1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// HTTP server. See RFC 7230 through 7235.
6
7package http
8
9import (
10	"bufio"
11	"bytes"
12	"context"
13	"crypto/tls"
14	"errors"
15	"fmt"
16	"io"
17	"log"
18	"math/rand"
19	"net"
20	"net/textproto"
21	"net/url"
22	urlpkg "net/url"
23	"os"
24	"path"
25	"runtime"
26	"sort"
27	"strconv"
28	"strings"
29	"sync"
30	"sync/atomic"
31	"time"
32
33	"golang.org/x/net/http/httpguts"
34)
35
36// Errors used by the HTTP server.
37var (
38	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
39	// when the HTTP method or response code does not permit a
40	// body.
41	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
42
43	// ErrHijacked is returned by ResponseWriter.Write calls when
44	// the underlying connection has been hijacked using the
45	// Hijacker interface. A zero-byte write on a hijacked
46	// connection will return ErrHijacked without any other side
47	// effects.
48	ErrHijacked = errors.New("http: connection has been hijacked")
49
50	// ErrContentLength is returned by ResponseWriter.Write calls
51	// when a Handler set a Content-Length response header with a
52	// declared size and then attempted to write more bytes than
53	// declared.
54	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
55
56	// Deprecated: ErrWriteAfterFlush is no longer returned by
57	// anything in the net/http package. Callers should not
58	// compare errors against this variable.
59	ErrWriteAfterFlush = errors.New("unused")
60)
61
62// A Handler responds to an HTTP request.
63//
64// ServeHTTP should write reply headers and data to the ResponseWriter
65// and then return. Returning signals that the request is finished; it
66// is not valid to use the ResponseWriter or read from the
67// Request.Body after or concurrently with the completion of the
68// ServeHTTP call.
69//
70// Depending on the HTTP client software, HTTP protocol version, and
71// any intermediaries between the client and the Go server, it may not
72// be possible to read from the Request.Body after writing to the
73// ResponseWriter. Cautious handlers should read the Request.Body
74// first, and then reply.
75//
76// Except for reading the body, handlers should not modify the
77// provided Request.
78//
79// If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
80// that the effect of the panic was isolated to the active request.
81// It recovers the panic, logs a stack trace to the server error log,
82// and either closes the network connection or sends an HTTP/2
83// RST_STREAM, depending on the HTTP protocol. To abort a handler so
84// the client sees an interrupted response but the server doesn't log
85// an error, panic with the value ErrAbortHandler.
86type Handler interface {
87	ServeHTTP(ResponseWriter, *Request)
88}
89
90// A ResponseWriter interface is used by an HTTP handler to
91// construct an HTTP response.
92//
93// A ResponseWriter may not be used after the Handler.ServeHTTP method
94// has returned.
95type ResponseWriter interface {
96	// Header returns the header map that will be sent by
97	// WriteHeader. The Header map also is the mechanism with which
98	// Handlers can set HTTP trailers.
99	//
100	// Changing the header map after a call to WriteHeader (or
101	// Write) has no effect unless the modified headers are
102	// trailers.
103	//
104	// There are two ways to set Trailers. The preferred way is to
105	// predeclare in the headers which trailers you will later
106	// send by setting the "Trailer" header to the names of the
107	// trailer keys which will come later. In this case, those
108	// keys of the Header map are treated as if they were
109	// trailers. See the example. The second way, for trailer
110	// keys not known to the Handler until after the first Write,
111	// is to prefix the Header map keys with the TrailerPrefix
112	// constant value. See TrailerPrefix.
113	//
114	// To suppress automatic response headers (such as "Date"), set
115	// their value to nil.
116	Header() Header
117
118	// Write writes the data to the connection as part of an HTTP reply.
119	//
120	// If WriteHeader has not yet been called, Write calls
121	// WriteHeader(http.StatusOK) before writing the data. If the Header
122	// does not contain a Content-Type line, Write adds a Content-Type set
123	// to the result of passing the initial 512 bytes of written data to
124	// DetectContentType. Additionally, if the total size of all written
125	// data is under a few KB and there are no Flush calls, the
126	// Content-Length header is added automatically.
127	//
128	// Depending on the HTTP protocol version and the client, calling
129	// Write or WriteHeader may prevent future reads on the
130	// Request.Body. For HTTP/1.x requests, handlers should read any
131	// needed request body data before writing the response. Once the
132	// headers have been flushed (due to either an explicit Flusher.Flush
133	// call or writing enough data to trigger a flush), the request body
134	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
135	// handlers to continue to read the request body while concurrently
136	// writing the response. However, such behavior may not be supported
137	// by all HTTP/2 clients. Handlers should read before writing if
138	// possible to maximize compatibility.
139	Write([]byte) (int, error)
140
141	// WriteHeader sends an HTTP response header with the provided
142	// status code.
143	//
144	// If WriteHeader is not called explicitly, the first call to Write
145	// will trigger an implicit WriteHeader(http.StatusOK).
146	// Thus explicit calls to WriteHeader are mainly used to
147	// send error codes.
148	//
149	// The provided code must be a valid HTTP 1xx-5xx status code.
150	// Only one header may be written. Go does not currently
151	// support sending user-defined 1xx informational headers,
152	// with the exception of 100-continue response header that the
153	// Server sends automatically when the Request.Body is read.
154	WriteHeader(statusCode int)
155}
156
157// The Flusher interface is implemented by ResponseWriters that allow
158// an HTTP handler to flush buffered data to the client.
159//
160// The default HTTP/1.x and HTTP/2 ResponseWriter implementations
161// support Flusher, but ResponseWriter wrappers may not. Handlers
162// should always test for this ability at runtime.
163//
164// Note that even for ResponseWriters that support Flush,
165// if the client is connected through an HTTP proxy,
166// the buffered data may not reach the client until the response
167// completes.
168type Flusher interface {
169	// Flush sends any buffered data to the client.
170	Flush()
171}
172
173// The Hijacker interface is implemented by ResponseWriters that allow
174// an HTTP handler to take over the connection.
175//
176// The default ResponseWriter for HTTP/1.x connections supports
177// Hijacker, but HTTP/2 connections intentionally do not.
178// ResponseWriter wrappers may also not support Hijacker. Handlers
179// should always test for this ability at runtime.
180type Hijacker interface {
181	// Hijack lets the caller take over the connection.
182	// After a call to Hijack the HTTP server library
183	// will not do anything else with the connection.
184	//
185	// It becomes the caller's responsibility to manage
186	// and close the connection.
187	//
188	// The returned net.Conn may have read or write deadlines
189	// already set, depending on the configuration of the
190	// Server. It is the caller's responsibility to set
191	// or clear those deadlines as needed.
192	//
193	// The returned bufio.Reader may contain unprocessed buffered
194	// data from the client.
195	//
196	// After a call to Hijack, the original Request.Body must not
197	// be used. The original Request's Context remains valid and
198	// is not canceled until the Request's ServeHTTP method
199	// returns.
200	Hijack() (net.Conn, *bufio.ReadWriter, error)
201}
202
203// The CloseNotifier interface is implemented by ResponseWriters which
204// allow detecting when the underlying connection has gone away.
205//
206// This mechanism can be used to cancel long operations on the server
207// if the client has disconnected before the response is ready.
208//
209// Deprecated: the CloseNotifier interface predates Go's context package.
210// New code should use Request.Context instead.
211type CloseNotifier interface {
212	// CloseNotify returns a channel that receives at most a
213	// single value (true) when the client connection has gone
214	// away.
215	//
216	// CloseNotify may wait to notify until Request.Body has been
217	// fully read.
218	//
219	// After the Handler has returned, there is no guarantee
220	// that the channel receives a value.
221	//
222	// If the protocol is HTTP/1.1 and CloseNotify is called while
223	// processing an idempotent request (such a GET) while
224	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
225	// pipelined request may cause a value to be sent on the
226	// returned channel. In practice HTTP/1.1 pipelining is not
227	// enabled in browsers and not seen often in the wild. If this
228	// is a problem, use HTTP/2 or only use CloseNotify on methods
229	// such as POST.
230	CloseNotify() <-chan bool
231}
232
233var (
234	// ServerContextKey is a context key. It can be used in HTTP
235	// handlers with Context.Value to access the server that
236	// started the handler. The associated value will be of
237	// type *Server.
238	ServerContextKey = &contextKey{"http-server"}
239
240	// LocalAddrContextKey is a context key. It can be used in
241	// HTTP handlers with Context.Value to access the local
242	// address the connection arrived on.
243	// The associated value will be of type net.Addr.
244	LocalAddrContextKey = &contextKey{"local-addr"}
245)
246
247// A conn represents the server side of an HTTP connection.
248type conn struct {
249	// server is the server on which the connection arrived.
250	// Immutable; never nil.
251	server *Server
252
253	// cancelCtx cancels the connection-level context.
254	cancelCtx context.CancelFunc
255
256	// rwc is the underlying network connection.
257	// This is never wrapped by other types and is the value given out
258	// to CloseNotifier callers. It is usually of type *net.TCPConn or
259	// *tls.Conn.
260	rwc net.Conn
261
262	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
263	// inside the Listener's Accept goroutine, as some implementations block.
264	// It is populated immediately inside the (*conn).serve goroutine.
265	// This is the value of a Handler's (*Request).RemoteAddr.
266	remoteAddr string
267
268	// tlsState is the TLS connection state when using TLS.
269	// nil means not TLS.
270	tlsState *tls.ConnectionState
271
272	// werr is set to the first write error to rwc.
273	// It is set via checkConnErrorWriter{w}, where bufw writes.
274	werr error
275
276	// r is bufr's read source. It's a wrapper around rwc that provides
277	// io.LimitedReader-style limiting (while reading request headers)
278	// and functionality to support CloseNotifier. See *connReader docs.
279	r *connReader
280
281	// bufr reads from r.
282	bufr *bufio.Reader
283
284	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
285	bufw *bufio.Writer
286
287	// lastMethod is the method of the most recent request
288	// on this connection, if any.
289	lastMethod string
290
291	curReq atomic.Value // of *response (which has a Request in it)
292
293	curState struct{ atomic uint64 } // packed (unixtime<<8|uint8(ConnState))
294
295	// mu guards hijackedv
296	mu sync.Mutex
297
298	// hijackedv is whether this connection has been hijacked
299	// by a Handler with the Hijacker interface.
300	// It is guarded by mu.
301	hijackedv bool
302}
303
304func (c *conn) hijacked() bool {
305	c.mu.Lock()
306	defer c.mu.Unlock()
307	return c.hijackedv
308}
309
310// c.mu must be held.
311func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
312	if c.hijackedv {
313		return nil, nil, ErrHijacked
314	}
315	c.r.abortPendingRead()
316
317	c.hijackedv = true
318	rwc = c.rwc
319	rwc.SetDeadline(time.Time{})
320
321	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
322	if c.r.hasByte {
323		if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
324			return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
325		}
326	}
327	c.setState(rwc, StateHijacked, runHooks)
328	return
329}
330
331// This should be >= 512 bytes for DetectContentType,
332// but otherwise it's somewhat arbitrary.
333const bufferBeforeChunkingSize = 2048
334
335// chunkWriter writes to a response's conn buffer, and is the writer
336// wrapped by the response.bufw buffered writer.
337//
338// chunkWriter also is responsible for finalizing the Header, including
339// conditionally setting the Content-Type and setting a Content-Length
340// in cases where the handler's final output is smaller than the buffer
341// size. It also conditionally adds chunk headers, when in chunking mode.
342//
343// See the comment above (*response).Write for the entire write flow.
344type chunkWriter struct {
345	res *response
346
347	// header is either nil or a deep clone of res.handlerHeader
348	// at the time of res.writeHeader, if res.writeHeader is
349	// called and extra buffering is being done to calculate
350	// Content-Type and/or Content-Length.
351	header Header
352
353	// wroteHeader tells whether the header's been written to "the
354	// wire" (or rather: w.conn.buf). this is unlike
355	// (*response).wroteHeader, which tells only whether it was
356	// logically written.
357	wroteHeader bool
358
359	// set by the writeHeader method:
360	chunking bool // using chunked transfer encoding for reply body
361}
362
363var (
364	crlf       = []byte("\r\n")
365	colonSpace = []byte(": ")
366)
367
368func (cw *chunkWriter) Write(p []byte) (n int, err error) {
369	if !cw.wroteHeader {
370		cw.writeHeader(p)
371	}
372	if cw.res.req.Method == "HEAD" {
373		// Eat writes.
374		return len(p), nil
375	}
376	if cw.chunking {
377		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
378		if err != nil {
379			cw.res.conn.rwc.Close()
380			return
381		}
382	}
383	n, err = cw.res.conn.bufw.Write(p)
384	if cw.chunking && err == nil {
385		_, err = cw.res.conn.bufw.Write(crlf)
386	}
387	if err != nil {
388		cw.res.conn.rwc.Close()
389	}
390	return
391}
392
393func (cw *chunkWriter) flush() {
394	if !cw.wroteHeader {
395		cw.writeHeader(nil)
396	}
397	cw.res.conn.bufw.Flush()
398}
399
400func (cw *chunkWriter) close() {
401	if !cw.wroteHeader {
402		cw.writeHeader(nil)
403	}
404	if cw.chunking {
405		bw := cw.res.conn.bufw // conn's bufio writer
406		// zero chunk to mark EOF
407		bw.WriteString("0\r\n")
408		if trailers := cw.res.finalTrailers(); trailers != nil {
409			trailers.Write(bw) // the writer handles noting errors
410		}
411		// final blank line after the trailers (whether
412		// present or not)
413		bw.WriteString("\r\n")
414	}
415}
416
417// A response represents the server side of an HTTP response.
418type response struct {
419	conn             *conn
420	req              *Request // request for this response
421	reqBody          io.ReadCloser
422	cancelCtx        context.CancelFunc // when ServeHTTP exits
423	wroteHeader      bool               // reply header has been (logically) written
424	wroteContinue    bool               // 100 Continue response was written
425	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
426	wantsClose       bool               // HTTP request has Connection "close"
427
428	// canWriteContinue is a boolean value accessed as an atomic int32
429	// that says whether or not a 100 Continue header can be written
430	// to the connection.
431	// writeContinueMu must be held while writing the header.
432	// These two fields together synchronize the body reader
433	// (the expectContinueReader, which wants to write 100 Continue)
434	// against the main writer.
435	canWriteContinue atomicBool
436	writeContinueMu  sync.Mutex
437
438	w  *bufio.Writer // buffers output in chunks to chunkWriter
439	cw chunkWriter
440
441	// handlerHeader is the Header that Handlers get access to,
442	// which may be retained and mutated even after WriteHeader.
443	// handlerHeader is copied into cw.header at WriteHeader
444	// time, and privately mutated thereafter.
