FMS @0 @1 @2))
6305 (simplify
6306  (negate (IFN_FNMA@3 @0 @1 @2))
6307  (if (single_use (@3))
6308   (IFN_FMS @0 @1 @2)))
6309
6310 (simplify
6311  (IFN_FNMS:c (negate @0) @1 @2)
6312  (IFN_FMS @0 @1 @2))
6313 (simplify
6314  (IFN_FNMS @0 @1 (negate @2))
6315  (IFN_FNMA @0 @1 @2))
6316 (simplify
6317  (IFN_FNMS:c (negate @0) @1 (negate @2))
6318  (IFN_FMA @0 @1 @2))
6319 (simplify
6320  (negate (IFN_FNMS@3 @0 @1 @2))
6321  (if (single_use (@3))
6322   (IFN_FMA @0 @1 @2))))
6323
6324/* CLZ simplifications.  */
6325(for clz (CLZ)
6326 (for op (eq ne)
6327      cmp (lt ge)
6328  (simplify
6329   (op (clz:s@2 @0) INTEGER_CST@1)
6330   (if (integer_zerop (@1) && single_use (@2))
6331    /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0.  */
6332    (with { tree stype = signed_type_for (TREE_TYPE (@0));
6333	    HOST_WIDE_INT val = 0;
6334#ifdef CLZ_DEFINED_VALUE_AT_ZERO
6335	    /* Punt on hypothetical weird targets.  */
6336	    if (CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (@0)),
6337					   val) == 2
6338		&& val == 0)
6339	      stype = NULL_TREE;
6340#endif
6341	  }
6342     (if (stype)
6343      (cmp (convert:stype @0) { build_zero_cst (stype); })))
6344    /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1.  */
6345    (with { bool ok = true;
6346#ifdef CLZ_DEFINED_VALUE_AT_ZERO
6347	    /* Punt on hypothetical weird targets.  */
6348	    if (CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (@0)),
6349					   val) == 2
6350		&& val == TYPE_PRECISION (TREE_TYPE (@0)) - 1)
6351	      ok = false;
6352#endif
6353	  }
6354     (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (TREE_TYPE (@0)) - 1))
6355      (op @0 { build_one_cst (TREE_TYPE (@0)); })))))))
6356
6357/* POPCOUNT simplifications.  */
6358/* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero.  */
6359(simplify
6360  (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
6361  (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
6362    (POPCOUNT (bit_ior @0 @1))))
6363
6364/* popcount(X) == 0 is X == 0, and related (in)equalities.  */
6365(for popcount (POPCOUNT)
6366  (for cmp (le eq ne gt)
6367       rep (eq eq ne ne)
6368    (simplify
6369      (cmp (popcount @0) integer_zerop)
6370      (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
6371
6372/* Canonicalize POPCOUNT(x)&1 as PARITY(X).  */
6373(simplify
6374  (bit_and (POPCOUNT @0) integer_onep)
6375  (PARITY @0))
6376
6377/* PARITY simplifications.  */
6378/* parity(~X) is parity(X).  */
6379(simplify
6380  (PARITY (bit_not @0))
6381  (PARITY @0))
6382
6383/* parity(X)^parity(Y) is parity(X^Y).  */
6384(simplify
6385  (bit_xor (PARITY:s @0) (PARITY:s @1))
6386  (PARITY (bit_xor @0 @1)))
6387
6388/* Common POPCOUNT/PARITY simplifications.  */
6389/* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2.  Same for parity(X&C1).  */
6390(for pfun (POPCOUNT PARITY)
6391  (simplify
6392    (pfun @0)
6393    (with { wide_int nz = tree_nonzero_bits (@0); }
6394      (switch
6395	(if (nz == 1)
6396	  (convert @0))
6397	(if (wi::popcount (nz) == 1)
6398	  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6399	    (convert (rshift:utype (convert:utype @0)
6400				   { build_int_cst (integer_type_node,
6401						    wi::ctz (nz)); }))))))))
6402
6403#if GIMPLE
6404/* 64- and 32-bits branchless implementations of popcount are detected:
6405
6406   int popcount64c (uint64_t x)
6407   {
6408     x -= (x >> 1) & 0x5555555555555555ULL;
6409     x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
6410     x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
6411     return (x * 0x0101010101010101ULL) >> 56;
6412   }
6413
6414   int popcount32c (uint32_t x)
6415   {
6416     x -= (x >> 1) & 0x55555555;
6417     x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
6418     x = (x + (x >> 4)) & 0x0f0f0f0f;
6419     return (x * 0x01010101) >> 24;
6420   }  */
6421(simplify
6422 (rshift
6423  (mult
6424   (bit_and
6425    (plus:c
6426     (rshift @8 INTEGER_CST@5)
6427      (plus:c@8
6428       (bit_and @6 INTEGER_CST@7)
6429	(bit_and
6430	 (rshift
6431	  (minus@6 @0
