1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2021 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA cannot assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395 
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402 
403 /* A modified value of flag `-fira-verbose' used internally.  */
404 int internal_flag_ira_verbose;
405 
406 /* Dump file of the allocator if it is not NULL.  */
407 FILE *ira_dump_file;
408 
409 /* The number of elements in the following array.  */
410 int ira_spilled_reg_stack_slots_num;
411 
412 /* The following array contains info about spilled pseudo-registers
413    stack slots used in current function so far.  */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 
416 /* Correspondingly overall cost of the allocation, overall cost before
417    reload, cost of the allocnos assigned to hard-registers, cost of
418    the allocnos assigned to memory, cost of loads, stores and register
419    move insns generated for pseudo-register live range splitting (see
420    ira-emit.c).  */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425 
426 /* All registers that can be eliminated.  */
427 
428 HARD_REG_SET eliminable_regset;
429 
430 /* Value of max_reg_num () before IRA work start.  This value helps
431    us to recognize a situation when new pseudos were created during
432    IRA work.  */
433 static int max_regno_before_ira;
434 
435 /* Temporary hard reg set used for a different calculation.  */
436 static HARD_REG_SET temp_hard_regset;
437 
438 #define last_mode_for_init_move_cost \
439   (this_target_ira_int->x_last_mode_for_init_move_cost)
440 
441 
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
443 static void
setup_reg_mode_hard_regset(void)444 setup_reg_mode_hard_regset (void)
445 {
446   int i, m, hard_regno;
447 
448   for (m = 0; m < NUM_MACHINE_MODES; m++)
449     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450       {
451 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 	for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 	     i >= 0; i--)
454 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 			      hard_regno + i);
457       }
458 }
459 
460 
461 #define no_unit_alloc_regs \
462   (this_target_ira_int->x_no_unit_alloc_regs)
463 
464 /* The function sets up the three arrays declared above.  */
465 static void
setup_class_hard_regs(void)466 setup_class_hard_regs (void)
467 {
468   int cl, i, hard_regno, n;
469   HARD_REG_SET processed_hard_reg_set;
470 
471   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473     {
474       temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475       CLEAR_HARD_REG_SET (processed_hard_reg_set);
476       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 	{
478 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
479 	  ira_class_hard_reg_index[cl][i] = -1;
480 	}
481       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 	{
483 #ifdef REG_ALLOC_ORDER
484 	  hard_regno = reg_alloc_order[i];
485 #else
486 	  hard_regno = i;
487 #endif
488 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 	    continue;
490 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
493 	  else
494 	    {
495 	      ira_class_hard_reg_index[cl][hard_regno] = n;
496 	      ira_class_hard_regs[cl][n++] = hard_regno;
497 	    }
498 	}
499       ira_class_hard_regs_num[cl] = n;
500       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
503       ira_assert (ira_class_hard_regs_num[cl] == n);
504     }
505 }
506 
507 /* Set up global variables defining info about hard registers for the
508    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
509    that we can use the hard frame pointer for the allocation.  */
510 static void
setup_alloc_regs(bool use_hard_frame_p)511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514   ADJUST_REG_ALLOC_ORDER;
515 #endif
516   no_unit_alloc_regs = fixed_nonglobal_reg_set;
517   if (! use_hard_frame_p)
518     add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 			 HARD_FRAME_POINTER_REGNUM);
520   setup_class_hard_regs ();
521 }
522 
523 
524 
525 #define alloc_reg_class_subclasses \
526   (this_target_ira_int->x_alloc_reg_class_subclasses)
527 
528 /* Initialize the table of subclasses of each reg class.  */
529 static void
setup_reg_subclasses(void)530 setup_reg_subclasses (void)
531 {
532   int i, j;
533   HARD_REG_SET temp_hard_regset2;
534 
535   for (i = 0; i < N_REG_CLASSES; i++)
536     for (j = 0; j < N_REG_CLASSES; j++)
537       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 
539   for (i = 0; i < N_REG_CLASSES; i++)
540     {
541       if (i == (int) NO_REGS)
542 	continue;
543 
544       temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545       if (hard_reg_set_empty_p (temp_hard_regset))
546 	continue;
547       for (j = 0; j < N_REG_CLASSES; j++)
548 	if (i != j)
549 	  {
550 	    enum reg_class *p;
551 
552 	    temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 	    if (! hard_reg_set_subset_p (temp_hard_regset,
554 					 temp_hard_regset2))
555 	      continue;
556 	    p = &alloc_reg_class_subclasses[j][0];
557 	    while (*p != LIM_REG_CLASSES) p++;
558 	    *p = (enum reg_class) i;
559 	  }
560     }
561 }
562 
563 
564 
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
566 static void
setup_class_subset_and_memory_move_costs(void)567 setup_class_subset_and_memory_move_costs (void)
568 {
569   int cl, cl2, mode, cost;
570   HARD_REG_SET temp_hard_regset2;
571 
572   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573     ira_memory_move_cost[mode][NO_REGS][0]
574       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576     {
577       if (cl != (int) NO_REGS)
578 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 	  {
580 	    ira_max_memory_move_cost[mode][cl][0]
581 	      = ira_memory_move_cost[mode][cl][0]
582 	      = memory_move_cost ((machine_mode) mode,
583 				  (reg_class_t) cl, false);
584 	    ira_max_memory_move_cost[mode][cl][1]
585 	      = ira_memory_move_cost[mode][cl][1]
586 	      = memory_move_cost ((machine_mode) mode,
587 				  (reg_class_t) cl, true);
588 	    /* Costs for NO_REGS are used in cost calculation on the
589 	       1st pass when the preferred register classes are not
590 	       known yet.  In this case we take the best scenario.  */
591 	    if (ira_memory_move_cost[mode][NO_REGS][0]
592 		> ira_memory_move_cost[mode][cl][0])
593 	      ira_max_memory_move_cost[mode][NO_REGS][0]
594 		= ira_memory_move_cost[mode][NO_REGS][0]
595 		= ira_memory_move_cost[mode][cl][0];
596 	    if (ira_memory_move_cost[mode][NO_REGS][1]
597 		> ira_memory_move_cost[mode][cl][1])
598 	      ira_max_memory_move_cost[mode][NO_REGS][1]
599 		= ira_memory_move_cost[mode][NO_REGS][1]
600 		= ira_memory_move_cost[mode][cl][1];
601 	  }
602     }
603   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605       {
606 	temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 	temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 	ira_class_subset_p[cl][cl2]
609 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 	if (! hard_reg_set_empty_p (temp_hard_regset2)
611 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
612 				      reg_class_contents[cl]))
613 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 	    {
615 	      cost = ira_memory_move_cost[mode][cl2][0];
616 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
617 		ira_max_memory_move_cost[mode][cl][0] = cost;
618 	      cost = ira_memory_move_cost[mode][cl2][1];
619 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
620 		ira_max_memory_move_cost[mode][cl][1] = cost;
621 	    }
622       }
623   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625       {
626 	ira_memory_move_cost[mode][cl][0]
627 	  = ira_max_memory_move_cost[mode][cl][0];
628 	ira_memory_move_cost[mode][cl][1]
629 	  = ira_max_memory_move_cost[mode][cl][1];
630       }
631   setup_reg_subclasses ();
632 }
633 
634 
635 
636 /* Define the following macro if allocation through malloc if
637    preferable.  */
638 #define IRA_NO_OBSTACK
639 
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642    IRA.  */
643 static struct obstack ira_obstack;
644 #endif
645 
646 /* Obstack used for storing all bitmaps of the IRA.  */
647 static struct bitmap_obstack ira_bitmap_obstack;
648 
649 /* Allocate memory of size LEN for IRA data.  */
650 void *
ira_allocate(size_t len)651 ira_allocate (size_t len)
652 {
653   void *res;
654 
655 #ifndef IRA_NO_OBSTACK
656   res = obstack_alloc (&ira_obstack, len);
657 #else
658   res = xmalloc (len);
659 #endif
660   return res;
661 }
662 
663 /* Free memory ADDR allocated for IRA data.  */
664 void
ira_free(void * addr ATTRIBUTE_UNUSED)665 ira_free (void *addr ATTRIBUTE_UNUSED)
666 {
667 #ifndef IRA_NO_OBSTACK
668   /* do nothing */
669 #else
670   free (addr);
671 #endif
672 }
673 
674 
675 /* Allocate and returns bitmap for IRA.  */
676 bitmap
ira_allocate_bitmap(void)677 ira_allocate_bitmap (void)
678 {
679   return BITMAP_ALLOC (&ira_bitmap_obstack);
680 }
681 
682 /* Free bitmap B allocated for IRA.  */
683 void
ira_free_bitmap(bitmap b ATTRIBUTE_UNUSED)684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 {
686   /* do nothing */
687 }
688 
689 
690 
691 /* Output information about allocation of all allocnos (except for
692    caps) into file F.  */
693 void
ira_print_disposition(FILE * f)694 ira_print_disposition (FILE *f)
695 {
696   int i, n, max_regno;
697   ira_allocno_t a;
698   basic_block bb;
699 
700   fprintf (f, "Disposition:");
701   max_regno = max_reg_num ();
702   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703     for (a = ira_regno_allocno_map[i];
704 	 a != NULL;