445	handlerHeader Header
446	calledHeader  bool // handler accessed handlerHeader via Header
447
448	written       int64 // number of bytes written in body
449	contentLength int64 // explicitly-declared Content-Length; or -1
450	status        int   // status code passed to WriteHeader
451
452	// close connection after this reply.  set on request and
453	// updated after response from handler if there's a
454	// "Connection: keep-alive" response header and a
455	// Content-Length.
456	closeAfterReply bool
457
458	// requestBodyLimitHit is set by requestTooLarge when
459	// maxBytesReader hits its max size. It is checked in
460	// WriteHeader, to make sure we don't consume the
461	// remaining request body to try to advance to the next HTTP
462	// request. Instead, when this is set, we stop reading
463	// subsequent requests on this connection and stop reading
464	// input from it.
465	requestBodyLimitHit bool
466
467	// trailers are the headers to be sent after the handler
468	// finishes writing the body. This field is initialized from
469	// the Trailer response header when the response header is
470	// written.
471	trailers []string
472
473	handlerDone atomicBool // set true when the handler exits
474
475	// Buffers for Date, Content-Length, and status code
476	dateBuf   [len(TimeFormat)]byte
477	clenBuf   [10]byte
478	statusBuf [3]byte
479
480	// closeNotifyCh is the channel returned by CloseNotify.
481	// TODO(bradfitz): this is currently (for Go 1.8) always
482	// non-nil. Make this lazily-created again as it used to be?
483	closeNotifyCh  chan bool
484	didCloseNotify int32 // atomic (only 0->1 winner should send)
485}
486
487// TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
488// that, if present, signals that the map entry is actually for
489// the response trailers, and not the response headers. The prefix
490// is stripped after the ServeHTTP call finishes and the values are
491// sent in the trailers.
492//
493// This mechanism is intended only for trailers that are not known
494// prior to the headers being written. If the set of trailers is fixed
495// or known before the header is written, the normal Go trailers mechanism
496// is preferred:
497//    https://golang.org/pkg/net/http/#ResponseWriter
498//    https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
499const TrailerPrefix = "Trailer:"
500
501// finalTrailers is called after the Handler exits and returns a non-nil
502// value if the Handler set any trailers.
503func (w *response) finalTrailers() Header {
504	var t Header
505	for k, vv := range w.handlerHeader {
506		if strings.HasPrefix(k, TrailerPrefix) {
507			if t == nil {
508				t = make(Header)
509			}
510			t[strings.TrimPrefix(k, TrailerPrefix)] = vv
511		}
512	}
513	for _, k := range w.trailers {
514		if t == nil {
515			t = make(Header)
516		}
517		for _, v := range w.handlerHeader[k] {
518			t.Add(k, v)
519		}
520	}
521	return t
522}
523
524type atomicBool int32
525
526func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
527func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
528func (b *atomicBool) setFalse()   { atomic.StoreInt32((*int32)(b), 0) }
529
530// declareTrailer is called for each Trailer header when the
531// response header is written. It notes that a header will need to be
532// written in the trailers at the end of the response.
533func (w *response) declareTrailer(k string) {
534	k = CanonicalHeaderKey(k)
535	if !httpguts.ValidTrailerHeader(k) {
536		// Forbidden by RFC 7230, section 4.1.2
537		return
538	}
539	w.trailers = append(w.trailers, k)
540}
541
542// requestTooLarge is called by maxBytesReader when too much input has
543// been read from the client.
544func (w *response) requestTooLarge() {
545	w.closeAfterReply = true
546	w.requestBodyLimitHit = true
547	if !w.wroteHeader {
548		w.Header().Set("Connection", "close")
549	}
550}
551
552// needsSniff reports whether a Content-Type still needs to be sniffed.
553func (w *response) needsSniff() bool {
554	_, haveType := w.handlerHeader["Content-Type"]
555	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
556}
557
558// writerOnly hides an io.Writer value's optional ReadFrom method
559// from io.Copy.
560type writerOnly struct {
561	io.Writer
562}
563
564// ReadFrom is here to optimize copying from an *os.File regular file
565// to a *net.TCPConn with sendfile, or from a supported src type such
566// as a *net.TCPConn on Linux with splice.
567func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
568	bufp := copyBufPool.Get().(*[]byte)
569	buf := *bufp
570	defer copyBufPool.Put(bufp)
571
572	// Our underlying w.conn.rwc is usually a *TCPConn (with its
573	// own ReadFrom method). If not, just fall back to the normal
574	// copy method.
575	rf, ok := w.conn.rwc.(io.ReaderFrom)
576	if !ok {
577		return io.CopyBuffer(writerOnly{w}, src, buf)
578	}
579
580	// sendfile path:
581
582	// Do not start actually writing response until src is readable.
583	// If body length is <= sniffLen, sendfile/splice path will do
584	// little anyway. This small read also satisfies sniffing the
585	// body in case Content-Type is missing.
586	nr, er := src.Read(buf[:sniffLen])
587	atEOF := errors.Is(er, io.EOF)
588	n += int64(nr)
589
590	if nr > 0 {
591		// Write the small amount read normally.
592		nw, ew := w.Write(buf[:nr])
593		if ew != nil {
594			err = ew
595		} else if nr != nw {
596			err = io.ErrShortWrite
597		}
598	}
599	if err == nil && er != nil && !atEOF {
600		err = er
601	}
602
603	// Do not send StatusOK in the error case where nothing has been written.
604	if err == nil && !w.wroteHeader {
605		w.WriteHeader(StatusOK) // nr == 0, no error (or EOF)
606	}
607
608	if err != nil || atEOF {
609		return n, err
610	}
611
612	w.w.Flush()  // get rid of any previous writes
613	w.cw.flush() // make sure Header is written; flush data to rwc
614
615	// Now that cw has been flushed, its chunking field is guaranteed initialized.
616	if !w.cw.chunking && w.bodyAllowed() {
617		n0, err := rf.ReadFrom(src)
618		n += n0
619		w.written += n0
620		return n, err
621	}
622
623	n0, err := io.Copy(writerOnly{w}, src)
624	n += n0
625	return n, err
626}
627
628// debugServerConnections controls whether all server connections are wrapped
629// with a verbose logging wrapper.
630const debugServerConnections = false
631
632// Create new connection from rwc.
633func (srv *Server) newConn(rwc net.Conn) *conn {
634	c := &conn{
635		server: srv,
636		rwc:    rwc,
637	}
638	if debugServerConnections {
639		c.rwc = newLoggingConn("server", c.rwc)
640	}
641	return c
642}
643
644type readResult struct {
645	_   incomparable
646	n   int
647	err error
648	b   byte // byte read, if n == 1
649}
650
651// connReader is the io.Reader wrapper used by *conn. It combines a
652// selectively-activated io.LimitedReader (to bound request header
653// read sizes) with support for selectively keeping an io.Reader.Read
654// call blocked in a background goroutine to wait for activity and
655// trigger a CloseNotifier channel.
656type connReader struct {
657	conn *conn
658
659	mu      sync.Mutex // guards following
660	hasByte bool
661	byteBuf [1]byte
662	cond    *sync.Cond
663	inRead  bool
664	aborted bool  // set true before conn.rwc deadline is set to past
665	remain  int64 // bytes remaining
666}
667
668func (cr *connReader) lock() {
669	cr.mu.Lock()
670	if cr.cond == nil {
671		cr.cond = sync.NewCond(&cr.mu)
672	}
673}
674
675func (cr *connReader) unlock() { cr.mu.Unlock() }
676
677func (cr *connReader) startBackgroundRead() {
678	cr.lock()
679	defer cr.unlock()
680	if cr.inRead {
681		panic("invalid concurrent Body.Read call")
682	}
683	if cr.hasByte {
684		return
685	}
686	cr.inRead = true
687	cr.conn.rwc.SetReadDeadline(time.Time{})
688	go cr.backgroundRead()
689}
690
691func (cr *connReader) backgroundRead() {
692	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
693	cr.lock()
694	if n == 1 {
695		cr.hasByte = true
696		// We were past the end of the previous request's body already
697		// (since we wouldn't be in a background read otherwise), so
698		// this is a pipelined HTTP request. Prior to Go 1.11 we used to
699		// send on the CloseNotify channel and cancel the context here,
700		// but the behavior was documented as only "may", and we only
701		// did that because that's how CloseNotify accidentally behaved
702		// in very early Go releases prior to context support. Once we
703		// added context support, people used a Handler's
704		// Request.Context() and passed it along. Having that context
705		// cancel on pipelined HTTP requests caused problems.
706		// Fortunately, almost nothing uses HTTP/1.x pipelining.
707		// Unfortunately, apt-get does, or sometimes does.
708		// New Go 1.11 behavior: don't fire CloseNotify or cancel
709		// contexts on pipelined requests. Shouldn't affect people, but
710		// fixes cases like Issue 23921. This does mean that a client
711		// closing their TCP connection after sending a pipelined
712		// request won't cancel the context, but we'll catch that on any
713		// write failure (in checkConnErrorWriter.Write).
714		// If the server never writes, yes, there are still contrived
715		// server & client behaviors where this fails to ever cancel the
716		// context, but that's kinda why HTTP/1.x pipelining died
717		// anyway.
718	}
719	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
720		// Ignore this error. It's the expected error from
721		// another goroutine calling abortPendingRead.
722	} else if err != nil {
723		cr.handleReadError(err)
724	}
725	cr.aborted = false
726	cr.inRead = false
727	cr.unlock()
728	cr.cond.Broadcast()
729}
730
731func (cr *connReader) abortPendingRead() {
732	cr.lock()
733	defer cr.unlock()
734	if !cr.inRead {
735		return
736	}
737	cr.aborted = true
738	cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
739	for cr.inRead {
740		cr.cond.Wait()
741	}
742	cr.conn.rwc.SetReadDeadline(time.Time{})
743}
744
745func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
746func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
747func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
748
749// handleReadError is called whenever a Read from the client returns a
750// non-nil error.
751//
752// The provided non-nil err is almost always io.EOF or a "use of
753// closed network connection". In any case, the error is not
754// particularly interesting, except perhaps for debugging during
755// development. Any error means the connection is dead and we should
756// down its context.
757//
758// It may be called from multiple goroutines.
759func (cr *connReader) handleReadError(_ error) {
760	cr.conn.cancelCtx()
761	cr.closeNotify()
762}
763
764// may be called from multiple goroutines.
765func (cr *connReader) closeNotify() {
766	res, _ := cr.conn.curReq.Load().(*response)
767	if res != nil && atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
768		res.closeNotifyCh <- true
769	}
770}
771
772func (cr *connReader) Read(p []byte) (n int, err error) {
773	cr.lock()
774	if cr.inRead {
775		cr.unlock()
776		if cr.conn.hijacked() {
777			panic("invalid Body.Read call. After hijacked, the original Request must not be used")
778		}
779		panic("invalid concurrent Body.Read call")
780	}
781	if cr.hitReadLimit() {
782		cr.unlock()
783		return 0, io.EOF
784	}
785	if len(p) == 0 {
786		cr.unlock()
787		return 0, nil
788	}
789	if int64(len(p)) > cr.remain {
790		p = p[:cr.remain]
791	}
792	if cr.hasByte {
793		p[0] = cr.byteBuf[0]
794		cr.hasByte = false
795		cr.unlock()
796		return 1, nil
797	}
798	cr.inRead = true
799	cr.unlock()
800	n, err = cr.conn.rwc.Read(p)
801
802	cr.lock()
803	cr.inRead = false
804	if err != nil {
805		cr.handleReadError(err)
806	}
807	cr.remain -= int64(n)
808	cr.unlock()
809
810	cr.cond.Broadcast()
811	return n, err
812}
813
814var (
815	bufioReaderPool   sync.Pool
816	bufioWriter2kPool sync.Pool
817	bufioWriter4kPool sync.Pool
818)
819
820var copyBufPool = sync.Pool{
821	New: func() interface{} {
822		b := make([]byte, 32*1024)
823		return &b
824	},
825}
826
827func bufioWriterPool(size int) *sync.Pool {
828	switch size {
829	case 2 << 10:
830		return &bufioWriter2kPool
831	case 4 << 10:
832		return &bufioWriter4kPool
833	}
834	return nil
835}
836
837func newBufioReader(r io.Reader) *bufio.Reader {
838	if v := bufioReaderPool.Get(); v != nil {
839		br := v.(*bufio.Reader)
840		br.Reset(r)
841		return br
842	}
843	// Note: if this reader size is ever changed, update
844	// TestHandlerBodyClose's assumptions.
845	return bufio.NewReader(r)
846}
847
848func putBufioReader(br *bufio.Reader) {
849	br.Reset(nil)
850	bufioReaderPool.Put(br)
851}
852
853func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
854	pool := bufioWriterPool(size)
855	if pool != nil {
856		if v := pool.Get(); v != nil {
857			bw := v.(*bufio.Writer)
858			bw.Reset(w)
859			return bw
860		}
861	}
862	return bufio.NewWriterSize(w, size)
863}
864
865func putBufioWriter(bw *bufio.Writer) {
866	bw.Reset(nil)
867	if pool := bufioWriterPool(bw.Available()); pool != nil {
868		pool.Put(bw)
869	}
870}
871
872// DefaultMaxHeaderBytes is the maximum permitted size of the headers
873// in an HTTP request.
874// This can be overridden by setting Server.MaxHeaderBytes.
875const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
876
877func (srv *Server) maxHeaderBytes() int {
878	if srv.MaxHeaderBytes > 0 {
879		return srv.MaxHeaderBytes
880	}
881	return DefaultMaxHeaderBytes
882}
883
884func (srv *Server) initialReadLimitSize() int64 {
885	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
886}
887
888// wrapper around io.ReadCloser which on first read, sends an
889// HTTP/1.1 100 Continue header
890type expectContinueReader struct {
891	resp       *response
892	readCloser io.ReadCloser
893	closed     atomicBool
894	sawEOF     atomicBool
895}
896
897func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
898	if ecr.closed.isSet() {
899		return 0, ErrBodyReadAfterClose
900	}
901	w := ecr.resp
902	if !w.wroteContinue && w.canWriteContinue.isSet() && !w.conn.hijacked() {
903		w.wroteContinue = true
904		w.writeContinueMu.Lock()
905		if w.canWriteContinue.isSet() {
906			w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
907			w.conn.bufw.Flush()
908			w.canWriteContinue.setFalse()
909		}
910		w.writeContinueMu.Unlock()
911	}
912	n, err = ecr.readCloser.Read(p)
913	if err == io.EOF {
914		ecr.sawEOF.setTrue()
915	}
916	return
917}
918
919func (ecr *expectContinueReader) Close() error {
920	ecr.closed.setTrue()
921	return ecr.readCloser.Close()
922}
923
924// TimeFormat is the time format to use when generating times in HTTP
925// headers. It is like time.RFC1123 but hard-codes GMT as the time
926// zone. The time being formatted must be in UTC for Format to
927// generate the correct format.
928//
929// For parsing this time format, see ParseTime.