6432	   (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
6433	  INTEGER_CST@10)
6434	 INTEGER_CST@9)))
6435    INTEGER_CST@3)
6436   INTEGER_CST@2)
6437  INTEGER_CST@1)
6438  /* Check constants and optab.  */
6439  (with { unsigned prec = TYPE_PRECISION (type);
6440	  int shift = (64 - prec) & 63;
6441	  unsigned HOST_WIDE_INT c1
6442	    = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
6443	  unsigned HOST_WIDE_INT c2
6444	    = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
6445	  unsigned HOST_WIDE_INT c3
6446	    = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
6447	  unsigned HOST_WIDE_INT c4
6448	    = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
6449   }
6450   (if (prec >= 16
6451	&& prec <= 64
6452	&& pow2p_hwi (prec)
6453	&& TYPE_UNSIGNED (type)
6454	&& integer_onep (@4)
6455	&& wi::to_widest (@10) == 2
6456	&& wi::to_widest (@5) == 4
6457	&& wi::to_widest (@1) == prec - 8
6458	&& tree_to_uhwi (@2) == c1
6459	&& tree_to_uhwi (@3) == c2
6460	&& tree_to_uhwi (@9) == c3
6461	&& tree_to_uhwi (@7) == c3
6462	&& tree_to_uhwi (@11) == c4
6463	&& direct_internal_fn_supported_p (IFN_POPCOUNT, type,
6464					   OPTIMIZE_FOR_BOTH))
6465    (convert (IFN_POPCOUNT:type @0)))))
6466
6467/* __builtin_ffs needs to deal on many targets with the possible zero
6468   argument.  If we know the argument is always non-zero, __builtin_ctz + 1
6469   should lead to better code.  */
6470(simplify
6471 (FFS tree_expr_nonzero_p@0)
6472 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6473      && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
6474					 OPTIMIZE_FOR_SPEED))
6475  (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6476   (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
6477#endif
6478
6479(for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
6480	  BUILT_IN_FFSIMAX)
6481 /* __builtin_ffs (X) == 0 -> X == 0.
6482    __builtin_ffs (X) == 6 -> (X & 63) == 32.  */
6483 (for cmp (eq ne)
6484  (simplify
6485   (cmp (ffs@2 @0) INTEGER_CST@1)
6486    (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6487     (switch
6488      (if (integer_zerop (@1))
6489       (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
6490      (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
6491       { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
6492      (if (single_use (@2))
6493       (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
6494					    wi::mask (tree_to_uhwi (@1),
6495						      false, prec)); })
6496	    { wide_int_to_tree (TREE_TYPE (@0),
6497				wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
6498						  false, prec)); }))))))
6499
6500 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0.  */
6501 (for cmp (gt le)
6502      cmp2 (ne eq)
6503      cmp3 (eq ne)
6504      bit_op (bit_and bit_ior)
6505  (simplify
6506   (cmp (ffs@2 @0) INTEGER_CST@1)
6507    (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6508     (switch
6509      (if (integer_zerop (@1))
6510       (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
6511      (if (tree_int_cst_sgn (@1) < 0)
6512       { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
6513      (if (wi::to_widest (@1) >= prec)
6514       { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
6515      (if (wi::to_widest (@1) == prec - 1)
6516       (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
6517				    wi::shifted_mask (prec - 1, 1,
6518						      false, prec)); }))
6519      (if (single_use (@2))
6520       (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
6521	       (cmp3 (bit_and @0
6522			      { wide_int_to_tree (TREE_TYPE (@0),
6523						  wi::mask (tree_to_uhwi (@1),
6524						  false, prec)); })
6525		     { build_zero_cst (TREE_TYPE (@0)); }))))))))
6526
6527/* Simplify:
6528
6529     a = a1 op a2
6530     r = c ? a : b;
6531
6532   to:
6533
6534     r = c ? a1 op a2 : b;
6535
6536   if the target can do it in one go.  This makes the operation conditional
6537   on c, so could drop potentially-trapping arithmetic, but that's a valid
6538   simplification if the result of the operation isn't needed.