705 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706       {
707 	if (n % 4 == 0)
708 	  fprintf (f, "\n");
709 	n++;
710 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 	  fprintf (f, "b%-3d", bb->index);
713 	else
714 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 	if (ALLOCNO_HARD_REGNO (a) >= 0)
716 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 	else
718 	  fprintf (f, " mem");
719       }
720   fprintf (f, "\n");
721 }
722 
723 /* Outputs information about allocation of all allocnos into
724    stderr.  */
725 void
ira_debug_disposition(void)726 ira_debug_disposition (void)
727 {
728   ira_print_disposition (stderr);
729 }
730 
731 
732 
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734    register class containing stack registers or NO_REGS if there are
735    no stack registers.  To find this class, we iterate through all
736    register pressure classes and choose the first register pressure
737    class containing all the stack registers and having the biggest
738    size.  */
739 static void
setup_stack_reg_pressure_class(void)740 setup_stack_reg_pressure_class (void)
741 {
742   ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
744   {
745     int i, best, size;
746     enum reg_class cl;
747     HARD_REG_SET temp_hard_regset2;
748 
749     CLEAR_HARD_REG_SET (temp_hard_regset);
750     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751       SET_HARD_REG_BIT (temp_hard_regset, i);
752     best = 0;
753     for (i = 0; i < ira_pressure_classes_num; i++)
754       {
755 	cl = ira_pressure_classes[i];
756 	temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 	size = hard_reg_set_size (temp_hard_regset2);
758 	if (best < size)
759 	  {
760 	    best = size;
761 	    ira_stack_reg_pressure_class = cl;
762 	  }
763       }
764   }
765 #endif
766 }
767 
768 /* Find pressure classes which are register classes for which we
769    calculate register pressure in IRA, register pressure sensitive
770    insn scheduling, and register pressure sensitive loop invariant
771    motion.
772 
773    To make register pressure calculation easy, we always use
774    non-intersected register pressure classes.  A move of hard
775    registers from one register pressure class is not more expensive
776    than load and store of the hard registers.  Most likely an allocno
777    class will be a subset of a register pressure class and in many
778    cases a register pressure class.  That makes usage of register
779    pressure classes a good approximation to find a high register
780    pressure.  */
781 static void
setup_pressure_classes(void)782 setup_pressure_classes (void)
783 {
784   int cost, i, n, curr;
785   int cl, cl2;
786   enum reg_class pressure_classes[N_REG_CLASSES];
787   int m;
788   HARD_REG_SET temp_hard_regset2;
789   bool insert_p;
790 
791   if (targetm.compute_pressure_classes)
792     n = targetm.compute_pressure_classes (pressure_classes);
793   else
794     {
795       n = 0;
796       for (cl = 0; cl < N_REG_CLASSES; cl++)
797 	{
798 	  if (ira_class_hard_regs_num[cl] == 0)
799 	    continue;
800 	  if (ira_class_hard_regs_num[cl] != 1
801 	      /* A register class without subclasses may contain a few
802 		 hard registers and movement between them is costly
803 		 (e.g. SPARC FPCC registers).  We still should consider it
804 		 as a candidate for a pressure class.  */
805 	      && alloc_reg_class_subclasses[cl][0] < cl)
806 	    {
807 	      /* Check that the moves between any hard registers of the
808 		 current class are not more expensive for a legal mode
809 		 than load/store of the hard registers of the current
810 		 class.  Such class is a potential candidate to be a
811 		 register pressure class.  */
812 	      for (m = 0; m < NUM_MACHINE_MODES; m++)
813 		{
814 		  temp_hard_regset
815 		    = (reg_class_contents[cl]
816 		       & ~(no_unit_alloc_regs
817 			   | ira_prohibited_class_mode_regs[cl][m]));
818 		  if (hard_reg_set_empty_p (temp_hard_regset))
819 		    continue;
820 		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 		  cost = ira_register_move_cost[m][cl][cl];
822 		  if (cost <= ira_max_memory_move_cost[m][cl][1]
823 		      || cost <= ira_max_memory_move_cost[m][cl][0])
824 		    break;
825 		}
826 	      if (m >= NUM_MACHINE_MODES)
827 		continue;
828 	    }
829 	  curr = 0;
830 	  insert_p = true;
831 	  temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 	  /* Remove so far added pressure classes which are subset of the
833 	     current candidate class.  Prefer GENERAL_REGS as a pressure
834 	     register class to another class containing the same
835 	     allocatable hard registers.  We do this because machine
836 	     dependent cost hooks might give wrong costs for the latter
837 	     class but always give the right cost for the former class
838 	     (GENERAL_REGS).  */
839 	  for (i = 0; i < n; i++)
840 	    {
841 	      cl2 = pressure_classes[i];
842 	      temp_hard_regset2 = (reg_class_contents[cl2]
843 				   & ~no_unit_alloc_regs);
844 	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 		  && (temp_hard_regset != temp_hard_regset2
846 		      || cl2 == (int) GENERAL_REGS))
847 		{
848 		  pressure_classes[curr++] = (enum reg_class) cl2;
849 		  insert_p = false;
850 		  continue;
851 		}
852 	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 		  && (temp_hard_regset2 != temp_hard_regset
854 		      || cl == (int) GENERAL_REGS))
855 		continue;
856 	      if (temp_hard_regset2 == temp_hard_regset)
857 		insert_p = false;
858 	      pressure_classes[curr++] = (enum reg_class) cl2;
859 	    }
860 	  /* If the current candidate is a subset of a so far added
861 	     pressure class, don't add it to the list of the pressure
862 	     classes.  */
863 	  if (insert_p)
864 	    pressure_classes[curr++] = (enum reg_class) cl;
865 	  n = curr;
866 	}
867     }
868 #ifdef ENABLE_IRA_CHECKING
869   {
870     HARD_REG_SET ignore_hard_regs;
871 
872     /* Check pressure classes correctness: here we check that hard
873        registers from all register pressure classes contains all hard
874        registers available for the allocation.  */
875     CLEAR_HARD_REG_SET (temp_hard_regset);
876     CLEAR_HARD_REG_SET (temp_hard_regset2);
877     ignore_hard_regs = no_unit_alloc_regs;
878     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879       {
880 	/* For some targets (like MIPS with MD_REGS), there are some
881 	   classes with hard registers available for allocation but
882 	   not able to hold value of any mode.  */
883 	for (m = 0; m < NUM_MACHINE_MODES; m++)
884 	  if (contains_reg_of_mode[cl][m])
885 	    break;
886 	if (m >= NUM_MACHINE_MODES)
887 	  {
888 	    ignore_hard_regs |= reg_class_contents[cl];
889 	    continue;
890 	  }
891 	for (i = 0; i < n; i++)
892 	  if ((int) pressure_classes[i] == cl)
893 	    break;
894 	temp_hard_regset2 |= reg_class_contents[cl];
895 	if (i < n)
896 	  temp_hard_regset |= reg_class_contents[cl];
897       }
898     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899       /* Some targets (like SPARC with ICC reg) have allocatable regs
900 	 for which no reg class is defined.  */
901       if (REGNO_REG_CLASS (i) == NO_REGS)
902 	SET_HARD_REG_BIT (ignore_hard_regs, i);
903     temp_hard_regset &= ~ignore_hard_regs;
904     temp_hard_regset2 &= ~ignore_hard_regs;
905     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906   }
907 #endif
908   ira_pressure_classes_num = 0;
909   for (i = 0; i < n; i++)
910     {
911       cl = (int) pressure_classes[i];
912       ira_reg_pressure_class_p[cl] = true;
913       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914     }
915   setup_stack_reg_pressure_class ();
916 }
917 
918 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
919    whose register move cost between any registers of the class is the
920    same as for all its subclasses.  We use the data to speed up the
921    2nd pass of calculations of allocno costs.  */
922 static void
setup_uniform_class_p(void)923 setup_uniform_class_p (void)
924 {
925   int i, cl, cl2, m;
926 
927   for (cl = 0; cl < N_REG_CLASSES; cl++)
928     {
929       ira_uniform_class_p[cl] = false;
930       if (ira_class_hard_regs_num[cl] == 0)
931 	continue;
932       /* We cannot use alloc_reg_class_subclasses here because move
933 	 cost hooks does not take into account that some registers are
934 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
935 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 	 because SSE regs are unavailable.  */
937       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 	{
939 	  if (ira_class_hard_regs_num[cl2] == 0)
940 	    continue;
941       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
942 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 	      {
944 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 		if (ira_register_move_cost[m][cl][cl]
946 		    != ira_register_move_cost[m][cl2][cl2])
947 		  break;
948 	      }
949 	  if (m < NUM_MACHINE_MODES)
950 	    break;
951 	}
952       if (cl2 == LIM_REG_CLASSES)
953 	ira_uniform_class_p[cl] = true;
954     }
955 }
956 
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 
960    Target may have many subtargets and not all target hard registers can
961    be used for allocation, e.g. x86 port in 32-bit mode cannot use
962    hard registers introduced in x86-64 like r8-r15).  Some classes
963    might have the same allocatable hard registers, e.g.  INDEX_REGS
964    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
965    calculations efforts we introduce allocno classes which contain
966    unique non-empty sets of allocatable hard-registers.
