1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2021 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
43 
44 /* The aliasing API provided here solves related but different problems:
45 
46    Say there exists (in c)
47 
48    struct X {
49      struct Y y1;
50      struct Z z2;
51    } x1, *px1,  *px2;
52 
53    struct Y y2, *py;
54    struct Z z2, *pz;
55 
56 
57    py = &x1.y1;
58    px2 = &x1;
59 
60    Consider the four questions:
61 
62    Can a store to x1 interfere with px2->y1?
63    Can a store to x1 interfere with px2->z2?
64    Can a store to x1 change the value pointed to by with py?
65    Can a store to x1 change the value pointed to by with pz?
66 
67    The answer to these questions can be yes, yes, yes, and maybe.
68 
69    The first two questions can be answered with a simple examination
70    of the type system.  If structure X contains a field of type Y then
71    a store through a pointer to an X can overwrite any field that is
72    contained (recursively) in an X (unless we know that px1 != px2).
73 
74    The last two questions can be solved in the same way as the first
75    two questions but this is too conservative.  The observation is
76    that in some cases we can know which (if any) fields are addressed
77    and if those addresses are used in bad ways.  This analysis may be
78    language specific.  In C, arbitrary operations may be applied to
79    pointers.  However, there is some indication that this may be too
80    conservative for some C++ types.
81 
82    The pass ipa-type-escape does this analysis for the types whose
83    instances do not escape across the compilation boundary.
84 
85    Historically in GCC, these two problems were combined and a single
86    data structure that was used to represent the solution to these
87    problems.  We now have two similar but different data structures,
88    The data structure to solve the last two questions is similar to
89    the first, but does not contain the fields whose address are never
90    taken.  For types that do escape the compilation unit, the data
91    structures will have identical information.
92 */
93 
94 /* The alias sets assigned to MEMs assist the back-end in determining
95    which MEMs can alias which other MEMs.  In general, two MEMs in
96    different alias sets cannot alias each other, with one important
97    exception.  Consider something like:
98 
99      struct S { int i; double d; };
100 
101    a store to an `S' can alias something of either type `int' or type
102    `double'.  (However, a store to an `int' cannot alias a `double'
103    and vice versa.)  We indicate this via a tree structure that looks
104    like:
105 	   struct S
106 	    /   \
107 	   /     \
108 	 |/_     _\|
109 	 int    double
110 
111    (The arrows are directed and point downwards.)
112     In this situation we say the alias set for `struct S' is the
113    `superset' and that those for `int' and `double' are `subsets'.
114 
115    To see whether two alias sets can point to the same memory, we must
116    see if either alias set is a subset of the other. We need not trace
117    past immediate descendants, however, since we propagate all
118    grandchildren up one level.
119 
120    Alias set zero is implicitly a superset of all other alias sets.
121    However, this is no actual entry for alias set zero.  It is an
122    error to attempt to explicitly construct a subset of zero.  */
123 
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 
126 struct GTY(()) alias_set_entry {
127   /* The alias set number, as stored in MEM_ALIAS_SET.  */
128   alias_set_type alias_set;
129 
130   /* Nonzero if would have a child of zero: this effectively makes this
131      alias set the same as alias set zero.  */
132   bool has_zero_child;
133   /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134      aggregate contaiing pointer.
135      This is used for a special case where we need an universal pointer type
136      compatible with all other pointer types.  */
137   bool is_pointer;
138   /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
139   bool has_pointer;
140 
141   /* The children of the alias set.  These are not just the immediate
142      children, but, in fact, all descendants.  So, if we have:
143 
144        struct T { struct S s; float f; }
145 
146      continuing our example above, the children here will be all of
147      `int', `double', `float', and `struct S'.  */
148   hash_map<alias_set_hash, int> *children;
149 };
150 
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 			     machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 			       const_rtx, machine_mode, rtx,
161 			       bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx,
163 				     HOST_WIDE_INT * = NULL);
164 
165 static void memory_modified_1 (rtx, const_rtx, void *);
166 
167 /* Query statistics for the different low-level disambiguators.
168    A high-level query may trigger multiple of them.  */
169 
170 static struct {
171   unsigned long long num_alias_zero;
172   unsigned long long num_same_alias_set;
173   unsigned long long num_same_objects;
174   unsigned long long num_volatile;
175   unsigned long long num_dag;
176   unsigned long long num_universal;
177   unsigned long long num_disambiguated;
178 } alias_stats;
179 
180 
181 /* Set up all info needed to perform alias analysis on memory references.  */
182 
183 /* Returns the size in bytes of the mode of X.  */
184 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 
186 /* Cap the number of passes we make over the insns propagating alias
187    information through set chains.
188    ??? 10 is a completely arbitrary choice.  This should be based on the
189    maximum loop depth in the CFG, but we do not have this information
190    available (even if current_loops _is_ available).  */
191 #define MAX_ALIAS_LOOP_PASSES 10
192 
193 /* reg_base_value[N] gives an address to which register N is related.
194    If all sets after the first add or subtract to the current value
195    or otherwise modify it so it does not point to a different top level
196    object, reg_base_value[N] is equal to the address part of the source
197    of the first set.
198 
199    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
200    expressions represent three types of base:
201 
202      1. incoming arguments.  There is just one ADDRESS to represent all
203 	arguments, since we do not know at this level whether accesses
204 	based on different arguments can alias.  The ADDRESS has id 0.
205 
206      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
207 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
208 	Each of these rtxes has a separate ADDRESS associated with it,
209 	each with a negative id.
210 
211 	GCC is (and is required to be) precise in which register it
212 	chooses to access a particular region of stack.  We can therefore
213 	assume that accesses based on one of these rtxes do not alias
214 	accesses based on another of these rtxes.
215 
216      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
217 	Each such piece of memory has a separate ADDRESS associated
218 	with it, each with an id greater than 0.
219 
220    Accesses based on one ADDRESS do not alias accesses based on other
221    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
222    alias globals either; the ADDRESSes have Pmode to indicate this.
223    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224    indicate this.  */
225 
226 static GTY(()) vec<rtx, va_gc> *reg_base_value;
227 static rtx *new_reg_base_value;
228 
229 /* The single VOIDmode ADDRESS that represents all argument bases.
230    It has id 0.  */
231 static GTY(()) rtx arg_base_value;
232 
233 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
234 static int unique_id;
235 
236 /* We preserve the copy of old array around to avoid amount of garbage
237    produced.  About 8% of garbage produced were attributed to this
238    array.  */
239 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240 
241 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242    registers.  */
243 #define UNIQUE_BASE_VALUE_SP	-1
244 #define UNIQUE_BASE_VALUE_ARGP	-2
245 #define UNIQUE_BASE_VALUE_FP	-3
246 #define UNIQUE_BASE_VALUE_HFP	-4
247 
248 #define static_reg_base_value \
249   (this_target_rtl->x_static_reg_base_value)
250 
251 #define REG_BASE_VALUE(X)					\
252   (REGNO (X) < vec_safe_length (reg_base_value)			\
253    ? (*reg_base_value)[REGNO (X)] : 0)
254 
255 /* Vector indexed by N giving the initial (unchanging) value known for
256    pseudo-register N.  This vector is initialized in init_alias_analysis,
257    and does not change until end_alias_analysis is called.  */
258 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259 
260 /* Vector recording for each reg_known_value whether it is due to a
261    REG_EQUIV note.  Future passes (viz., reload) may replace the
262    pseudo with the equivalent expression and so we account for the
263    dependences that would be introduced if that happens.
264 
265    The REG_EQUIV notes created in assign_parms may mention the arg
266    pointer, and there are explicit insns in the RTL that modify the
267    arg pointer.  Thus we must ensure that such insns don't get
268    scheduled across each other because that would invalidate the
269    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
270    wrong, but solving the problem in the scheduler will likely give
271    better code, so we do it here.  */
272 static sbitmap reg_known_equiv_p;
273 
274 /* True when scanning insns from the start of the rtl to the
275    NOTE_INSN_FUNCTION_BEG note.  */
276 static bool copying_arguments;
277 
278 
279 /* The splay-tree used to store the various alias set entries.  */
280 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 
282 /* Build a decomposed reference object for querying the alias-oracle
283    from the MEM rtx and store it in *REF.
284    Returns false if MEM is not suitable for the alias-oracle.  */
285 
286 static bool
287 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 {
289   tree expr = MEM_EXPR (mem);
290   tree base;
291 
292   if (!expr)
293     return false;
294 
295   ao_ref_init (ref, expr);
296 
297   /* Get the base of the reference and see if we have to reject or
298      adjust it.  */
299   base = ao_ref_base (ref);
300   if (base == NULL_TREE)
301     return false;
302 
303   /* The tree oracle doesn't like bases that are neither decls
304      nor indirect references of SSA names.  */
305   if (!(DECL_P (base)
306 	|| (TREE_CODE (base) == MEM_REF
307 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
308 	|| (TREE_CODE (base) == TARGET_MEM_REF
309 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
310     return false;
311 
312   ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 
314   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315      is conservative, so trust it.  */
316   if (!MEM_OFFSET_KNOWN_P (mem)
317       || !MEM_SIZE_KNOWN_P (mem))
318     return true;
319 
320   /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
321      drop ref->ref.  */
322   if (maybe_lt (MEM_OFFSET (mem), 0)
323       || (ref->max_size_known_p ()
324 	  && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
325 		       ref->max_size)))
326     ref->ref = NULL_TREE;
327 
328   /* Refine size and offset we got from analyzing MEM_EXPR by using
329      MEM_SIZE and MEM_OFFSET.  */
330 
331   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
332   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
333 
334   /* The MEM may extend into adjacent fields, so adjust max_size if
335      necessary.  */
336   if (ref->max_size_known_p ())
337     ref->max_size = upper_bound (ref->max_size, ref->size);
338 
339   /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
340      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
341   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342       && (maybe_lt (ref->offset, 0)
343 	  || (DECL_P (ref->base)
344 	      && (DECL_SIZE (ref->base) == NULL_TREE
345 		  || !poly_int_tree_p (DECL_SIZE (ref->base))
346 		  || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
347 			       ref->offset + ref->size)))))
348     return false;
349 
350   return true;
351 }
352 
353 /* Query the alias-oracle on whether the two memory rtx X and MEM may
354    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
355    two rtxen may alias, false otherwise.  */
356 
357 static bool
358 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 {
360   ao_ref ref1, ref2;
361 
362   if (!ao_ref_from_mem (&ref1, x)
363       || !ao_ref_from_mem (&ref2, mem))
364     return true;
365 
366   return refs_may_alias_p_1 (&ref1, &ref2,
367 			     tbaa_p
368 			     && MEM_ALIAS_SET (x) != 0
369 			     && MEM_ALIAS_SET (mem) != 0);
370 }
371 
372 /* Return true if the ref EARLIER behaves the same as LATER with respect
373    to TBAA for every memory reference that might follow LATER.  */
374 
375 bool
376 refs_same_for_tbaa_p (tree earlier, tree later)
377 {
378   ao_ref earlier_ref, later_ref;
379   ao_ref_init (&earlier_ref, earlier);
380   ao_ref_init (&later_ref, later);
381   alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
382   alias_set_type later_set = ao_ref_alias_set (&later_ref);
383   if (!(earlier_set == later_set
384 	|| alias_set_subset_of (later_set, earlier_set)))
385     return false;
386   alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
387   alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
388   return (earlier_base_set == later_base_set
389 	  || alias_set_subset_of (later_base_set, earlier_base_set));
390 }
391 
392 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
393    such an entry, or NULL otherwise.  */
394 
395 static inline alias_set_entry *
396 get_alias_set_entry (alias_set_type alias_set)
397 {
398   return (*alias_sets)[alias_set];
399 }
400 
401 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
402    the two MEMs cannot alias each other.  */
403 
404 static inline int
405 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
406 {
407   return (flag_strict_aliasing
408 	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
409 				      MEM_ALIAS_SET (mem2)));
410 }
411 
412 /* Return true if the first alias set is a subset of the second.  */
413 
414 bool
415 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
416 {
417   alias_set_entry *ase2;
418 
419   /* Disable TBAA oracle with !flag_strict_aliasing.  */
420   if (!flag_strict_aliasing)
421     return true;
422 
423   /* Everything is a subset of the "aliases everything" set.  */
424   if (set2 == 0)
425     return true;
426 
427   /* Check if set1 is a subset of set2.  */
428   ase2 = get_alias_set_entry (set2);
429   if (ase2 != 0
430       && (ase2->has_zero_child
431 	  || (ase2->children && ase2->children->get (set1))))
432     return true;
433 
434   /* As a special case we consider alias set of "void *" to be both subset
435      and superset of every alias set of a pointer.  This extra symmetry does
436      not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
437      to return true on the following testcase:
438 
439      void *ptr;
440      char **ptr2=(char **)&ptr;
441      *ptr2 = ...
442 
443      Additionally if a set contains universal pointer, we consider every pointer
444      to be a subset of it, but we do not represent this explicitely - doing so
445      would require us to update transitive closure each time we introduce new
446      pointer type.  This makes aliasing_component_refs_p to return true
447      on the following testcase:
448 
449      struct a {void *ptr;}
450      char **ptr = (char **)&a.ptr;
451      ptr = ...
452 
453      This makes void * truly universal pointer type.  See pointer handling in
454      get_alias_set for more details.  */
455   if (ase2 && ase2->has_pointer)
456     {
457       alias_set_entry *ase1 = get_alias_set_entry (set1);
458 
459       if (ase1 && ase1->is_pointer)
460 	{
461           alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
462 	  /* If one is ptr_type_node and other is pointer, then we consider
463  	     them subset of each other.  */
464 	  if (set1 == voidptr_set || set2 == voidptr_set)
465 	    return true;
466 	  /* If SET2 contains universal pointer's alias set, then we consdier
467  	     every (non-universal) pointer.  */
468 	  if (ase2->children && set1 != voidptr_set
469 	      && ase2->children->get (voidptr_set))
470 	    return true;
471 	}
472     }
473   return false;
474 }
475 
476 /* Return 1 if the two specified alias sets may conflict.  */
477 
478 int
479 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
480 {
481   alias_set_entry *ase1;
482   alias_set_entry *ase2;
483 
484   /* The easy case.  */
485   if (alias_sets_must_conflict_p (set1, set2))
486     return 1;
487 
488   /* See if the first alias set is a subset of the second.  */
489   ase1 = get_alias_set_entry (set1);
490   if (ase1 != 0
491       && ase1->children && ase1->children->get (set2))
492     {
493       ++alias_stats.num_dag;
494       return 1;
495     }
496 
497   /* Now do the same, but with the alias sets reversed.  */
498   ase2 = get_alias_set_entry (set2);
499   if (ase2 != 0
500       && ase2->children && ase2->children->get (set1))
501     {
502       ++alias_stats.num_dag;
503       return 1;
504     }
505 
506   /* We want void * to be compatible with any other pointer without
507      really dropping it to alias set 0. Doing so would make it
508      compatible with all non-pointer types too.
