1 /* Gimple decl, type, and expression support functions.
2 
3    Copyright (C) 2007-2021 Free Software Foundation, Inc.
4    Contributed by Aldy Hernandez <aldyh@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "stringpool.h"
29 #include "gimple-ssa.h"
30 #include "fold-const.h"
31 #include "tree-eh.h"
32 #include "gimplify.h"
33 #include "stor-layout.h"
34 #include "demangle.h"
35 #include "hash-set.h"
36 #include "rtl.h"
37 #include "tree-pass.h"
38 #include "stringpool.h"
39 #include "attribs.h"
40 #include "target.h"
41 
42 /* ----- Type related -----  */
43 
44 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
45    useless type conversion, otherwise return false.
46 
47    This function implicitly defines the middle-end type system.  With
48    the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
49    holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
50    the following invariants shall be fulfilled:
51 
52      1) useless_type_conversion_p is transitive.
53 	If a < b and b < c then a < c.
54 
55      2) useless_type_conversion_p is not symmetric.
56 	From a < b does not follow a > b.
57 
58      3) Types define the available set of operations applicable to values.
59 	A type conversion is useless if the operations for the target type
60 	is a subset of the operations for the source type.  For example
61 	casts to void* are useless, casts from void* are not (void* can't
62 	be dereferenced or offsetted, but copied, hence its set of operations
63 	is a strict subset of that of all other data pointer types).  Casts
64 	to const T* are useless (can't be written to), casts from const T*
65 	to T* are not.  */
66 
67 bool
useless_type_conversion_p(tree outer_type,tree inner_type)68 useless_type_conversion_p (tree outer_type, tree inner_type)
69 {
70   /* Do the following before stripping toplevel qualifiers.  */
71   if (POINTER_TYPE_P (inner_type)
72       && POINTER_TYPE_P (outer_type))
73     {
74       /* Do not lose casts between pointers to different address spaces.  */
75       if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
76 	  != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
77 	return false;
78       /* Do not lose casts to function pointer types.  */
79       if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
80 	   || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
81 	  && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
82 	       || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
83 	return false;
84     }
85 
86   /* From now on qualifiers on value types do not matter.  */
87   inner_type = TYPE_MAIN_VARIANT (inner_type);
88   outer_type = TYPE_MAIN_VARIANT (outer_type);
89 
90   if (inner_type == outer_type)
91     return true;
92 
93   /* Changes in machine mode are never useless conversions because the RTL
94      middle-end expects explicit conversions between modes.  */
95   if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type))
96     return false;
97 
98   /* If both the inner and outer types are integral types, then the
99      conversion is not necessary if they have the same mode and
100      signedness and precision, and both or neither are boolean.  */
101   if (INTEGRAL_TYPE_P (inner_type)
102       && INTEGRAL_TYPE_P (outer_type))
103     {
104       /* Preserve changes in signedness or precision.  */
105       if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
106 	  || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
107 	return false;
108 
109       /* Preserve conversions to/from BOOLEAN_TYPE if types are not
110 	 of precision one.  */
111       if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
112 	   != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
113 	  && TYPE_PRECISION (outer_type) != 1)
114 	return false;
115 
116       /* We don't need to preserve changes in the types minimum or
117 	 maximum value in general as these do not generate code
118 	 unless the types precisions are different.  */
119       return true;
120     }
121 
122   /* Scalar floating point types with the same mode are compatible.  */
123   else if (SCALAR_FLOAT_TYPE_P (inner_type)
124 	   && SCALAR_FLOAT_TYPE_P (outer_type))
125     return true;
126 
127   /* Fixed point types with the same mode are compatible.  */