967 
968    Pseudo class cost calculation in ira-costs.c is very expensive.
969    Therefore we are trying to decrease number of classes involved in
970    such calculation.  Register classes used in the cost calculation
971    are called important classes.  They are allocno classes and other
972    non-empty classes whose allocatable hard register sets are inside
973    of an allocno class hard register set.  From the first sight, it
974    looks like that they are just allocno classes.  It is not true.  In
975    example of x86-port in 32-bit mode, allocno classes will contain
976    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977    registers are the same for the both classes).  The important
978    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
979    because a machine description insn constraint may refers for
980    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981    of the insn constraints.  */
982 static void
setup_allocno_and_important_classes(void)983 setup_allocno_and_important_classes (void)
984 {
985   int i, j, n, cl;
986   bool set_p;
987   HARD_REG_SET temp_hard_regset2;
988   static enum reg_class classes[LIM_REG_CLASSES + 1];
989 
990   n = 0;
991   /* Collect classes which contain unique sets of allocatable hard
992      registers.  Prefer GENERAL_REGS to other classes containing the
993      same set of hard registers.  */
994   for (i = 0; i < LIM_REG_CLASSES; i++)
995     {
996       temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997       for (j = 0; j < n; j++)
998 	{
999 	  cl = classes[j];
1000 	  temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 	  if (temp_hard_regset == temp_hard_regset2)
1002 	    break;
1003 	}
1004       if (j >= n || targetm.additional_allocno_class_p (i))
1005 	classes[n++] = (enum reg_class) i;
1006       else if (i == GENERAL_REGS)
1007 	/* Prefer general regs.  For i386 example, it means that
1008 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 	   (all of them consists of the same available hard
1010 	   registers).  */
1011 	classes[j] = (enum reg_class) i;
1012     }
1013   classes[n] = LIM_REG_CLASSES;
1014 
1015   /* Set up classes which can be used for allocnos as classes
1016      containing non-empty unique sets of allocatable hard
1017      registers.  */
1018   ira_allocno_classes_num = 0;
1019   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020     if (ira_class_hard_regs_num[cl] > 0)
1021       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022   ira_important_classes_num = 0;
1023   /* Add non-allocno classes containing to non-empty set of
1024      allocatable hard regs.  */
1025   for (cl = 0; cl < N_REG_CLASSES; cl++)
1026     if (ira_class_hard_regs_num[cl] > 0)
1027       {
1028 	temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 	set_p = false;
1030 	for (j = 0; j < ira_allocno_classes_num; j++)
1031 	  {
1032 	    temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 				 & ~no_unit_alloc_regs);
1034 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1035 	      break;
1036 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1037 					    temp_hard_regset2))
1038 	      set_p = true;
1039 	  }
1040 	if (set_p && j >= ira_allocno_classes_num)
1041 	  ira_important_classes[ira_important_classes_num++]
1042 	    = (enum reg_class) cl;
1043       }
1044   /* Now add allocno classes to the important classes.  */
1045   for (j = 0; j < ira_allocno_classes_num; j++)
1046     ira_important_classes[ira_important_classes_num++]
1047       = ira_allocno_classes[j];
1048   for (cl = 0; cl < N_REG_CLASSES; cl++)
1049     {
1050       ira_reg_allocno_class_p[cl] = false;
1051       ira_reg_pressure_class_p[cl] = false;
1052     }
1053   for (j = 0; j < ira_allocno_classes_num; j++)
1054     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055   setup_pressure_classes ();
1056   setup_uniform_class_p ();
1057 }
1058 
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060    given by array CLASSES of length CLASSES_NUM.  The function is used
1061    make translation any reg class to an allocno class or to an
1062    pressure class.  This translation is necessary for some
1063    calculations when we can use only allocno or pressure classes and
1064    such translation represents an approximate representation of all
1065    classes.
1066 
1067    The translation in case when allocatable hard register set of a
1068    given class is subset of allocatable hard register set of a class
1069    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1070    containing a given class.  If allocatable hard register set of a
1071    given class is not a subset of any corresponding set of a class
1072    from CLASSES, we use the cheapest (with load/store point of view)
1073    class from CLASSES whose set intersects with given class set.  */
1074 static void
setup_class_translate_array(enum reg_class * class_translate,int classes_num,enum reg_class * classes)1075 setup_class_translate_array (enum reg_class *class_translate,
1076 			     int classes_num, enum reg_class *classes)
1077 {
1078   int cl, mode;
1079   enum reg_class aclass, best_class, *cl_ptr;
1080   int i, cost, min_cost, best_cost;
1081 
1082   for (cl = 0; cl < N_REG_CLASSES; cl++)
1083     class_translate[cl] = NO_REGS;
1084 
1085   for (i = 0; i < classes_num; i++)
1086     {
1087       aclass = classes[i];
1088       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 	   cl_ptr++)
1091 	if (class_translate[cl] == NO_REGS)
1092 	  class_translate[cl] = aclass;
1093       class_translate[aclass] = aclass;
1094     }
1095   /* For classes which are not fully covered by one of given classes
1096      (in other words covered by more one given class), use the
1097      cheapest class.  */
1098   for (cl = 0; cl < N_REG_CLASSES; cl++)
1099     {
1100       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 	continue;
1102       best_class = NO_REGS;
1103       best_cost = INT_MAX;
1104       for (i = 0; i < classes_num; i++)
1105 	{
1106 	  aclass = classes[i];
1107 	  temp_hard_regset = (reg_class_contents[aclass]
1108 			      & reg_class_contents[cl]
1109 			      & ~no_unit_alloc_regs);
1110 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1111 	    {
1112 	      min_cost = INT_MAX;
1113 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 		{
1115 		  cost = (ira_memory_move_cost[mode][aclass][0]
1116 			  + ira_memory_move_cost[mode][aclass][1]);
1117 		  if (min_cost > cost)
1118 		    min_cost = cost;
1119 		}
1120 	      if (best_class == NO_REGS || best_cost > min_cost)
1121 		{
1122 		  best_class = aclass;
1123 		  best_cost = min_cost;
1124 		}
1125 	    }
1126 	}
1127       class_translate[cl] = best_class;
1128     }
1129 }
1130 
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132    IRA_PRESSURE_CLASS_TRANSLATE.  */
1133 static void
setup_class_translate(void)1134 setup_class_translate (void)
1135 {
1136   setup_class_translate_array (ira_allocno_class_translate,
1137 			       ira_allocno_classes_num, ira_allocno_classes);
1138   setup_class_translate_array (ira_pressure_class_translate,
1139 			       ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141 
1142 /* Order numbers of allocno classes in original target allocno class
1143    array, -1 for non-allocno classes.  */
1144 static int allocno_class_order[N_REG_CLASSES];
1145 
1146 /* The function used to sort the important classes.  */
1147 static int
comp_reg_classes_func(const void * v1p,const void * v2p)1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150   enum reg_class cl1 = *(const enum reg_class *) v1p;
1151   enum reg_class cl2 = *(const enum reg_class *) v2p;
1152   enum reg_class tcl1, tcl2;
1153   int diff;
1154 
1155   tcl1 = ira_allocno_class_translate[cl1];
1156   tcl2 = ira_allocno_class_translate[cl2];
1157   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159     return diff;
1160   return (int) cl1 - (int) cl2;
1161 }
1162 
1163 /* For correct work of function setup_reg_class_relation we need to
1164    reorder important classes according to the order of their allocno
1165    classes.  It places important classes containing the same
1166    allocatable hard register set adjacent to each other and allocno
1167    class with the allocatable hard register set right after the other
1168    important classes with the same set.