509 
510      This is not strictly necessary by the C/C++ language
511      standards, but avoids common type punning mistakes.  In
512      addition to that, we need the existence of such universal
513      pointer to implement Fortran's C_PTR type (which is defined as
514      type compatible with all C pointers).  */
515   if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
516     {
517       alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
518 
519       /* If one of the sets corresponds to universal pointer,
520  	 we consider it to conflict with anything that is
521 	 or contains pointer.  */
522       if (set1 == voidptr_set || set2 == voidptr_set)
523 	{
524 	  ++alias_stats.num_universal;
525 	  return true;
526 	}
527      /* If one of sets is (non-universal) pointer and the other
528  	contains universal pointer, we also get conflict.  */
529      if (ase1->is_pointer && set2 != voidptr_set
530 	 && ase2->children && ase2->children->get (voidptr_set))
531 	{
532 	  ++alias_stats.num_universal;
533 	  return true;
534 	}
535      if (ase2->is_pointer && set1 != voidptr_set
536 	 && ase1->children && ase1->children->get (voidptr_set))
537 	{
538 	  ++alias_stats.num_universal;
539 	  return true;
540 	}
541     }
542 
543   ++alias_stats.num_disambiguated;
544 
545   /* The two alias sets are distinct and neither one is the
546      child of the other.  Therefore, they cannot conflict.  */
547   return 0;
548 }
549 
550 /* Return 1 if the two specified alias sets will always conflict.  */
551 
552 int
553 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
554 {
555   /* Disable TBAA oracle with !flag_strict_aliasing.  */
556   if (!flag_strict_aliasing)
557     return 1;
558   if (set1 == 0 || set2 == 0)
559     {
560       ++alias_stats.num_alias_zero;
561       return 1;
562     }
563   if (set1 == set2)
564     {
565       ++alias_stats.num_same_alias_set;
566       return 1;
567     }
568 
569   return 0;
570 }
571 
572 /* Return 1 if any MEM object of type T1 will always conflict (using the
573    dependency routines in this file) with any MEM object of type T2.
574    This is used when allocating temporary storage.  If T1 and/or T2 are
575    NULL_TREE, it means we know nothing about the storage.  */
576 
577 int
578 objects_must_conflict_p (tree t1, tree t2)
579 {
580   alias_set_type set1, set2;
581 
582   /* If neither has a type specified, we don't know if they'll conflict
583      because we may be using them to store objects of various types, for
584      example the argument and local variables areas of inlined functions.  */
585   if (t1 == 0 && t2 == 0)
586     return 0;
587 
588   /* If they are the same type, they must conflict.  */
589   if (t1 == t2)
590     {
591       ++alias_stats.num_same_objects;
592       return 1;
593     }
594   /* Likewise if both are volatile.  */
595   if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
596     {
597       ++alias_stats.num_volatile;
598       return 1;
599     }
600 
601   set1 = t1 ? get_alias_set (t1) : 0;
602   set2 = t2 ? get_alias_set (t2) : 0;
603 
604   /* We can't use alias_sets_conflict_p because we must make sure
605      that every subtype of t1 will conflict with every subtype of
606      t2 for which a pair of subobjects of these respective subtypes
607      overlaps on the stack.  */
608   return alias_sets_must_conflict_p (set1, set2);
609 }
610 
611 /* Return true if T is an end of the access path which can be used
612    by type based alias oracle.  */
613 
614 bool
615 ends_tbaa_access_path_p (const_tree t)
616 {
617   switch (TREE_CODE (t))
618     {
619     case COMPONENT_REF:
620       if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
621 	return true;
622       /* Permit type-punning when accessing a union, provided the access
623 	 is directly through the union.  For example, this code does not
624 	 permit taking the address of a union member and then storing
625 	 through it.  Even the type-punning allowed here is a GCC
626 	 extension, albeit a common and useful one; the C standard says
627 	 that such accesses have implementation-defined behavior.  */
628       else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
629 	return true;
630       break;
631 
632     case ARRAY_REF:
633     case ARRAY_RANGE_REF:
634       if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
635 	return true;
636       break;
637 
638     case REALPART_EXPR:
639     case IMAGPART_EXPR:
640       break;
641 
642     case BIT_FIELD_REF:
643     case VIEW_CONVERT_EXPR:
644       /* Bitfields and casts are never addressable.  */
645       return true;
646       break;
647 
648     default:
649       gcc_unreachable ();
650     }
651   return false;
652 }
653 
654 /* Return the outermost parent of component present in the chain of
655    component references handled by get_inner_reference in T with the
656    following property:
657      - the component is non-addressable
658    or NULL_TREE if no such parent exists.  In the former cases, the alias
659    set of this parent is the alias set that must be used for T itself.  */
660 
661 tree
662 component_uses_parent_alias_set_from (const_tree t)
663 {
664   const_tree found = NULL_TREE;
665 
666   while (handled_component_p (t))
667     {
668       if (ends_tbaa_access_path_p (t))
669 	found = t;
670 
671       t = TREE_OPERAND (t, 0);
672     }
673 
674   if (found)
675     return TREE_OPERAND (found, 0);
676 
677   return NULL_TREE;
678 }
679 
680 
681 /* Return whether the pointer-type T effective for aliasing may
682    access everything and thus the reference has to be assigned
683    alias-set zero.  */
684 
685 static bool
686 ref_all_alias_ptr_type_p (const_tree t)
687 {
688   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
689 	  || TYPE_REF_CAN_ALIAS_ALL (t));
690 }
691 
692 /* Return the alias set for the memory pointed to by T, which may be
693    either a type or an expression.  Return -1 if there is nothing
694    special about dereferencing T.  */
695 
696 static alias_set_type
697 get_deref_alias_set_1 (tree t)
698 {
699   /* All we care about is the type.  */
700   if (! TYPE_P (t))
701     t = TREE_TYPE (t);
702 
703   /* If we have an INDIRECT_REF via a void pointer, we don't
704      know anything about what that might alias.  Likewise if the
705      pointer is marked that way.  */
706   if (ref_all_alias_ptr_type_p (t))
707     return 0;
708 
709   return -1;
710 }
711 
712 /* Return the alias set for the memory pointed to by T, which may be
713    either a type or an expression.  */
714 
715 alias_set_type
716 get_deref_alias_set (tree t)
717 {
718   /* If we're not doing any alias analysis, just assume everything
719      aliases everything else.  */
720   if (!flag_strict_aliasing)
721     return 0;
722 
723   alias_set_type set = get_deref_alias_set_1 (t);
724 
725   /* Fall back to the alias-set of the pointed-to type.  */
726   if (set == -1)
727     {
728       if (! TYPE_P (t))
729 	t = TREE_TYPE (t);
730       set = get_alias_set (TREE_TYPE (t));
731     }
732 
733   return set;
734 }
735 
736 /* Return the pointer-type relevant for TBAA purposes from the
737    memory reference tree *T or NULL_TREE in which case *T is
738    adjusted to point to the outermost component reference that
739    can be used for assigning an alias set.  */
740 
741 tree
742 reference_alias_ptr_type_1 (tree *t)
743 {
744   tree inner;
745 
746   /* Get the base object of the reference.  */
747   inner = *t;
748   while (handled_component_p (inner))
749     {
750       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
751 	 the type of any component references that wrap it to
752 	 determine the alias-set.  */
753       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
754 	*t = TREE_OPERAND (inner, 0);
755       inner = TREE_OPERAND (inner, 0);
756     }
757 
758   /* Handle pointer dereferences here, they can override the
759      alias-set.  */
760   if (INDIRECT_REF_P (inner)
761       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
762     return TREE_TYPE (TREE_OPERAND (inner, 0));
763   else if (TREE_CODE (inner) == TARGET_MEM_REF)
764     return TREE_TYPE (TMR_OFFSET (inner));
765   else if (TREE_CODE (inner) == MEM_REF
766 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
767     return TREE_TYPE (TREE_OPERAND (inner, 1));
768 
769   /* If the innermost reference is a MEM_REF that has a
770      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
771      using the memory access type for determining the alias-set.  */
772   if (TREE_CODE (inner) == MEM_REF
773       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
774 	  != TYPE_MAIN_VARIANT
775 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
776     return TREE_TYPE (TREE_OPERAND (inner, 1));
777 
778   /* Otherwise, pick up the outermost object that we could have
779      a pointer to.  */
780   tree tem = component_uses_parent_alias_set_from (*t);
781   if (tem)
782     *t = tem;
783 
784   return NULL_TREE;
785 }
786 
787 /* Return the pointer-type relevant for TBAA purposes from the
788    gimple memory reference tree T.  This is the type to be used for
789    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
790    and guarantees that get_alias_set will return the same alias
791    set for T and the replacement.  */
792 
793 tree
794 reference_alias_ptr_type (tree t)
795 {
796   /* If the frontend assigns this alias-set zero, preserve that.  */
797   if (lang_hooks.get_alias_set (t) == 0)
798     return ptr_type_node;
799 
800   tree ptype = reference_alias_ptr_type_1 (&t);
801   /* If there is a given pointer type for aliasing purposes, return it.  */
802   if (ptype != NULL_TREE)
803     return ptype;
804 
805   /* Otherwise build one from the outermost component reference we
806      may use.  */
807   if (TREE_CODE (t) == MEM_REF
808       || TREE_CODE (t) == TARGET_MEM_REF)
809     return TREE_TYPE (TREE_OPERAND (t, 1));
810   else
811     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
812 }
813 
814 /* Return whether the pointer-types T1 and T2 used to determine
815    two alias sets of two references will yield the same answer
816    from get_deref_alias_set.  */
817 
818 bool
819 alias_ptr_types_compatible_p (tree t1, tree t2)
820 {
821   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
822     return true;
823 
824   if (ref_all_alias_ptr_type_p (t1)
825       || ref_all_alias_ptr_type_p (t2))
826     return false;
827 
828     /* This function originally abstracts from simply comparing
829        get_deref_alias_set so that we are sure this still computes
830        the same result after LTO type merging is applied.
831        When in LTO type merging is done we can actually do this compare.
832     */
833   if (in_lto_p)
834     return get_deref_alias_set (t1) == get_deref_alias_set (t2);
835   else
836     return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
837 	    == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
838 }
839 
840 /* Create emptry alias set entry.  */
841 
842 alias_set_entry *
843 init_alias_set_entry (alias_set_type set)
844 {
845   alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
846   ase->alias_set = set;
847   ase->children = NULL;
848   ase->has_zero_child = false;
849   ase->is_pointer = false;
850   ase->has_pointer = false;
851   gcc_checking_assert (!get_alias_set_entry (set));
852   (*alias_sets)[set] = ase;
853   return ase;
854 }
855 
856 /* Return the alias set for T, which may be either a type or an
857    expression.  Call language-specific routine for help, if needed.  */
858 
859 alias_set_type
860 get_alias_set (tree t)
861 {
862   alias_set_type set;
863 
864   /* We cannot give up with -fno-strict-aliasing because we need to build
865      proper type representations for possible functions which are built with
866      -fstrict-aliasing.  */
867 
868   /* return 0 if this or its type is an error.  */
869   if (t == error_mark_node
870       || (! TYPE_P (t)
871 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
872     return 0;
873 
874   /* We can be passed either an expression or a type.  This and the
875      language-specific routine may make mutually-recursive calls to each other
876      to figure out what to do.  At each juncture, we see if this is a tree
877      that the language may need to handle specially.  First handle things that
878      aren't types.  */
879   if (! TYPE_P (t))
880     {
881       /* Give the language a chance to do something with this tree
882 	 before we look at it.  */
883       STRIP_NOPS (t);
884       set = lang_hooks.get_alias_set (t);
885       if (set != -1)
886 	return set;
887 
888       /* Get the alias pointer-type to use or the outermost object
889          that we could have a pointer to.  */
890       tree ptype = reference_alias_ptr_type_1 (&t);
891       if (ptype != NULL)
892 	return get_deref_alias_set (ptype);
893 
894       /* If we've already determined the alias set for a decl, just return
895 	 it.  This is necessary for C++ anonymous unions, whose component
896 	 variables don't look like union members (boo!).  */
897       if (VAR_P (t)
898 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
899 	return MEM_ALIAS_SET (DECL_RTL (t));
900 
901       /* Now all we care about is the type.  */
902       t = TREE_TYPE (t);
903     }
904 
905   /* Variant qualifiers don't affect the alias set, so get the main
906      variant.  */
907   t = TYPE_MAIN_VARIANT (t);
908 
909   if (AGGREGATE_TYPE_P (t)
910       && TYPE_TYPELESS_STORAGE (t))
911     return 0;
912 
913   /* Always use the canonical type as well.  If this is a type that
914      requires structural comparisons to identify compatible types
915      use alias set zero.  */
916   if (TYPE_STRUCTURAL_EQUALITY_P (t))
917     {
918       /* Allow the language to specify another alias set for this
919 	 type.  */
920       set = lang_hooks.get_alias_set (t);
921       if (set != -1)
922 	return set;
923       /* Handle structure type equality for pointer types, arrays and vectors.