128   else if (FIXED_POINT_TYPE_P (inner_type)
129 	   && FIXED_POINT_TYPE_P (outer_type))
130     return TYPE_SATURATING (inner_type) == TYPE_SATURATING (outer_type);
131 
132   /* We need to take special care recursing to pointed-to types.  */
133   else if (POINTER_TYPE_P (inner_type)
134 	   && POINTER_TYPE_P (outer_type))
135     {
136       /* We do not care for const qualification of the pointed-to types
137 	 as const qualification has no semantic value to the middle-end.  */
138 
139       /* Otherwise pointers/references are equivalent.  */
140       return true;
141     }
142 
143   /* Recurse for complex types.  */
144   else if (TREE_CODE (inner_type) == COMPLEX_TYPE
145 	   && TREE_CODE (outer_type) == COMPLEX_TYPE)
146     return useless_type_conversion_p (TREE_TYPE (outer_type),
147 				      TREE_TYPE (inner_type));
148 
149   /* Recurse for vector types with the same number of subparts.  */
150   else if (TREE_CODE (inner_type) == VECTOR_TYPE
151 	   && TREE_CODE (outer_type) == VECTOR_TYPE)
152     return (known_eq (TYPE_VECTOR_SUBPARTS (inner_type),
153 		      TYPE_VECTOR_SUBPARTS (outer_type))
154 	    && useless_type_conversion_p (TREE_TYPE (outer_type),
155 					  TREE_TYPE (inner_type))
156 	    && targetm.compatible_vector_types_p (inner_type, outer_type));
157 
158   else if (TREE_CODE (inner_type) == ARRAY_TYPE
159 	   && TREE_CODE (outer_type) == ARRAY_TYPE)
160     {
161       /* Preserve various attributes.  */
162       if (TYPE_REVERSE_STORAGE_ORDER (inner_type)
163 	  != TYPE_REVERSE_STORAGE_ORDER (outer_type))
164 	return false;
165       if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
166 	return false;
167 
168       /* Conversions from array types with unknown extent to
169 	 array types with known extent are not useless.  */
170       if (!TYPE_DOMAIN (inner_type) && TYPE_DOMAIN (outer_type))
171 	return false;
172 
173       /* Nor are conversions from array types with non-constant size to
174          array types with constant size or to different size.  */
175       if (TYPE_SIZE (outer_type)
176 	  && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
177 	  && (!TYPE_SIZE (inner_type)
178 	      || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
179 	      || !tree_int_cst_equal (TYPE_SIZE (outer_type),
180 				      TYPE_SIZE (inner_type))))
181 	return false;
182 
183       /* Check conversions between arrays with partially known extents.
184 	 If the array min/max values are constant they have to match.
185 	 Otherwise allow conversions to unknown and variable extents.
186 	 In particular this declares conversions that may change the
187 	 mode to BLKmode as useless.  */
188       if (TYPE_DOMAIN (inner_type)
189 	  && TYPE_DOMAIN (outer_type)
190 	  && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
191 	{
192 	  tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
193 	  tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
194 	  tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
195 	  tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
196 
197 	  /* After gimplification a variable min/max value carries no
198 	     additional information compared to a NULL value.  All that
199 	     matters has been lowered to be part of the IL.  */
200 	  if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
201 	    inner_min = NULL_TREE;
202 	  if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
203 	    outer_min = NULL_TREE;
204 	  if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
205 	    inner_max = NULL_TREE;
206 	  if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
207 	    outer_max = NULL_TREE;
208 
209 	  /* Conversions NULL / variable <- cst are useless, but not
210 	     the other way around.  */
211 	  if (outer_min
212 	      && (!inner_min
213 		  || !tree_int_cst_equal (inner_min, outer_min)))
214 	    return false;
215 	  if (outer_max
216 	      && (!inner_max
217 		  || !tree_int_cst_equal (inner_max, outer_max)))
218 	    return false;
219 	}
220 
221       /* Recurse on the element check.  */
222       return useless_type_conversion_p (TREE_TYPE (outer_type),
223 					TREE_TYPE (inner_type));
224     }
225 
226   else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