1169 
1170    In example from comments of function
1171    setup_allocno_and_important_classes, it places LEGACY_REGS and
1172    GENERAL_REGS close to each other and GENERAL_REGS is after
1173    LEGACY_REGS.  */
1174 static void
reorder_important_classes(void)1175 reorder_important_classes (void)
1176 {
1177   int i;
1178 
1179   for (i = 0; i < N_REG_CLASSES; i++)
1180     allocno_class_order[i] = -1;
1181   for (i = 0; i < ira_allocno_classes_num; i++)
1182     allocno_class_order[ira_allocno_classes[i]] = i;
1183   qsort (ira_important_classes, ira_important_classes_num,
1184 	 sizeof (enum reg_class), comp_reg_classes_func);
1185   for (i = 0; i < ira_important_classes_num; i++)
1186     ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188 
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1192    please see corresponding comments in ira-int.h.  */
1193 static void
setup_reg_class_relations(void)1194 setup_reg_class_relations (void)
1195 {
1196   int i, cl1, cl2, cl3;
1197   HARD_REG_SET intersection_set, union_set, temp_set2;
1198   bool important_class_p[N_REG_CLASSES];
1199 
1200   memset (important_class_p, 0, sizeof (important_class_p));
1201   for (i = 0; i < ira_important_classes_num; i++)
1202     important_class_p[ira_important_classes[i]] = true;
1203   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204     {
1205       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 	{
1208 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 	  temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 	  temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 	  if (hard_reg_set_empty_p (temp_hard_regset)
1214 	      && hard_reg_set_empty_p (temp_set2))
1215 	    {
1216 	      /* The both classes have no allocatable hard registers
1217 		 -- take all class hard registers into account and use
1218 		 reg_class_subunion and reg_class_superunion.  */
1219 	      for (i = 0;; i++)
1220 		{
1221 		  cl3 = reg_class_subclasses[cl1][i];
1222 		  if (cl3 == LIM_REG_CLASSES)
1223 		    break;
1224 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 					  (enum reg_class) cl3))
1226 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 		}
1228 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 	      continue;
1231 	    }
1232 	  ira_reg_classes_intersect_p[cl1][cl2]
1233 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 	  if (important_class_p[cl1] && important_class_p[cl2]
1235 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 	    {
1237 	      /* CL1 and CL2 are important classes and CL1 allocatable
1238 		 hard register set is inside of CL2 allocatable hard
1239 		 registers -- make CL1 a superset of CL2.  */
1240 	      enum reg_class *p;
1241 
1242 	      p = &ira_reg_class_super_classes[cl1][0];
1243 	      while (*p != LIM_REG_CLASSES)
1244 		p++;
1245 	      *p++ = (enum reg_class) cl2;
1246 	      *p = LIM_REG_CLASSES;
1247 	    }
1248 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 	  intersection_set = (reg_class_contents[cl1]
1251 			      & reg_class_contents[cl2]
1252 			      & ~no_unit_alloc_regs);
1253 	  union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 		       & ~no_unit_alloc_regs);
1255 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 	    {
1257 	      temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 		{
1260 		  /* CL3 allocatable hard register set is inside of
1261 		     intersection of allocatable hard register sets
1262 		     of CL1 and CL2.  */
1263 		  if (important_class_p[cl3])
1264 		    {
1265 		      temp_set2
1266 			= (reg_class_contents
1267 			   [ira_reg_class_intersect[cl1][cl2]]);
1268 		      temp_set2 &= ~no_unit_alloc_regs;
1269 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 			  /* If the allocatable hard register sets are
1271 			     the same, prefer GENERAL_REGS or the
1272 			     smallest class for debugging
1273 			     purposes.  */
1274 			  || (temp_hard_regset == temp_set2
1275 			      && (cl3 == GENERAL_REGS
1276 				  || ((ira_reg_class_intersect[cl1][cl2]
1277 				       != GENERAL_REGS)
1278 				      && hard_reg_set_subset_p
1279 				         (reg_class_contents[cl3],
1280 					  reg_class_contents
1281 					  [(int)
1282 					   ira_reg_class_intersect[cl1][cl2]])))))
1283 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 		    }
1285 		  temp_set2
1286 		    = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 		       & ~no_unit_alloc_regs);
1288 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 		      /* Ignore unavailable hard registers and prefer
1290 			 smallest class for debugging purposes.  */
1291 		      || (temp_hard_regset == temp_set2
1292 			  && hard_reg_set_subset_p
1293 			     (reg_class_contents[cl3],
1294 			      reg_class_contents
1295 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1296 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 		}
1298 	      if (important_class_p[cl3]
1299 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 		{
1301 		  /* CL3 allocatable hard register set is inside of
1302 		     union of allocatable hard register sets of CL1
1303 		     and CL2.  */
1304 		  temp_set2
1305 		    = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 		       & ~no_unit_alloc_regs);
1307 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309 
1310 			  && (temp_set2 != temp_hard_regset
1311 			      || cl3 == GENERAL_REGS
1312 			      /* If the allocatable hard register sets are the
1313 				 same, prefer GENERAL_REGS or the smallest
1314 				 class for debugging purposes.  */
1315 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 				  && hard_reg_set_subset_p
1317 				     (reg_class_contents[cl3],
1318 				      reg_class_contents
1319 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 		}
1322 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 		{
1324 		  /* CL3 allocatable hard register set contains union
1325 		     of allocatable hard register sets of CL1 and
1326 		     CL2.  */
1327 		  temp_set2
1328 		    = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 		       & ~no_unit_alloc_regs);
1330 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332 
1333 			  && (temp_set2 != temp_hard_regset
1334 			      || cl3 == GENERAL_REGS
1335 			      /* If the allocatable hard register sets are the
1336 				 same, prefer GENERAL_REGS or the smallest
1337 				 class for debugging purposes.  */
1338 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 				  && hard_reg_set_subset_p
1340 				     (reg_class_contents[cl3],
1341 				      reg_class_contents
1342 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1344 		}
1345 	    }
1346 	}
1347     }
1348 }
1349 
1350 /* Output all uniform and important classes into file F.  */
1351 static void
print_uniform_and_important_classes(FILE * f)1352 print_uniform_and_important_classes (FILE *f)
1353 {
1354   int i, cl;
1355 
1356   fprintf (f, "Uniform classes:\n");
1357   for (cl = 0; cl < N_REG_CLASSES; cl++)
1358     if (ira_uniform_class_p[cl])
1359       fprintf (f, " %s", reg_class_names[cl]);