924 	 This is easy to do, because the code below ignores canonical types on
925 	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
926 	 pointers cannot be meaningfully computed by the frontend.  */
927       if (canonical_type_used_p (t))
928 	{
929 	  /* In LTO we set canonical types for all types where it makes
930 	     sense to do so.  Double check we did not miss some type.  */
931 	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
932           return 0;
933 	}
934     }
935   else
936     {
937       t = TYPE_CANONICAL (t);
938       gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
939     }
940 
941   /* If this is a type with a known alias set, return it.  */
942   gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
943   if (TYPE_ALIAS_SET_KNOWN_P (t))
944     return TYPE_ALIAS_SET (t);
945 
946   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
947   if (!COMPLETE_TYPE_P (t))
948     {
949       /* For arrays with unknown size the conservative answer is the
950 	 alias set of the element type.  */
951       if (TREE_CODE (t) == ARRAY_TYPE)
952 	return get_alias_set (TREE_TYPE (t));
953 
954       /* But return zero as a conservative answer for incomplete types.  */
955       return 0;
956     }
957 
958   /* See if the language has special handling for this type.  */
959   set = lang_hooks.get_alias_set (t);
960   if (set != -1)
961     return set;
962 
963   /* There are no objects of FUNCTION_TYPE, so there's no point in
964      using up an alias set for them.  (There are, of course, pointers
965      and references to functions, but that's different.)  */
966   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
967     set = 0;
968 
969   /* Unless the language specifies otherwise, let vector types alias
970      their components.  This avoids some nasty type punning issues in
971      normal usage.  And indeed lets vectors be treated more like an
972      array slice.  */
973   else if (TREE_CODE (t) == VECTOR_TYPE)
974     set = get_alias_set (TREE_TYPE (t));
975 
976   /* Unless the language specifies otherwise, treat array types the
977      same as their components.  This avoids the asymmetry we get
978      through recording the components.  Consider accessing a
979      character(kind=1) through a reference to a character(kind=1)[1:1].
980      Or consider if we want to assign integer(kind=4)[0:D.1387] and
981      integer(kind=4)[4] the same alias set or not.
982      Just be pragmatic here and make sure the array and its element
983      type get the same alias set assigned.  */
984   else if (TREE_CODE (t) == ARRAY_TYPE
985 	   && (!TYPE_NONALIASED_COMPONENT (t)
986 	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
987     set = get_alias_set (TREE_TYPE (t));
988 
989   /* From the former common C and C++ langhook implementation:
990 
991      Unfortunately, there is no canonical form of a pointer type.
992      In particular, if we have `typedef int I', then `int *', and
993      `I *' are different types.  So, we have to pick a canonical
994      representative.  We do this below.
995 
996      Technically, this approach is actually more conservative that
997      it needs to be.  In particular, `const int *' and `int *'
998      should be in different alias sets, according to the C and C++
999      standard, since their types are not the same, and so,
1000      technically, an `int **' and `const int **' cannot point at
1001      the same thing.
1002 
1003      But, the standard is wrong.  In particular, this code is
1004      legal C++:
1005 
1006      int *ip;
1007      int **ipp = &ip;
1008      const int* const* cipp = ipp;
1009      And, it doesn't make sense for that to be legal unless you
1010      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
1011      the pointed-to types.  This issue has been reported to the
1012      C++ committee.
1013 
1014      For this reason go to canonical type of the unqalified pointer type.
1015      Until GCC 6 this code set all pointers sets to have alias set of
1016      ptr_type_node but that is a bad idea, because it prevents disabiguations
1017      in between pointers.  For Firefox this accounts about 20% of all
1018      disambiguations in the program.  */
1019   else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1020     {
1021       tree p;
1022       auto_vec <bool, 8> reference;
1023 
1024       /* Unnest all pointers and references.
1025 	 We also want to make pointer to array/vector equivalent to pointer to
1026 	 its element (see the reasoning above). Skip all those types, too.  */
1027       for (p = t; POINTER_TYPE_P (p)
1028 	   || (TREE_CODE (p) == ARRAY_TYPE
1029 	       && (!TYPE_NONALIASED_COMPONENT (p)
1030 		   || !COMPLETE_TYPE_P (p)
1031 		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1032 	   || TREE_CODE (p) == VECTOR_TYPE;
1033 	   p = TREE_TYPE (p))
1034 	{
1035 	  /* Ada supports recursive pointers.  Instead of doing recursion
1036 	     check, just give up once the preallocated space of 8 elements
1037 	     is up.  In this case just punt to void * alias set.  */
1038 	  if (reference.length () == 8)
1039 	    {
1040 	      p = ptr_type_node;
1041 	      break;
1042 	    }
1043 	  if (TREE_CODE (p) == REFERENCE_TYPE)
1044 	    /* In LTO we want languages that use references to be compatible
1045  	       with languages that use pointers.  */
1046 	    reference.safe_push (true && !in_lto_p);
1047 	  if (TREE_CODE (p) == POINTER_TYPE)
1048 	    reference.safe_push (false);
1049 	}
1050       p = TYPE_MAIN_VARIANT (p);
1051 
1052       /* In LTO for C++ programs we can turn incomplete types to complete
1053 	 using ODR name lookup.  */
1054       if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1055 	{
1056 	  p = prevailing_odr_type (p);
1057 	  gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1058 	}
1059 
1060       /* Make void * compatible with char * and also void **.
1061 	 Programs are commonly violating TBAA by this.
1062 
1063 	 We also make void * to conflict with every pointer
1064 	 (see record_component_aliases) and thus it is safe it to use it for
1065 	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1066       if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1067 	set = get_alias_set (ptr_type_node);
1068       else
1069 	{
1070 	  /* Rebuild pointer type starting from canonical types using
1071 	     unqualified pointers and references only.  This way all such
1072 	     pointers will have the same alias set and will conflict with
1073 	     each other.
1074 
1075 	     Most of time we already have pointers or references of a given type.
1076 	     If not we build new one just to be sure that if someone later
1077 	     (probably only middle-end can, as we should assign all alias
1078 	     classes only after finishing translation unit) builds the pointer
1079 	     type, the canonical type will match.  */
1080 	  p = TYPE_CANONICAL (p);
1081 	  while (!reference.is_empty ())
1082 	    {
1083 	      if (reference.pop ())
1084 		p = build_reference_type (p);
1085 	      else
1086 		p = build_pointer_type (p);
1087 	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1088 	      /* build_pointer_type should always return the canonical type.
1089 		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1090 		 them.  Be sure that frontends do not glob canonical types of
1091 		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1092 		 in all other cases.  */
1093 	      gcc_checking_assert (!TYPE_CANONICAL (p)
1094 				   || p == TYPE_CANONICAL (p));
1095 	    }
1096 
1097 	  /* Assign the alias set to both p and t.
1098 	     We cannot call get_alias_set (p) here as that would trigger
1099 	     infinite recursion when p == t.  In other cases it would just
1100 	     trigger unnecesary legwork of rebuilding the pointer again.  */
1101 	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1102 	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1103 	    set = TYPE_ALIAS_SET (p);
1104 	  else
1105 	    {
1106 	      set = new_alias_set ();
1107 	      TYPE_ALIAS_SET (p) = set;
1108 	    }
1109 	}
1110     }
1111   /* Alias set of ptr_type_node is special and serve as universal pointer which
1112      is TBAA compatible with every other pointer type.  Be sure we have the
1113      alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1114      of pointer types NULL.  */
1115   else if (t == ptr_type_node)
1116     set = new_alias_set ();
1117 
1118   /* Otherwise make a new alias set for this type.  */
1119   else
1120     {
1121       /* Each canonical type gets its own alias set, so canonical types
1122 	 shouldn't form a tree.  It doesn't really matter for types
1123 	 we handle specially above, so only check it where it possibly
1124 	 would result in a bogus alias set.  */
1125       gcc_checking_assert (TYPE_CANONICAL (t) == t);
1126 
1127       set = new_alias_set ();
1128     }
1129 
1130   TYPE_ALIAS_SET (t) = set;
1131 
1132   /* If this is an aggregate type or a complex type, we must record any
1133      component aliasing information.  */
1134   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1135     record_component_aliases (t);
1136 
1137   /* We treat pointer types specially in alias_set_subset_of.  */
1138   if (POINTER_TYPE_P (t) && set)
1139     {
1140       alias_set_entry *ase = get_alias_set_entry (set);
1141       if (!ase)
1142 	ase = init_alias_set_entry (set);
1143       ase->is_pointer = true;
1144       ase->has_pointer = true;
1145     }
1146 
1147   return set;
1148 }
1149 
1150 /* Return a brand-new alias set.  */
1151 
1152 alias_set_type
1153 new_alias_set (void)
1154 {
1155   if (alias_sets == 0)
1156     vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1157   vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1158   return alias_sets->length () - 1;
1159 }
1160 
1161 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1162    not everything that aliases SUPERSET also aliases SUBSET.  For example,
1163    in C, a store to an `int' can alias a load of a structure containing an
1164    `int', and vice versa.  But it can't alias a load of a 'double' member
1165    of the same structure.  Here, the structure would be the SUPERSET and
1166    `int' the SUBSET.  This relationship is also described in the comment at
1167    the beginning of this file.
1168 
1169    This function should be called only once per SUPERSET/SUBSET pair.
1170 
1171    It is illegal for SUPERSET to be zero; everything is implicitly a
1172    subset of alias set zero.  */
1173 
1174 void
1175 record_alias_subset (alias_set_type superset, alias_set_type subset)
1176 {
1177   alias_set_entry *superset_entry;
1178   alias_set_entry *subset_entry;
1179 
1180   /* It is possible in complex type situations for both sets to be the same,
1181      in which case we can ignore this operation.  */
1182   if (superset == subset)
1183     return;
1184 
1185   gcc_assert (superset);
1186 
1187   superset_entry = get_alias_set_entry (superset);
1188   if (superset_entry == 0)
1189     {
1190       /* Create an entry for the SUPERSET, so that we have a place to
1191 	 attach the SUBSET.  */
1192       superset_entry = init_alias_set_entry (superset);
1193     }
1194 
1195   if (subset == 0)
1196     superset_entry->has_zero_child = 1;
1197   else
1198     {
1199       if (!superset_entry->children)
1200 	superset_entry->children
1201 	  = hash_map<alias_set_hash, int>::create_ggc (64);
1202 
1203       /* Enter the SUBSET itself as a child of the SUPERSET.  If it was
1204 	 already there we're done.  */
1205       if (superset_entry->children->put (subset, 0))
1206 	return;
1207 
1208       subset_entry = get_alias_set_entry (subset);
1209       /* If there is an entry for the subset, enter all of its children
1210 	 (if they are not already present) as children of the SUPERSET.  */
1211       if (subset_entry)
1212 	{
1213 	  if (subset_entry->has_zero_child)
1214 	    superset_entry->has_zero_child = true;
1215           if (subset_entry->has_pointer)
1216 	    superset_entry->has_pointer = true;
1217 
1218 	  if (subset_entry->children)
1219 	    {
1220 	      hash_map<alias_set_hash, int>::iterator iter
1221 		= subset_entry->children->begin ();
1222 	      for (; iter != subset_entry->children->end (); ++iter)
1223 		superset_entry->children->put ((*iter).first, (*iter).second);
1224 	    }
1225 	}
1226     }
1227 }
1228 
1229 /* Record that component types of TYPE, if any, are part of SUPERSET for
1230    aliasing purposes.  For record types, we only record component types
1231    for fields that are not marked non-addressable.  For array types, we
1232    only record the component type if it is not marked non-aliased.  */
1233 
1234 void
1235 record_component_aliases (tree type, alias_set_type superset)
1236 {
1237   tree field;
1238 
1239   if (superset == 0)
1240     return;
1241 
1242   switch (TREE_CODE (type))
1243     {
1244     case RECORD_TYPE:
1245     case UNION_TYPE:
1246     case QUAL_UNION_TYPE:
1247       {
1248 	/* LTO non-ODR type merging does not make any difference between
1249 	   component pointer types.  We may have
1250 
1251 	   struct foo {int *a;};
1252 
1253 	   as TYPE_CANONICAL of
1254 
1255 	   struct bar {float *a;};
1256 
1257 	   Because accesses to int * and float * do not alias, we would get
1258 	   false negative when accessing the same memory location by
1259 	   float ** and bar *. We thus record the canonical type as:
1260 
1261 	   struct {void *a;};
1262 
1263 	   void * is special cased and works as a universal pointer type.
1264 	   Accesses to it conflicts with accesses to any other pointer
1265 	   type.  */
1266 	bool void_pointers = in_lto_p
1267 			     && (!odr_type_p (type)
1268 				 || !odr_based_tbaa_p (type));
1269 	for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1270 	  if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1271 	    {
1272 	      tree t = TREE_TYPE (field);
1273 	      if (void_pointers)
1274 		{
1275 		  /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1276 		     element type and that type has to be normalized to void *,
1277 		     too, in the case it is a pointer. */
1278 		  while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1279 		    {
1280 		      gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1281 		      t = TREE_TYPE (t);
1282 		    }
1283 		  if (POINTER_TYPE_P (t))
1284 		    t = ptr_type_node;
1285 		  else if (flag_checking)
1286 		    gcc_checking_assert (get_alias_set (t)
1287 					 == get_alias_set (TREE_TYPE (field)));
1288 		}
1289 
1290 	      alias_set_type set = get_alias_set (t);
1291 	      record_alias_subset (superset, set);
1292 	      /* If the field has alias-set zero make sure to still record
1293 		 any componets of it.  This makes sure that for
1294 		   struct A {
1295 		     struct B {
1296 		       int i;
1297 		       char c[4];
1298 		     } b;
1299 		   };
1300 		 in C++ even though 'B' has alias-set zero because
1301 		 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1302 		 'int' as subset.  */
1303 	      if (set == 0)
1304 		record_component_aliases (t, superset);
1305 	    }
1306       }
1307       break;
1308 
1309     case COMPLEX_TYPE:
1310       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1311       break;
1312 
1313     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1314        element type.  */
1315 
1316     default:
1317       break;
1318     }
1319 }
1320 
1321 /* Record that component types of TYPE, if any, are part of that type for
1322    aliasing purposes.  For record types, we only record component types
1323    for fields that are not marked non-addressable.  For array types, we
1324    only record the component type if it is not marked non-aliased.  */
1325 
1326 void
1327 record_component_aliases (tree type)
1328 {
1329   alias_set_type superset = get_alias_set (type);
1330   record_component_aliases (type, superset);
1331 }
1332 
1333 
1334 /* Allocate an alias set for use in storing and reading from the varargs
1335    spill area.  */
1336 
1337 static GTY(()) alias_set_type varargs_set = -1;
1338 
1339 alias_set_type
1340 get_varargs_alias_set (void)
1341 {
1342 #if 1
1343   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1344      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1345      consistently use the varargs alias set for loads from the varargs
1346      area.  So don't use it anywhere.  */
1347   return 0;
1348 #else
1349   if (varargs_set == -1)
1350     varargs_set = new_alias_set ();
1351 
1352   return varargs_set;
1353 #endif
1354 }
1355 
1356 /* Likewise, but used for the fixed portions of the frame, e.g., register
1357    save areas.  */
1358 
1359 static GTY(()) alias_set_type frame_set = -1;
1360 
1361 alias_set_type
1362 get_frame_alias_set (void)
1363 {
1364   if (frame_set == -1)
1365     frame_set = new_alias_set ();
1366 
1367   return frame_set;
1368 }
1369 
1370 /* Create a new, unique base with id ID.  */
1371 
1372 static rtx
1373 unique_base_value (HOST_WIDE_INT id)
1374 {
1375   return gen_rtx_ADDRESS (Pmode, id);
1376 }
1377 
1378 /* Return true if accesses based on any other base value cannot alias
1379    those based on X.  */
1380 
1381 static bool
1382 unique_base_value_p (rtx x)
1383 {
1384   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1385 }
1386 
1387 /* Return true if X is known to be a base value.  */
1388 
1389 static bool
1390 known_base_value_p (rtx x)
1391 {
1392   switch (GET_CODE (x))
1393     {
1394     case LABEL_REF:
1395     case SYMBOL_REF:
1396       return true;
1397 
1398     case ADDRESS:
1399       /* Arguments may or may not be bases; we don't know for sure.  */
1400       return GET_MODE (x) != VOIDmode;
1401 
1402     default:
1403       return false;
1404     }
1405 }
1406 
1407 /* Inside SRC, the source of a SET, find a base address.  */
1408 
1409 static rtx
1410 find_base_value (rtx src)
1411 {
1412   unsigned int regno;
1413   scalar_int_mode int_mode;
1414 
1415 #if defined (FIND_BASE_TERM)
1416   /* Try machine-dependent ways to find the base term.  */
1417   src = FIND_BASE_TERM (src);
1418 #endif
1419 
1420   switch (GET_CODE (src))
1421     {
1422     case SYMBOL_REF:
1423     case LABEL_REF:
1424       return src;
1425 
1426     case REG:
1427       regno = REGNO (src);
1428       /* At the start of a function, argument registers have known base
1429 	 values which may be lost later.  Returning an ADDRESS
1430 	 expression here allows optimization based on argument values
1431 	 even when the argument registers are used for other purposes.  */
1432       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1433 	return new_reg_base_value[regno];
1434 
1435       /* If a pseudo has a known base value, return it.  Do not do this
1436 	 for non-fixed hard regs since it can result in a circular
1437 	 dependency chain for registers which have values at function entry.