930const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
931
932// appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
933func appendTime(b []byte, t time.Time) []byte {
934	const days = "SunMonTueWedThuFriSat"
935	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
936
937	t = t.UTC()
938	yy, mm, dd := t.Date()
939	hh, mn, ss := t.Clock()
940	day := days[3*t.Weekday():]
941	mon := months[3*(mm-1):]
942
943	return append(b,
944		day[0], day[1], day[2], ',', ' ',
945		byte('0'+dd/10), byte('0'+dd%10), ' ',
946		mon[0], mon[1], mon[2], ' ',
947		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
948		byte('0'+hh/10), byte('0'+hh%10), ':',
949		byte('0'+mn/10), byte('0'+mn%10), ':',
950		byte('0'+ss/10), byte('0'+ss%10), ' ',
951		'G', 'M', 'T')
952}
953
954var errTooLarge = errors.New("http: request too large")
955
956// Read next request from connection.
957func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
958	if c.hijacked() {
959		return nil, ErrHijacked
960	}
961
962	var (
963		wholeReqDeadline time.Time // or zero if none
964		hdrDeadline      time.Time // or zero if none
965	)
966	t0 := time.Now()
967	if d := c.server.readHeaderTimeout(); d != 0 {
968		hdrDeadline = t0.Add(d)
969	}
970	if d := c.server.ReadTimeout; d != 0 {
971		wholeReqDeadline = t0.Add(d)
972	}
973	c.rwc.SetReadDeadline(hdrDeadline)
974	if d := c.server.WriteTimeout; d != 0 {
975		defer func() {
976			c.rwc.SetWriteDeadline(time.Now().Add(d))
977		}()
978	}
979
980	c.r.setReadLimit(c.server.initialReadLimitSize())
981	if c.lastMethod == "POST" {
982		// RFC 7230 section 3 tolerance for old buggy clients.
983		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
984		c.bufr.Discard(numLeadingCRorLF(peek))
985	}
986	req, err := readRequest(c.bufr, keepHostHeader)
987	if err != nil {
988		if c.r.hitReadLimit() {
989			return nil, errTooLarge
990		}
991		return nil, err
992	}
993
994	if !http1ServerSupportsRequest(req) {
995		return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"}
996	}
997
998	c.lastMethod = req.Method
999	c.r.setInfiniteReadLimit()
1000
1001	hosts, haveHost := req.Header["Host"]
1002	isH2Upgrade := req.isH2Upgrade()
1003	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
1004		return nil, badRequestError("missing required Host header")
1005	}
1006	if len(hosts) > 1 {
1007		return nil, badRequestError("too many Host headers")
1008	}
1009	if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) {
1010		return nil, badRequestError("malformed Host header")
1011	}
1012	for k, vv := range req.Header {
1013		if !httpguts.ValidHeaderFieldName(k) {
1014			return nil, badRequestError("invalid header name")
1015		}
1016		for _, v := range vv {
1017			if !httpguts.ValidHeaderFieldValue(v) {
1018				return nil, badRequestError("invalid header value")
1019			}
1020		}
1021	}
1022	delete(req.Header, "Host")
1023
1024	ctx, cancelCtx := context.WithCancel(ctx)
1025	req.ctx = ctx
1026	req.RemoteAddr = c.remoteAddr
1027	req.TLS = c.tlsState
1028	if body, ok := req.Body.(*body); ok {
1029		body.doEarlyClose = true
1030	}
1031
1032	// Adjust the read deadline if necessary.
1033	if !hdrDeadline.Equal(wholeReqDeadline) {
1034		c.rwc.SetReadDeadline(wholeReqDeadline)
1035	}
1036
1037	w = &response{
1038		conn:          c,
1039		cancelCtx:     cancelCtx,
1040		req:           req,
1041		reqBody:       req.Body,
1042		handlerHeader: make(Header),
1043		contentLength: -1,
1044		closeNotifyCh: make(chan bool, 1),
1045
1046		// We populate these ahead of time so we're not
1047		// reading from req.Header after their Handler starts
1048		// and maybe mutates it (Issue 14940)
1049		wants10KeepAlive: req.wantsHttp10KeepAlive(),
1050		wantsClose:       req.wantsClose(),
1051	}
1052	if isH2Upgrade {
1053		w.closeAfterReply = true
1054	}
1055	w.cw.res = w
1056	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
1057	return w, nil
1058}
1059
1060// http1ServerSupportsRequest reports whether Go's HTTP/1.x server
1061// supports the given request.
1062func http1ServerSupportsRequest(req *Request) bool {
1063	if req.ProtoMajor == 1 {
1064		return true
1065	}
1066	// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
1067	// wire up their own HTTP/2 upgrades.
1068	if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
1069		req.Method == "PRI" && req.RequestURI == "*" {
1070		return true
1071	}
1072	// Reject HTTP/0.x, and all other HTTP/2+ requests (which
1073	// aren't encoded in ASCII anyway).
1074	return false
1075}
1076
1077func (w *response) Header() Header {
1078	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
1079		// Accessing the header between logically writing it
1080		// and physically writing it means we need to allocate
1081		// a clone to snapshot the logically written state.
1082		w.cw.header = w.handlerHeader.Clone()
1083	}
1084	w.calledHeader = true
1085	return w.handlerHeader
1086}
1087
1088// maxPostHandlerReadBytes is the max number of Request.Body bytes not
1089// consumed by a handler that the server will read from the client
1090// in order to keep a connection alive. If there are more bytes than
1091// this then the server to be paranoid instead sends a "Connection:
1092// close" response.
1093//
1094// This number is approximately what a typical machine's TCP buffer
1095// size is anyway.  (if we have the bytes on the machine, we might as
1096// well read them)
1097const maxPostHandlerReadBytes = 256 << 10
1098
1099func checkWriteHeaderCode(code int) {
1100	// Issue 22880: require valid WriteHeader status codes.
1101	// For now we only enforce that it's three digits.
1102	// In the future we might block things over 599 (600 and above aren't defined
1103	// at https://httpwg.org/specs/rfc7231.html#status.codes)
1104	// and we might block under 200 (once we have more mature 1xx support).
1105	// But for now any three digits.
1106	//
1107	// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
1108	// no equivalent bogus thing we can realistically send in HTTP/2,
1109	// so we'll consistently panic instead and help people find their bugs
1110	// early. (We can't return an error from WriteHeader even if we wanted to.)
1111	if code < 100 || code > 999 {
1112		panic(fmt.Sprintf("invalid WriteHeader code %v", code))
1113	}
1114}
1115
1116// relevantCaller searches the call stack for the first function outside of net/http.
1117// The purpose of this function is to provide more helpful error messages.
1118func relevantCaller() runtime.Frame {
1119	pc := make([]uintptr, 16)
1120	n := runtime.Callers(1, pc)
1121	frames := runtime.CallersFrames(pc[:n])
1122	prefix1 := "net/http."
1123	prefix2 := "net/http."
1124	if runtime.Compiler == "gccgo" {
1125		prefix2 = "http."
1126	}
1127	var frame runtime.Frame
1128	for {
1129		frame, more := frames.Next()
1130		if !strings.HasPrefix(frame.Function, prefix1) && !strings.HasPrefix(frame.Function, prefix2) {
1131			return frame
1132		}
1133		if !more {
1134			break
1135		}
1136	}
1137	return frame
1138}
1139
1140func (w *response) WriteHeader(code int) {
1141	if w.conn.hijacked() {
1142		caller := relevantCaller()
1143		w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
1144		return
1145	}
1146	if w.wroteHeader {
1147		caller := relevantCaller()
1148		w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
1149		return
1150	}
1151	checkWriteHeaderCode(code)
1152	w.wroteHeader = true
1153	w.status = code
1154
1155	if w.calledHeader && w.cw.header == nil {
1156		w.cw.header = w.handlerHeader.Clone()
1157	}
1158
1159	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
1160		v, err := strconv.ParseInt(cl, 10, 64)
1161		if err == nil && v >= 0 {
1162			w.contentLength = v
1163		} else {
1164			w.conn.server.logf("http: invalid Content-Length of %q", cl)
1165			w.handlerHeader.Del("Content-Length")
1166		}
1167	}
1168}
1169
1170// extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
1171// This type is used to avoid extra allocations from cloning and/or populating
1172// the response Header map and all its 1-element slices.
1173type extraHeader struct {
1174	contentType      string
1175	connection       string
1176	transferEncoding string
1177	date             []byte // written if not nil
1178	contentLength    []byte // written if not nil
1179}
1180
1181// Sorted the same as extraHeader.Write's loop.
1182var extraHeaderKeys = [][]byte{
1183	[]byte("Content-Type"),
1184	[]byte("Connection"),
1185	[]byte("Transfer-Encoding"),
1186}
1187
1188var (
1189	headerContentLength = []byte("Content-Length: ")
1190	headerDate          = []byte("Date: ")
1191)
1192
1193// Write writes the headers described in h to w.
1194//
1195// This method has a value receiver, despite the somewhat large size
1196// of h, because it prevents an allocation. The escape analysis isn't
1197// smart enough to realize this function doesn't mutate h.
1198func (h extraHeader) Write(w *bufio.Writer) {
1199	if h.date != nil {
1200		w.Write(headerDate)
1201		w.Write(h.date)
1202		w.Write(crlf)
1203	}
1204	if h.contentLength != nil {
1205		w.Write(headerContentLength)
1206		w.Write(h.contentLength)
1207		w.Write(crlf)
1208	}
1209	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
1210		if v != "" {
1211			w.Write(extraHeaderKeys[i])
1212			w.Write(colonSpace)
1213			w.WriteString(v)
1214			w.Write(crlf)
1215		}
1216	}
1217}
1218
1219// writeHeader finalizes the header sent to the client and writes it
1220// to cw.res.conn.bufw.
1221//
1222// p is not written by writeHeader, but is the first chunk of the body
1223// that will be written. It is sniffed for a Content-Type if none is
1224// set explicitly. It's also used to set the Content-Length, if the
1225// total body size was small and the handler has already finished
1226// running.
1227func (cw *chunkWriter) writeHeader(p []byte) {
1228	if cw.wroteHeader {
1229		return
1230	}
1231	cw.wroteHeader = true
1232
1233	w := cw.res
1234	keepAlivesEnabled := w.conn.server.doKeepAlives()
1235	isHEAD := w.req.Method == "HEAD"
1236
1237	// header is written out to w.conn.buf below. Depending on the
1238	// state of the handler, we either own the map or not. If we
1239	// don't own it, the exclude map is created lazily for
1240	// WriteSubset to remove headers. The setHeader struct holds
1241	// headers we need to add.
1242	header := cw.header
1243	owned := header != nil
1244	if !owned {
1245		header = w.handlerHeader
1246	}
1247	var excludeHeader map[string]bool
1248	delHeader := func(key string) {
1249		if owned {
1250			header.Del(key)
1251			return
1252		}
1253		if _, ok := header[key]; !ok {
1254			return
1255		}
1256		if excludeHeader == nil {
1257			excludeHeader = make(map[string]bool)
1258		}
1259		excludeHeader[key] = true
1260	}
1261	var setHeader extraHeader
1262
1263	// Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
1264	trailers := false
1265	for k := range cw.header {
1266		if strings.HasPrefix(k, TrailerPrefix) {
1267			if excludeHeader == nil {
1268				excludeHeader = make(map[string]bool)
1269			}
1270			excludeHeader[k] = true
1271			trailers = true
1272		}
1273	}
1274	for _, v := range cw.header["Trailer"] {
1275		trailers = true
1276		foreachHeaderElement(v, cw.res.declareTrailer)
1277	}
1278
1279	te := header.get("Transfer-Encoding")
1280	hasTE := te != ""
1281
1282	// If the handler is done but never sent a Content-Length
1283	// response header and this is our first (and last) write, set
1284	// it, even to zero. This helps HTTP/1.0 clients keep their
1285	// "keep-alive" connections alive.
1286	// Exceptions: 304/204/1xx responses never get Content-Length, and if
1287	// it was a HEAD request, we don't know the difference between
1288	// 0 actual bytes and 0 bytes because the handler noticed it
1289	// was a HEAD request and chose not to write anything. So for
1290	// HEAD, the handler should either write the Content-Length or
1291	// write non-zero bytes. If it's actually 0 bytes and the
1292	// handler never looked at the Request.Method, we just don't
1293	// send a Content-Length header.
1294	// Further, we don't send an automatic Content-Length if they
1295	// set a Transfer-Encoding, because they're generally incompatible.
1296	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
1297		w.contentLength = int64(len(p))
1298		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
1299	}
1300
1301	// If this was an HTTP/1.0 request with keep-alive and we sent a
1302	// Content-Length back, we can make this a keep-alive response ...
1303	if w.wants10KeepAlive && keepAlivesEnabled {
1304		sentLength := header.get("Content-Length") != ""
1305		if sentLength && header.get("Connection") == "keep-alive" {
1306			w.closeAfterReply = false
1307		}
1308	}
1309
1310	// Check for an explicit (and valid) Content-Length header.
1311	hasCL := w.contentLength != -1
1312
1313	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
1314		_, connectionHeaderSet := header["Connection"]
1315		if !connectionHeaderSet {
1316			setHeader.connection = "keep-alive"
1317		}
1318	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
1319		w.closeAfterReply = true
1320	}
1321
1322	if header.get("Connection") == "close" || !keepAlivesEnabled {
1323		w.closeAfterReply = true
1324	}
1325
1326	// If the client wanted a 100-continue but we never sent it to
1327	// them (or, more strictly: we never finished reading their
1328	// request body), don't reuse this connection because it's now
1329	// in an unknown state: we might be sending this response at
1330	// the same time the client is now sending its request body
1331	// after a timeout.  (Some HTTP clients send Expect:
1332	// 100-continue but knowing that some servers don't support
1333	// it, the clients set a timer and send the body later anyway)
1334	// If we haven't seen EOF, we can't skip over the unread body
1335	// because we don't know if the next bytes on the wire will be
1336	// the body-following-the-timer or the subsequent request.
1337	// See Issue 11549.
1338	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.isSet() {
1339		w.closeAfterReply = true
1340	}
1341
1342	// Per RFC 2616, we should consume the request body before
1343	// replying, if the handler hasn't already done so. But we
1344	// don't want to do an unbounded amount of reading here for
1345	// DoS reasons, so we only try up to a threshold.
1346	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
1347	// about HTTP/1.x Handlers concurrently reading and writing, like
1348	// HTTP/2 handlers can do. Maybe this code should be relaxed?
1349	if w.req.ContentLength != 0 && !w.closeAfterReply {
1350		var discard, tooBig bool
1351
1352		switch bdy := w.req.Body.(type) {
1353		case *expectContinueReader:
1354			if bdy.resp.wroteContinue {
1355				discard = true
1356			}
1357		case *body:
1358			bdy.mu.Lock()
1359			switch {
1360			case bdy.closed:
1361				if !bdy.sawEOF {
1362					// Body was closed in handler with non-EOF error.