1360   fprintf (f, "\nImportant classes:\n");
1361   for (i = 0; i < ira_important_classes_num; i++)
1362     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363   fprintf (f, "\n");
1364 }
1365 
1366 /* Output all possible allocno or pressure classes and their
1367    translation map into file F.  */
1368 static void
print_translated_classes(FILE * f,bool pressure_p)1369 print_translated_classes (FILE *f, bool pressure_p)
1370 {
1371   int classes_num = (pressure_p
1372 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1373   enum reg_class *classes = (pressure_p
1374 			     ? ira_pressure_classes : ira_allocno_classes);
1375   enum reg_class *class_translate = (pressure_p
1376 				     ? ira_pressure_class_translate
1377 				     : ira_allocno_class_translate);
1378   int i;
1379 
1380   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381   for (i = 0; i < classes_num; i++)
1382     fprintf (f, " %s", reg_class_names[classes[i]]);
1383   fprintf (f, "\nClass translation:\n");
1384   for (i = 0; i < N_REG_CLASSES; i++)
1385     fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 	     reg_class_names[class_translate[i]]);
1387 }
1388 
1389 /* Output all possible allocno and translation classes and the
1390    translation maps into stderr.  */
1391 void
ira_debug_allocno_classes(void)1392 ira_debug_allocno_classes (void)
1393 {
1394   print_uniform_and_important_classes (stderr);
1395   print_translated_classes (stderr, false);
1396   print_translated_classes (stderr, true);
1397 }
1398 
1399 /* Set up different arrays concerning class subsets, allocno and
1400    important classes.  */
1401 static void
find_reg_classes(void)1402 find_reg_classes (void)
1403 {
1404   setup_allocno_and_important_classes ();
1405   setup_class_translate ();
1406   reorder_important_classes ();
1407   setup_reg_class_relations ();
1408 }
1409 
1410 
1411 
1412 /* Set up the array above.  */
1413 static void
setup_hard_regno_aclass(void)1414 setup_hard_regno_aclass (void)
1415 {
1416   int i;
1417 
1418   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419     {
1420 #if 1
1421       ira_hard_regno_allocno_class[i]
1422 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 	   ? NO_REGS
1424 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426       int j;
1427       enum reg_class cl;
1428       ira_hard_regno_allocno_class[i] = NO_REGS;
1429       for (j = 0; j < ira_allocno_classes_num; j++)
1430  	{
1431 	  cl = ira_allocno_classes[j];
1432  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1433  	    {
1434 	      ira_hard_regno_allocno_class[i] = cl;
1435  	      break;
1436  	    }
1437  	}
1438 #endif
1439     }
1440 }
1441 
1442 
1443 
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1445 static void
setup_reg_class_nregs(void)1446 setup_reg_class_nregs (void)
1447 {
1448   int i, cl, cl2, m;
1449 
1450   for (m = 0; m < MAX_MACHINE_MODE; m++)
1451     {
1452       for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 	ira_reg_class_max_nregs[cl][m]
1454 	  = ira_reg_class_min_nregs[cl][m]
1455 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456       for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 	for (i = 0;
1458 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 	     i++)
1460 	  if (ira_reg_class_min_nregs[cl2][m]
1461 	      < ira_reg_class_min_nregs[cl][m])
1462 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1463     }
1464 }
1465 
1466 
1467 
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1469    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1470 static void
setup_prohibited_class_mode_regs(void)1471 setup_prohibited_class_mode_regs (void)
1472 {
1473   int j, k, hard_regno, cl, last_hard_regno, count;
1474 
1475   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476     {
1477       temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1478       for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 	{
1480 	  count = 0;
1481 	  last_hard_regno = -1;
1482 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1483 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 	    {
1485 	      hard_regno = ira_class_hard_regs[cl][k];
1486 	      if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1487 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1488 				  hard_regno);
1489 	      else if (in_hard_reg_set_p (temp_hard_regset,
1490 					  (machine_mode) j, hard_regno))
1491 		{
1492 		  last_hard_regno = hard_regno;
1493 		  count++;
1494 		}
1495 	    }
1496 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1497 	}
1498     }
1499 }
1500 
1501 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1502    spanning from one register pressure class to another one.  It is
1503    called after defining the pressure classes.  */
1504 static void
clarify_prohibited_class_mode_regs(void)1505 clarify_prohibited_class_mode_regs (void)
1506 {
1507   int j, k, hard_regno, cl, pclass, nregs;
1508 
1509   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1510     for (j = 0; j < NUM_MACHINE_MODES; j++)
1511       {
1512 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1513 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 	  {
1515 	    hard_regno = ira_class_hard_regs[cl][k];
1516 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1517 	      continue;
1518 	    nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1519 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 	      {
1521 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1522 				  hard_regno);
1523 		 continue;
1524 	      }
1525 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1526 	    for (nregs-- ;nregs >= 0; nregs--)
1527 	      if (((enum reg_class) pclass
1528 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1529 						   (hard_regno + nregs)]))
1530 		{
1531 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 				    hard_regno);
1533 		  break;
1534 		}
1535 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 				    hard_regno))
1537 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1538 				   (machine_mode) j, hard_regno);
1539 	  }
1540       }
1541 }
1542 
1543 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1544    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1545 void
ira_init_register_move_cost(machine_mode mode)1546 ira_init_register_move_cost (machine_mode mode)
1547 {
1548   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1549   bool all_match = true;
1550   unsigned int i, cl1, cl2;
1551   HARD_REG_SET ok_regs;
1552 
1553   ira_assert (ira_register_move_cost[mode] == NULL
1554 	      && ira_may_move_in_cost[mode] == NULL
1555 	      && ira_may_move_out_cost[mode] == NULL);
1556   CLEAR_HARD_REG_SET (ok_regs);
1557   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1558     if (targetm.hard_regno_mode_ok (i, mode))
1559       SET_HARD_REG_BIT (ok_regs, i);
1560 
1561   /* Note that we might be asked about the move costs of modes that
1562      cannot be stored in any hard register, for example if an inline
1563      asm tries to create a register operand with an impossible mode.