1438 
1439 	 The test above is not sufficient because the scheduler may move
1440 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1441       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1442 	  && regno < vec_safe_length (reg_base_value))
1443 	{
1444 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1445 	     to reduce the number of relaxation iterations.  */
1446 	  if (new_reg_base_value && new_reg_base_value[regno]
1447 	      && DF_REG_DEF_COUNT (regno) == 1)
1448 	    return new_reg_base_value[regno];
1449 
1450 	  if ((*reg_base_value)[regno])
1451 	    return (*reg_base_value)[regno];
1452 	}
1453 
1454       return 0;
1455 
1456     case MEM:
1457       /* Check for an argument passed in memory.  Only record in the
1458 	 copying-arguments block; it is too hard to track changes
1459 	 otherwise.  */
1460       if (copying_arguments
1461 	  && (XEXP (src, 0) == arg_pointer_rtx
1462 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1463 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1464 	return arg_base_value;
1465       return 0;
1466 
1467     case CONST:
1468       src = XEXP (src, 0);
1469       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1470 	break;
1471 
1472       /* fall through */
1473 
1474     case PLUS:
1475     case MINUS:
1476       {
1477 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1478 
1479 	/* If either operand is a REG that is a known pointer, then it
1480 	   is the base.  */
1481 	if (REG_P (src_0) && REG_POINTER (src_0))
1482 	  return find_base_value (src_0);
1483 	if (REG_P (src_1) && REG_POINTER (src_1))
1484 	  return find_base_value (src_1);
1485 
1486 	/* If either operand is a REG, then see if we already have
1487 	   a known value for it.  */
1488 	if (REG_P (src_0))
1489 	  {
1490 	    temp = find_base_value (src_0);
1491 	    if (temp != 0)
1492 	      src_0 = temp;
1493 	  }
1494 
1495 	if (REG_P (src_1))
1496 	  {
1497 	    temp = find_base_value (src_1);
1498 	    if (temp!= 0)
1499 	      src_1 = temp;
1500 	  }
1501 
1502 	/* If either base is named object or a special address
1503 	   (like an argument or stack reference), then use it for the
1504 	   base term.  */
1505 	if (src_0 != 0 && known_base_value_p (src_0))
1506 	  return src_0;
1507 
1508 	if (src_1 != 0 && known_base_value_p (src_1))
1509 	  return src_1;
1510 
1511 	/* Guess which operand is the base address:
1512 	   If either operand is a symbol, then it is the base.  If
1513 	   either operand is a CONST_INT, then the other is the base.  */
1514 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1515 	  return find_base_value (src_0);
1516 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1517 	  return find_base_value (src_1);
1518 
1519 	return 0;
1520       }
1521 
1522     case LO_SUM:
1523       /* The standard form is (lo_sum reg sym) so look only at the
1524 	 second operand.  */
1525       return find_base_value (XEXP (src, 1));
1526 
1527     case AND:
1528       /* Look through aligning ANDs.  And AND with zero or one with
1529          the LSB set isn't one (see for example PR92462).  */
1530       if (CONST_INT_P (XEXP (src, 1))
1531 	  && INTVAL (XEXP (src, 1)) != 0
1532 	  && (INTVAL (XEXP (src, 1)) & 1) == 0)
1533 	return find_base_value (XEXP (src, 0));
1534       return 0;
1535 
1536     case TRUNCATE:
1537       /* As we do not know which address space the pointer is referring to, we can
1538 	 handle this only if the target does not support different pointer or
1539 	 address modes depending on the address space.  */
1540       if (!target_default_pointer_address_modes_p ())
1541 	break;
1542       if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1543 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1544 	break;
1545       /* Fall through.  */
1546     case HIGH:
1547     case PRE_INC:
1548     case PRE_DEC:
1549     case POST_INC:
1550     case POST_DEC:
1551     case PRE_MODIFY:
1552     case POST_MODIFY:
1553       return find_base_value (XEXP (src, 0));
1554 
1555     case ZERO_EXTEND:
1556     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1557       /* As we do not know which address space the pointer is referring to, we can
1558 	 handle this only if the target does not support different pointer or
1559 	 address modes depending on the address space.  */
1560       if (!target_default_pointer_address_modes_p ())
1561 	break;
1562 
1563       {
1564 	rtx temp = find_base_value (XEXP (src, 0));
1565 
1566 	if (temp != 0 && CONSTANT_P (temp))
1567 	  temp = convert_memory_address (Pmode, temp);
1568 
1569 	return temp;
1570       }
1571 
1572     default:
1573       break;
1574     }
1575 
1576   return 0;
1577 }
1578 
1579 /* Called from init_alias_analysis indirectly through note_stores,
1580    or directly if DEST is a register with a REG_NOALIAS note attached.
1581    SET is null in the latter case.  */
1582 
1583 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1584    register N has been set in this function.  */
1585 static sbitmap reg_seen;
1586 
1587 static void
1588 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1589 {
1590   unsigned regno;
1591   rtx src;
1592   int n;
1593 
1594   if (!REG_P (dest))
1595     return;
1596 
1597   regno = REGNO (dest);
1598 
1599   gcc_checking_assert (regno < reg_base_value->length ());
1600 
1601   n = REG_NREGS (dest);
1602   if (n != 1)
1603     {
1604       while (--n >= 0)
1605 	{
1606 	  bitmap_set_bit (reg_seen, regno + n);
1607 	  new_reg_base_value[regno + n] = 0;
1608 	}
1609       return;
1610     }
1611 
1612   if (set)
1613     {
1614       /* A CLOBBER wipes out any old value but does not prevent a previously
1615 	 unset register from acquiring a base address (i.e. reg_seen is not
1616 	 set).  */
1617       if (GET_CODE (set) == CLOBBER)
1618 	{
1619 	  new_reg_base_value[regno] = 0;
1620 	  return;
1621 	}
1622 
1623       src = SET_SRC (set);
1624     }
1625   else
1626     {
1627       /* There's a REG_NOALIAS note against DEST.  */
1628       if (bitmap_bit_p (reg_seen, regno))
1629 	{
1630 	  new_reg_base_value[regno] = 0;
1631 	  return;
1632 	}
1633       bitmap_set_bit (reg_seen, regno);
1634       new_reg_base_value[regno] = unique_base_value (unique_id++);
1635       return;
1636     }
1637 
1638   /* If this is not the first set of REGNO, see whether the new value
1639      is related to the old one.  There are two cases of interest:
1640 
1641 	(1) The register might be assigned an entirely new value
1642 	    that has the same base term as the original set.
1643 
1644 	(2) The set might be a simple self-modification that
1645 	    cannot change REGNO's base value.
1646 
1647      If neither case holds, reject the original base value as invalid.
1648      Note that the following situation is not detected:
1649 
1650 	 extern int x, y;  int *p = &x; p += (&y-&x);
1651 
1652      ANSI C does not allow computing the difference of addresses
1653      of distinct top level objects.  */
1654   if (new_reg_base_value[regno] != 0
1655       && find_base_value (src) != new_reg_base_value[regno])
1656     switch (GET_CODE (src))
1657       {
1658       case LO_SUM:
1659       case MINUS:
1660 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1661 	  new_reg_base_value[regno] = 0;
1662 	break;
1663       case PLUS:
1664 	/* If the value we add in the PLUS is also a valid base value,
1665 	   this might be the actual base value, and the original value
1666 	   an index.  */
1667 	{
1668 	  rtx other = NULL_RTX;
1669 
1670 	  if (XEXP (src, 0) == dest)
1671 	    other = XEXP (src, 1);
1672 	  else if (XEXP (src, 1) == dest)
1673 	    other = XEXP (src, 0);
1674 
1675 	  if (! other || find_base_value (other))
1676 	    new_reg_base_value[regno] = 0;
1677 	  break;
1678 	}
1679       case AND:
1680 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1681 	  new_reg_base_value[regno] = 0;
1682 	break;
1683       default:
1684 	new_reg_base_value[regno] = 0;
1685 	break;
1686       }
1687   /* If this is the first set of a register, record the value.  */
1688   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1689 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1690     new_reg_base_value[regno] = find_base_value (src);
1691 
1692   bitmap_set_bit (reg_seen, regno);
1693 }
1694 
1695 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1696    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1697 rtx
1698 get_reg_base_value (unsigned int regno)
1699 {
1700   return (*reg_base_value)[regno];
1701 }
1702 
1703 /* If a value is known for REGNO, return it.  */
1704 
1705 rtx
1706 get_reg_known_value (unsigned int regno)
1707 {
1708   if (regno >= FIRST_PSEUDO_REGISTER)
1709     {
1710       regno -= FIRST_PSEUDO_REGISTER;
1711       if (regno < vec_safe_length (reg_known_value))
1712 	return (*reg_known_value)[regno];
1713     }
1714   return NULL;
1715 }
1716 
1717 /* Set it.  */
1718 
1719 static void
1720 set_reg_known_value (unsigned int regno, rtx val)
1721 {
1722   if (regno >= FIRST_PSEUDO_REGISTER)
1723     {
1724       regno -= FIRST_PSEUDO_REGISTER;
1725       if (regno < vec_safe_length (reg_known_value))
1726 	(*reg_known_value)[regno] = val;
1727     }
1728 }
1729 
1730 /* Similarly for reg_known_equiv_p.  */
1731 
1732 bool
1733 get_reg_known_equiv_p (unsigned int regno)
1734 {
1735   if (regno >= FIRST_PSEUDO_REGISTER)
1736     {
1737       regno -= FIRST_PSEUDO_REGISTER;
1738       if (regno < vec_safe_length (reg_known_value))
1739 	return bitmap_bit_p (reg_known_equiv_p, regno);
1740     }
1741   return false;
1742 }
1743 
1744 static void
1745 set_reg_known_equiv_p (unsigned int regno, bool val)
1746 {
1747   if (regno >= FIRST_PSEUDO_REGISTER)
1748     {
1749       regno -= FIRST_PSEUDO_REGISTER;
1750       if (regno < vec_safe_length (reg_known_value))
1751 	{
1752 	  if (val)
1753 	    bitmap_set_bit (reg_known_equiv_p, regno);
1754 	  else
1755 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1756 	}
1757     }
1758 }
1759 
1760 
1761 /* Returns a canonical version of X, from the point of view alias
1762    analysis.  (For example, if X is a MEM whose address is a register,
1763    and the register has a known value (say a SYMBOL_REF), then a MEM
1764    whose address is the SYMBOL_REF is returned.)  */
1765 
1766 rtx
1767 canon_rtx (rtx x)
1768 {
1769   /* Recursively look for equivalences.  */
1770   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1771     {
1772       rtx t = get_reg_known_value (REGNO (x));
1773       if (t == x)
1774 	return x;
1775       if (t)
1776 	return canon_rtx (t);
1777     }
1778 
1779   if (GET_CODE (x) == PLUS)
1780     {
1781       rtx x0 = canon_rtx (XEXP (x, 0));
1782       rtx x1 = canon_rtx (XEXP (x, 1));
1783 
1784       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1785 	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1786     }
1787 
1788   /* This gives us much better alias analysis when called from
1789      the loop optimizer.   Note we want to leave the original
1790      MEM alone, but need to return the canonicalized MEM with
1791      all the flags with their original values.  */
1792   else if (MEM_P (x))
1793     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1794 
1795   return x;
1796 }
1797 
1798 /* Return 1 if X and Y are identical-looking rtx's.