227 	    || TREE_CODE (inner_type) == METHOD_TYPE)
228 	   && TREE_CODE (inner_type) == TREE_CODE (outer_type))
229     {
230       tree outer_parm, inner_parm;
231 
232       /* If the return types are not compatible bail out.  */
233       if (!useless_type_conversion_p (TREE_TYPE (outer_type),
234 				      TREE_TYPE (inner_type)))
235 	return false;
236 
237       /* Method types should belong to a compatible base class.  */
238       if (TREE_CODE (inner_type) == METHOD_TYPE
239 	  && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
240 					 TYPE_METHOD_BASETYPE (inner_type)))
241 	return false;
242 
243       /* A conversion to an unprototyped argument list is ok.  */
244       if (!prototype_p (outer_type))
245 	return true;
246 
247       /* If the unqualified argument types are compatible the conversion
248 	 is useless.  */
249       if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
250 	return true;
251 
252       for (outer_parm = TYPE_ARG_TYPES (outer_type),
253 	   inner_parm = TYPE_ARG_TYPES (inner_type);
254 	   outer_parm && inner_parm;
255 	   outer_parm = TREE_CHAIN (outer_parm),
256 	   inner_parm = TREE_CHAIN (inner_parm))
257 	if (!useless_type_conversion_p
258 	       (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
259 		TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
260 	  return false;
261 
262       /* If there is a mismatch in the number of arguments the functions
263 	 are not compatible.  */
264       if (outer_parm || inner_parm)
265 	return false;
266 
267       /* Defer to the target if necessary.  */
268       if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
269 	return comp_type_attributes (outer_type, inner_type) != 0;
270 
271       return true;
272     }
273 
274   /* For aggregates we rely on TYPE_CANONICAL exclusively and require
275      explicit conversions for types involving to be structurally
276      compared types.  */
277   else if (AGGREGATE_TYPE_P (inner_type)
278 	   && TREE_CODE (inner_type) == TREE_CODE (outer_type))
279     return TYPE_CANONICAL (inner_type)
280 	   && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type);
281 
282   else if (TREE_CODE (inner_type) == OFFSET_TYPE
283 	   && TREE_CODE (outer_type) == OFFSET_TYPE)
284     return useless_type_conversion_p (TREE_TYPE (outer_type),
285 				      TREE_TYPE (inner_type))
286 	   && useless_type_conversion_p
287 	        (TYPE_OFFSET_BASETYPE (outer_type),
288 		 TYPE_OFFSET_BASETYPE (inner_type));
289 
290   return false;
291 }
292 
293 
294 /* ----- Decl related -----  */
295 
296 /* Set sequence SEQ to be the GIMPLE body for function FN.  */
297 
298 void
gimple_set_body(tree fndecl,gimple_seq seq)299 gimple_set_body (tree fndecl, gimple_seq seq)
300 {
301   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
302   if (fn == NULL)
303     {
304       /* If FNDECL still does not have a function structure associated
305 	 with it, then it does not make sense for it to receive a
306 	 GIMPLE body.  */
307       gcc_assert (seq == NULL);
308     }
309   else
310     fn->gimple_body = seq;
311 }
312 
313 
314 /* Return the body of GIMPLE statements for function FN.  After the
315    CFG pass, the function body doesn't exist anymore because it has
316    been split up into basic blocks.  In this case, it returns
317    NULL.  */
318 
319 gimple_seq
gimple_body(tree fndecl)320 gimple_body (tree fndecl)
321 {
322   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
323   return fn ? fn->gimple_body : NULL;
324 }
325 
326 /* Return true when FNDECL has Gimple body either in unlowered
327    or CFG form.  */
328 bool
gimple_has_body_p(tree fndecl)329 gimple_has_body_p (tree fndecl)
330 {
331   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
332   return (gimple_body (fndecl) || (fn && fn->cfg && !(fn->curr_properties & PROP_rtl)));
333 }
334 
335 /* Return a printable name for symbol DECL.  */
336 
337 const char *
gimple_decl_printable_name(tree decl,int verbosity)338 gimple_decl_printable_name (tree decl, int verbosity)
339 {
340   if (!DECL_NAME (decl))
341     return NULL;
342 
343   if (HAS_DECL_ASSEMBLER_NAME_P (decl) && DECL_ASSEMBLER_NAME_SET_P (decl))
344     {
345       int dmgl_opts = DMGL_NO_OPTS;
346 
347       if (verbosity >= 2)