6539
6540   Avoid speculatively generating a stand-alone vector comparison
6541   on targets that might not support them.  Any target implementing
6542   conditional internal functions must support the same comparisons
6543   inside and outside a VEC_COND_EXPR.  */
6544
6545#if GIMPLE
6546(for uncond_op (UNCOND_BINARY)
6547     cond_op (COND_BINARY)
6548 (simplify
6549  (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
6550  (with { tree op_type = TREE_TYPE (@4); }
6551   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6552	&& element_precision (type) == element_precision (op_type))
6553    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
6554 (simplify
6555  (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
6556  (with { tree op_type = TREE_TYPE (@4); }
6557   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6558	&& element_precision (type) == element_precision (op_type))
6559    (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6560
6561/* Same for ternary operations.  */
6562(for uncond_op (UNCOND_TERNARY)
6563     cond_op (COND_TERNARY)
6564 (simplify
6565  (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
6566  (with { tree op_type = TREE_TYPE (@5); }
6567   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6568	&& element_precision (type) == element_precision (op_type))
6569    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
6570 (simplify
6571  (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
6572  (with { tree op_type = TREE_TYPE (@5); }
6573   (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6574	&& element_precision (type) == element_precision (op_type))
6575    (view_convert (cond_op (bit_not @0) @2 @3 @4
6576		  (view_convert:op_type @1)))))))
6577#endif
6578
6579/* Detect cases in which a VEC_COND_EXPR effectively replaces the
6580   "else" value of an IFN_COND_*.  */
6581(for cond_op (COND_BINARY)
6582 (simplify
6583  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
6584  (with { tree op_type = TREE_TYPE (@3); }
6585   (if (element_precision (type) == element_precision (op_type))
6586    (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
6587 (simplify
6588  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
6589  (with { tree op_type = TREE_TYPE (@5); }
6590   (if (inverse_conditions_p (@0, @2)
6591        && element_precision (type) == element_precision (op_type))
6592    (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
6593
6594/* Same for ternary operations.  */
6595(for cond_op (COND_TERNARY)
6596 (simplify
6597  (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
6598  (with { tree op_type = TREE_TYPE (@4); }
6599   (if (element_precision (type) == element_precision (op_type))
6600    (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
6601 (simplify
6602  (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
6603  (with { tree op_type = TREE_TYPE (@6); }
6604   (if (inverse_conditions_p (@0, @2)
6605        && element_precision (type) == element_precision (op_type))
6606    (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
6607
6608/* For pointers @0 and @2 and nonnegative constant offset @1, look for
6609   expressions like:
6610
6611   A: (@0 + @1 < @2) | (@2 + @1 < @0)
6612   B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
6613
6614   If pointers are known not to wrap, B checks whether @1 bytes starting
6615   at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
6616   bytes.  A is more efficiently tested as:
6617
6618   A: (sizetype) (@0 + @1 - @2) > @1 * 2
6619
6620   The equivalent expression for B is given by replacing @1 with @1 - 1:
6621
6622   B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
6623
6624   @0 and @2 can be swapped in both expressions without changing the result.