1799    Expect that X and Y has been already canonicalized.
1800 
1801    We use the data in reg_known_value above to see if two registers with
1802    different numbers are, in fact, equivalent.  */
1803 
1804 static int
1805 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1806 {
1807   int i;
1808   int j;
1809   enum rtx_code code;
1810   const char *fmt;
1811 
1812   if (x == 0 && y == 0)
1813     return 1;
1814   if (x == 0 || y == 0)
1815     return 0;
1816 
1817   if (x == y)
1818     return 1;
1819 
1820   code = GET_CODE (x);
1821   /* Rtx's of different codes cannot be equal.  */
1822   if (code != GET_CODE (y))
1823     return 0;
1824 
1825   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1826      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1827 
1828   if (GET_MODE (x) != GET_MODE (y))
1829     return 0;
1830 
1831   /* Some RTL can be compared without a recursive examination.  */
1832   switch (code)
1833     {
1834     case REG:
1835       return REGNO (x) == REGNO (y);
1836 
1837     case LABEL_REF:
1838       return label_ref_label (x) == label_ref_label (y);
1839 
1840     case SYMBOL_REF:
1841       {
1842 	HOST_WIDE_INT distance = 0;
1843 	return (compare_base_symbol_refs (x, y, &distance) == 1
1844 		&& distance == 0);
1845       }
1846 
1847     case ENTRY_VALUE:
1848       /* This is magic, don't go through canonicalization et al.  */
1849       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1850 
1851     case VALUE:
1852     CASE_CONST_UNIQUE:
1853       /* Pointer equality guarantees equality for these nodes.  */
1854       return 0;
1855 
1856     default:
1857       break;
1858     }
1859 
1860   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1861   if (code == PLUS)
1862     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1863 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1864 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1865 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1866   /* For commutative operations, the RTX match if the operand match in any
1867      order.  Also handle the simple binary and unary cases without a loop.  */
1868   if (COMMUTATIVE_P (x))
1869     {
1870       rtx xop0 = canon_rtx (XEXP (x, 0));
1871       rtx yop0 = canon_rtx (XEXP (y, 0));
1872       rtx yop1 = canon_rtx (XEXP (y, 1));
1873 
1874       return ((rtx_equal_for_memref_p (xop0, yop0)
1875 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1876 	      || (rtx_equal_for_memref_p (xop0, yop1)
1877 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1878     }
1879   else if (NON_COMMUTATIVE_P (x))
1880     {
1881       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1882 				      canon_rtx (XEXP (y, 0)))
1883 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1884 					 canon_rtx (XEXP (y, 1))));
1885     }
1886   else if (UNARY_P (x))
1887     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1888 				   canon_rtx (XEXP (y, 0)));
1889 
1890   /* Compare the elements.  If any pair of corresponding elements
1891      fail to match, return 0 for the whole things.
1892 
1893      Limit cases to types which actually appear in addresses.  */
1894 
1895   fmt = GET_RTX_FORMAT (code);
1896   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1897     {
1898       switch (fmt[i])
1899 	{
1900 	case 'i':
1901 	  if (XINT (x, i) != XINT (y, i))
1902 	    return 0;
1903 	  break;
1904 
1905 	case 'p':
1906 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1907 	    return 0;
1908 	  break;
1909 
1910 	case 'E':
1911 	  /* Two vectors must have the same length.  */
1912 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1913 	    return 0;
1914 
1915 	  /* And the corresponding elements must match.  */
1916 	  for (j = 0; j < XVECLEN (x, i); j++)
1917 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1918 					canon_rtx (XVECEXP (y, i, j))) == 0)
1919 	      return 0;
1920 	  break;
1921 
1922 	case 'e':
1923 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1924 				      canon_rtx (XEXP (y, i))) == 0)
1925 	    return 0;
1926 	  break;
1927 
1928 	  /* This can happen for asm operands.  */
1929 	case 's':
1930 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1931 	    return 0;
1932 	  break;
1933 
1934 	/* This can happen for an asm which clobbers memory.  */
1935 	case '0':
1936 	  break;
1937 
1938 	  /* It is believed that rtx's at this level will never
1939 	     contain anything but integers and other rtx's,
1940 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1941 	default:
1942 	  gcc_unreachable ();
1943 	}
1944     }
1945   return 1;
1946 }
1947 
1948 static rtx
1949 find_base_term (rtx x, vec<std::pair<cselib_val *,
1950 				     struct elt_loc_list *> > &visited_vals)
1951 {
1952   cselib_val *val;
1953   struct elt_loc_list *l, *f;
1954   rtx ret;
1955   scalar_int_mode int_mode;
1956 
1957 #if defined (FIND_BASE_TERM)
1958   /* Try machine-dependent ways to find the base term.  */
1959   x = FIND_BASE_TERM (x);
1960 #endif
1961 
1962   switch (GET_CODE (x))
1963     {
1964     case REG:
1965       return REG_BASE_VALUE (x);
1966 
1967     case TRUNCATE:
1968       /* As we do not know which address space the pointer is referring to, we can
1969 	 handle this only if the target does not support different pointer or
1970 	 address modes depending on the address space.  */
1971       if (!target_default_pointer_address_modes_p ())
1972 	return 0;
1973       if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1974 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1975 	return 0;
1976       /* Fall through.  */
1977     case HIGH:
1978     case PRE_INC:
1979     case PRE_DEC:
1980     case POST_INC:
1981     case POST_DEC:
1982     case PRE_MODIFY:
1983     case POST_MODIFY:
1984       return find_base_term (XEXP (x, 0), visited_vals);
1985 
1986     case ZERO_EXTEND:
1987     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1988       /* As we do not know which address space the pointer is referring to, we can
1989 	 handle this only if the target does not support different pointer or
1990 	 address modes depending on the address space.  */
1991       if (!target_default_pointer_address_modes_p ())
1992 	return 0;
1993 
1994       {
1995 	rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1996 
1997 	if (temp != 0 && CONSTANT_P (temp))
1998 	  temp = convert_memory_address (Pmode, temp);
1999 
2000 	return temp;
2001       }
2002 
2003     case VALUE:
2004       val = CSELIB_VAL_PTR (x);
2005       ret = NULL_RTX;
2006 
2007       if (!val)
2008 	return ret;
2009 
2010       if (cselib_sp_based_value_p (val))
2011 	return static_reg_base_value[STACK_POINTER_REGNUM];
2012 
2013       if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2014 	return ret;
2015 
2016       f = val->locs;
2017       /* Reset val->locs to avoid infinite recursion.  */
2018       if (f)
2019 	visited_vals.safe_push (std::make_pair (val, f));
2020       val->locs = NULL;
2021 
2022       for (l = f; l; l = l->next)
2023 	if (GET_CODE (l->loc) == VALUE
2024 	    && CSELIB_VAL_PTR (l->loc)->locs
2025 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
2026 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2027 	  continue;
2028 	else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2029 	  break;
2030 
2031       return ret;
2032 
2033     case LO_SUM:
2034       /* The standard form is (lo_sum reg sym) so look only at the
2035          second operand.  */
2036       return find_base_term (XEXP (x, 1), visited_vals);
2037 
2038     case CONST:
2039       x = XEXP (x, 0);
2040       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2041 	return 0;
2042       /* Fall through.  */
2043     case PLUS:
2044     case MINUS:
2045       {
2046 	rtx tmp1 = XEXP (x, 0);
2047 	rtx tmp2 = XEXP (x, 1);
2048 
2049 	/* This is a little bit tricky since we have to determine which of
2050 	   the two operands represents the real base address.  Otherwise this
2051 	   routine may return the index register instead of the base register.
2052 
2053 	   That may cause us to believe no aliasing was possible, when in
2054 	   fact aliasing is possible.
2055 
2056 	   We use a few simple tests to guess the base register.  Additional
2057 	   tests can certainly be added.  For example, if one of the operands
2058 	   is a shift or multiply, then it must be the index register and the
2059 	   other operand is the base register.  */
2060 
2061 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2062 	  return find_base_term (tmp2, visited_vals);
2063 
2064 	/* If either operand is known to be a pointer, then prefer it
2065 	   to determine the base term.  */
2066 	if (REG_P (tmp1) && REG_POINTER (tmp1))
2067 	  ;
2068 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
2069 	  std::swap (tmp1, tmp2);
2070 	/* If second argument is constant which has base term, prefer it
2071 	   over variable tmp1.  See PR64025.  */
2072 	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2073 	  std::swap (tmp1, tmp2);
2074 
2075 	/* Go ahead and find the base term for both operands.  If either base
2076 	   term is from a pointer or is a named object or a special address
2077 	   (like an argument or stack reference), then use it for the
2078 	   base term.  */
2079 	rtx base = find_base_term (tmp1, visited_vals);
2080 	if (base != NULL_RTX
2081 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2082 		 || known_base_value_p (base)))
2083 	  return base;
2084 	base = find_base_term (tmp2, visited_vals);
2085 	if (base != NULL_RTX
2086 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2087 		 || known_base_value_p (base)))
2088 	  return base;
2089 
2090 	/* We could not determine which of the two operands was the
2091 	   base register and which was the index.  So we can determine
2092 	   nothing from the base alias check.  */
2093 	return 0;
2094       }
2095 
2096     case AND:
2097       /* Look through aligning ANDs.  And AND with zero or one with
2098          the LSB set isn't one (see for example PR92462).  */
2099       if (CONST_INT_P (XEXP (x, 1))
2100 	  && INTVAL (XEXP (x, 1)) != 0
2101 	  && (INTVAL (XEXP (x, 1)) & 1) == 0)
2102 	return find_base_term (XEXP (x, 0), visited_vals);
2103       return 0;
2104 
2105     case SYMBOL_REF:
2106     case LABEL_REF:
2107       return x;
2108 
2109     default:
2110       return 0;
2111     }
2112 }
2113 
2114 /* Wrapper around the worker above which removes locs from visited VALUEs
2115    to avoid visiting them multiple times.  We unwind that changes here.  */
2116 
2117 static rtx
2118 find_base_term (rtx x)
2119 {
2120   auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2121   rtx res = find_base_term (x, visited_vals);
2122   for (unsigned i = 0; i < visited_vals.length (); ++i)
2123     visited_vals[i].first->locs = visited_vals[i].second;
2124   return res;
2125 }
2126 
2127 /* Return true if accesses to address X may alias accesses based
2128    on the stack pointer.  */
2129 
2130 bool
2131 may_be_sp_based_p (rtx x)
2132 {
2133   rtx base = find_base_term (x);
2134   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2135 }
2136 
2137 /* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2138    if they refer to different objects and -1 if we cannot decide.  */
2139 
2140 int
2141 compare_base_decls (tree base1, tree base2)
2142 {
2143   int ret;
2144   gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2145   if (base1 == base2)
2146     return 1;
2147 
2148   /* If we have two register decls with register specification we
2149      cannot decide unless their assembler names are the same.  */
2150   if (VAR_P (base1)
2151       && VAR_P (base2)
2152       && DECL_HARD_REGISTER (base1)
2153       && DECL_HARD_REGISTER (base2)
2154       && DECL_ASSEMBLER_NAME_SET_P (base1)
2155       && DECL_ASSEMBLER_NAME_SET_P (base2))
2156     {
2157       if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2158 	return 1;
2159       return -1;
2160     }
2161 
2162   /* Declarations of non-automatic variables may have aliases.  All other
2163      decls are unique.  */
2164   if (!decl_in_symtab_p (base1)
2165       || !decl_in_symtab_p (base2))
2166     return 0;
2167 
2168   /* Don't cause symbols to be inserted by the act of checking.  */
2169   symtab_node *node1 = symtab_node::get (base1);
2170   if (!node1)
2171     return 0;
2172   symtab_node *node2 = symtab_node::get (base2);
2173   if (!node2)
2174     return 0;
2175 
2176   ret = node1->equal_address_to (node2, true);
2177   return ret;
2178 }
2179 
2180 /* Compare SYMBOL_REFs X_BASE and Y_BASE.
2181 
2182    - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2183      to *DISTANCE if DISTANCE is nonnull.