348 	{
349 	  dmgl_opts = DMGL_VERBOSE
350 		      | DMGL_ANSI
351 		      | DMGL_GNU_V3
352 		      | DMGL_RET_POSTFIX;
353 	  if (TREE_CODE (decl) == FUNCTION_DECL)
354 	    dmgl_opts |= DMGL_PARAMS;
355 	}
356 
357       const char *mangled_str
358 	= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME_RAW (decl));
359       const char *str = cplus_demangle_v3 (mangled_str, dmgl_opts);
360       return str ? str : mangled_str;
361     }
362 
363   return IDENTIFIER_POINTER (DECL_NAME (decl));
364 }
365 
366 
367 /* Create a new VAR_DECL and copy information from VAR to it.  */
368 
369 tree
copy_var_decl(tree var,tree name,tree type)370 copy_var_decl (tree var, tree name, tree type)
371 {
372   tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
373 
374   TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
375   TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
376   DECL_NOT_GIMPLE_REG_P (copy) = DECL_NOT_GIMPLE_REG_P (var);
377   DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
378   DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
379   DECL_CONTEXT (copy) = DECL_CONTEXT (var);
380   TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
381   TREE_USED (copy) = 1;
382   DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
383   DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
384   if (DECL_USER_ALIGN (var))
385     {
386       SET_DECL_ALIGN (copy, DECL_ALIGN (var));
387       DECL_USER_ALIGN (copy) = 1;
388     }
389 
390   return copy;
391 }
392 
393 /* Strip off a legitimate source ending from the input string NAME of
394    length LEN.  Rather than having to know the names used by all of
395    our front ends, we strip off an ending of a period followed by
396    up to four characters.  (like ".cpp".)  */
397 
398 static inline void
remove_suffix(char * name,int len)399 remove_suffix (char *name, int len)
400 {
401   int i;
402 
403   for (i = 2;  i < 7 && len > i;  i++)
404     {
405       if (name[len - i] == '.')
406 	{
407 	  name[len - i] = '\0';
408 	  break;
409 	}
410     }
411 }
412 
413 /* Create a new temporary name with PREFIX.  Return an identifier.  */
414 
415 static GTY(()) unsigned int tmp_var_id_num;
416 
417 tree
create_tmp_var_name(const char * prefix)418 create_tmp_var_name (const char *prefix)
419 {
420   char *tmp_name;
421 
422   if (prefix)
423     {
424       char *preftmp = ASTRDUP (prefix);
425 
426       remove_suffix (preftmp, strlen (preftmp));
427       clean_symbol_name (preftmp);
428 
429       prefix = preftmp;
430     }
431 
432   ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
433   return get_identifier (tmp_name);
434 }
435 
436 /* Create a new temporary variable declaration of type TYPE.
437    Do NOT push it into the current binding.  */
438 
439 tree
create_tmp_var_raw(tree type,const char * prefix)440 create_tmp_var_raw (tree type, const char *prefix)
441 {
442   tree tmp_var;
443 
444   tmp_var = build_decl (input_location,
445 			VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
446 			type);
447 
448   /* The variable was declared by the compiler.  */
449   DECL_ARTIFICIAL (tmp_var) = 1;
450   /* And we don't want debug info for it.  */
451   DECL_IGNORED_P (tmp_var) = 1;
452   /* And we don't want even the fancy names of those printed in
453      -fdump-final-insns= dumps.  */
454   DECL_NAMELESS (tmp_var) = 1;
455 
456   /* Make the variable writable.  */
457   TREE_READONLY (tmp_var) = 0;
458 
459   DECL_EXTERNAL (tmp_var) = 0;
460   TREE_STATIC (tmp_var) = 0;
461   TREE_USED (tmp_var) = 1;
462 
463   return tmp_var;
464 }
465 
466 /* Create a new temporary variable declaration of type TYPE.  DO push the
467    variable into the current binding.  Further, assume that this is called
468    only from gimplification or optimization, at which point the creation of
469    certain types are bugs.  */
470 
471 tree
create_tmp_var(tree type,const char * prefix)472 create_tmp_var (tree type, const char *prefix)
473 {
474   tree tmp_var;
475 
476   /* We don't allow types that are addressable (meaning we can't make copies),
477      or incomplete.  We also used to reject every variable size objects here,
478      but now support those for which a constant upper bound can be obtained.