6625
6626   The folds rely on sizetype's being unsigned (which is always true)
6627   and on its being the same width as the pointer (which we have to check).
6628
6629   The fold replaces two pointer_plus expressions, two comparisons and
6630   an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
6631   the best case it's a saving of two operations.  The A fold retains one
6632   of the original pointer_pluses, so is a win even if both pointer_pluses
6633   are used elsewhere.  The B fold is a wash if both pointer_pluses are
6634   used elsewhere, since all we end up doing is replacing a comparison with
6635   a pointer_plus.  We do still apply the fold under those circumstances
6636   though, in case applying it to other conditions eventually makes one of the
6637   pointer_pluses dead.  */
6638(for ior (truth_orif truth_or bit_ior)
6639 (for cmp (le lt)
6640  (simplify
6641   (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
6642	(cmp:cs (pointer_plus@4 @2 @1) @0))
6643   (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6644	&& TYPE_OVERFLOW_WRAPS (sizetype)
6645	&& TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6646    /* Calculate the rhs constant.  */
6647    (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6648	    offset_int rhs = off * 2; }
6649     /* Always fails for negative values.  */
6650     (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6651      /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6652	 pick a canonical order.  This increases the chances of using the
6653	 same pointer_plus in multiple checks.  */
6654      (with { bool swap_p = tree_swap_operands_p (@0, @2);
6655	      tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6656       (if (cmp == LT_EXPR)
6657	(gt (convert:sizetype
6658	     (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6659				     { swap_p ? @0 : @2; }))
6660	    { rhs_tree; })
6661	(gt (convert:sizetype
6662	     (pointer_diff:ssizetype
6663	      (pointer_plus { swap_p ? @2 : @0; }
6664			    { wide_int_to_tree (sizetype, off); })
6665	      { swap_p ? @0 : @2; }))
6666	    { rhs_tree; })))))))))
6667
6668/* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6669   element of @1.  */
6670(for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6671 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6672  (with { int i = single_nonzero_element (@1); }
6673   (if (i >= 0)
6674    (with { tree elt = vector_cst_elt (@1, i);
6675	    tree elt_type = TREE_TYPE (elt);
6676	    unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6677	    tree size = bitsize_int (elt_bits);
6678	    tree pos = bitsize_int (elt_bits * i); }
6679     (view_convert
6680      (bit_and:elt_type
6681       (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6682       { elt; })))))))
6683
6684(simplify
6685 (vec_perm @0 @1 VECTOR_CST@2)
6686 (with
6687  {
6688    tree op0 = @0, op1 = @1, op2 = @2;
6689
6690    /* Build a vector of integers from the tree mask.  */
6691    vec_perm_builder builder;
6692    if (!tree_to_vec_perm_builder (&builder, op2))
6693      return NULL_TREE;
6694
6695    /* Create a vec_perm_indices for the integer vector.  */
6696    poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6697    bool single_arg = (op0 == op1);
6698    vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6699  }
6700  (if (sel.series_p (0, 1, 0, 1))
6701   { op0; }
6702   (if (sel.series_p (0, 1, nelts, 1))
6703    { op1; }
6704    (with
6705     {
6706       if (!single_arg)
6707         {
6708	   if (sel.all_from_input_p (0))
6709	     op1 = op0;
6710	   else if (sel.all_from_input_p (1))
6711	     {
6712	       op0 = op1;
6713	       sel.rotate_inputs (1);
6714	     }
6715	   else if (known_ge (poly_uint64 (sel[0]), nelts))
6716	     {
6717	       std::swap (op0, op1);
6718	       sel.rotate_inputs (1);
6719	     }
6720         }
6721       gassign *def;
6722       tree cop0 = op0, cop1 = op1;
6723       if (TREE_CODE (op0) == SSA_NAME
6724           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6725	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6726	 cop0 = gimple_assign_rhs1 (def);
6727       if (TREE_CODE (op1) == SSA_NAME