2184 
2185    - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2186 
2187    - Return -1 if one of the two results applies, but we can't tell
2188      which at compile time.  Update DISTANCE in the same way as
2189      for a return value of 1, for the case in which that holds.  */
2190 
2191 static int
2192 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2193 			  HOST_WIDE_INT *distance)
2194 {
2195   tree x_decl = SYMBOL_REF_DECL (x_base);
2196   tree y_decl = SYMBOL_REF_DECL (y_base);
2197   bool binds_def = true;
2198 
2199   if (XSTR (x_base, 0) == XSTR (y_base, 0))
2200     return 1;
2201   if (x_decl && y_decl)
2202     return compare_base_decls (x_decl, y_decl);
2203   if (x_decl || y_decl)
2204     {
2205       if (!x_decl)
2206 	{
2207 	  std::swap (x_decl, y_decl);
2208 	  std::swap (x_base, y_base);
2209 	}
2210       /* We handle specially only section anchors.  Other symbols are
2211 	 either equal (via aliasing) or refer to different objects.  */
2212       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2213         return -1;
2214       /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2215 	 to ignore CONST_DECLs because they are readonly.  */
2216       if (!VAR_P (x_decl)
2217 	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2218 	return 0;
2219 
2220       symtab_node *x_node = symtab_node::get_create (x_decl)
2221 			    ->ultimate_alias_target ();
2222       /* External variable cannot be in section anchor.  */
2223       if (!x_node->definition)
2224 	return 0;
2225       x_base = XEXP (DECL_RTL (x_node->decl), 0);
2226       /* If not in anchor, we can disambiguate.  */
2227       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2228 	return 0;
2229 
2230       /* We have an alias of anchored variable.  If it can be interposed;
2231  	 we must assume it may or may not alias its anchor.  */
2232       binds_def = decl_binds_to_current_def_p (x_decl);
2233     }
2234   /* If we have variable in section anchor, we can compare by offset.  */
2235   if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2236       && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2237     {
2238       if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2239 	return 0;
2240       if (distance)
2241 	*distance += (SYMBOL_REF_BLOCK_OFFSET (y_base)
2242 		      - SYMBOL_REF_BLOCK_OFFSET (x_base));
2243       return binds_def ? 1 : -1;
2244     }
2245   /* Either the symbols are equal (via aliasing) or they refer to
2246      different objects.  */
2247   return -1;
2248 }
2249 
2250 /* Return 0 if the addresses X and Y are known to point to different
2251    objects, 1 if they might be pointers to the same object.  */
2252 
2253 static int
2254 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2255 		  machine_mode x_mode, machine_mode y_mode)
2256 {
2257   /* If the address itself has no known base see if a known equivalent
2258      value has one.  If either address still has no known base, nothing
2259      is known about aliasing.  */
2260   if (x_base == 0)
2261     {
2262       rtx x_c;
2263 
2264       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2265 	return 1;
2266 
2267       x_base = find_base_term (x_c);
2268       if (x_base == 0)
2269 	return 1;
2270     }
2271 
2272   if (y_base == 0)
2273     {
2274       rtx y_c;
2275       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2276 	return 1;
2277 
2278       y_base = find_base_term (y_c);
2279       if (y_base == 0)
2280 	return 1;
2281     }
2282 
2283   /* If the base addresses are equal nothing is known about aliasing.  */
2284   if (rtx_equal_p (x_base, y_base))
2285     return 1;
2286 
2287   /* The base addresses are different expressions.  If they are not accessed
2288      via AND, there is no conflict.  We can bring knowledge of object
2289      alignment into play here.  For example, on alpha, "char a, b;" can
2290      alias one another, though "char a; long b;" cannot.  AND addresses may
2291      implicitly alias surrounding objects; i.e. unaligned access in DImode
2292      via AND address can alias all surrounding object types except those
2293      with aligment 8 or higher.  */
2294   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2295     return 1;
2296   if (GET_CODE (x) == AND
2297       && (!CONST_INT_P (XEXP (x, 1))
2298 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2299     return 1;
2300   if (GET_CODE (y) == AND
2301       && (!CONST_INT_P (XEXP (y, 1))
2302 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2303     return 1;
2304 
2305   /* Differing symbols not accessed via AND never alias.  */
2306   if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2307     return compare_base_symbol_refs (x_base, y_base) != 0;
2308 
2309   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2310     return 0;
2311 
2312   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2313     return 0;
2314 
2315   return 1;
2316 }
2317 
2318 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2319    (or equal to) that of V.  */
2320 
2321 static bool
2322 refs_newer_value_p (const_rtx expr, rtx v)
2323 {
2324   int minuid = CSELIB_VAL_PTR (v)->uid;
2325   subrtx_iterator::array_type array;
2326   FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2327     if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2328       return true;
2329   return false;
2330 }
2331 
2332 /* Convert the address X into something we can use.  This is done by returning
2333    it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2334    we call cselib to get a more useful rtx.  */
2335 
2336 rtx
2337 get_addr (rtx x)
2338 {
2339   cselib_val *v;
2340   struct elt_loc_list *l;
2341 
2342   if (GET_CODE (x) != VALUE)
2343     {
2344       if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2345 	  && GET_CODE (XEXP (x, 0)) == VALUE
2346 	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2347 	{
2348 	  rtx op0 = get_addr (XEXP (x, 0));
2349 	  if (op0 != XEXP (x, 0))
2350 	    {
2351 	      poly_int64 c;
2352 	      if (GET_CODE (x) == PLUS
2353 		  && poly_int_rtx_p (XEXP (x, 1), &c))
2354 		return plus_constant (GET_MODE (x), op0, c);
2355 	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2356 					  op0, XEXP (x, 1));
2357 	    }
2358 	}
2359       return x;
2360     }
2361   v = CSELIB_VAL_PTR (x);
2362   if (v)
2363     {
2364       bool have_equivs = cselib_have_permanent_equivalences ();
2365       if (have_equivs)
2366 	v = canonical_cselib_val (v);
2367       for (l = v->locs; l; l = l->next)
2368 	if (CONSTANT_P (l->loc))
2369 	  return l->loc;
2370       for (l = v->locs; l; l = l->next)
2371 	if (!REG_P (l->loc) && !MEM_P (l->loc)
2372 	    /* Avoid infinite recursion when potentially dealing with
2373 	       var-tracking artificial equivalences, by skipping the
2374 	       equivalences themselves, and not choosing expressions
2375 	       that refer to newer VALUEs.  */
2376 	    && (!have_equivs
2377 		|| (GET_CODE (l->loc) != VALUE
2378 		    && !refs_newer_value_p (l->loc, x))))
2379 	  return l->loc;
2380       if (have_equivs)
2381 	{
2382 	  for (l = v->locs; l; l = l->next)
2383 	    if (REG_P (l->loc)
2384 		|| (GET_CODE (l->loc) != VALUE
2385 		    && !refs_newer_value_p (l->loc, x)))
2386 	      return l->loc;
2387 	  /* Return the canonical value.  */
2388 	  return v->val_rtx;
2389 	}
2390       if (v->locs)
2391 	return v->locs->loc;
2392     }
2393   return x;
2394 }
2395 
2396 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2397     where SIZE is the size in bytes of the memory reference.  If ADDR
2398     is not modified by the memory reference then ADDR is returned.  */
2399 
2400 static rtx
2401 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2402 {
2403   poly_int64 offset = 0;
2404 
2405   switch (GET_CODE (addr))
2406     {
2407     case PRE_INC:
2408       offset = (n_refs + 1) * size;
2409       break;
2410     case PRE_DEC:
2411       offset = -(n_refs + 1) * size;
2412       break;
2413     case POST_INC:
2414       offset = n_refs * size;
2415       break;
2416     case POST_DEC:
2417       offset = -n_refs * size;
2418       break;
2419 
2420     default:
2421       return addr;
2422     }
2423 
2424   addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2425   addr = canon_rtx (addr);
2426 
2427   return addr;
2428 }
2429 
2430 /* Return TRUE if an object X sized at XSIZE bytes and another object
2431    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2432    any of the sizes is zero, assume an overlap, otherwise use the
2433    absolute value of the sizes as the actual sizes.  */
2434 
2435 static inline bool
2436 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2437 {
2438   if (known_eq (xsize, 0) || known_eq (ysize, 0))
2439     return true;
2440 
2441   if (maybe_ge (c, 0))
2442     return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2443   else
2444     return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2445 }
2446 
2447 /* Return one if X and Y (memory addresses) reference the
2448    same location in memory or if the references overlap.
2449    Return zero if they do not overlap, else return
2450    minus one in which case they still might reference the same location.
2451 
2452    C is an offset accumulator.  When
2453    C is nonzero, we are testing aliases between X and Y + C.
2454    XSIZE is the size in bytes of the X reference,
2455    similarly YSIZE is the size in bytes for Y.
2456    Expect that canon_rtx has been already called for X and Y.
2457 
2458    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2459    referenced (the reference was BLKmode), so make the most pessimistic
2460    assumptions.
2461 
2462    If XSIZE or YSIZE is negative, we may access memory outside the object
2463    being referenced as a side effect.  This can happen when using AND to
2464    align memory references, as is done on the Alpha.
2465 
2466    Nice to notice that varying addresses cannot conflict with fp if no
2467    local variables had their addresses taken, but that's too hard now.
2468 
2469    ???  Contrary to the tree alias oracle this does not return
2470    one for X + non-constant and Y + non-constant when X and Y are equal.
2471    If that is fixed the TBAA hack for union type-punning can be removed.  */
2472 
2473 static int
2474 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2475 		    poly_int64 c)
2476 {
2477   if (GET_CODE (x) == VALUE)
2478     {
2479       if (REG_P (y))
2480 	{
2481 	  struct elt_loc_list *l = NULL;
2482 	  if (CSELIB_VAL_PTR (x))
2483 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2484 		 l; l = l->next)
2485 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2486 		break;
2487 	  if (l)
2488 	    x = y;
2489 	  else
2490 	    x = get_addr (x);
2491 	}
2492       /* Don't call get_addr if y is the same VALUE.  */
2493       else if (x != y)
2494 	x = get_addr (x);
2495     }
2496   if (GET_CODE (y) == VALUE)
2497     {
2498       if (REG_P (x))
2499 	{
2500 	  struct elt_loc_list *l = NULL;
2501 	  if (CSELIB_VAL_PTR (y))
2502 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2503 		 l; l = l->next)
2504 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2505 		break;
2506 	  if (l)
2507 	    y = x;
2508 	  else
2509 	    y = get_addr (y);
2510 	}
2511       /* Don't call get_addr if x is the same VALUE.  */
2512       else if (y != x)
2513 	y = get_addr (y);
2514     }
2515   if (GET_CODE (x) == HIGH)
2516     x = XEXP (x, 0);
2517   else if (GET_CODE (x) == LO_SUM)
2518     x = XEXP (x, 1);
2519   else
2520     x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2521   if (GET_CODE (y) == HIGH)
2522     y = XEXP (y, 0);
2523   else if (GET_CODE (y) == LO_SUM)
2524     y = XEXP (y, 1);
2525   else
2526     y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2527 
2528   if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2529     {
2530       HOST_WIDE_INT distance = 0;
2531       int cmp = compare_base_symbol_refs (x, y, &distance);
2532 
2533       /* If both decls are the same, decide by offsets.  */
2534       if (cmp == 1)
2535 	return offset_overlap_p (c + distance, xsize, ysize);
2536       /* Assume a potential overlap for symbolic addresses that went
2537 	 through alignment adjustments (i.e., that have negative
2538 	 sizes), because we can't know how far they are from each
2539 	 other.  */
2540       if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2541 	return -1;
2542       /* If decls are different or we know by offsets that there is no overlap,
2543 	 we win.  */
2544       if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
2545 	return 0;
2546       /* Decls may or may not be different and offsets overlap....*/
2547       return -1;
2548     }
2549   else if (rtx_equal_for_memref_p (x, y))
2550     {
2551       return offset_overlap_p (c, xsize, ysize);
2552     }
2553 
2554   /* This code used to check for conflicts involving stack references and
2555      globals but the base address alias code now handles these cases.  */
2556 
2557   if (GET_CODE (x) == PLUS)
2558     {
2559       /* The fact that X is canonicalized means that this
2560 	 PLUS rtx is canonicalized.  */
2561       rtx x0 = XEXP (x, 0);
2562       rtx x1 = XEXP (x, 1);
2563 
2564       /* However, VALUEs might end up in different positions even in
2565 	 canonical PLUSes.  Comparing their addresses is enough.  */
2566       if (x0 == y)
2567 	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2568       else if (x1 == y)
2569 	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2570 
2571       poly_int64 cx1, cy1;
2572       if (GET_CODE (y) == PLUS)
2573 	{
2574 	  /* The fact that Y is canonicalized means that this
2575 	     PLUS rtx is canonicalized.  */
2576 	  rtx y0 = XEXP (y, 0);
2577 	  rtx y1 = XEXP (y, 1);
2578 
2579 	  if (x0 == y1)
2580 	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2581 	  if (x1 == y0)
2582 	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2583 
2584 	  if (rtx_equal_for_memref_p (x1, y1))
2585 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2586 	  if (rtx_equal_for_memref_p (x0, y0))
2587 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2588 	  if (poly_int_rtx_p (x1, &cx1))
2589 	    {
2590 	      if (poly_int_rtx_p (y1, &cy1))
2591 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2592 					   c - cx1 + cy1);
2593 	      else
2594 		return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2595 	    }
2596 	  else if (poly_int_rtx_p (y1, &cy1))
2597 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2598 
2599 	  return -1;
2600 	}
2601       else if (poly_int_rtx_p (x1, &cx1))
2602 	return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2603     }
2604   else if (GET_CODE (y) == PLUS)
2605     {
2606       /* The fact that Y is canonicalized means that this
2607 	 PLUS rtx is canonicalized.  */
2608       rtx y0 = XEXP (y, 0);
2609       rtx y1 = XEXP (y, 1);
2610 
2611       if (x == y0)
2612 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2613       if (x == y1)
2614 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2615 
2616       poly_int64 cy1;
2617       if (poly_int_rtx_p (y1, &cy1))
2618 	return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2619       else
2620 	return -1;
2621     }
2622 
2623   if (GET_CODE (x) == GET_CODE (y))
2624     switch (GET_CODE (x))
2625       {
2626       case MULT:
2627 	{
2628 	  /* Handle cases where we expect the second operands to be the
2629 	     same, and check only whether the first operand would conflict
2630 	     or not.  */
2631 	  rtx x0, y0;
2632 	  rtx x1 = canon_rtx (XEXP (x, 1));
2633 	  rtx y1 = canon_rtx (XEXP (y, 1));
2634 	  if (! rtx_equal_for_memref_p (x1, y1))
2635 	    return -1;
2636 	  x0 = canon_rtx (XEXP (x, 0));
2637 	  y0 = canon_rtx (XEXP (y, 0));
2638 	  if (rtx_equal_for_memref_p (x0, y0))
2639 	    return offset_overlap_p (c, xsize, ysize);
2640 
2641 	  /* Can't properly adjust our sizes.  */
2642 	  poly_int64 c1;
2643 	  if (!poly_int_rtx_p (x1, &c1)
2644 	      || !can_div_trunc_p (xsize, c1, &xsize)
2645 	      || !can_div_trunc_p (ysize, c1, &ysize)
2646 	      || !can_div_trunc_p (c, c1, &c))
2647 	    return -1;
2648 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2649 	}
2650 
2651       default:
2652 	break;
2653       }
2654 
2655   /* Deal with alignment ANDs by adjusting offset and size so as to
2656      cover the maximum range, without taking any previously known
2657      alignment into account.  Make a size negative after such an
2658      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2659      assume a potential overlap, because they may end up in contiguous
2660      memory locations and the stricter-alignment access may span over
2661      part of both.  */
2662   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2663     {
2664       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2665       unsigned HOST_WIDE_INT uc = sc;
2666       if (sc < 0 && pow2_or_zerop (-uc))
2667 	{
2668 	  if (maybe_gt (xsize, 0))
2669 	    xsize = -xsize;
2670 	  if (maybe_ne (xsize, 0))
2671 	    xsize += sc + 1;
2672 	  c -= sc + 1;
2673 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2674 				     ysize, y, c);
2675 	}
2676     }
2677   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2678     {
2679       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2680       unsigned HOST_WIDE_INT uc = sc;
2681       if (sc < 0 && pow2_or_zerop (-uc))
2682 	{
2683 	  if (maybe_gt (ysize, 0))
2684 	    ysize = -ysize;
2685 	  if (maybe_ne (ysize, 0))
2686 	    ysize += sc + 1;
2687 	  c += sc + 1;
2688 	  return memrefs_conflict_p (xsize, x,
2689 				     ysize, canon_rtx (XEXP (y, 0)), c);
2690 	}
2691     }
2692 
2693   if (CONSTANT_P (x))
2694     {
2695       poly_int64 cx, cy;
2696       if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2697 	{
2698 	  c += cy - cx;
2699 	  return offset_overlap_p (c, xsize, ysize);
2700 	}
2701 
2702       if (GET_CODE (x) == CONST)
2703 	{
2704 	  if (GET_CODE (y) == CONST)
2705 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2706 				       ysize, canon_rtx (XEXP (y, 0)), c);
2707 	  else
2708 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2709 				       ysize, y, c);
2710 	}
2711       if (GET_CODE (y) == CONST)
2712 	return memrefs_conflict_p (xsize, x, ysize,
2713 				   canon_rtx (XEXP (y, 0)), c);
2714 
2715       /* Assume a potential overlap for symbolic addresses that went
2716 	 through alignment adjustments (i.e., that have negative
2717 	 sizes), because we can't know how far they are from each
2718 	 other.  */
2719       if (CONSTANT_P (y))
2720 	return (maybe_lt (xsize, 0)
2721 		|| maybe_lt (ysize, 0)
2722 		|| offset_overlap_p (c, xsize, ysize));
2723 
2724       return -1;
2725     }
2726 
2727   return -1;
2728 }
2729 
2730 /* Functions to compute memory dependencies.