1564      We therefore can't assert have_regs_of_mode[mode] here.  */
1565   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1566     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567       {
1568 	int cost;
1569 	if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1570 	    || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 	  {
1572 	    if ((ira_reg_class_max_nregs[cl1][mode]
1573 		 > ira_class_hard_regs_num[cl1])
1574 		|| (ira_reg_class_max_nregs[cl2][mode]
1575 		    > ira_class_hard_regs_num[cl2]))
1576 	      cost = 65535;
1577 	    else
1578 	      cost = (ira_memory_move_cost[mode][cl1][0]
1579 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 	  }
1581 	else
1582 	  {
1583 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1584 				       (enum reg_class) cl2);
1585 	    ira_assert (cost < 65535);
1586 	  }
1587 	all_match &= (last_move_cost[cl1][cl2] == cost);
1588 	last_move_cost[cl1][cl2] = cost;
1589       }
1590   if (all_match && last_mode_for_init_move_cost != -1)
1591     {
1592       ira_register_move_cost[mode]
1593 	= ira_register_move_cost[last_mode_for_init_move_cost];
1594       ira_may_move_in_cost[mode]
1595 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1596       ira_may_move_out_cost[mode]
1597 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1598       return;
1599     }
1600   last_mode_for_init_move_cost = mode;
1601   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1605     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606       {
1607 	int cost;
1608 	enum reg_class *p1, *p2;
1609 
1610 	if (last_move_cost[cl1][cl2] == 65535)
1611 	  {
1612 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1613 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1614 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 	  }
1616 	else
1617 	  {
1618 	    cost = last_move_cost[cl1][cl2];
1619 
1620 	    for (p2 = &reg_class_subclasses[cl2][0];
1621 		 *p2 != LIM_REG_CLASSES; p2++)
1622 	      if (ira_class_hard_regs_num[*p2] > 0
1623 		  && (ira_reg_class_max_nregs[*p2][mode]
1624 		      <= ira_class_hard_regs_num[*p2]))
1625 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626 
1627 	    for (p1 = &reg_class_subclasses[cl1][0];
1628 		 *p1 != LIM_REG_CLASSES; p1++)
1629 	      if (ira_class_hard_regs_num[*p1] > 0
1630 		  && (ira_reg_class_max_nregs[*p1][mode]
1631 		      <= ira_class_hard_regs_num[*p1]))
1632 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633 
1634 	    ira_assert (cost <= 65535);
1635 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1636 
1637 	    if (ira_class_subset_p[cl1][cl2])
1638 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1639 	    else
1640 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641 
1642 	    if (ira_class_subset_p[cl2][cl1])
1643 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1644 	    else
1645 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1646 	  }
1647       }
1648 }
1649 
1650 
1651 
1652 /* This is called once during compiler work.  It sets up
1653    different arrays whose values don't depend on the compiled
1654    function.  */
1655 void
ira_init_once(void)1656 ira_init_once (void)
1657 {
1658   ira_init_costs_once ();
1659   lra_init_once ();
1660 
1661   ira_use_lra_p = targetm.lra_p ();
1662 }
1663 
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665    ira_may_move_out_cost for each mode.  */
1666 void
free_register_move_costs(void)1667 target_ira_int::free_register_move_costs (void)
1668 {
1669   int mode, i;
1670 
1671   /* Reset move_cost and friends, making sure we only free shared
1672      table entries once.  */
1673   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674     if (x_ira_register_move_cost[mode])
1675       {
1676 	for (i = 0;
1677 	     i < mode && (x_ira_register_move_cost[i]
1678 			  != x_ira_register_move_cost[mode]);
1679 	     i++)
1680 	  ;
1681 	if (i == mode)
1682 	  {
1683 	    free (x_ira_register_move_cost[mode]);
1684 	    free (x_ira_may_move_in_cost[mode]);
1685 	    free (x_ira_may_move_out_cost[mode]);
1686 	  }
1687       }
1688   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1689   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1690   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1691   last_mode_for_init_move_cost = -1;
1692 }
1693 
~target_ira_int()1694 target_ira_int::~target_ira_int ()
1695 {
1696   free_ira_costs ();
1697   free_register_move_costs ();
1698 }
1699 
1700 /* This is called every time when register related information is
1701    changed.  */
1702 void
ira_init(void)1703 ira_init (void)
1704 {
1705   this_target_ira_int->free_register_move_costs ();
1706   setup_reg_mode_hard_regset ();
1707   setup_alloc_regs (flag_omit_frame_pointer != 0);
1708   setup_class_subset_and_memory_move_costs ();
1709   setup_reg_class_nregs ();
1710   setup_prohibited_class_mode_regs ();
1711   find_reg_classes ();
1712   clarify_prohibited_class_mode_regs ();
1713   setup_hard_regno_aclass ();
1714   ira_init_costs ();
1715 }
1716 
1717 
1718 #define ira_prohibited_mode_move_regs_initialized_p \
1719   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720 
1721 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1722 static void
setup_prohibited_mode_move_regs(void)1723 setup_prohibited_mode_move_regs (void)
1724 {
1725   int i, j;
1726   rtx test_reg1, test_reg2, move_pat;
1727   rtx_insn *move_insn;
1728 
1729   if (ira_prohibited_mode_move_regs_initialized_p)
1730     return;
1731   ira_prohibited_mode_move_regs_initialized_p = true;
1732   test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1733   test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1734   move_pat = gen_rtx_SET (test_reg1, test_reg2);
1735   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1736   for (i = 0; i < NUM_MACHINE_MODES; i++)
1737     {
1738       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1739       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 	{
1741 	  if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1742 	    continue;
1743 	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
1744 	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
1745 	  INSN_CODE (move_insn) = -1;
1746 	  recog_memoized (move_insn);
1747 	  if (INSN_CODE (move_insn) < 0)
1748 	    continue;
1749 	  extract_insn (move_insn);
1750 	  /* We don't know whether the move will be in code that is optimized
1751 	     for size or speed, so consider all enabled alternatives.  */
1752 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1753 	    continue;
1754 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1755 	}
1756     }
1757 }
1758 
1759 
1760 
1761 /* Extract INSN and return the set of alternatives that we should consider.
1762    This excludes any alternatives whose constraints are obviously impossible
1763    to meet (e.g. because the constraint requires a constant and the operand
1764    is nonconstant).  It also excludes alternatives that are bound to need
1765    a spill or reload, as long as we have other alternatives that match
1766    exactly.  */
1767 alternative_mask
ira_setup_alts(rtx_insn * insn)1768 ira_setup_alts (rtx_insn *insn)
1769 {
1770   int nop, nalt;
1771   bool curr_swapped;
1772   const char *p;
1773   int commutative = -1;
1774 
1775   extract_insn (insn);
1776   preprocess_constraints (insn);
1777   alternative_mask preferred = get_preferred_alternatives (insn);
1778   alternative_mask alts = 0;
1779   alternative_mask exact_alts = 0;
1780   /* Check that the hard reg set is enough for holding all
1781      alternatives.  It is hard to imagine the situation when the
1782      assertion is wrong.  */
1783   ira_assert (recog_data.n_alternatives
1784 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1785 			    FIRST_PSEUDO_REGISTER));
1786   for (nop = 0; nop < recog_data.n_operands; nop++)
1787     if (recog_data.constraints[nop][0] == '%')
1788       {
1789 	commutative = nop;
1790 	break;
1791       }
1792   for (curr_swapped = false;; curr_swapped = true)
1793     {
1794       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 	{
1796 	  if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1797 	    continue;
1798 
1799 	  const operand_alternative *op_alt
1800 	    = &recog_op_alt[nalt * recog_data.n_operands];
1801 	  int this_reject = 0;
1802 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1803 	    {
1804 	      int c, len;
1805 
1806 	      this_reject += op_alt[nop].reject;
1807 
1808 	      rtx op = recog_data.operand[nop];
1809 	      p = op_alt[nop].constraint;
1810 	      if (*p == 0 || *p == ',')
1811 		continue;
1812 
1813 	      bool win_p = false;
1814 	      do
1815 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 		  {
1817 		  case '#':
1818 		  case ',':
1819 		    c = '\0';
1820 		    /* FALLTHRU */
1821 		  case '\0':
1822 		    len = 0;
1823 		    break;
1824 
1825 		  case '%':