479      The processing for variable sizes is performed in gimple_add_tmp_var,
480      point at which it really matters and possibly reached via paths not going
481      through this function, e.g. after direct calls to create_tmp_var_raw.  */
482   gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
483 
484   tmp_var = create_tmp_var_raw (type, prefix);
485   gimple_add_tmp_var (tmp_var);
486   return tmp_var;
487 }
488 
489 /* Create a new temporary variable declaration of type TYPE by calling
490    create_tmp_var and if TYPE is a vector or a complex number, mark the new
491    temporary as gimple register.  */
492 
493 tree
create_tmp_reg(tree type,const char * prefix)494 create_tmp_reg (tree type, const char *prefix)
495 {
496   return create_tmp_var (type, prefix);
497 }
498 
499 /* Create a new temporary variable declaration of type TYPE by calling
500    create_tmp_var and if TYPE is a vector or a complex number, mark the new
501    temporary as gimple register.  */
502 
503 tree
create_tmp_reg_fn(struct function * fn,tree type,const char * prefix)504 create_tmp_reg_fn (struct function *fn, tree type, const char *prefix)
505 {
506   tree tmp;
507 
508   tmp = create_tmp_var_raw (type, prefix);
509   gimple_add_tmp_var_fn (fn, tmp);
510 
511   return tmp;
512 }
513 
514 
515 /* ----- Expression related -----  */
516 
517 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
518    *OP1_P, *OP2_P and *OP3_P respectively.  */
519 
520 void
extract_ops_from_tree(tree expr,enum tree_code * subcode_p,tree * op1_p,tree * op2_p,tree * op3_p)521 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
522 		       tree *op2_p, tree *op3_p)
523 {
524   *subcode_p = TREE_CODE (expr);
525   switch (get_gimple_rhs_class (*subcode_p))
526     {
527     case GIMPLE_TERNARY_RHS:
528       {
529 	*op1_p = TREE_OPERAND (expr, 0);
530 	*op2_p = TREE_OPERAND (expr, 1);
531 	*op3_p = TREE_OPERAND (expr, 2);
532 	break;
533       }
534     case GIMPLE_BINARY_RHS:
535       {
536 	*op1_p = TREE_OPERAND (expr, 0);
537 	*op2_p = TREE_OPERAND (expr, 1);
538 	*op3_p = NULL_TREE;
539 	break;
540       }
541     case GIMPLE_UNARY_RHS:
542       {
543 	*op1_p = TREE_OPERAND (expr, 0);
544 	*op2_p = NULL_TREE;
545 	*op3_p = NULL_TREE;
546 	break;
547       }
548     case GIMPLE_SINGLE_RHS:
549       {
550 	*op1_p = expr;
551 	*op2_p = NULL_TREE;
552 	*op3_p = NULL_TREE;
553 	break;
554       }
555     default:
556       gcc_unreachable ();
557     }
558 }
559 
560 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND.  */
561 
562 void
gimple_cond_get_ops_from_tree(tree cond,enum tree_code * code_p,tree * lhs_p,tree * rhs_p)563 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
564                                tree *lhs_p, tree *rhs_p)
565 {
566   gcc_assert (COMPARISON_CLASS_P (cond)
567 	      || TREE_CODE (cond) == TRUTH_NOT_EXPR
568 	      || is_gimple_min_invariant (cond)
569 	      || SSA_VAR_P (cond));
570   gcc_checking_assert (!tree_could_throw_p (cond));
571 
572   extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
573 
574   /* Canonicalize conditionals of the form 'if (!VAL)'.  */
575   if (*code_p == TRUTH_NOT_EXPR)
576     {
577       *code_p = EQ_EXPR;
578       gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
579       *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
580     }
581   /* Canonicalize conditionals of the form 'if (VAL)'  */
582   else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
583     {
584       *code_p = NE_EXPR;
585       gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
586       *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