2731 
2732    Since we process the insns in execution order, we can build tables
2733    to keep track of what registers are fixed (and not aliased), what registers
2734    are varying in known ways, and what registers are varying in unknown
2735    ways.
2736 
2737    If both memory references are volatile, then there must always be a
2738    dependence between the two references, since their order cannot be
2739    changed.  A volatile and non-volatile reference can be interchanged
2740    though.
2741 
2742    We also must allow AND addresses, because they may generate accesses
2743    outside the object being referenced.  This is used to generate aligned
2744    addresses from unaligned addresses, for instance, the alpha
2745    storeqi_unaligned pattern.  */
2746 
2747 /* Read dependence: X is read after read in MEM takes place.  There can
2748    only be a dependence here if both reads are volatile, or if either is
2749    an explicit barrier.  */
2750 
2751 int
2752 read_dependence (const_rtx mem, const_rtx x)
2753 {
2754   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2755     return true;
2756   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2757       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2758     return true;
2759   return false;
2760 }
2761 
2762 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2763 
2764 static tree
2765 decl_for_component_ref (tree x)
2766 {
2767   do
2768     {
2769       x = TREE_OPERAND (x, 0);
2770     }
2771   while (x && TREE_CODE (x) == COMPONENT_REF);
2772 
2773   return x && DECL_P (x) ? x : NULL_TREE;
2774 }
2775 
2776 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2777    for the offset of the field reference.  *KNOWN_P says whether the
2778    offset is known.  */
2779 
2780 static void
2781 adjust_offset_for_component_ref (tree x, bool *known_p,
2782 				 poly_int64 *offset)
2783 {
2784   if (!*known_p)
2785     return;
2786   do
2787     {
2788       tree xoffset = component_ref_field_offset (x);
2789       tree field = TREE_OPERAND (x, 1);
2790       if (!poly_int_tree_p (xoffset))
2791 	{
2792 	  *known_p = false;
2793 	  return;
2794 	}
2795 
2796       poly_offset_int woffset
2797 	= (wi::to_poly_offset (xoffset)
2798 	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2799 	      >> LOG2_BITS_PER_UNIT)
2800 	   + *offset);
2801       if (!woffset.to_shwi (offset))
2802 	{
2803 	  *known_p = false;
2804 	  return;
2805 	}
2806 
2807       x = TREE_OPERAND (x, 0);
2808     }
2809   while (x && TREE_CODE (x) == COMPONENT_REF);
2810 }
2811 
2812 /* Return nonzero if we can determine the exprs corresponding to memrefs
2813    X and Y and they do not overlap.
2814    If LOOP_VARIANT is set, skip offset-based disambiguation */
2815 
2816 int
2817 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2818 {
2819   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2820   rtx rtlx, rtly;
2821   rtx basex, basey;
2822   bool moffsetx_known_p, moffsety_known_p;
2823   poly_int64 moffsetx = 0, moffsety = 0;
2824   poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2825 
2826   /* Unless both have exprs, we can't tell anything.  */
2827   if (exprx == 0 || expry == 0)
2828     return 0;
2829 
2830   /* For spill-slot accesses make sure we have valid offsets.  */
2831   if ((exprx == get_spill_slot_decl (false)
2832        && ! MEM_OFFSET_KNOWN_P (x))
2833       || (expry == get_spill_slot_decl (false)
2834 	  && ! MEM_OFFSET_KNOWN_P (y)))
2835     return 0;
2836 
2837   /* If the field reference test failed, look at the DECLs involved.  */
2838   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2839   if (moffsetx_known_p)
2840     moffsetx = MEM_OFFSET (x);
2841   if (TREE_CODE (exprx) == COMPONENT_REF)
2842     {
2843       tree t = decl_for_component_ref (exprx);
2844       if (! t)
2845 	return 0;
2846       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2847       exprx = t;
2848     }
2849 
2850   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2851   if (moffsety_known_p)
2852     moffsety = MEM_OFFSET (y);
2853   if (TREE_CODE (expry) == COMPONENT_REF)
2854     {
2855       tree t = decl_for_component_ref (expry);
2856       if (! t)
2857 	return 0;
2858       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2859       expry = t;
2860     }
2861 
2862   if (! DECL_P (exprx) || ! DECL_P (expry))
2863     return 0;
2864 
2865   /* If we refer to different gimple registers, or one gimple register
2866      and one non-gimple-register, we know they can't overlap.  First,
2867      gimple registers don't have their addresses taken.  Now, there
2868      could be more than one stack slot for (different versions of) the
2869      same gimple register, but we can presumably tell they don't
2870      overlap based on offsets from stack base addresses elsewhere.
2871      It's important that we don't proceed to DECL_RTL, because gimple
2872      registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2873      able to do anything about them since no SSA information will have
2874      remained to guide it.  */
2875   if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2876     return exprx != expry
2877       || (moffsetx_known_p && moffsety_known_p
2878 	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2879 	  && !offset_overlap_p (moffsety - moffsetx,
2880 				MEM_SIZE (x), MEM_SIZE (y)));
2881 
2882   /* With invalid code we can end up storing into the constant pool.
2883      Bail out to avoid ICEing when creating RTL for this.
2884      See gfortran.dg/lto/20091028-2_0.f90.  */
2885   if (TREE_CODE (exprx) == CONST_DECL
2886       || TREE_CODE (expry) == CONST_DECL)
2887     return 1;
2888 
2889   /* If one decl is known to be a function or label in a function and
2890      the other is some kind of data, they can't overlap.  */
2891   if ((TREE_CODE (exprx) == FUNCTION_DECL
2892        || TREE_CODE (exprx) == LABEL_DECL)
2893       != (TREE_CODE (expry) == FUNCTION_DECL
2894 	  || TREE_CODE (expry) == LABEL_DECL))
2895     return 1;
2896 
2897   /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2898      living in multiple places), we can't tell anything.  Exception
2899      are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2900   if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2901       || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2902     return 0;
2903 
2904   rtlx = DECL_RTL (exprx);
2905   rtly = DECL_RTL (expry);
2906 
2907   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2908      can't overlap unless they are the same because we never reuse that part
2909      of the stack frame used for locals for spilled pseudos.  */
2910   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2911       && ! rtx_equal_p (rtlx, rtly))
2912     return 1;
2913 
2914   /* If we have MEMs referring to different address spaces (which can
2915      potentially overlap), we cannot easily tell from the addresses
2916      whether the references overlap.  */
2917   if (MEM_P (rtlx) && MEM_P (rtly)
2918       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2919     return 0;
2920 
2921   /* Get the base and offsets of both decls.  If either is a register, we
2922      know both are and are the same, so use that as the base.  The only
2923      we can avoid overlap is if we can deduce that they are nonoverlapping
2924      pieces of that decl, which is very rare.  */
2925   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2926   basex = strip_offset_and_add (basex, &offsetx);
2927 
2928   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2929   basey = strip_offset_and_add (basey, &offsety);
2930 
2931   /* If the bases are different, we know they do not overlap if both
2932      are constants or if one is a constant and the other a pointer into the
2933      stack frame.  Otherwise a different base means we can't tell if they
2934      overlap or not.  */
2935   if (compare_base_decls (exprx, expry) == 0)
2936     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2937 	    || (CONSTANT_P (basex) && REG_P (basey)
2938 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2939 	    || (CONSTANT_P (basey) && REG_P (basex)
2940 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2941 
2942   /* Offset based disambiguation not appropriate for loop invariant */
2943   if (loop_invariant)
2944     return 0;
2945 
2946   /* Offset based disambiguation is OK even if we do not know that the
2947      declarations are necessarily different
2948     (i.e. compare_base_decls (exprx, expry) == -1)  */
2949 
2950   sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2951 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2952 	   : -1);
2953   sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2954 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2955 	   : -1);
2956 
2957   /* If we have an offset for either memref, it can update the values computed
2958      above.  */
2959   if (moffsetx_known_p)
2960     offsetx += moffsetx, sizex -= moffsetx;
2961   if (moffsety_known_p)
2962     offsety += moffsety, sizey -= moffsety;
2963 
2964   /* If a memref has both a size and an offset, we can use the smaller size.
2965      We can't do this if the offset isn't known because we must view this
2966      memref as being anywhere inside the DECL's MEM.  */
2967   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2968     sizex = MEM_SIZE (x);
2969   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2970     sizey = MEM_SIZE (y);
2971 
2972   return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2973 }
2974 
2975 /* Helper for true_dependence and canon_true_dependence.
2976    Checks for true dependence: X is read after store in MEM takes place.
2977 
2978    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2979    NULL_RTX, and the canonical addresses of MEM and X are both computed
2980    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2981 
2982    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2983 
2984    Returns 1 if there is a true dependence, 0 otherwise.  */
2985 
2986 static int
2987 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2988 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2989 {
2990   rtx true_mem_addr;
2991   rtx base;
2992   int ret;
2993 
2994   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2995 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2996 
2997   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2998     return 1;
2999 
3000   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3001      This is used in epilogue deallocation functions, and in cselib.  */
3002   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3003     return 1;
3004   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3005     return 1;
3006   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3007       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3008     return 1;
3009 
3010   if (! x_addr)
3011     x_addr = XEXP (x, 0);
3012   x_addr = get_addr (x_addr);
3013 
3014   if (! mem_addr)
3015     {
3016       mem_addr = XEXP (mem, 0);
3017       if (mem_mode == VOIDmode)
3018 	mem_mode = GET_MODE (mem);
3019     }
3020   true_mem_addr = get_addr (mem_addr);
3021 
3022   /* Read-only memory is by definition never modified, and therefore can't
3023      conflict with anything.  However, don't assume anything when AND
3024      addresses are involved and leave to the code below to determine
3025      dependence.  We don't expect to find read-only set on MEM, but
3026      stupid user tricks can produce them, so don't die.  */
3027   if (MEM_READONLY_P (x)
3028       && GET_CODE (x_addr) != AND
3029       && GET_CODE (true_mem_addr) != AND)
3030     return 0;
3031 
3032   /* If we have MEMs referring to different address spaces (which can
3033      potentially overlap), we cannot easily tell from the addresses
3034      whether the references overlap.  */
3035   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3036     return 1;
3037 
3038   base = find_base_term (x_addr);
3039   if (base && (GET_CODE (base) == LABEL_REF
3040 	       || (GET_CODE (base) == SYMBOL_REF
3041 		   && CONSTANT_POOL_ADDRESS_P (base))))
3042     return 0;
3043 
3044   rtx mem_base = find_base_term (true_mem_addr);
3045   if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3046 			  GET_MODE (x), mem_mode))
3047     return 0;
3048 
3049   x_addr = canon_rtx (x_addr);
3050   if (!mem_canonicalized)
3051     mem_addr = canon_rtx (true_mem_addr);
3052 
3053   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3054 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3055     return ret;
3056 
3057   if (mems_in_disjoint_alias_sets_p (x, mem))
3058     return 0;
3059 
3060   if (nonoverlapping_memrefs_p (mem, x, false))
3061     return 0;
3062 
3063   return rtx_refs_may_alias_p (x, mem, true);
3064 }
3065 
3066 /* True dependence: X is read after store in MEM takes place.  */
3067 
3068 int
3069 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3070 {
3071   return true_dependence_1 (mem, mem_mode, NULL_RTX,
3072 			    x, NULL_RTX, /*mem_canonicalized=*/false);
3073 }
3074 
3075 /* Canonical true dependence: X is read after store in MEM takes place.
3076    Variant of true_dependence which assumes MEM has already been
3077    canonicalized (hence we no longer do that here).
3078    The mem_addr argument has been added, since true_dependence_1 computed
3079    this value prior to canonicalizing.  */
3080 
3081 int
3082 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3083 		       const_rtx x, rtx x_addr)
3084 {
3085   return true_dependence_1 (mem, mem_mode, mem_addr,
3086 			    x, x_addr, /*mem_canonicalized=*/true);
3087 }
3088 
3089 /* Returns nonzero if a write to X might alias a previous read from
3090    (or, if WRITEP is true, a write to) MEM.
3091    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3092    and X_MODE the mode for that access.
3093    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3094 
3095 static int
3096 write_dependence_p (const_rtx mem,
3097 		    const_rtx x, machine_mode x_mode, rtx x_addr,
3098 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
3099 {
3100   rtx mem_addr;
3101   rtx true_mem_addr, true_x_addr;
3102   rtx base;
3103   int ret;
3104 
3105   gcc_checking_assert (x_canonicalized
3106 		       ? (x_addr != NULL_RTX
3107 			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3108 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3109 
3110   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3111     return 1;
3112 
3113   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3114      This is used in epilogue deallocation functions.  */
3115   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3116     return 1;
3117   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3118     return 1;
3119   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3120       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3121     return 1;
3122 
3123   if (!x_addr)
3124     x_addr = XEXP (x, 0);
3125   true_x_addr = get_addr (x_addr);
3126 
3127   mem_addr = XEXP (mem, 0);
3128   true_mem_addr = get_addr (mem_addr);
3129 
3130   /* A read from read-only memory can't conflict with read-write memory.