1826 		    /* The commutative modifier is handled above.  */
1827 		    break;
1828 
1829 		  case '0':  case '1':  case '2':  case '3':  case '4':
1830 		  case '5':  case '6':  case '7':  case '8':  case '9':
1831 		    {
1832 		      char *end;
1833 		      unsigned long dup = strtoul (p, &end, 10);
1834 		      rtx other = recog_data.operand[dup];
1835 		      len = end - p;
1836 		      if (MEM_P (other)
1837 			  ? rtx_equal_p (other, op)
1838 			  : REG_P (op) || SUBREG_P (op))
1839 			goto op_success;
1840 		      win_p = true;
1841 		    }
1842 		    break;
1843 
1844 		  case 'g':
1845 		    goto op_success;
1846 		    break;
1847 
1848 		  default:
1849 		    {
1850 		      enum constraint_num cn = lookup_constraint (p);
1851 		      rtx mem = NULL;
1852 		      switch (get_constraint_type (cn))
1853 			{
1854 			case CT_REGISTER:
1855 			  if (reg_class_for_constraint (cn) != NO_REGS)
1856 			    {
1857 			      if (REG_P (op) || SUBREG_P (op))
1858 				goto op_success;
1859 			      win_p = true;
1860 			    }
1861 			  break;
1862 
1863 			case CT_CONST_INT:
1864 			  if (CONST_INT_P (op)
1865 			      && (insn_const_int_ok_for_constraint
1866 				  (INTVAL (op), cn)))
1867 			    goto op_success;
1868 			  break;
1869 
1870 			case CT_ADDRESS:
1871 			  goto op_success;
1872 
1873 			case CT_MEMORY:
1874 			case CT_RELAXED_MEMORY:
1875 			  mem = op;
1876 			  /* Fall through.  */
1877 			case CT_SPECIAL_MEMORY:
1878 			  if (!mem)
1879 			    mem = extract_mem_from_operand (op);
1880 			  if (MEM_P (mem))
1881 			    goto op_success;
1882 			  win_p = true;
1883 			  break;
1884 
1885 			case CT_FIXED_FORM:
1886 			  if (constraint_satisfied_p (op, cn))
1887 			    goto op_success;
1888 			  break;
1889 			}
1890 		      break;
1891 		    }
1892 		  }
1893 	      while (p += len, c);
1894 	      if (!win_p)
1895 		break;
1896 	      /* We can make the alternative match by spilling a register
1897 		 to memory or loading something into a register.  Count a
1898 		 cost of one reload (the equivalent of the '?' constraint).  */
1899 	      this_reject += 6;
1900 	    op_success:
1901 	      ;
1902 	    }
1903 
1904 	  if (nop >= recog_data.n_operands)
1905 	    {
1906 	      alts |= ALTERNATIVE_BIT (nalt);
1907 	      if (this_reject == 0)
1908 		exact_alts |= ALTERNATIVE_BIT (nalt);
1909 	    }
1910 	}
1911       if (commutative < 0)
1912 	break;
1913       /* Swap forth and back to avoid changing recog_data.  */
1914       std::swap (recog_data.operand[commutative],
1915 		 recog_data.operand[commutative + 1]);
1916       if (curr_swapped)
1917 	break;
1918     }
1919   return exact_alts ? exact_alts : alts;
1920 }
1921 
1922 /* Return the number of the output non-early clobber operand which
1923    should be the same in any case as operand with number OP_NUM (or
1924    negative value if there is no such operand).  ALTS is the mask
1925    of alternatives that we should consider.  */
1926 int
ira_get_dup_out_num(int op_num,alternative_mask alts)1927 ira_get_dup_out_num (int op_num, alternative_mask alts)
1928 {
1929   int curr_alt, c, original;
1930   bool ignore_p, use_commut_op_p;
1931   const char *str;
1932 
1933   if (op_num < 0 || recog_data.n_alternatives == 0)
1934     return -1;
1935   /* We should find duplications only for input operands.  */
1936   if (recog_data.operand_type[op_num] != OP_IN)
1937     return -1;
1938   str = recog_data.constraints[op_num];
1939   use_commut_op_p = false;
1940   for (;;)
1941     {
1942       rtx op = recog_data.operand[op_num];
1943 
1944       for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1945 	   original = -1;;)
1946 	{
1947 	  c = *str;
1948 	  if (c == '\0')
1949 	    break;
1950 	  if (c == '#')
1951 	    ignore_p = true;
1952 	  else if (c == ',')
1953 	    {
1954 	      curr_alt++;
1955 	      ignore_p = !TEST_BIT (alts, curr_alt);
1956 	    }
1957 	  else if (! ignore_p)
1958 	    switch (c)
1959 	      {
1960 	      case 'g':
1961 		goto fail;
1962 	      default:
1963 		{
1964 		  enum constraint_num cn = lookup_constraint (str);
1965 		  enum reg_class cl = reg_class_for_constraint (cn);
1966 		  if (cl != NO_REGS
1967 		      && !targetm.class_likely_spilled_p (cl))
1968 		    goto fail;
1969 		  if (constraint_satisfied_p (op, cn))
1970 		    goto fail;
1971 		  break;
1972 		}
1973 
1974 	      case '0': case '1': case '2': case '3': case '4':
1975 	      case '5': case '6': case '7': case '8': case '9':
1976 		{
1977 		  char *end;
1978 		  int n = (int) strtoul (str, &end, 10);
1979 		  str = end;
1980 		  if (original != -1 && original != n)
1981 		    goto fail;
1982 		  original = n;
1983 		  continue;
1984 		}
1985 	      }
1986 	  str += CONSTRAINT_LEN (c, str);
1987 	}
1988       if (original == -1)
1989 	goto fail;
1990       if (recog_data.operand_type[original] == OP_OUT)
1991 	return original;
1992     fail:
1993       if (use_commut_op_p)
1994 	break;
1995       use_commut_op_p = true;
1996       if (recog_data.constraints[op_num][0] == '%')
1997 	str = recog_data.constraints[op_num + 1];
1998       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1999 	str = recog_data.constraints[op_num - 1];
2000       else
2001 	break;
2002     }
2003   return -1;
2004 }
2005 
2006 
2007 
2008 /* Search forward to see if the source register of a copy insn dies
2009    before either it or the destination register is modified, but don't
2010    scan past the end of the basic block.  If so, we can replace the
2011    source with the destination and let the source die in the copy
2012    insn.
2013 
2014    This will reduce the number of registers live in that range and may
2015    enable the destination and the source coalescing, thus often saving
2016    one register in addition to a register-register copy.  */
2017 
2018 static void
decrease_live_ranges_number(void)2019 decrease_live_ranges_number (void)
2020 {
2021   basic_block bb;
2022   rtx_insn *insn;
2023   rtx set, src, dest, dest_death, note;
2024   rtx_insn *p, *q;
2025   int sregno, dregno;
2026 
2027   if (! flag_expensive_optimizations)
2028     return;
2029 
2030   if (ira_dump_file)
2031     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2032 
2033   FOR_EACH_BB_FN (bb, cfun)
2034     FOR_BB_INSNS (bb, insn)
2035       {
2036 	set = single_set (insn);
2037 	if (! set)
2038 	  continue;
2039 	src = SET_SRC (set);
2040 	dest = SET_DEST (set);
2041 	if (! REG_P (src) || ! REG_P (dest)
2042 	    || find_reg_note (insn, REG_DEAD, src))
2043 	  continue;
2044 	sregno = REGNO (src);
2045 	dregno = REGNO (dest);
2046 
2047 	/* We don't want to mess with hard regs if register classes
2048 	   are small.  */
2049 	if (sregno == dregno
2050 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2051 		&& (sregno < FIRST_PSEUDO_REGISTER
2052 		    || dregno < FIRST_PSEUDO_REGISTER))
2053 	    /* We don't see all updates to SP if they are in an
2054 	       auto-inc memory reference, so we must disallow this
2055 	       optimization on them.  */
2056 	    || sregno == STACK_POINTER_REGNUM
2057 	    || dregno == STACK_POINTER_REGNUM)
2058 	  continue;
2059 
2060 	dest_death = NULL_RTX;
2061 
2062 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2063 	  {
2064 	    if (! INSN_P (p))
2065 	      continue;
2066 	    if (BLOCK_FOR_INSN (p) != bb)
2067 	      break;
2068 
2069 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2070 		/* If SRC is an asm-declared register, it must not be
2071 		   replaced in any asm.  Unfortunately, the REG_EXPR
2072 		   tree for the asm variable may be absent in the SRC
2073 		   rtx, so we can't check the actual register
2074 		   declaration easily (the asm operand will have it,
2075 		   though).  To avoid complicating the test for a rare
2076 		   case, we just don't perform register replacement
2077 		   for a hard reg mentioned in an asm.  */
2078 		|| (sregno < FIRST_PSEUDO_REGISTER
2079 		    && asm_noperands (PATTERN (p)) >= 0
2080 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2081 		/* Don't change hard registers used by a call.  */
2082 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2083 		    && find_reg_fusage (p, USE, src))
2084 		/* Don't change a USE of a register.  */
2085 		|| (GET_CODE (PATTERN (p)) == USE
2086 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2087 	      break;
2088 
2089 	    /* See if all of SRC dies in P.  This test is slightly
2090 	       more conservative than it needs to be.  */
2091 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2092 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2093 	      {
2094 		int failed = 0;
2095 
2096 		/* We can do the optimization.  Scan forward from INSN
2097 		   again, replacing regs as we go.  Set FAILED if a
2098 		   replacement can't be done.  In that case, we can't
2099 		   move the death note for SRC.  This should be
2100 		   rare.  */
2101 
2102 		/* Set to stop at next insn.  */