587     }
588 }
589 
590 /*  Return true if T is a valid LHS for a GIMPLE assignment expression.  */
591 
592 bool
is_gimple_lvalue(tree t)593 is_gimple_lvalue (tree t)
594 {
595   return (is_gimple_addressable (t)
596 	  || TREE_CODE (t) == WITH_SIZE_EXPR
597 	  /* These are complex lvalues, but don't have addresses, so they
598 	     go here.  */
599 	  || TREE_CODE (t) == BIT_FIELD_REF);
600 }
601 
602 /* Helper for is_gimple_condexpr and is_gimple_condexpr_for_cond.  */
603 
604 static bool
is_gimple_condexpr_1(tree t,bool allow_traps)605 is_gimple_condexpr_1 (tree t, bool allow_traps)
606 {
607   return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
608 				&& (allow_traps || !tree_could_throw_p (t))
609 				&& is_gimple_val (TREE_OPERAND (t, 0))
610 				&& is_gimple_val (TREE_OPERAND (t, 1))));
611 }
612 
613 /* Return true if T is a GIMPLE condition.  */
614 
615 bool
is_gimple_condexpr(tree t)616 is_gimple_condexpr (tree t)
617 {
618   return is_gimple_condexpr_1 (t, true);
619 }
620 
621 /* Like is_gimple_condexpr, but does not allow T to trap.  */
622 
623 bool
is_gimple_condexpr_for_cond(tree t)624 is_gimple_condexpr_for_cond (tree t)
625 {
626   return is_gimple_condexpr_1 (t, false);
627 }
628 
629 /* Return true if T is a gimple address.  */
630 
631 bool
is_gimple_address(const_tree t)632 is_gimple_address (const_tree t)
633 {
634   tree op;
635 
636   if (TREE_CODE (t) != ADDR_EXPR)
637     return false;
638 
639   op = TREE_OPERAND (t, 0);
640   while (handled_component_p (op))
641     {
642       if ((TREE_CODE (op) == ARRAY_REF
643 	   || TREE_CODE (op) == ARRAY_RANGE_REF)
644 	  && !is_gimple_val (TREE_OPERAND (op, 1)))
645 	    return false;
646 
647       op = TREE_OPERAND (op, 0);
648     }
649 
650   if (CONSTANT_CLASS_P (op)
651       || TREE_CODE (op) == TARGET_MEM_REF
652       || TREE_CODE (op) == MEM_REF)
653     return true;
654 
655   switch (TREE_CODE (op))
656     {
657     case PARM_DECL:
658     case RESULT_DECL:
659     case LABEL_DECL:
660     case FUNCTION_DECL:
661     case VAR_DECL:
662     case CONST_DECL:
663       return true;
664 
665     default:
666       return false;
667     }
668 }
669 
670 /* Return true if T is a gimple invariant address.  */
671 
672 bool
is_gimple_invariant_address(const_tree t)673 is_gimple_invariant_address (const_tree t)
674 {
675   const_tree op;
676 
677   if (TREE_CODE (t) != ADDR_EXPR)
678     return false;
679 
680   op = strip_invariant_refs (TREE_OPERAND (t, 0));
681   if (!op)
682     return false;
683 
684   if (TREE_CODE (op) == MEM_REF)
685     {
686       const_tree op0 = TREE_OPERAND (op, 0);
687       return (TREE_CODE (op0) == ADDR_EXPR
688 	      && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
689 		  || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
690     }
691 
692   return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
693 }
694 
695 /* Return true if T is a gimple invariant address at IPA level
696    (so addresses of variables on stack are not allowed).  */
697 
698 bool
is_gimple_ip_invariant_address(const_tree t)699 is_gimple_ip_invariant_address (const_tree t)
700 {
701   const_tree op;
702 
703   if (TREE_CODE (t) != ADDR_EXPR)
704     return false;
705 
706   op = strip_invariant_refs (TREE_OPERAND (t, 0));
707   if (!op)
708     return false;
709 
710   if (TREE_CODE (op) == MEM_REF)
711     {
712       const_tree op0 = TREE_OPERAND (op, 0);
713       return (TREE_CODE (op0) == ADDR_EXPR
714 	      && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
715 		  || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
716     }
717 