3131      Don't assume anything when AND addresses are involved and leave to
3132      the code below to determine dependence.  */
3133   if (!writep
3134       && MEM_READONLY_P (mem)
3135       && GET_CODE (true_x_addr) != AND
3136       && GET_CODE (true_mem_addr) != AND)
3137     return 0;
3138 
3139   /* If we have MEMs referring to different address spaces (which can
3140      potentially overlap), we cannot easily tell from the addresses
3141      whether the references overlap.  */
3142   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3143     return 1;
3144 
3145   base = find_base_term (true_mem_addr);
3146   if (! writep
3147       && base
3148       && (GET_CODE (base) == LABEL_REF
3149 	  || (GET_CODE (base) == SYMBOL_REF
3150 	      && CONSTANT_POOL_ADDRESS_P (base))))
3151     return 0;
3152 
3153   rtx x_base = find_base_term (true_x_addr);
3154   if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3155 			  GET_MODE (x), GET_MODE (mem)))
3156     return 0;
3157 
3158   if (!x_canonicalized)
3159     {
3160       x_addr = canon_rtx (true_x_addr);
3161       x_mode = GET_MODE (x);
3162     }
3163   if (!mem_canonicalized)
3164     mem_addr = canon_rtx (true_mem_addr);
3165 
3166   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3167 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3168     return ret;
3169 
3170   if (nonoverlapping_memrefs_p (x, mem, false))
3171     return 0;
3172 
3173   return rtx_refs_may_alias_p (x, mem, false);
3174 }
3175 
3176 /* Anti dependence: X is written after read in MEM takes place.  */
3177 
3178 int
3179 anti_dependence (const_rtx mem, const_rtx x)
3180 {
3181   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3182 			     /*mem_canonicalized=*/false,
3183 			     /*x_canonicalized*/false, /*writep=*/false);
3184 }
3185 
3186 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3187    Also, consider X in X_MODE (which might be from an enclosing
3188    STRICT_LOW_PART / ZERO_EXTRACT).
3189    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3190 
3191 int
3192 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3193 		       const_rtx x, machine_mode x_mode, rtx x_addr)
3194 {
3195   return write_dependence_p (mem, x, x_mode, x_addr,
3196 			     mem_canonicalized, /*x_canonicalized=*/true,
3197 			     /*writep=*/false);
3198 }
3199 
3200 /* Output dependence: X is written after store in MEM takes place.  */
3201 
3202 int
3203 output_dependence (const_rtx mem, const_rtx x)
3204 {
3205   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3206 			     /*mem_canonicalized=*/false,
3207 			     /*x_canonicalized*/false, /*writep=*/true);
3208 }
3209 
3210 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3211    Also, consider X in X_MODE (which might be from an enclosing
3212    STRICT_LOW_PART / ZERO_EXTRACT).
3213    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3214 
3215 int
3216 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3217 			 const_rtx x, machine_mode x_mode, rtx x_addr)
3218 {
3219   return write_dependence_p (mem, x, x_mode, x_addr,
3220 			     mem_canonicalized, /*x_canonicalized=*/true,
3221 			     /*writep=*/true);
3222 }
3223 
3224 
3225 
3226 /* Check whether X may be aliased with MEM.  Don't do offset-based
3227   memory disambiguation & TBAA.  */
3228 int
3229 may_alias_p (const_rtx mem, const_rtx x)
3230 {
3231   rtx x_addr, mem_addr;
3232 
3233   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3234     return 1;
3235 
3236   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3237      This is used in epilogue deallocation functions.  */
3238   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3239     return 1;
3240   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3241     return 1;
3242   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3243       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3244     return 1;
3245 
3246   x_addr = XEXP (x, 0);
3247   x_addr = get_addr (x_addr);
3248 
3249   mem_addr = XEXP (mem, 0);
3250   mem_addr = get_addr (mem_addr);
3251 
3252   /* Read-only memory is by definition never modified, and therefore can't
3253      conflict with anything.  However, don't assume anything when AND
3254      addresses are involved and leave to the code below to determine
3255      dependence.  We don't expect to find read-only set on MEM, but
3256      stupid user tricks can produce them, so don't die.  */
3257   if (MEM_READONLY_P (x)
3258       && GET_CODE (x_addr) != AND
3259       && GET_CODE (mem_addr) != AND)
3260     return 0;
3261 
3262   /* If we have MEMs referring to different address spaces (which can
3263      potentially overlap), we cannot easily tell from the addresses
3264      whether the references overlap.  */
3265   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3266     return 1;
3267 
3268   rtx x_base = find_base_term (x_addr);
3269   rtx mem_base = find_base_term (mem_addr);
3270   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3271 			  GET_MODE (x), GET_MODE (mem_addr)))
3272     return 0;
3273 
3274   if (nonoverlapping_memrefs_p (mem, x, true))
3275     return 0;
3276 
3277   /* TBAA not valid for loop_invarint */
3278   return rtx_refs_may_alias_p (x, mem, false);
3279 }
3280 
3281 void
3282 init_alias_target (void)
3283 {
3284   int i;
3285 
3286   if (!arg_base_value)
3287     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3288 
3289   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3290 
3291   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3292     /* Check whether this register can hold an incoming pointer
3293        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3294        numbers, so translate if necessary due to register windows.  */
3295     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3296 	&& targetm.hard_regno_mode_ok (i, Pmode))
3297       static_reg_base_value[i] = arg_base_value;
3298 
3299   /* RTL code is required to be consistent about whether it uses the
3300      stack pointer, the frame pointer or the argument pointer to
3301      access a given area of the frame.  We can therefore use the
3302      base address to distinguish between the different areas.  */
3303   static_reg_base_value[STACK_POINTER_REGNUM]
3304     = unique_base_value (UNIQUE_BASE_VALUE_SP);
3305   static_reg_base_value[ARG_POINTER_REGNUM]
3306     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3307   static_reg_base_value[FRAME_POINTER_REGNUM]
3308     = unique_base_value (UNIQUE_BASE_VALUE_FP);
3309 
3310   /* The above rules extend post-reload, with eliminations applying
3311      consistently to each of the three pointers.  Cope with cases in
3312      which the frame pointer is eliminated to the hard frame pointer
3313      rather than the stack pointer.  */
3314   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3315     static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3316       = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3317 }
3318 
3319 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3320    to be memory reference.  */
3321 static bool memory_modified;
3322 static void
3323 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3324 {
3325   if (MEM_P (x))
3326     {
3327       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3328 	memory_modified = true;
3329     }
3330 }
3331 
3332 
3333 /* Return true when INSN possibly modify memory contents of MEM
3334    (i.e. address can be modified).  */
3335 bool
3336 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3337 {
3338   if (!INSN_P (insn))
3339     return false;
3340   /* Conservatively assume all non-readonly MEMs might be modified in
3341      calls.  */
3342   if (CALL_P (insn))
3343     return true;
3344   memory_modified = false;
3345   note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3346 	       CONST_CAST_RTX(mem));
3347   return memory_modified;
3348 }
3349 
3350 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3351    array.  */
3352 
3353 void
3354 init_alias_analysis (void)
3355 {
3356   unsigned int maxreg = max_reg_num ();
3357   int changed, pass;
3358   int i;
3359   unsigned int ui;
3360   rtx_insn *insn;
3361   rtx val;
3362   int rpo_cnt;
3363   int *rpo;
3364 
3365   timevar_push (TV_ALIAS_ANALYSIS);
3366 
3367   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3368 			 true);
3369   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3370   bitmap_clear (reg_known_equiv_p);
3371 
3372   /* If we have memory allocated from the previous run, use it.  */
3373   if (old_reg_base_value)
3374     reg_base_value = old_reg_base_value;
3375 
3376   if (reg_base_value)
3377     reg_base_value->truncate (0);
3378 
3379   vec_safe_grow_cleared (reg_base_value, maxreg, true);
3380 
3381   new_reg_base_value = XNEWVEC (rtx, maxreg);
3382   reg_seen = sbitmap_alloc (maxreg);
3383 
3384   /* The basic idea is that each pass through this loop will use the
3385      "constant" information from the previous pass to propagate alias
3386      information through another level of assignments.
3387 
3388      The propagation is done on the CFG in reverse post-order, to propagate
3389      things forward as far as possible in each iteration.
3390 
3391      This could get expensive if the assignment chains are long.  Maybe
3392      we should throttle the number of iterations, possibly based on
3393      the optimization level or flag_expensive_optimizations.
3394 
3395      We could propagate more information in the first pass by making use
3396      of DF_REG_DEF_COUNT to determine immediately that the alias information
3397      for a pseudo is "constant".
3398 
3399      A program with an uninitialized variable can cause an infinite loop
3400      here.  Instead of doing a full dataflow analysis to detect such problems
3401      we just cap the number of iterations for the loop.
3402 
3403      The state of the arrays for the set chain in question does not matter
3404      since the program has undefined behavior.  */
3405 
3406   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3407   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3408 
3409   /* The prologue/epilogue insns are not threaded onto the
3410      insn chain until after reload has completed.  Thus,
3411      there is no sense wasting time checking if INSN is in
3412      the prologue/epilogue until after reload has completed.  */
3413   bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3414 				      || targetm.have_epilogue ())
3415 				     && reload_completed);
3416 
3417   pass = 0;
3418   do
3419     {
3420       /* Assume nothing will change this iteration of the loop.  */
3421       changed = 0;
3422 
3423       /* We want to assign the same IDs each iteration of this loop, so
3424 	 start counting from one each iteration of the loop.  */
3425       unique_id = 1;
3426 
3427       /* We're at the start of the function each iteration through the
3428 	 loop, so we're copying arguments.  */
3429       copying_arguments = true;
3430 
3431       /* Wipe the potential alias information clean for this pass.  */
3432       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3433 
3434       /* Wipe the reg_seen array clean.  */
3435       bitmap_clear (reg_seen);
3436 
3437       /* Initialize the alias information for this pass.  */
3438       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3439 	if (static_reg_base_value[i]
3440 	    /* Don't treat the hard frame pointer as special if we
3441 	       eliminated the frame pointer to the stack pointer instead.  */
3442 	    && !(i == HARD_FRAME_POINTER_REGNUM
3443 		 && reload_completed
3444 		 && !frame_pointer_needed
3445 		 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3446 					   STACK_POINTER_REGNUM)))
3447 	  {
3448 	    new_reg_base_value[i] = static_reg_base_value[i];
3449 	    bitmap_set_bit (reg_seen, i);
3450 	  }
3451 
3452       /* Walk the insns adding values to the new_reg_base_value array.  */
3453       for (i = 0; i < rpo_cnt; i++)
3454 	{
3455 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3456 	  FOR_BB_INSNS (bb, insn)
3457 	    {
3458 	      if (NONDEBUG_INSN_P (insn))
3459 		{
3460 		  rtx note, set;
3461 
3462 		  if (could_be_prologue_epilogue
3463 		      && prologue_epilogue_contains (insn))
3464 		    continue;
3465 
3466 		  /* If this insn has a noalias note, process it,  Otherwise,
3467 		     scan for sets.  A simple set will have no side effects
3468 		     which could change the base value of any other register.  */
3469 
3470 		  if (GET_CODE (PATTERN (insn)) == SET
3471 		      && REG_NOTES (insn) != 0
3472 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3473 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3474 		  else
3475 		    note_stores (insn, record_set, NULL);
3476 
3477 		  set = single_set (insn);
3478 
3479 		  if (set != 0
3480 		      && REG_P (SET_DEST (set))
3481 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3482 		    {
3483 		      unsigned int regno = REGNO (SET_DEST (set));
3484 		      rtx src = SET_SRC (set);
3485 		      rtx t;
3486 
3487 		      note = find_reg_equal_equiv_note (insn);
3488 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3489 			  && DF_REG_DEF_COUNT (regno) != 1)
3490 			note = NULL_RTX;
3491 
3492 		      poly_int64 offset;
3493 		      if (note != NULL_RTX
3494 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3495 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3496 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3497 							XEXP (note, 0)))
3498 			{
3499 			  set_reg_known_value (regno, XEXP (note, 0));
3500 			  set_reg_known_equiv_p (regno,
3501 						 REG_NOTE_KIND (note) == REG_EQUIV);
3502 			}
3503 		      else if (DF_REG_DEF_COUNT (regno) == 1
3504 			       && GET_CODE (src) == PLUS
3505 			       && REG_P (XEXP (src, 0))
3506 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3507 			       && poly_int_rtx_p (XEXP (src, 1), &offset))
3508 			{
3509 			  t = plus_constant (GET_MODE (src), t, offset);
3510 			  set_reg_known_value (regno, t);
3511 			  set_reg_known_equiv_p (regno, false);
3512 			}
3513 		      else if (DF_REG_DEF_COUNT (regno) == 1
3514 			       && ! rtx_varies_p (src, 1))
3515 			{
3516 			  set_reg_known_value (regno, src);
3517 			  set_reg_known_equiv_p (regno, false);
3518 			}
3519 		    }
3520 		}
3521 	      else if (NOTE_P (insn)
3522 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3523 		copying_arguments = false;
3524 	    }
3525 	}
3526 
3527       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3528       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3529 
3530       for (ui = 0; ui < maxreg; ui++)
3531 	{
3532 	  if (new_reg_base_value[ui]
3533 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3534 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3535 	    {
3536 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3537 	      changed = 1;
3538 	    }
3539 	}
3540     }
3541   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3542   XDELETEVEC (rpo);
3543 
3544   /* Fill in the remaining entries.  */
3545   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3546     {
3547       int regno = i + FIRST_PSEUDO_REGISTER;
3548       if (! val)
3549 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3550     }
3551 
3552   /* Clean up.  */
3553   free (new_reg_base_value);
3554   new_reg_base_value = 0;
3555   sbitmap_free (reg_seen);
3556   reg_seen = 0;
3557   timevar_pop (TV_ALIAS_ANALYSIS);
3558 }
3559 
3560 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3561    Special API for var-tracking pass purposes.  */
3562 
3563 void
3564 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3565 {
3566   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3567 }
3568 
3569 void
3570 end_alias_analysis (void)
3571 {
3572   old_reg_base_value = reg_base_value;
3573   vec_free (reg_known_value);
3574   sbitmap_free (reg_known_equiv_p);
3575 }
3576 
3577 void
3578 dump_alias_stats_in_alias_c (FILE *s)
3579 {
3580   fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3581 	      "               %llu are in alias set 0\n"
3582 	      "               %llu queries asked about the same object\n"
3583 	      "               %llu queries asked about the same alias set\n"
3584 	      "               %llu access volatile\n"
3585 	      "               %llu are dependent in the DAG\n"
3586 	      "               %llu are aritificially in conflict with void *\n",
3587 	   alias_stats.num_disambiguated,
3588 	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3589 	   + alias_stats.num_same_objects + alias_stats.num_volatile
3590 	   + alias_stats.num_dag + alias_stats.num_disambiguated
3591 	   + alias_stats.num_universal,
3592 	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3593 	   alias_stats.num_same_objects, alias_stats.num_volatile,
3594 	   alias_stats.num_dag, alias_stats.num_universal);
3595 }
3596 #include "gt-alias.h"
3597