1363					w.closeAfterReply = true
1364				}
1365			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
1366				tooBig = true
1367			default:
1368				discard = true
1369			}
1370			bdy.mu.Unlock()
1371		default:
1372			discard = true
1373		}
1374
1375		if discard {
1376			_, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1)
1377			switch err {
1378			case nil:
1379				// There must be even more data left over.
1380				tooBig = true
1381			case ErrBodyReadAfterClose:
1382				// Body was already consumed and closed.
1383			case io.EOF:
1384				// The remaining body was just consumed, close it.
1385				err = w.reqBody.Close()
1386				if err != nil {
1387					w.closeAfterReply = true
1388				}
1389			default:
1390				// Some other kind of error occurred, like a read timeout, or
1391				// corrupt chunked encoding. In any case, whatever remains
1392				// on the wire must not be parsed as another HTTP request.
1393				w.closeAfterReply = true
1394			}
1395		}
1396
1397		if tooBig {
1398			w.requestTooLarge()
1399			delHeader("Connection")
1400			setHeader.connection = "close"
1401		}
1402	}
1403
1404	code := w.status
1405	if bodyAllowedForStatus(code) {
1406		// If no content type, apply sniffing algorithm to body.
1407		_, haveType := header["Content-Type"]
1408
1409		// If the Content-Encoding was set and is non-blank,
1410		// we shouldn't sniff the body. See Issue 31753.
1411		ce := header.Get("Content-Encoding")
1412		hasCE := len(ce) > 0
1413		if !hasCE && !haveType && !hasTE && len(p) > 0 {
1414			setHeader.contentType = DetectContentType(p)
1415		}
1416	} else {
1417		for _, k := range suppressedHeaders(code) {
1418			delHeader(k)
1419		}
1420	}
1421
1422	if !header.has("Date") {
1423		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
1424	}
1425
1426	if hasCL && hasTE && te != "identity" {
1427		// TODO: return an error if WriteHeader gets a return parameter
1428		// For now just ignore the Content-Length.
1429		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
1430			te, w.contentLength)
1431		delHeader("Content-Length")
1432		hasCL = false
1433	}
1434
1435	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
1436		// do nothing
1437	} else if code == StatusNoContent {
1438		delHeader("Transfer-Encoding")
1439	} else if hasCL {
1440		delHeader("Transfer-Encoding")
1441	} else if w.req.ProtoAtLeast(1, 1) {
1442		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
1443		// content-length has been provided. The connection must be closed after the
1444		// reply is written, and no chunking is to be done. This is the setup
1445		// recommended in the Server-Sent Events candidate recommendation 11,
1446		// section 8.
1447		if hasTE && te == "identity" {
1448			cw.chunking = false
1449			w.closeAfterReply = true
1450		} else {
1451			// HTTP/1.1 or greater: use chunked transfer encoding
1452			// to avoid closing the connection at EOF.
1453			cw.chunking = true
1454			setHeader.transferEncoding = "chunked"
1455			if hasTE && te == "chunked" {
1456				// We will send the chunked Transfer-Encoding header later.
1457				delHeader("Transfer-Encoding")
1458			}
1459		}
1460	} else {
1461		// HTTP version < 1.1: cannot do chunked transfer
1462		// encoding and we don't know the Content-Length so
1463		// signal EOF by closing connection.
1464		w.closeAfterReply = true
1465		delHeader("Transfer-Encoding") // in case already set
1466	}
1467
1468	// Cannot use Content-Length with non-identity Transfer-Encoding.
1469	if cw.chunking {
1470		delHeader("Content-Length")
1471	}
1472	if !w.req.ProtoAtLeast(1, 0) {
1473		return
1474	}
1475
1476	// Only override the Connection header if it is not a successful
1477	// protocol switch response and if KeepAlives are not enabled.
1478	// See https://golang.org/issue/36381.
1479	delConnectionHeader := w.closeAfterReply &&
1480		(!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) &&
1481		!isProtocolSwitchResponse(w.status, header)
1482	if delConnectionHeader {
1483		delHeader("Connection")
1484		if w.req.ProtoAtLeast(1, 1) {
1485			setHeader.connection = "close"
1486		}
1487	}
1488
1489	writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:])
1490	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
1491	setHeader.Write(w.conn.bufw)
1492	w.conn.bufw.Write(crlf)
1493}
1494
1495// foreachHeaderElement splits v according to the "#rule" construction
1496// in RFC 7230 section 7 and calls fn for each non-empty element.
1497func foreachHeaderElement(v string, fn func(string)) {
1498	v = textproto.TrimString(v)
1499	if v == "" {
1500		return
1501	}
1502	if !strings.Contains(v, ",") {
1503		fn(v)
1504		return
1505	}
1506	for _, f := range strings.Split(v, ",") {
1507		if f = textproto.TrimString(f); f != "" {
1508			fn(f)
1509		}
1510	}
1511}
1512
1513// writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2)
1514// to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0.
1515// code is the response status code.
1516// scratch is an optional scratch buffer. If it has at least capacity 3, it's used.
1517func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) {
1518	if is11 {
1519		bw.WriteString("HTTP/1.1 ")
1520	} else {
1521		bw.WriteString("HTTP/1.0 ")
1522	}
1523	if text, ok := statusText[code]; ok {
1524		bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10))
1525		bw.WriteByte(' ')
1526		bw.WriteString(text)
1527		bw.WriteString("\r\n")
1528	} else {
1529		// don't worry about performance
1530		fmt.Fprintf(bw, "%03d status code %d\r\n", code, code)
1531	}
1532}
1533
1534// bodyAllowed reports whether a Write is allowed for this response type.
1535// It's illegal to call this before the header has been flushed.
1536func (w *response) bodyAllowed() bool {
1537	if !w.wroteHeader {
1538		panic("")
1539	}
1540	return bodyAllowedForStatus(w.status)
1541}
1542
1543// The Life Of A Write is like this:
1544//
1545// Handler starts. No header has been sent. The handler can either
1546// write a header, or just start writing. Writing before sending a header
1547// sends an implicitly empty 200 OK header.
1548//
1549// If the handler didn't declare a Content-Length up front, we either
1550// go into chunking mode or, if the handler finishes running before
1551// the chunking buffer size, we compute a Content-Length and send that
1552// in the header instead.
1553//
1554// Likewise, if the handler didn't set a Content-Type, we sniff that
1555// from the initial chunk of output.
1556//
1557// The Writers are wired together like:
1558//
1559// 1. *response (the ResponseWriter) ->
1560// 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
1561// 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
1562//    and which writes the chunk headers, if needed.
1563// 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
1564// 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
1565//    and populates c.werr with it if so. but otherwise writes to:
1566// 6. the rwc, the net.Conn.
1567//
1568// TODO(bradfitz): short-circuit some of the buffering when the
1569// initial header contains both a Content-Type and Content-Length.
1570// Also short-circuit in (1) when the header's been sent and not in
1571// chunking mode, writing directly to (4) instead, if (2) has no
1572// buffered data. More generally, we could short-circuit from (1) to
1573// (3) even in chunking mode if the write size from (1) is over some
1574// threshold and nothing is in (2).  The answer might be mostly making
1575// bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
1576// with this instead.
1577func (w *response) Write(data []byte) (n int, err error) {
1578	return w.write(len(data), data, "")
1579}
1580
1581func (w *response) WriteString(data string) (n int, err error) {
1582	return w.write(len(data), nil, data)
1583}
1584
1585// either dataB or dataS is non-zero.
1586func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
1587	if w.conn.hijacked() {
1588		if lenData > 0 {
1589			caller := relevantCaller()
1590			w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
1591		}
1592		return 0, ErrHijacked
1593	}
1594
1595	if w.canWriteContinue.isSet() {
1596		// Body reader wants to write 100 Continue but hasn't yet.
1597		// Tell it not to. The store must be done while holding the lock
1598		// because the lock makes sure that there is not an active write
1599		// this very moment.
1600		w.writeContinueMu.Lock()
1601		w.canWriteContinue.setFalse()
1602		w.writeContinueMu.Unlock()
1603	}
1604
1605	if !w.wroteHeader {
1606		w.WriteHeader(StatusOK)
1607	}
1608	if lenData == 0 {
1609		return 0, nil
1610	}
1611	if !w.bodyAllowed() {
1612		return 0, ErrBodyNotAllowed
1613	}
1614
1615	w.written += int64(lenData) // ignoring errors, for errorKludge
1616	if w.contentLength != -1 && w.written > w.contentLength {
1617		return 0, ErrContentLength
1618	}
1619	if dataB != nil {
1620		return w.w.Write(dataB)
1621	} else {
1622		return w.w.WriteString(dataS)
1623	}
1624}
1625
1626func (w *response) finishRequest() {
1627	w.handlerDone.setTrue()
1628
1629	if !w.wroteHeader {
1630		w.WriteHeader(StatusOK)
1631	}
1632
1633	w.w.Flush()
1634	putBufioWriter(w.w)
1635	w.cw.close()
1636	w.conn.bufw.Flush()
1637
1638	w.conn.r.abortPendingRead()
1639
1640	// Close the body (regardless of w.closeAfterReply) so we can
1641	// re-use its bufio.Reader later safely.
1642	w.reqBody.Close()
1643
1644	if w.req.MultipartForm != nil {
1645		w.req.MultipartForm.RemoveAll()
1646	}
1647}
1648
1649// shouldReuseConnection reports whether the underlying TCP connection can be reused.
1650// It must only be called after the handler is done executing.
1651func (w *response) shouldReuseConnection() bool {
1652	if w.closeAfterReply {
1653		// The request or something set while executing the
1654		// handler indicated we shouldn't reuse this
1655		// connection.
1656		return false
1657	}
1658
1659	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
1660		// Did not write enough. Avoid getting out of sync.
1661		return false
1662	}
1663
1664	// There was some error writing to the underlying connection
1665	// during the request, so don't re-use this conn.
1666	if w.conn.werr != nil {
1667		return false
1668	}
1669
1670	if w.closedRequestBodyEarly() {
1671		return false
1672	}
1673
1674	return true
1675}
1676
1677func (w *response) closedRequestBodyEarly() bool {
1678	body, ok := w.req.Body.(*body)
1679	return ok && body.didEarlyClose()
1680}
1681
1682func (w *response) Flush() {
1683	if !w.wroteHeader {
1684		w.WriteHeader(StatusOK)
1685	}
1686	w.w.Flush()
1687	w.cw.flush()
1688}
1689
1690func (c *conn) finalFlush() {
1691	if c.bufr != nil {
1692		// Steal the bufio.Reader (~4KB worth of memory) and its associated
1693		// reader for a future connection.
1694		putBufioReader(c.bufr)
1695		c.bufr = nil
1696	}
1697
1698	if c.bufw != nil {
1699		c.bufw.Flush()
1700		// Steal the bufio.Writer (~4KB worth of memory) and its associated
1701		// writer for a future connection.
1702		putBufioWriter(c.bufw)
1703		c.bufw = nil
1704	}
1705}
1706
1707// Close the connection.
1708func (c *conn) close() {
1709	c.finalFlush()
1710	c.rwc.Close()
1711}
1712
1713// rstAvoidanceDelay is the amount of time we sleep after closing the
1714// write side of a TCP connection before closing the entire socket.
1715// By sleeping, we increase the chances that the client sees our FIN
1716// and processes its final data before they process the subsequent RST
1717// from closing a connection with known unread data.
1718// This RST seems to occur mostly on BSD systems. (And Windows?)
1719// This timeout is somewhat arbitrary (~latency around the planet).
1720const rstAvoidanceDelay = 500 * time.Millisecond
1721
1722type closeWriter interface {
1723	CloseWrite() error
1724}
1725
1726var _ closeWriter = (*net.TCPConn)(nil)
1727
1728// closeWrite flushes any outstanding data and sends a FIN packet (if
1729// client is connected via TCP), signalling that we're done. We then
1730// pause for a bit, hoping the client processes it before any
1731// subsequent RST.
1732//
1733// See https://golang.org/issue/3595
1734func (c *conn) closeWriteAndWait() {
1735	c.finalFlush()
1736	if tcp, ok := c.rwc.(closeWriter); ok {
1737		tcp.CloseWrite()
1738	}
1739	time.Sleep(rstAvoidanceDelay)
1740}
1741
1742// validNextProto reports whether the proto is a valid ALPN protocol name.
1743// Everything is valid except the empty string and built-in protocol types,
1744// so that those can't be overridden with alternate implementations.
1745func validNextProto(proto string) bool {
1746	switch proto {
1747	case "", "http/1.1", "http/1.0":
1748		return false
1749	}
1750	return true
1751}
1752
1753const (
1754	runHooks  = true
1755	skipHooks = false
1756)
1757
1758func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) {
1759	srv := c.server
1760	switch state {
1761	case StateNew:
1762		srv.trackConn(c, true)
1763	case StateHijacked, StateClosed:
1764		srv.trackConn(c, false)
1765	}
1766	if state > 0xff || state < 0 {
1767		panic("internal error")
1768	}
1769	packedState := uint64(time.Now().Unix()<<8) | uint64(state)
1770	atomic.StoreUint64(&c.curState.atomic, packedState)
1771	if !runHook {
1772		return
1773	}
1774	if hook := srv.ConnState; hook != nil {
1775		hook(nc, state)
1776	}
1777}
1778
1779func (c *conn) getState() (state ConnState, unixSec int64) {
1780	packedState := atomic.LoadUint64(&c.curState.atomic)
1781	return ConnState(packedState & 0xff), int64(packedState >> 8)
1782}
1783
1784// badRequestError is a literal string (used by in the server in HTML,
1785// unescaped) to tell the user why their request was bad. It should
1786// be plain text without user info or other embedded errors.
1787func badRequestError(e string) error { return statusError{StatusBadRequest, e} }
1788
1789// statusError is an error used to respond to a request with an HTTP status.
1790// The text should be plain text without user info or other embedded errors.
1791type statusError struct {
1792	code int
1793	text string
1794}
1795
1796func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text }
1797
1798// ErrAbortHandler is a sentinel panic value to abort a handler.
1799// While any panic from ServeHTTP aborts the response to the client,
1800// panicking with ErrAbortHandler also suppresses logging of a stack
1801// trace to the server's error log.
1802var ErrAbortHandler = errors.New("net/http: abort Handler")
1803
1804// isCommonNetReadError reports whether err is a common error
1805// encountered during reading a request off the network when the
1806// client has gone away or had its read fail somehow. This is used to
1807// determine which logs are interesting enough to log about.
1808func isCommonNetReadError(err error) bool {
1809	if err == io.EOF {
1810		return true
1811	}
1812	if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
1813		return true
1814	}
1815	if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
1816		return true
1817	}
1818	return false
1819}
1820
1821// Serve a new connection.