718   return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
719 }
720 
721 /* Return true if T is a GIMPLE minimal invariant.  It's a restricted
722    form of function invariant.  */
723 
724 bool
is_gimple_min_invariant(const_tree t)725 is_gimple_min_invariant (const_tree t)
726 {
727   if (TREE_CODE (t) == ADDR_EXPR)
728     return is_gimple_invariant_address (t);
729 
730   return is_gimple_constant (t);
731 }
732 
733 /* Return true if T is a GIMPLE interprocedural invariant.  It's a restricted
734    form of gimple minimal invariant.  */
735 
736 bool
is_gimple_ip_invariant(const_tree t)737 is_gimple_ip_invariant (const_tree t)
738 {
739   if (TREE_CODE (t) == ADDR_EXPR)
740     return is_gimple_ip_invariant_address (t);
741 
742   return is_gimple_constant (t);
743 }
744 
745 /* Return true if T is a non-aggregate register variable.  */
746 
747 bool
is_gimple_reg(tree t)748 is_gimple_reg (tree t)
749 {
750   if (virtual_operand_p (t))
751     return false;
752 
753   if (TREE_CODE (t) == SSA_NAME)
754     return true;
755 
756   if (!is_gimple_variable (t))
757     return false;
758 
759   if (!is_gimple_reg_type (TREE_TYPE (t)))
760     return false;
761 
762   /* A volatile decl is not acceptable because we can't reuse it as
763      needed.  We need to copy it into a temp first.  */
764   if (TREE_THIS_VOLATILE (t))
765     return false;
766 
767   /* We define "registers" as things that can be renamed as needed,
768      which with our infrastructure does not apply to memory.  */
769   if (needs_to_live_in_memory (t))
770     return false;
771 
772   /* Hard register variables are an interesting case.  For those that
773      are call-clobbered, we don't know where all the calls are, since
774      we don't (want to) take into account which operations will turn
775      into libcalls at the rtl level.  For those that are call-saved,
776      we don't currently model the fact that calls may in fact change
777      global hard registers, nor do we examine ASM_CLOBBERS at the tree
778      level, and so miss variable changes that might imply.  All around,
779      it seems safest to not do too much optimization with these at the
780      tree level at all.  We'll have to rely on the rtl optimizers to
781      clean this up, as there we've got all the appropriate bits exposed.  */
782   if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
783     return false;
784 
785   /* Variables can be marked as having partial definitions, avoid
786      putting them into SSA form.  */
787   return !DECL_NOT_GIMPLE_REG_P (t);
788 }
789 
790 
791 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant.  */
792 
793 bool
is_gimple_val(tree t)794 is_gimple_val (tree t)
795 {
796   /* Make loads from volatiles and memory vars explicit.  */
797   if (is_gimple_variable (t)
798       && is_gimple_reg_type (TREE_TYPE (t))
799       && !is_gimple_reg (t))
800     return false;
801 
802   return (is_gimple_variable (t) || is_gimple_min_invariant (t));
803 }
804 
805 /* Similarly, but accept hard registers as inputs to asm statements.  */
806 
807 bool
is_gimple_asm_val(tree t)808 is_gimple_asm_val (tree t)
809 {
810   if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
811     return true;
812 
813   return is_gimple_val (t);
814 }
815 
816 /* Return true if T is a GIMPLE minimal lvalue.  */
817 
818 bool
is_gimple_min_lval(tree t)819 is_gimple_min_lval (tree t)
820 {
821   if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
822     return false;
823   return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
824 }
825 
826 /* Return true if T is a valid function operand of a CALL_EXPR.  */
