1// Copyright 2011 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package math 6 7/* 8 Floating-point tangent. 9*/ 10 11// The original C code, the long comment, and the constants 12// below were from http://netlib.sandia.gov/cephes/cmath/sin.c, 13// available from http://www.netlib.org/cephes/cmath.tgz. 14// The go code is a simplified version of the original C. 15// 16// tan.c 17// 18// Circular tangent 19// 20// SYNOPSIS: 21// 22// double x, y, tan(); 23// y = tan( x ); 24// 25// DESCRIPTION: 26// 27// Returns the circular tangent of the radian argument x. 28// 29// Range reduction is modulo pi/4. A rational function 30// x + x**3 P(x**2)/Q(x**2) 31// is employed in the basic interval [0, pi/4]. 32// 33// ACCURACY: 34// Relative error: 35// arithmetic domain # trials peak rms 36// DEC +-1.07e9 44000 4.1e-17 1.0e-17 37// IEEE +-1.07e9 30000 2.9e-16 8.1e-17 38// 39// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss 40// is not gradual, but jumps suddenly to about 1 part in 10e7. Results may 41// be meaningless for x > 2**49 = 5.6e14. 42// [Accuracy loss statement from sin.go comments.] 43// 44// Cephes Math Library Release 2.8: June, 2000 45// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 46// 47// The readme file at http://netlib.sandia.gov/cephes/ says: 48// Some software in this archive may be from the book _Methods and 49// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 50// International, 1989) or from the Cephes Mathematical Library, a 51// commercial product. In either event, it is copyrighted by the author. 52// What you see here may be used freely but it comes with no support or 53// guarantee. 54// 55// The two known misprints in the book are repaired here in the 56// source listings for the gamma function and the incomplete beta 57// integral. 58// 59// Stephen L. Moshier 60// moshier@na-net.ornl.gov 61 62// tan coefficients 63var _tanP = [...]float64{ 64 -1.30936939181383777646e4, // 0xc0c992d8d24f3f38 65 1.15351664838587416140e6, // 0x413199eca5fc9ddd 66 -1.79565251976484877988e7, // 0xc1711fead3299176 67} 68var _tanQ = [...]float64{ 69 1.00000000000000000000e0, 70 1.36812963470692954678e4, //0x40cab8a5eeb36572 71 -1.32089234440210967447e6, //0xc13427bc582abc96 72 2.50083801823357915839e7, //0x4177d98fc2ead8ef 73 -5.38695755929454629881e7, //0xc189afe03cbe5a31 74} 75 76// Tan returns the tangent of the radian argument x. 77// 78// Special cases are: 79// Tan(±0) = ±0 80// Tan(±Inf) = NaN 81// Tan(NaN) = NaN 82 83//extern tan 84func libc_tan(float64) float64 85 86func Tan(x float64) float64 { 87 return libc_tan(x) 88} 89 90func tan(x float64) float64 { 91 const ( 92 PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts 93 PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, 94 PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, 95 ) 96 // special cases 97 switch { 98 case x == 0 || IsNaN(x): 99 return x // return ±0 || NaN() 100 case IsInf(x, 0): 101 return NaN() 102 } 103 104 // make argument positive but save the sign 105 sign := false 106 if x < 0 { 107 x = -x 108 sign = true 109 } 110 var j uint64 111 var y, z float64 112 if x >= reduceThreshold { 113 j, z = trigReduce(x) 114 } else { 115 j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle 116 y = float64(j) // integer part of x/(Pi/4), as float 117 118 /* map zeros and singularities to origin */ 119 if j&1 == 1 { 120 j++ 121 y++ 122 } 123 124 z = ((x - y*PI4A) - y*PI4B) - y*PI4C 125 } 126 zz := z * z 127 128 if zz > 1e-14 { 129 y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4])) 130 } else { 131 y = z 132 } 133 if j&2 == 2 { 134 y = -1 / y 135 } 136 if sign { 137 y = -y 138 } 139 return y 140} 141