1822func (c *conn) serve(ctx context.Context) {
1823	c.remoteAddr = c.rwc.RemoteAddr().String()
1824	ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
1825	defer func() {
1826		if err := recover(); err != nil && err != ErrAbortHandler {
1827			const size = 64 << 10
1828			buf := make([]byte, size)
1829			buf = buf[:runtime.Stack(buf, false)]
1830			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
1831		}
1832		if !c.hijacked() {
1833			c.close()
1834			c.setState(c.rwc, StateClosed, runHooks)
1835		}
1836	}()
1837
1838	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
1839		if d := c.server.ReadTimeout; d != 0 {
1840			c.rwc.SetReadDeadline(time.Now().Add(d))
1841		}
1842		if d := c.server.WriteTimeout; d != 0 {
1843			c.rwc.SetWriteDeadline(time.Now().Add(d))
1844		}
1845		if err := tlsConn.Handshake(); err != nil {
1846			// If the handshake failed due to the client not speaking
1847			// TLS, assume they're speaking plaintext HTTP and write a
1848			// 400 response on the TLS conn's underlying net.Conn.
1849			if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) {
1850				io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n")
1851				re.Conn.Close()
1852				return
1853			}
1854			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
1855			return
1856		}
1857		c.tlsState = new(tls.ConnectionState)
1858		*c.tlsState = tlsConn.ConnectionState()
1859		if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) {
1860			if fn := c.server.TLSNextProto[proto]; fn != nil {
1861				h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}}
1862				// Mark freshly created HTTP/2 as active and prevent any server state hooks
1863				// from being run on these connections. This prevents closeIdleConns from
1864				// closing such connections. See issue https://golang.org/issue/39776.
1865				c.setState(c.rwc, StateActive, skipHooks)
1866				fn(c.server, tlsConn, h)
1867			}
1868			return
1869		}
1870	}
1871
1872	// HTTP/1.x from here on.
1873
1874	ctx, cancelCtx := context.WithCancel(ctx)
1875	c.cancelCtx = cancelCtx
1876	defer cancelCtx()
1877
1878	c.r = &connReader{conn: c}
1879	c.bufr = newBufioReader(c.r)
1880	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
1881
1882	for {
1883		w, err := c.readRequest(ctx)
1884		if c.r.remain != c.server.initialReadLimitSize() {
1885			// If we read any bytes off the wire, we're active.
1886			c.setState(c.rwc, StateActive, runHooks)
1887		}
1888		if err != nil {
1889			const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
1890
1891			switch {
1892			case err == errTooLarge:
1893				// Their HTTP client may or may not be
1894				// able to read this if we're
1895				// responding to them and hanging up
1896				// while they're still writing their
1897				// request. Undefined behavior.
1898				const publicErr = "431 Request Header Fields Too Large"
1899				fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1900				c.closeWriteAndWait()
1901				return
1902
1903			case isUnsupportedTEError(err):
1904				// Respond as per RFC 7230 Section 3.3.1 which says,
1905				//      A server that receives a request message with a
1906				//      transfer coding it does not understand SHOULD
1907				//      respond with 501 (Unimplemented).
1908				code := StatusNotImplemented
1909
1910				// We purposefully aren't echoing back the transfer-encoding's value,
1911				// so as to mitigate the risk of cross side scripting by an attacker.
1912				fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders)
1913				return
1914
1915			case isCommonNetReadError(err):
1916				return // don't reply
1917
1918			default:
1919				if v, ok := err.(statusError); ok {
1920					fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text)
1921					return
1922				}
1923				publicErr := "400 Bad Request"
1924				fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1925				return
1926			}
1927		}
1928
1929		// Expect 100 Continue support
1930		req := w.req
1931		if req.expectsContinue() {
1932			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
1933				// Wrap the Body reader with one that replies on the connection
1934				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
1935				w.canWriteContinue.setTrue()
1936			}
1937		} else if req.Header.get("Expect") != "" {
1938			w.sendExpectationFailed()
1939			return
1940		}
1941
1942		c.curReq.Store(w)
1943
1944		if requestBodyRemains(req.Body) {
1945			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
1946		} else {
1947			w.conn.r.startBackgroundRead()
1948		}
1949
1950		// HTTP cannot have multiple simultaneous active requests.[*]
1951		// Until the server replies to this request, it can't read another,
1952		// so we might as well run the handler in this goroutine.
1953		// [*] Not strictly true: HTTP pipelining. We could let them all process
1954		// in parallel even if their responses need to be serialized.
1955		// But we're not going to implement HTTP pipelining because it
1956		// was never deployed in the wild and the answer is HTTP/2.
1957		serverHandler{c.server}.ServeHTTP(w, w.req)
1958		w.cancelCtx()
1959		if c.hijacked() {
1960			return
1961		}
1962		w.finishRequest()
1963		if !w.shouldReuseConnection() {
1964			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
1965				c.closeWriteAndWait()
1966			}
1967			return
1968		}
1969		c.setState(c.rwc, StateIdle, runHooks)
1970		c.curReq.Store((*response)(nil))
1971
1972		if !w.conn.server.doKeepAlives() {
1973			// We're in shutdown mode. We might've replied
1974			// to the user without "Connection: close" and
1975			// they might think they can send another
1976			// request, but such is life with HTTP/1.1.
1977			return
1978		}
1979
1980		if d := c.server.idleTimeout(); d != 0 {
1981			c.rwc.SetReadDeadline(time.Now().Add(d))
1982			if _, err := c.bufr.Peek(4); err != nil {
1983				return
1984			}
1985		}
1986		c.rwc.SetReadDeadline(time.Time{})
1987	}
1988}
1989
1990func (w *response) sendExpectationFailed() {
1991	// TODO(bradfitz): let ServeHTTP handlers handle
1992	// requests with non-standard expectation[s]? Seems
1993	// theoretical at best, and doesn't fit into the
1994	// current ServeHTTP model anyway. We'd need to
1995	// make the ResponseWriter an optional
1996	// "ExpectReplier" interface or something.
1997	//
1998	// For now we'll just obey RFC 7231 5.1.1 which says
1999	// "A server that receives an Expect field-value other
2000	// than 100-continue MAY respond with a 417 (Expectation
2001	// Failed) status code to indicate that the unexpected
2002	// expectation cannot be met."
2003	w.Header().Set("Connection", "close")
2004	w.WriteHeader(StatusExpectationFailed)
2005	w.finishRequest()
2006}
2007
2008// Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
2009// and a Hijacker.
2010func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
2011	if w.handlerDone.isSet() {
2012		panic("net/http: Hijack called after ServeHTTP finished")
2013	}
2014	if w.wroteHeader {
2015		w.cw.flush()
2016	}
2017
2018	c := w.conn
2019	c.mu.Lock()
2020	defer c.mu.Unlock()
2021
2022	// Release the bufioWriter that writes to the chunk writer, it is not
2023	// used after a connection has been hijacked.
2024	rwc, buf, err = c.hijackLocked()
2025	if err == nil {
2026		putBufioWriter(w.w)
2027		w.w = nil
2028	}
2029	return rwc, buf, err
2030}
2031
2032func (w *response) CloseNotify() <-chan bool {
2033	if w.handlerDone.isSet() {
2034		panic("net/http: CloseNotify called after ServeHTTP finished")
2035	}
2036	return w.closeNotifyCh
2037}
2038
2039func registerOnHitEOF(rc io.ReadCloser, fn func()) {
2040	switch v := rc.(type) {
2041	case *expectContinueReader:
2042		registerOnHitEOF(v.readCloser, fn)
2043	case *body:
2044		v.registerOnHitEOF(fn)
2045	default:
2046		panic("unexpected type " + fmt.Sprintf("%T", rc))
2047	}
2048}
2049
2050// requestBodyRemains reports whether future calls to Read
2051// on rc might yield more data.
2052func requestBodyRemains(rc io.ReadCloser) bool {
2053	if rc == NoBody {
2054		return false
2055	}
2056	switch v := rc.(type) {
2057	case *expectContinueReader:
2058		return requestBodyRemains(v.readCloser)
2059	case *body:
2060		return v.bodyRemains()
2061	default:
2062		panic("unexpected type " + fmt.Sprintf("%T", rc))
2063	}
2064}
2065
2066// The HandlerFunc type is an adapter to allow the use of
2067// ordinary functions as HTTP handlers. If f is a function
2068// with the appropriate signature, HandlerFunc(f) is a
2069// Handler that calls f.
2070type HandlerFunc func(ResponseWriter, *Request)
2071
2072// ServeHTTP calls f(w, r).
2073func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
2074	f(w, r)
2075}
2076
2077// Helper handlers
2078
2079// Error replies to the request with the specified error message and HTTP code.
2080// It does not otherwise end the request; the caller should ensure no further
2081// writes are done to w.
2082// The error message should be plain text.
2083func Error(w ResponseWriter, error string, code int) {
2084	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
2085	w.Header().Set("X-Content-Type-Options", "nosniff")
2086	w.WriteHeader(code)
2087	fmt.Fprintln(w, error)
2088}
2089
2090// NotFound replies to the request with an HTTP 404 not found error.
2091func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
2092
2093// NotFoundHandler returns a simple request handler
2094// that replies to each request with a ``404 page not found'' reply.
2095func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
2096
2097// StripPrefix returns a handler that serves HTTP requests by removing the
2098// given prefix from the request URL's Path (and RawPath if set) and invoking
2099// the handler h. StripPrefix handles a request for a path that doesn't begin
2100// with prefix by replying with an HTTP 404 not found error. The prefix must
2101// match exactly: if the prefix in the request contains escaped characters
2102// the reply is also an HTTP 404 not found error.
2103func StripPrefix(prefix string, h Handler) Handler {
2104	if prefix == "" {
2105		return h
2106	}
2107	return HandlerFunc(func(w ResponseWriter, r *Request) {
2108		p := strings.TrimPrefix(r.URL.Path, prefix)
2109		rp := strings.TrimPrefix(r.URL.RawPath, prefix)
2110		if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) {
2111			r2 := new(Request)
2112			*r2 = *r
2113			r2.URL = new(url.URL)
2114			*r2.URL = *r.URL
2115			r2.URL.Path = p
2116			r2.URL.RawPath = rp
2117			h.ServeHTTP(w, r2)
2118		} else {
2119			NotFound(w, r)
2120		}
2121	})
2122}
2123
2124// Redirect replies to the request with a redirect to url,
2125// which may be a path relative to the request path.
2126//
2127// The provided code should be in the 3xx range and is usually
2128// StatusMovedPermanently, StatusFound or StatusSeeOther.
2129//
2130// If the Content-Type header has not been set, Redirect sets it
2131// to "text/html; charset=utf-8" and writes a small HTML body.
2132// Setting the Content-Type header to any value, including nil,
2133// disables that behavior.
2134func Redirect(w ResponseWriter, r *Request, url string, code int) {
2135	if u, err := urlpkg.Parse(url); err == nil {
2136		// If url was relative, make its path absolute by
2137		// combining with request path.
2138		// The client would probably do this for us,
2139		// but doing it ourselves is more reliable.
2140		// See RFC 7231, section 7.1.2
2141		if u.Scheme == "" && u.Host == "" {
2142			oldpath := r.URL.Path
2143			if oldpath == "" { // should not happen, but avoid a crash if it does
2144				oldpath = "/"
2145			}
2146
2147			// no leading http://server
2148			if url == "" || url[0] != '/' {
2149				// make relative path absolute
2150				olddir, _ := path.Split(oldpath)
2151				url = olddir + url
2152			}
2153
2154			var query string
2155			if i := strings.Index(url, "?"); i != -1 {
2156				url, query = url[:i], url[i:]
2157			}
2158
2159			// clean up but preserve trailing slash
2160			trailing := strings.HasSuffix(url, "/")
2161			url = path.Clean(url)
2162			if trailing && !strings.HasSuffix(url, "/") {
2163				url += "/"
2164			}
2165			url += query
2166		}
2167	}
2168
2169	h := w.Header()
2170
2171	// RFC 7231 notes that a short HTML body is usually included in
2172	// the response because older user agents may not understand 301/307.
2173	// Do it only if the request didn't already have a Content-Type header.
2174	_, hadCT := h["Content-Type"]
2175
2176	h.Set("Location", hexEscapeNonASCII(url))
2177	if !hadCT && (r.Method == "GET" || r.Method == "HEAD") {
2178		h.Set("Content-Type", "text/html; charset=utf-8")
2179	}
2180	w.WriteHeader(code)
2181
2182	// Shouldn't send the body for POST or HEAD; that leaves GET.
2183	if !hadCT && r.Method == "GET" {
2184		body := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n"
2185		fmt.Fprintln(w, body)
2186	}
2187}
2188
2189var htmlReplacer = strings.NewReplacer(
2190	"&", "&amp;",
2191	"<", "&lt;",
2192	">", "&gt;",
2193	// "&#34;" is shorter than "&quot;".
2194	`"`, "&#34;",
2195	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
2196	"'", "&#39;",
2197)
2198
2199func htmlEscape(s string) string {
2200	return htmlReplacer.Replace(s)
2201}
2202
2203// Redirect to a fixed URL
2204type redirectHandler struct {
2205	url  string
2206	code int
2207}
2208
2209func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
2210	Redirect(w, r, rh.url, rh.code)
2211}
2212
2213// RedirectHandler returns a request handler that redirects
2214// each request it receives to the given url using the given
2215// status code.
2216//
2217// The provided code should be in the 3xx range and is usually
2218// StatusMovedPermanently, StatusFound or StatusSeeOther.
2219func RedirectHandler(url string, code int) Handler {
2220	return &redirectHandler{url, code}
2221}
2222
2223// ServeMux is an HTTP request multiplexer.
2224// It matches the URL of each incoming request against a list of registered
2225// patterns and calls the handler for the pattern that
2226// most closely matches the URL.
2227//
2228// Patterns name fixed, rooted paths, like "/favicon.ico",
2229// or rooted subtrees, like "/images/" (note the trailing slash).
2230// Longer patterns take precedence over shorter ones, so that
2231// if there are handlers registered for both "/images/"
2232// and "/images/thumbnails/", the latter handler will be
2233// called for paths beginning "/images/thumbnails/" and the
2234// former will receive requests for any other paths in the
2235// "/images/" subtree.
2236//
2237// Note that since a pattern ending in a slash names a rooted subtree,
2238// the pattern "/" matches all paths not matched by other registered
2239// patterns, not just the URL with Path == "/".
2240//
2241// If a subtree has been registered and a request is received naming the
2242// subtree root without its trailing slash, ServeMux redirects that
2243// request to the subtree root (adding the trailing slash). This behavior can
2244// be overridden with a separate registration for the path without
2245// the trailing slash. For example, registering "/images/" causes ServeMux
2246// to redirect a request for "/images" to "/images/", unless "/images" has
2247// been registered separately.
2248//
2249// Patterns may optionally begin with a host name, restricting matches to
2250// URLs on that host only. Host-specific patterns take precedence over
2251// general patterns, so that a handler might register for the two patterns
2252// "/codesearch" and "codesearch.google.com/" without also taking over
2253// requests for "http://www.google.com/".