827 
828 bool
is_gimple_call_addr(tree t)829 is_gimple_call_addr (tree t)
830 {
831   return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
832 }
833 
834 /* Return true if T is a valid address operand of a MEM_REF.  */
835 
836 bool
is_gimple_mem_ref_addr(tree t)837 is_gimple_mem_ref_addr (tree t)
838 {
839   return (is_gimple_reg (t)
840 	  || TREE_CODE (t) == INTEGER_CST
841 	  || (TREE_CODE (t) == ADDR_EXPR
842 	      && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
843 		  || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
844 }
845 
846 /* Hold trees marked addressable during expand.  */
847 
848 static hash_set<tree> *mark_addressable_queue;
849 
850 /* Mark X as addressable or queue it up if called during expand.  We
851    don't want to apply it immediately during expand because decls are
852    made addressable at that point due to RTL-only concerns, such as
853    uses of memcpy for block moves, and TREE_ADDRESSABLE changes
854    is_gimple_reg, which might make it seem like a variable that used
855    to be a gimple_reg shouldn't have been an SSA name.  So we queue up
856    this flag setting and only apply it when we're done with GIMPLE and
857    only RTL issues matter.  */
858 
859 static void
mark_addressable_1(tree x)860 mark_addressable_1 (tree x)
861 {
862   if (!currently_expanding_to_rtl)
863     {
864       TREE_ADDRESSABLE (x) = 1;
865       return;
866     }
867 
868   if (!mark_addressable_queue)
869     mark_addressable_queue = new hash_set<tree>();
870   mark_addressable_queue->add (x);
871 }
872 
873 /* Adaptor for mark_addressable_1 for use in hash_set traversal.  */
874 
875 bool
876 mark_addressable_2 (tree const &x, void * ATTRIBUTE_UNUSED = NULL)
877 {
878   mark_addressable_1 (x);
879   return false;
880 }
881 
882 /* Mark all queued trees as addressable, and empty the queue.  To be
883    called right after clearing CURRENTLY_EXPANDING_TO_RTL.  */
884 
885 void
flush_mark_addressable_queue()886 flush_mark_addressable_queue ()
887 {
888   gcc_assert (!currently_expanding_to_rtl);
889   if (mark_addressable_queue)
890     {
891       mark_addressable_queue->traverse<void*, mark_addressable_2> (NULL);
892       delete mark_addressable_queue;
893       mark_addressable_queue = NULL;
894     }
895 }
896 
897 /* Mark X addressable.  Unlike the langhook we expect X to be in gimple
898    form and we don't do any syntax checking.  */
899 
900 void
mark_addressable(tree x)901 mark_addressable (tree x)
902 {
903   while (handled_component_p (x))
904     x = TREE_OPERAND (x, 0);
905   if (TREE_CODE (x) == MEM_REF
906       && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
907     x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
908   if (!VAR_P (x)
909       && TREE_CODE (x) != PARM_DECL
910       && TREE_CODE (x) != RESULT_DECL)
911     return;
912   mark_addressable_1 (x);
913 
914   /* Also mark the artificial SSA_NAME that points to the partition of X.  */
915   if (TREE_CODE (x) == VAR_DECL
916       && !DECL_EXTERNAL (x)
917       && !TREE_STATIC (x)
918       && cfun->gimple_df != NULL
919       && cfun->gimple_df->decls_to_pointers != NULL)
920     {
921       tree *namep = cfun->gimple_df->decls_to_pointers->get (x);
922       if (namep)
923 	mark_addressable_1 (*namep);
924     }
925 }
926 
927 /* Returns true iff T is a valid RHS for an assignment to a renamed
928    user -- or front-end generated artificial -- variable.  */
929 
930 bool
is_gimple_reg_rhs(tree t)931 is_gimple_reg_rhs (tree t)
932 {
933   return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
934 }
935 
936 #include "gt-gimple-expr.h"
937