6728           && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6729	   && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6730	 cop1 = gimple_assign_rhs1 (def);
6731
6732       tree t;
6733    }
6734    (if ((TREE_CODE (cop0) == VECTOR_CST
6735	  || TREE_CODE (cop0) == CONSTRUCTOR)
6736	 && (TREE_CODE (cop1) == VECTOR_CST
6737	     || TREE_CODE (cop1) == CONSTRUCTOR)
6738	 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6739     { t; }
6740     (with
6741      {
6742	bool changed = (op0 == op1 && !single_arg);
6743	tree ins = NULL_TREE;
6744	unsigned at = 0;
6745
6746	/* See if the permutation is performing a single element
6747	   insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6748	   in that case.  But only if the vector mode is supported,
6749	   otherwise this is invalid GIMPLE.  */
6750        if (TYPE_MODE (type) != BLKmode
6751	    && (TREE_CODE (cop0) == VECTOR_CST
6752		|| TREE_CODE (cop0) == CONSTRUCTOR
6753		|| TREE_CODE (cop1) == VECTOR_CST
6754		|| TREE_CODE (cop1) == CONSTRUCTOR))
6755          {
6756	    bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6757	    if (insert_first_p)
6758	      {
6759	        /* After canonicalizing the first elt to come from the
6760		   first vector we only can insert the first elt from
6761		   the first vector.  */
6762	        at = 0;
6763		if ((ins = fold_read_from_vector (cop0, sel[0])))
6764		  op0 = op1;
6765	      }
6766	    /* The above can fail for two-element vectors which always
6767	       appear to insert the first element, so try inserting
6768	       into the second lane as well.  For more than two
6769	       elements that's wasted time.  */
6770	    if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6771	      {
6772	        unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6773		for (at = 0; at < encoded_nelts; ++at)
6774		  if (maybe_ne (sel[at], at))
6775		    break;
6776		if (at < encoded_nelts
6777		    && (known_eq (at + 1, nelts)
6778			|| sel.series_p (at + 1, 1, at + 1, 1)))
6779		  {
6780		    if (known_lt (poly_uint64 (sel[at]), nelts))
6781		      ins = fold_read_from_vector (cop0, sel[at]);
6782		    else
6783		      ins = fold_read_from_vector (cop1, sel[at] - nelts);
6784		  }
6785	      }
6786	  }
6787
6788	/* Generate a canonical form of the selector.  */
6789	if (!ins && sel.encoding () != builder)
6790	  {
6791	    /* Some targets are deficient and fail to expand a single
6792	       argument permutation while still allowing an equivalent
6793	       2-argument version.  */
6794	    tree oldop2 = op2;
6795	    if (sel.ninputs () == 2
6796	       || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6797	      op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6798	    else
6799	      {
6800	        vec_perm_indices sel2 (builder, 2, nelts);
6801	        if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6802	          op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6803	        else
6804	          /* Not directly supported with either encoding,
6805		     so use the preferred form.  */
6806		  op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6807	      }
6808	    if (!operand_equal_p (op2, oldop2, 0))
6809	      changed = true;
6810	  }
6811      }
6812      (if (ins)
6813       (bit_insert { op0; } { ins; }
6814         { bitsize_int (at * vector_element_bits (type)); })
6815       (if (changed)
6816        (vec_perm { op0; } { op1; } { op2; }))))))))))
6817
6818/* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element.  */
6819
6820(match vec_same_elem_p
6821 @0
6822 (if (uniform_vector_p (@0))))
6823
6824(match vec_same_elem_p
6825 (vec_duplicate @0))
6826
6827(simplify
6828 (vec_perm vec_same_elem_p@0 @0 @1)
6829 @0)
6830
6831/* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6832   The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6833   constant which when multiplied by a power of 2 contains a unique value
6834   in the top 5 or 6 bits.  This is then indexed into a table which maps it
6835   to the number of trailing zeroes.  */
6836(match (ctz_table_index @1 @2 @3)
6837  (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
6838