2254//
2255// ServeMux also takes care of sanitizing the URL request path and the Host
2256// header, stripping the port number and redirecting any request containing . or
2257// .. elements or repeated slashes to an equivalent, cleaner URL.
2258type ServeMux struct {
2259	mu    sync.RWMutex
2260	m     map[string]muxEntry
2261	es    []muxEntry // slice of entries sorted from longest to shortest.
2262	hosts bool       // whether any patterns contain hostnames
2263}
2264
2265type muxEntry struct {
2266	h       Handler
2267	pattern string
2268}
2269
2270// NewServeMux allocates and returns a new ServeMux.
2271func NewServeMux() *ServeMux { return new(ServeMux) }
2272
2273// DefaultServeMux is the default ServeMux used by Serve.
2274var DefaultServeMux = &defaultServeMux
2275
2276var defaultServeMux ServeMux
2277
2278// cleanPath returns the canonical path for p, eliminating . and .. elements.
2279func cleanPath(p string) string {
2280	if p == "" {
2281		return "/"
2282	}
2283	if p[0] != '/' {
2284		p = "/" + p
2285	}
2286	np := path.Clean(p)
2287	// path.Clean removes trailing slash except for root;
2288	// put the trailing slash back if necessary.
2289	if p[len(p)-1] == '/' && np != "/" {
2290		// Fast path for common case of p being the string we want:
2291		if len(p) == len(np)+1 && strings.HasPrefix(p, np) {
2292			np = p
2293		} else {
2294			np += "/"
2295		}
2296	}
2297	return np
2298}
2299
2300// stripHostPort returns h without any trailing ":<port>".
2301func stripHostPort(h string) string {
2302	// If no port on host, return unchanged
2303	if strings.IndexByte(h, ':') == -1 {
2304		return h
2305	}
2306	host, _, err := net.SplitHostPort(h)
2307	if err != nil {
2308		return h // on error, return unchanged
2309	}
2310	return host
2311}
2312
2313// Find a handler on a handler map given a path string.
2314// Most-specific (longest) pattern wins.
2315func (mux *ServeMux) match(path string) (h Handler, pattern string) {
2316	// Check for exact match first.
2317	v, ok := mux.m[path]
2318	if ok {
2319		return v.h, v.pattern
2320	}
2321
2322	// Check for longest valid match.  mux.es contains all patterns
2323	// that end in / sorted from longest to shortest.
2324	for _, e := range mux.es {
2325		if strings.HasPrefix(path, e.pattern) {
2326			return e.h, e.pattern
2327		}
2328	}
2329	return nil, ""
2330}
2331
2332// redirectToPathSlash determines if the given path needs appending "/" to it.
2333// This occurs when a handler for path + "/" was already registered, but
2334// not for path itself. If the path needs appending to, it creates a new
2335// URL, setting the path to u.Path + "/" and returning true to indicate so.
2336func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) {
2337	mux.mu.RLock()
2338	shouldRedirect := mux.shouldRedirectRLocked(host, path)
2339	mux.mu.RUnlock()
2340	if !shouldRedirect {
2341		return u, false
2342	}
2343	path = path + "/"
2344	u = &url.URL{Path: path, RawQuery: u.RawQuery}
2345	return u, true
2346}
2347
2348// shouldRedirectRLocked reports whether the given path and host should be redirected to
2349// path+"/". This should happen if a handler is registered for path+"/" but
2350// not path -- see comments at ServeMux.
2351func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool {
2352	p := []string{path, host + path}
2353
2354	for _, c := range p {
2355		if _, exist := mux.m[c]; exist {
2356			return false
2357		}
2358	}
2359
2360	n := len(path)
2361	if n == 0 {
2362		return false
2363	}
2364	for _, c := range p {
2365		if _, exist := mux.m[c+"/"]; exist {
2366			return path[n-1] != '/'
2367		}
2368	}
2369
2370	return false
2371}
2372
2373// Handler returns the handler to use for the given request,
2374// consulting r.Method, r.Host, and r.URL.Path. It always returns
2375// a non-nil handler. If the path is not in its canonical form, the
2376// handler will be an internally-generated handler that redirects
2377// to the canonical path. If the host contains a port, it is ignored
2378// when matching handlers.
2379//
2380// The path and host are used unchanged for CONNECT requests.
2381//
2382// Handler also returns the registered pattern that matches the
2383// request or, in the case of internally-generated redirects,
2384// the pattern that will match after following the redirect.
2385//
2386// If there is no registered handler that applies to the request,
2387// Handler returns a ``page not found'' handler and an empty pattern.
2388func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
2389
2390	// CONNECT requests are not canonicalized.
2391	if r.Method == "CONNECT" {
2392		// If r.URL.Path is /tree and its handler is not registered,
2393		// the /tree -> /tree/ redirect applies to CONNECT requests
2394		// but the path canonicalization does not.
2395		if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok {
2396			return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
2397		}
2398
2399		return mux.handler(r.Host, r.URL.Path)
2400	}
2401
2402	// All other requests have any port stripped and path cleaned
2403	// before passing to mux.handler.
2404	host := stripHostPort(r.Host)
2405	path := cleanPath(r.URL.Path)
2406
2407	// If the given path is /tree and its handler is not registered,
2408	// redirect for /tree/.
2409	if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok {
2410		return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
2411	}
2412
2413	if path != r.URL.Path {
2414		_, pattern = mux.handler(host, path)
2415		url := *r.URL
2416		url.Path = path
2417		return RedirectHandler(url.String(), StatusMovedPermanently), pattern
2418	}
2419
2420	return mux.handler(host, r.URL.Path)
2421}
2422
2423// handler is the main implementation of Handler.
2424// The path is known to be in canonical form, except for CONNECT methods.
2425func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
2426	mux.mu.RLock()
2427	defer mux.mu.RUnlock()
2428
2429	// Host-specific pattern takes precedence over generic ones
2430	if mux.hosts {
2431		h, pattern = mux.match(host + path)
2432	}
2433	if h == nil {
2434		h, pattern = mux.match(path)
2435	}
2436	if h == nil {
2437		h, pattern = NotFoundHandler(), ""
2438	}
2439	return
2440}
2441
2442// ServeHTTP dispatches the request to the handler whose
2443// pattern most closely matches the request URL.
2444func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
2445	if r.RequestURI == "*" {
2446		if r.ProtoAtLeast(1, 1) {
2447			w.Header().Set("Connection", "close")
2448		}
2449		w.WriteHeader(StatusBadRequest)
2450		return
2451	}
2452	h, _ := mux.Handler(r)
2453	h.ServeHTTP(w, r)
2454}
2455
2456// Handle registers the handler for the given pattern.
2457// If a handler already exists for pattern, Handle panics.
2458func (mux *ServeMux) Handle(pattern string, handler Handler) {
2459	mux.mu.Lock()
2460	defer mux.mu.Unlock()
2461
2462	if pattern == "" {
2463		panic("http: invalid pattern")
2464	}
2465	if handler == nil {
2466		panic("http: nil handler")
2467	}
2468	if _, exist := mux.m[pattern]; exist {
2469		panic("http: multiple registrations for " + pattern)
2470	}
2471
2472	if mux.m == nil {
2473		mux.m = make(map[string]muxEntry)
2474	}
2475	e := muxEntry{h: handler, pattern: pattern}
2476	mux.m[pattern] = e
2477	if pattern[len(pattern)-1] == '/' {
2478		mux.es = appendSorted(mux.es, e)
2479	}
2480
2481	if pattern[0] != '/' {
2482		mux.hosts = true
2483	}
2484}
2485
2486func appendSorted(es []muxEntry, e muxEntry) []muxEntry {
2487	n := len(es)
2488	i := sort.Search(n, func(i int) bool {
2489		return len(es[i].pattern) < len(e.pattern)
2490	})
2491	if i == n {
2492		return append(es, e)
2493	}
2494	// we now know that i points at where we want to insert
2495	es = append(es, muxEntry{}) // try to grow the slice in place, any entry works.
2496	copy(es[i+1:], es[i:])      // Move shorter entries down
2497	es[i] = e
2498	return es
2499}
2500
2501// HandleFunc registers the handler function for the given pattern.
2502func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2503	if handler == nil {
2504		panic("http: nil handler")
2505	}
2506	mux.Handle(pattern, HandlerFunc(handler))
2507}
2508
2509// Handle registers the handler for the given pattern
2510// in the DefaultServeMux.
2511// The documentation for ServeMux explains how patterns are matched.
2512func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
2513
2514// HandleFunc registers the handler function for the given pattern
2515// in the DefaultServeMux.
2516// The documentation for ServeMux explains how patterns are matched.
2517func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2518	DefaultServeMux.HandleFunc(pattern, handler)
2519}
2520
2521// Serve accepts incoming HTTP connections on the listener l,
2522// creating a new service goroutine for each. The service goroutines
2523// read requests and then call handler to reply to them.
2524//
2525// The handler is typically nil, in which case the DefaultServeMux is used.
2526//
2527// HTTP/2 support is only enabled if the Listener returns *tls.Conn
2528// connections and they were configured with "h2" in the TLS
2529// Config.NextProtos.
2530//
2531// Serve always returns a non-nil error.
2532func Serve(l net.Listener, handler Handler) error {
2533	srv := &Server{Handler: handler}
2534	return srv.Serve(l)
2535}
2536
2537// ServeTLS accepts incoming HTTPS connections on the listener l,
2538// creating a new service goroutine for each. The service goroutines
2539// read requests and then call handler to reply to them.
2540//
2541// The handler is typically nil, in which case the DefaultServeMux is used.
2542//
2543// Additionally, files containing a certificate and matching private key
2544// for the server must be provided. If the certificate is signed by a
2545// certificate authority, the certFile should be the concatenation
2546// of the server's certificate, any intermediates, and the CA's certificate.
2547//
2548// ServeTLS always returns a non-nil error.
2549func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error {
2550	srv := &Server{Handler: handler}
2551	return srv.ServeTLS(l, certFile, keyFile)
2552}
2553
2554// A Server defines parameters for running an HTTP server.
2555// The zero value for Server is a valid configuration.
2556type Server struct {
2557	// Addr optionally specifies the TCP address for the server to listen on,
2558	// in the form "host:port". If empty, ":http" (port 80) is used.
2559	// The service names are defined in RFC 6335 and assigned by IANA.
2560	// See net.Dial for details of the address format.
2561	Addr string
2562
2563	Handler Handler // handler to invoke, http.DefaultServeMux if nil
2564
2565	// TLSConfig optionally provides a TLS configuration for use
2566	// by ServeTLS and ListenAndServeTLS. Note that this value is
2567	// cloned by ServeTLS and ListenAndServeTLS, so it's not
2568	// possible to modify the configuration with methods like
2569	// tls.Config.SetSessionTicketKeys. To use
2570	// SetSessionTicketKeys, use Server.Serve with a TLS Listener
2571	// instead.
2572	TLSConfig *tls.Config
2573
2574	// ReadTimeout is the maximum duration for reading the entire
2575	// request, including the body.
2576	//
2577	// Because ReadTimeout does not let Handlers make per-request
2578	// decisions on each request body's acceptable deadline or
2579	// upload rate, most users will prefer to use
2580	// ReadHeaderTimeout. It is valid to use them both.
2581	ReadTimeout time.Duration
2582
2583	// ReadHeaderTimeout is the amount of time allowed to read
2584	// request headers. The connection's read deadline is reset
2585	// after reading the headers and the Handler can decide what
2586	// is considered too slow for the body. If ReadHeaderTimeout
2587	// is zero, the value of ReadTimeout is used. If both are
2588	// zero, there is no timeout.
2589	ReadHeaderTimeout time.Duration
2590
2591	// WriteTimeout is the maximum duration before timing out
2592	// writes of the response. It is reset whenever a new
2593	// request's header is read. Like ReadTimeout, it does not
2594	// let Handlers make decisions on a per-request basis.
2595	WriteTimeout time.Duration
2596
2597	// IdleTimeout is the maximum amount of time to wait for the
2598	// next request when keep-alives are enabled. If IdleTimeout
2599	// is zero, the value of ReadTimeout is used. If both are
2600	// zero, there is no timeout.
2601	IdleTimeout time.Duration
2602
2603	// MaxHeaderBytes controls the maximum number of bytes the
2604	// server will read parsing the request header's keys and
2605	// values, including the request line. It does not limit the
2606	// size of the request body.
2607	// If zero, DefaultMaxHeaderBytes is used.
2608	MaxHeaderBytes int
2609
2610	// TLSNextProto optionally specifies a function to take over
2611	// ownership of the provided TLS connection when an ALPN
2612	// protocol upgrade has occurred. The map key is the protocol
2613	// name negotiated. The Handler argument should be used to
2614	// handle HTTP requests and will initialize the Request's TLS
2615	// and RemoteAddr if not already set. The connection is
2616	// automatically closed when the function returns.
2617	// If TLSNextProto is not nil, HTTP/2 support is not enabled
2618	// automatically.
2619	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
2620
2621	// ConnState specifies an optional callback function that is
2622	// called when a client connection changes state. See the
2623	// ConnState type and associated constants for details.
2624	ConnState func(net.Conn, ConnState)
2625
2626	// ErrorLog specifies an optional logger for errors accepting
2627	// connections, unexpected behavior from handlers, and
2628	// underlying FileSystem errors.
2629	// If nil, logging is done via the log package's standard logger.
2630	ErrorLog *log.Logger
2631
2632	// BaseContext optionally specifies a function that returns
2633	// the base context for incoming requests on this server.
2634	// The provided Listener is the specific Listener that's
2635	// about to start accepting requests.
2636	// If BaseContext is nil, the default is context.Background().
2637	// If non-nil, it must return a non-nil context.
2638	BaseContext func(net.Listener) context.Context
2639
2640	// ConnContext optionally specifies a function that modifies
2641	// the context used for a new connection c. The provided ctx
2642	// is derived from the base context and has a ServerContextKey
2643	// value.
2644	ConnContext func(ctx context.Context, c net.Conn) context.Context
2645
2646	inShutdown atomicBool // true when when server is in shutdown
2647
2648	disableKeepAlives int32     // accessed atomically.
2649	nextProtoOnce     sync.Once // guards setupHTTP2_* init
2650	nextProtoErr      error     // result of http2.ConfigureServer if used
2651
2652	mu         sync.Mutex
2653	listeners  map[*net.Listener]struct{}
2654	activeConn map[*conn]struct{}
2655	doneChan   chan struct{}
2656	onShutdown []func()
2657}
2658
2659func (s *Server) getDoneChan() <-chan struct{} {
2660	s.mu.Lock()
2661	defer s.mu.Unlock()
2662	return s.getDoneChanLocked()
2663}
2664
2665func (s *Server) getDoneChanLocked() chan struct{} {
2666	if s.doneChan == nil {
2667		s.doneChan = make(chan struct{})
2668	}
2669	return s.doneChan
2670}
2671
2672func (s *Server) closeDoneChanLocked() {
2673	ch := s.getDoneChanLocked()
2674	select {
2675	case <-ch:
2676		// Already closed. Don't close again.
2677	default:
2678		// Safe to close here. We're the only closer, guarded
2679		// by s.mu.
2680		close(ch)
2681	}
2682}
2683
2684// Close immediately closes all active net.Listeners and any
2685// connections in state StateNew, StateActive, or StateIdle. For a
2686// graceful shutdown, use Shutdown.
2687//
2688// Close does not attempt to close (and does not even know about)
2689// any hijacked connections, such as WebSockets.
2690//
2691// Close returns any error returned from closing the Server's
2692// underlying Listener(s).
2693func (srv *Server) Close() error {
2694	srv.inShutdown.setTrue()
2695	srv.mu.Lock()
2696	defer srv.mu.Unlock()
2697	srv.closeDoneChanLocked()
2698	err := srv.closeListenersLocked()
2699	for c := range srv.activeConn {
2700		c.rwc.Close()
2701		delete(srv.activeConn, c)
2702	}
2703	return err
2704}
2705
2706// shutdownPollIntervalMax is the max polling interval when checking
2707// quiescence during Server.Shutdown. Polling starts with a small
2708// interval and backs off to the max.
2709// Ideally we could find a solution that doesn't involve polling,
2710// but which also doesn't have a high runtime cost (and doesn't
2711// involve any contentious mutexes), but that is left as an
2712// exercise for the reader.
2713const shutdownPollIntervalMax = 500 * time.Millisecond
2714
2715// Shutdown gracefully shuts down the server without interrupting any
2716// active connections. Shutdown works by first closing all open
2717// listeners, then closing all idle connections, and then waiting
2718// indefinitely for connections to return to idle and then shut down.
2719// If the provided context expires before the shutdown is complete,
2720// Shutdown returns the context's error, otherwise it returns any
2721// error returned from closing the Server's underlying Listener(s).
2722//
2723// When Shutdown is called, Serve, ListenAndServe, and
2724// ListenAndServeTLS immediately return ErrServerClosed. Make sure the
2725// program doesn't exit and waits instead for Shutdown to return.
2726//
2727// Shutdown does not attempt to close nor wait for hijacked
2728// connections such as WebSockets. The caller of Shutdown should
2729// separately notify such long-lived connections of shutdown and wait
2730// for them to close, if desired. See RegisterOnShutdown for a way to
2731// register shutdown notification functions.
2732//
2733// Once Shutdown has been called on a server, it may not be reused;
2734// future calls to methods such as Serve will return ErrServerClosed.
2735func (srv *Server) Shutdown(ctx context.Context) error {
2736	srv.inShutdown.setTrue()
2737
2738	srv.mu.Lock()
2739	lnerr := srv.closeListenersLocked()
2740	srv.closeDoneChanLocked()
2741	for _, f := range srv.onShutdown {
2742		go f()
2743	}
2744	srv.mu.Unlock()
2745
2746	pollIntervalBase := time.Millisecond
2747	nextPollInterval := func() time.Duration {
2748		// Add 10% jitter.
2749		interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10)))
2750		// Double and clamp for next time.
2751		pollIntervalBase *= 2
2752		if pollIntervalBase > shutdownPollIntervalMax {
2753			pollIntervalBase = shutdownPollIntervalMax
2754		}
2755		return interval
2756	}
2757
2758	timer := time.NewTimer(nextPollInterval())
2759	defer timer.Stop()
2760	for {
2761		if srv.closeIdleConns() && srv.numListeners() == 0 {
2762			return lnerr
2763		}
2764		select {
2765		case <-ctx.Done():
2766			return ctx.Err()
2767		case <-timer.C:
2768			timer.Reset(nextPollInterval())
2769		}
2770	}
2771}
2772
2773// RegisterOnShutdown registers a function to call on Shutdown.
2774// This can be used to gracefully shutdown connections that have
2775// undergone ALPN protocol upgrade or that have been hijacked.
2776// This function should start protocol-specific graceful shutdown,
2777// but should not wait for shutdown to complete.
2778func (srv *Server) RegisterOnShutdown(f func()) {
2779	srv.mu.Lock()
2780	srv.onShutdown = append(srv.onShutdown, f)
2781	srv.mu.Unlock()
2782}
2783
2784func (s *Server) numListeners() int {
2785	s.mu.Lock()
2786	defer s.mu.Unlock()
2787	return len(s.listeners)
2788}
2789
2790// closeIdleConns closes all idle connections and reports whether the
2791// server is quiescent.
2792func (s *Server) closeIdleConns() bool {
2793	s.mu.Lock()
2794	defer s.mu.Unlock()
2795	quiescent := true
2796	for c := range s.activeConn {
2797		st, unixSec := c.getState()
2798		// Issue 22682: treat StateNew connections as if
2799		// they're idle if we haven't read the first request's
2800		// header in over 5 seconds.
2801		if st == StateNew && unixSec < time.Now().Unix()-5 {
2802			st = StateIdle
2803		}
2804		if st != StateIdle || unixSec == 0 {
2805			// Assume unixSec == 0 means it's a very new
2806			// connection, without state set yet.
2807			quiescent = false
2808			continue
2809		}
2810		c.rwc.Close()
2811		delete(s.activeConn, c)
2812	}
2813	return quiescent
2814}
2815
2816func (s *Server) closeListenersLocked() error {
2817	var err error
2818	for ln := range s.listeners {
2819		if cerr := (*ln).Close(); cerr != nil && err == nil {
2820			err = cerr
2821		}
2822	}
2823	return err
2824}
2825
2826// A ConnState represents the state of a client connection to a server.
2827// It's used by the optional Server.ConnState hook.
2828type ConnState int
2829
2830const (
2831	// StateNew represents a new connection that is expected to
2832	// send a request immediately. Connections begin at this
2833	// state and then transition to either StateActive or
2834	// StateClosed.
2835	StateNew ConnState = iota
2836
2837	// StateActive represents a connection that has read 1 or more
2838	// bytes of a request. The Server.ConnState hook for
2839	// StateActive fires before the request has entered a handler
2840	// and doesn't fire again until the request has been
2841	// handled. After the request is handled, the state
2842	// transitions to StateClosed, StateHijacked, or StateIdle.
2843	// For HTTP/2, StateActive fires on the transition from zero
2844	// to one active request, and only transitions away once all
2845	// active requests are complete. That means that ConnState
2846	// cannot be used to do per-request work; ConnState only notes
2847	// the overall state of the connection.
2848	StateActive
2849
2850	// StateIdle represents a connection that has finished
2851	// handling a request and is in the keep-alive state, waiting
2852	// for a new request. Connections transition from StateIdle
2853	// to either StateActive or StateClosed.
2854	StateIdle
2855
2856	// StateHijacked represents a hijacked connection.
2857	// This is a terminal state. It does not transition to StateClosed.
2858	StateHijacked
2859
2860	// StateClosed represents a closed connection.
2861	// This is a terminal state. Hijacked connections do not
2862	// transition to StateClosed.
2863	StateClosed
2864)
2865
2866var stateName = map[ConnState]string{
2867	StateNew:      "new",
2868	StateActive:   "active",
2869	StateIdle:     "idle",
2870	StateHijacked: "hijacked",
2871	StateClosed:   "closed",
2872}
2873
2874func (c ConnState) String() string {
2875	return stateName[c]
2876}
2877
2878// serverHandler delegates to either the server's Handler or
2879// DefaultServeMux and also handles "OPTIONS *" requests.
2880type serverHandler struct {
2881	srv *Server
2882}
2883
2884func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
2885	handler := sh.srv.Handler
2886	if handler == nil {
2887		handler = DefaultServeMux
2888	}
2889	if req.RequestURI == "*" && req.Method == "OPTIONS" {
2890		handler = globalOptionsHandler{}
2891	}
2892	handler.ServeHTTP(rw, req)
2893}
2894
2895// ListenAndServe listens on the TCP network address srv.Addr and then
2896// calls Serve to handle requests on incoming connections.
2897// Accepted connections are configured to enable TCP keep-alives.
2898//
2899// If srv.Addr is blank, ":http" is used.
2900//
2901// ListenAndServe always returns a non-nil error. After Shutdown or Close,
2902// the returned error is ErrServerClosed.
2903func (srv *Server) ListenAndServe() error {
2904	if srv.shuttingDown() {
2905		return ErrServerClosed
2906	}
2907	addr := srv.Addr
2908	if addr == "" {
2909		addr = ":http"
2910	}
2911	ln, err := net.Listen("tcp", addr)
2912	if err != nil {
2913		return err
2914	}
2915	return srv.Serve(ln)
2916}
2917
2918var testHookServerServe func(*Server, net.Listener) // used if non-nil
2919
2920// shouldDoServeHTTP2 reports whether Server.Serve should configure
2921// automatic HTTP/2. (which sets up the srv.TLSNextProto map)
2922func (srv *Server) shouldConfigureHTTP2ForServe() bool {
2923	if srv.TLSConfig == nil {
2924		// Compatibility with Go 1.6:
2925		// If there's no TLSConfig, it's possible that the user just
2926		// didn't set it on the http.Server, but did pass it to
2927		// tls.NewListener and passed that listener to Serve.
2928		// So we should configure HTTP/2 (to set up srv.TLSNextProto)
2929		// in case the listener returns an "h2" *tls.Conn.
2930		return true
2931	}
2932	// The user specified a TLSConfig on their http.Server.
2933	// In this, case, only configure HTTP/2 if their tls.Config
2934	// explicitly mentions "h2". Otherwise http2.ConfigureServer
2935	// would modify the tls.Config to add it, but they probably already
2936	// passed this tls.Config to tls.NewListener. And if they did,
2937	// it's too late anyway to fix it. It would only be potentially racy.
2938	// See Issue 15908.
2939	return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
2940}
2941
2942// ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
2943// and ListenAndServeTLS methods after a call to Shutdown or Close.
2944var ErrServerClosed = errors.New("http: Server closed")
2945
2946// Serve accepts incoming connections on the Listener l, creating a
2947// new service goroutine for each. The service goroutines read requests and
2948// then call srv.Handler to reply to them.
2949//
2950// HTTP/2 support is only enabled if the Listener returns *tls.Conn
2951// connections and they were configured with "h2" in the TLS
2952// Config.NextProtos.
2953//
2954// Serve always returns a non-nil error and closes l.
2955// After Shutdown or Close, the returned error is ErrServerClosed.
2956func (srv *Server) Serve(l net.Listener) error {
2957	if fn := testHookServerServe; fn != nil {
2958		fn(srv, l) // call hook with unwrapped listener
2959	}
2960
2961	origListener := l
2962	l = &onceCloseListener{Listener: l}
2963	defer l.Close()
2964
2965	if err := srv.setupHTTP2_Serve(); err != nil {
2966		return err
2967	}
2968
2969	if !srv.trackListener(&l, true) {
2970		return ErrServerClosed
2971	}
2972	defer srv.trackListener(&l, false)
2973
2974	baseCtx := context.Background()
2975	if srv.BaseContext != nil {
2976		baseCtx = srv.BaseContext(origListener)
2977		if baseCtx == nil {
2978			panic("BaseContext returned a nil context")
2979		}
2980	}
2981
2982	var tempDelay time.Duration // how long to sleep on accept failure
2983
2984	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
2985	for {
2986		rw, err := l.Accept()
2987		if err != nil {
2988			select {
2989			case <-srv.getDoneChan():
2990				return ErrServerClosed
2991			default:
2992			}
2993			if ne, ok := err.(net.Error); ok && ne.Temporary() {
2994				if tempDelay == 0 {
2995					tempDelay = 5 * time.Millisecond
2996				} else {
2997					tempDelay *= 2
2998				}
2999				if max := 1 * time.Second; tempDelay > max {
3000					tempDelay = max
3001				}
3002				srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
3003				time.Sleep(tempDelay)
3004				continue
3005			}
3006			return err
3007		}
3008		connCtx := ctx
3009		if cc := srv.ConnContext; cc != nil {
3010			connCtx = cc(connCtx, rw)
3011			if connCtx == nil {
3012				panic("ConnContext returned nil")
3013			}
3014		}
3015		tempDelay = 0
3016		c := srv.newConn(rw)
3017		c.setState(c.rwc, StateNew, runHooks) // before Serve can return
3018		go c.serve(connCtx)
3019	}
3020}
3021
3022// ServeTLS accepts incoming connections on the Listener l, creating a
3023// new service goroutine for each. The service goroutines perform TLS
3024// setup and then read requests, calling srv.Handler to reply to them.
3025//
3026// Files containing a certificate and matching private key for the
3027// server must be provided if neither the Server's
3028// TLSConfig.Certificates nor TLSConfig.GetCertificate are populated.
3029// If the certificate is signed by a certificate authority, the
3030// certFile should be the concatenation of the server's certificate,
3031// any intermediates, and the CA's certificate.
3032//
3033// ServeTLS always returns a non-nil error. After Shutdown or Close, the
3034// returned error is ErrServerClosed.
3035func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error {
3036	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
3037	// before we clone it and create the TLS Listener.
3038	if err := srv.setupHTTP2_ServeTLS(); err != nil {
3039		return err
3040	}
3041
3042	config := cloneTLSConfig(srv.TLSConfig)
3043	if !strSliceContains(config.NextProtos, "http/1.1") {
3044		config.NextProtos = append(config.NextProtos, "http/1.1")
3045	}
3046
3047	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
3048	if !configHasCert || certFile != "" || keyFile != "" {
3049		var err error
3050		config.Certificates = make([]tls.Certificate, 1)
3051		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
3052		if err != nil {
3053			return err
3054		}
3055	}
3056
3057	tlsListener := tls.NewListener(l, config)
3058	return srv.Serve(tlsListener)
3059}
3060
3061// trackListener adds or removes a net.Listener to the set of tracked
3062// listeners.
3063//
3064// We store a pointer to interface in the map set, in case the
3065// net.Listener is not comparable. This is safe because we only call
3066// trackListener via Serve and can track+defer untrack the same
3067// pointer to local variable there. We never need to compare a
3068// Listener from another caller.
3069//
3070// It reports whether the server is still up (not Shutdown or Closed).
3071func (s *Server) trackListener(ln *net.Listener, add bool) bool {
3072	s.mu.Lock()
3073	defer s.mu.Unlock()
3074	if s.listeners == nil {
3075		s.listeners = make(map[*net.Listener]struct{})
3076	}
3077	if add {
3078		if s.shuttingDown() {
3079			return false
3080		}
3081		s.listeners[ln] = struct{}{}
3082	} else {
3083		delete(s.listeners, ln)
3084	}
3085	return true
3086}
3087
3088func (s *Server) trackConn(c *conn, add bool) {
3089	s.mu.Lock()
3090	defer s.mu.Unlock()
3091	if s.activeConn == nil {
3092		s.activeConn = make(map[*conn]struct{})
3093	}
3094	if add {
3095		s.activeConn[c] = struct{}{}
3096	} else {
3097		delete(s.activeConn, c)
3098	}
3099}
3100
3101func (s *Server) idleTimeout() time.Duration {
3102	if s.IdleTimeout != 0 {
3103		return s.IdleTimeout
3104	}
3105	return s.ReadTimeout
3106}
3107
3108func (s *Server) readHeaderTimeout() time.Duration {
3109	if s.ReadHeaderTimeout != 0 {
3110		return s.ReadHeaderTimeout
3111	}
3112	return s.ReadTimeout
3113}
3114
3115func (s *Server) doKeepAlives() bool {
3116	return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown()
3117}
3118
3119func (s *Server) shuttingDown() bool {
3120	return s.inShutdown.isSet()
3121}
3122
3123// SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
3124// By default, keep-alives are always enabled. Only very
3125// resource-constrained environments or servers in the process of
3126// shutting down should disable them.
3127func (srv *Server) SetKeepAlivesEnabled(v bool) {
3128	if v {
3129		atomic.StoreInt32(&srv.disableKeepAlives, 0)
3130		return
3131	}
3132	atomic.StoreInt32(&srv.disableKeepAlives, 1)
3133
3134	// Close idle HTTP/1 conns:
3135	srv.closeIdleConns()
3136
3137	// TODO: Issue 26303: close HTTP/2 conns as soon as they become idle.
3138}
3139
3140func (s *Server) logf(format string, args ...interface{}) {
3141	if s.ErrorLog != nil {
3142		s.ErrorLog.Printf(format, args...)
3143	} else {
3144		log.Printf(format, args...)
3145	}
3146}
3147
3148// logf prints to the ErrorLog of the *Server associated with request r
3149// via ServerContextKey. If there's no associated server, or if ErrorLog
3150// is nil, logging is done via the log package's standard logger.
3151func logf(r *Request, format string, args ...interface{}) {
3152	s, _ := r.Context().Value(ServerContextKey).(*Server)
3153	if s != nil && s.ErrorLog != nil {
3154		s.ErrorLog.Printf(format, args...)
3155	} else {
3156		log.Printf(format, args...)
3157	}
3158}
3159
3160// ListenAndServe listens on the TCP network address addr and then calls
3161// Serve with handler to handle requests on incoming connections.
3162// Accepted connections are configured to enable TCP keep-alives.
3163//
3164// The handler is typically nil, in which case the DefaultServeMux is used.
3165//
3166// ListenAndServe always returns a non-nil error.
3167func ListenAndServe(addr string, handler Handler) error {
3168	server := &Server{Addr: addr, Handler: handler}
3169	return server.ListenAndServe()
3170}
3171
3172// ListenAndServeTLS acts identically to ListenAndServe, except that it
3173// expects HTTPS connections. Additionally, files containing a certificate and
3174// matching private key for the server must be provided. If the certificate
3175// is signed by a certificate authority, the certFile should be the concatenation
3176// of the server's certificate, any intermediates, and the CA's certificate.
3177func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
3178	server := &Server{Addr: addr, Handler: handler}
3179	return server.ListenAndServeTLS(certFile, keyFile)
3180}
3181
3182// ListenAndServeTLS listens on the TCP network address srv.Addr and
3183// then calls ServeTLS to handle requests on incoming TLS connections.
3184// Accepted connections are configured to enable TCP keep-alives.
3185//
3186// Filenames containing a certificate and matching private key for the
3187// server must be provided if neither the Server's TLSConfig.Certificates
3188// nor TLSConfig.GetCertificate are populated. If the certificate is
3189// signed by a certificate authority, the certFile should be the
3190// concatenation of the server's certificate, any intermediates, and
3191// the CA's certificate.
3192//
3193// If srv.Addr is blank, ":https" is used.
3194//
3195// ListenAndServeTLS always returns a non-nil error. After Shutdown or
3196// Close, the returned error is ErrServerClosed.
3197func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
3198	if srv.shuttingDown() {
3199		return ErrServerClosed
3200	}
3201	addr := srv.Addr
3202	if addr == "" {
3203		addr = ":https"
3204	}
3205
3206	ln, err := net.Listen("tcp", addr)
3207	if err != nil {
3208		return err
3209	}
3210
3211	defer ln.Close()
3212
3213	return srv.ServeTLS(ln, certFile, keyFile)
3214}
3215
3216// setupHTTP2_ServeTLS conditionally configures HTTP/2 on
3217// srv and reports whether there was an error setting it up. If it is
3218// not configured for policy reasons, nil is returned.
3219func (srv *Server) setupHTTP2_ServeTLS() error {
3220	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
3221	return srv.nextProtoErr
3222}
3223
3224// setupHTTP2_Serve is called from (*Server).Serve and conditionally
3225// configures HTTP/2 on srv using a more conservative policy than
3226// setupHTTP2_ServeTLS because Serve is called after tls.Listen,
3227// and may be called concurrently. See shouldConfigureHTTP2ForServe.
3228//
3229// The tests named TestTransportAutomaticHTTP2* and
3230// TestConcurrentServerServe in server_test.go demonstrate some
3231// of the supported use cases and motivations.
3232func (srv *Server) setupHTTP2_Serve() error {
3233	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
3234	return srv.nextProtoErr
3235}
3236
3237func (srv *Server) onceSetNextProtoDefaults_Serve() {
3238	if srv.shouldConfigureHTTP2ForServe() {
3239		srv.onceSetNextProtoDefaults()
3240	}
3241}
3242
3243// onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
3244// configured otherwise. (by setting srv.TLSNextProto non-nil)
3245// It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
3246func (srv *Server) onceSetNextProtoDefaults() {
3247	if omitBundledHTTP2 || strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
3248		return
3249	}
3250	// Enable HTTP/2 by default if the user hasn't otherwise
3251	// configured their TLSNextProto map.
3252	if srv.TLSNextProto == nil {
3253		conf := &http2Server{
3254			NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) },
3255		}
3256		srv.nextProtoErr = http2ConfigureServer(srv, conf)
3257	}
3258}
3259
3260// TimeoutHandler returns a Handler that runs h with the given time limit.
3261//
3262// The new Handler calls h.ServeHTTP to handle each request, but if a
3263// call runs for longer than its time limit, the handler responds with
3264// a 503 Service Unavailable error and the given message in its body.
3265// (If msg is empty, a suitable default message will be sent.)
3266// After such a timeout, writes by h to its ResponseWriter will return
3267// ErrHandlerTimeout.
3268//
3269// TimeoutHandler supports the Pusher interface but does not support
3270// the Hijacker or Flusher interfaces.
3271func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
3272	return &timeoutHandler{
3273		handler: h,
3274		body:    msg,
3275		dt:      dt,
3276	}
3277}
3278
3279// ErrHandlerTimeout is returned on ResponseWriter Write calls
3280// in handlers which have timed out.
3281var ErrHandlerTimeout = errors.New("http: Handler timeout")
3282
3283type timeoutHandler struct {
3284	handler Handler
3285	body    string
3286	dt      time.Duration
3287
3288	// When set, no context will be created and this context will
3289	// be used instead.
3290	testContext context.Context
3291}
3292
3293func (h *timeoutHandler) errorBody() string {
3294	if h.body != "" {
3295		return h.body
3296	}
3297	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
3298}
3299
3300func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
3301	ctx := h.testContext
3302	if ctx == nil {
3303		var cancelCtx context.CancelFunc
3304		ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt)
3305		defer cancelCtx()
3306	}
3307	r = r.WithContext(ctx)
3308	done := make(chan struct{})
3309	tw := &timeoutWriter{
3310		w:   w,
3311		h:   make(Header),
3312		req: r,
3313	}
3314	panicChan := make(chan interface{}, 1)
3315	go func() {
3316		defer func() {
3317			if p := recover(); p != nil {
3318				panicChan <- p
3319			}
3320		}()
3321		h.handler.ServeHTTP(tw, r)
3322		close(done)
3323	}()
3324	select {
3325	case p := <-panicChan:
3326		panic(p)
3327	case <-done:
3328		tw.mu.Lock()
3329		defer tw.mu.Unlock()
3330		dst := w.Header()
3331		for k, vv := range tw.h {
3332			dst[k] = vv
3333		}
3334		if !tw.wroteHeader {
3335			tw.code = StatusOK
3336		}
3337		w.WriteHeader(tw.code)
3338		w.Write(tw.wbuf.Bytes())
3339	case <-ctx.Done():
3340		tw.mu.Lock()
3341		defer tw.mu.Unlock()
3342		w.WriteHeader(StatusServiceUnavailable)
3343		io.WriteString(w, h.errorBody())
3344		tw.timedOut = true
3345	}
3346}
3347
3348type timeoutWriter struct {
3349	w    ResponseWriter
3350	h    Header
3351	wbuf bytes.Buffer
3352	req  *Request
3353
3354	mu          sync.Mutex
3355	timedOut    bool
3356	wroteHeader bool
3357	code        int
3358}
3359
3360var _ Pusher = (*timeoutWriter)(nil)
3361
3362// Push implements the Pusher interface.
3363func (tw *timeoutWriter) Push(target string, opts *PushOptions) error {
3364	if pusher, ok := tw.w.(Pusher); ok {
3365		return pusher.Push(target, opts)
3366	}
3367	return ErrNotSupported
3368}
3369
3370func (tw *timeoutWriter) Header() Header { return tw.h }
3371
3372func (tw *timeoutWriter) Write(p []byte) (int, error) {
3373	tw.mu.Lock()
3374	defer tw.mu.Unlock()
3375	if tw.timedOut {
3376		return 0, ErrHandlerTimeout
3377	}
3378	if !tw.wroteHeader {
3379		tw.writeHeaderLocked(StatusOK)
3380	}
3381	return tw.wbuf.Write(p)
3382}
3383
3384func (tw *timeoutWriter) writeHeaderLocked(code int) {
3385	checkWriteHeaderCode(code)
3386
3387	switch {
3388	case tw.timedOut:
3389		return
3390	case tw.wroteHeader:
3391		if tw.req != nil {
3392			caller := relevantCaller()
3393			logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line)
3394		}
3395	default:
3396		tw.wroteHeader = true
3397		tw.code = code
3398	}
3399}
3400
3401func (tw *timeoutWriter) WriteHeader(code int) {
3402	tw.mu.Lock()
3403	defer tw.mu.Unlock()
3404	tw.writeHeaderLocked(code)
3405}
3406
3407// onceCloseListener wraps a net.Listener, protecting it from
3408// multiple Close calls.
3409type onceCloseListener struct {
3410	net.Listener
3411	once     sync.Once
3412	closeErr error
3413}
3414
3415func (oc *onceCloseListener) Close() error {
3416	oc.once.Do(oc.close)
3417	return oc.closeErr
3418}
3419
3420func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() }
3421
3422// globalOptionsHandler responds to "OPTIONS *" requests.
3423type globalOptionsHandler struct{}
3424
3425func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
3426	w.Header().Set("Content-Length", "0")
3427	if r.ContentLength != 0 {
3428		// Read up to 4KB of OPTIONS body (as mentioned in the
3429		// spec as being reserved for future use), but anything
3430		// over that is considered a waste of server resources
3431		// (or an attack) and we abort and close the connection,
3432		// courtesy of MaxBytesReader's EOF behavior.
3433		mb := MaxBytesReader(w, r.Body, 4<<10)
3434		io.Copy(io.Discard, mb)
3435	}
3436}
3437
3438// initALPNRequest is an HTTP handler that initializes certain
3439// uninitialized fields in its *Request. Such partially-initialized
3440// Requests come from ALPN protocol handlers.
3441type initALPNRequest struct {
3442	ctx context.Context
3443	c   *tls.Conn
3444	h   serverHandler
3445}
3446
3447// BaseContext is an exported but unadvertised http.Handler method
3448// recognized by x/net/http2 to pass down a context; the TLSNextProto
3449// API predates context support so we shoehorn through the only
3450// interface we have available.
3451func (h initALPNRequest) BaseContext() context.Context { return h.ctx }
3452
3453func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
3454	if req.TLS == nil {
3455		req.TLS = &tls.ConnectionState{}
3456		*req.TLS = h.c.ConnectionState()
3457	}
3458	if req.Body == nil {
3459		req.Body = NoBody
3460	}
3461	if req.RemoteAddr == "" {
3462		req.RemoteAddr = h.c.RemoteAddr().String()
3463	}
3464	h.h.ServeHTTP(rw, req)
3465}
3466
3467// loggingConn is used for debugging.
3468type loggingConn struct {
3469	name string
3470	net.Conn
3471}
3472
3473var (
3474	uniqNameMu   sync.Mutex
3475	uniqNameNext = make(map[string]int)
3476)
3477
3478func newLoggingConn(baseName string, c net.Conn) net.Conn {
3479	uniqNameMu.Lock()
3480	defer uniqNameMu.Unlock()
3481	uniqNameNext[baseName]++
3482	return &loggingConn{
3483		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
3484		Conn: c,
3485	}
3486}
3487
3488func (c *loggingConn) Write(p []byte) (n int, err error) {
3489	log.Printf("%s.Write(%d) = ....", c.name, len(p))
3490	n, err = c.Conn.Write(p)
3491	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
3492	return
3493}
3494
3495func (c *loggingConn) Read(p []byte) (n int, err error) {
3496	log.Printf("%s.Read(%d) = ....", c.name, len(p))
3497	n, err = c.Conn.Read(p)
3498	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
3499	return
3500}
3501
3502func (c *loggingConn) Close() (err error) {
3503	log.Printf("%s.Close() = ...", c.name)
3504	err = c.Conn.Close()
3505	log.Printf("%s.Close() = %v", c.name, err)
3506	return
3507}
3508
3509// checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
3510// It only contains one field (and a pointer field at that), so it
3511// fits in an interface value without an extra allocation.
3512type checkConnErrorWriter struct {
3513	c *conn
3514}
3515
3516func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
3517	n, err = w.c.rwc.Write(p)
3518	if err != nil && w.c.werr == nil {
3519		w.c.werr = err
3520		w.c.cancelCtx()
3521	}
3522	return
3523}
3524
3525func numLeadingCRorLF(v []byte) (n int) {
3526	for _, b := range v {
3527		if b == '\r' || b == '\n' {
3528			n++
3529			continue
3530		}
3531		break
3532	}
3533	return
3534
3535}
3536
3537func strSliceContains(ss []string, s string) bool {
3538	for _, v := range ss {
3539		if v == s {
3540			return true
3541		}
3542	}
3543	return false
3544}
3545
3546// tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header
3547// looks like it might've been a misdirected plaintext HTTP request.
3548func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool {
3549	switch string(hdr[:]) {
3550	case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO":
3551		return true
3552	}
3553	return false
3554}
3555