2103 		for (q = next_real_insn (insn);
2104 		     q != next_real_insn (p);
2105 		     q = next_real_insn (q))
2106 		  {
2107 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2108 		      {
2109 			/* If SRC is a hard register, we might miss
2110 			   some overlapping registers with
2111 			   validate_replace_rtx, so we would have to
2112 			   undo it.  We can't if DEST is present in
2113 			   the insn, so fail in that combination of
2114 			   cases.  */
2115 			if (sregno < FIRST_PSEUDO_REGISTER
2116 			    && reg_mentioned_p (dest, PATTERN (q)))
2117 			  failed = 1;
2118 
2119 			/* Attempt to replace all uses.  */
2120 			else if (!validate_replace_rtx (src, dest, q))
2121 			  failed = 1;
2122 
2123 			/* If this succeeded, but some part of the
2124 			   register is still present, undo the
2125 			   replacement.  */
2126 			else if (sregno < FIRST_PSEUDO_REGISTER
2127 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2128 			  {
2129 			    validate_replace_rtx (dest, src, q);
2130 			    failed = 1;
2131 			  }
2132 		      }
2133 
2134 		    /* If DEST dies here, remove the death note and
2135 		       save it for later.  Make sure ALL of DEST dies
2136 		       here; again, this is overly conservative.  */
2137 		    if (! dest_death
2138 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2139 		      {
2140 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2141 			  remove_note (q, dest_death);
2142 			else
2143 			  {
2144 			    failed = 1;
2145 			    dest_death = 0;
2146 			  }
2147 		      }
2148 		  }
2149 
2150 		if (! failed)
2151 		  {
2152 		    /* Move death note of SRC from P to INSN.  */
2153 		    remove_note (p, note);
2154 		    XEXP (note, 1) = REG_NOTES (insn);
2155 		    REG_NOTES (insn) = note;
2156 		  }
2157 
2158 		/* DEST is also dead if INSN has a REG_UNUSED note for
2159 		   DEST.  */
2160 		if (! dest_death
2161 		    && (dest_death
2162 			= find_regno_note (insn, REG_UNUSED, dregno)))
2163 		  {
2164 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2165 		    remove_note (insn, dest_death);
2166 		  }
2167 
2168 		/* Put death note of DEST on P if we saw it die.  */
2169 		if (dest_death)
2170 		  {
2171 		    XEXP (dest_death, 1) = REG_NOTES (p);
2172 		    REG_NOTES (p) = dest_death;
2173 		  }
2174 		break;
2175 	      }
2176 
2177 	    /* If SRC is a hard register which is set or killed in
2178 	       some other way, we can't do this optimization.  */
2179 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2180 	      break;
2181 	  }
2182       }
2183 }
2184 
2185 
2186 
2187 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2188 static bool
ira_bad_reload_regno_1(int regno,rtx x)2189 ira_bad_reload_regno_1 (int regno, rtx x)
2190 {
2191   int x_regno, n, i;
2192   ira_allocno_t a;
2193   enum reg_class pref;
2194 
2195   /* We only deal with pseudo regs.  */
2196   if (! x || GET_CODE (x) != REG)
2197     return false;
2198 
2199   x_regno = REGNO (x);
2200   if (x_regno < FIRST_PSEUDO_REGISTER)
2201     return false;
2202 
2203   /* If the pseudo prefers REGNO explicitly, then do not consider
2204      REGNO a bad spill choice.  */
2205   pref = reg_preferred_class (x_regno);
2206   if (reg_class_size[pref] == 1)
2207     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2208 
2209   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2210      poor choice for a reload regno.  */
2211   a = ira_regno_allocno_map[x_regno];
2212   n = ALLOCNO_NUM_OBJECTS (a);
2213   for (i = 0; i < n; i++)
2214     {
2215       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2216       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2217 	return true;
2218     }
2219   return false;
2220 }
2221 
2222 /* Return nonzero if REGNO is a particularly bad choice for reloading
2223    IN or OUT.  */
2224 bool
ira_bad_reload_regno(int regno,rtx in,rtx out)2225 ira_bad_reload_regno (int regno, rtx in, rtx out)
2226 {
2227   return (ira_bad_reload_regno_1 (regno, in)
2228 	  || ira_bad_reload_regno_1 (regno, out));
2229 }
2230 
2231 /* Add register clobbers from asm statements.  */
2232 static void
compute_regs_asm_clobbered(void)2233 compute_regs_asm_clobbered (void)
2234 {
2235   basic_block bb;
2236 
2237   FOR_EACH_BB_FN (bb, cfun)
2238     {
2239       rtx_insn *insn;
2240       FOR_BB_INSNS_REVERSE (bb, insn)
2241 	{
2242 	  df_ref def;
2243 
2244 	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2245 	    FOR_EACH_INSN_DEF (def, insn)
2246 	      {
2247 		unsigned int dregno = DF_REF_REGNO (def);
2248 		if (HARD_REGISTER_NUM_P (dregno))
2249 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2250 				       GET_MODE (DF_REF_REAL_REG (def)),
2251 				       dregno);
2252 	      }
2253 	}
2254     }
2255 }
2256 
2257 
2258 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2259    REGS_EVER_LIVE.  */
2260 void
ira_setup_eliminable_regset(void)2261 ira_setup_eliminable_regset (void)
2262 {
2263   int i;
2264   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2265   int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2266 
2267   /* Setup is_leaf as frame_pointer_required may use it.  This function
2268      is called by sched_init before ira if scheduling is enabled.  */
2269   crtl->is_leaf = leaf_function_p ();
2270 
2271   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2272      sp for alloca.  So we can't eliminate the frame pointer in that
2273      case.  At some point, we should improve this by emitting the
2274      sp-adjusting insns for this case.  */
2275   frame_pointer_needed
2276     = (! flag_omit_frame_pointer
2277        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2278        /* We need the frame pointer to catch stack overflow exceptions if
2279 	  the stack pointer is moving (as for the alloca case just above).  */
2280        || (STACK_CHECK_MOVING_SP
2281 	   && flag_stack_check
2282 	   && flag_exceptions
2283 	   && cfun->can_throw_non_call_exceptions)
2284        || crtl->accesses_prior_frames
2285        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2286        || targetm.frame_pointer_required ());
2287 
2288     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2289        RTL is very small.  So if we use frame pointer for RA and RTL
2290        actually prevents this, we will spill pseudos assigned to the
2291        frame pointer in LRA.  */
2292 
2293   if (frame_pointer_needed)
2294     for (i = 0; i < fp_reg_count; i++)
2295       df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2296 
2297   ira_no_alloc_regs = no_unit_alloc_regs;
2298   CLEAR_HARD_REG_SET (eliminable_regset);
2299 
2300   compute_regs_asm_clobbered ();
2301 
2302   /* Build the regset of all eliminable registers and show we can't
2303      use those that we already know won't be eliminated.  */
2304   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2305     {
2306       bool cannot_elim
2307 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2308 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2309 
2310       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2311 	{
2312 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2313 
2314 	    if (cannot_elim)
2315 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2316 	}
2317       else if (cannot_elim)
2318 	error ("%s cannot be used in %<asm%> here",
2319 	       reg_names[eliminables[i].from]);
2320       else
2321 	df_set_regs_ever_live (eliminables[i].from, true);
2322     }
2323   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2324     {
2325       for (i = 0; i < fp_reg_count; i++)
2326 	if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2327 	  /* Nothing to do: the register is already treated as live
2328 	     where appropriate, and cannot be eliminated.  */
2329 	  ;
2330 	else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2331 				     HARD_FRAME_POINTER_REGNUM + i))
2332 	  {
2333 	    SET_HARD_REG_BIT (eliminable_regset,
2334 			      HARD_FRAME_POINTER_REGNUM + i);
2335 	    if (frame_pointer_needed)
2336 	      SET_HARD_REG_BIT (ira_no_alloc_regs,
2337 				HARD_FRAME_POINTER_REGNUM + i);
2338 	  }
2339 	else if (frame_pointer_needed)
2340 	  error ("%s cannot be used in %<asm%> here",
2341 		 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2342 	else
2343 	  df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2344     }
2345 }
2346 
2347 
2348 
2349 /* Vector of substitutions of register numbers,
2350    used to map pseudo regs into hardware regs.
2351    This is set up as a result of register allocation.
2352    Element N is the hard reg assigned to pseudo reg N,
2353    or is -1 if no hard reg was assigned.
2354    If N is a hard reg number, element N is N.  */
2355 short *reg_renumber;
2356 
2357 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2358    the allocation found by IRA.  */
2359 static void
setup_reg_renumber(void)2360 setup_reg_renumber (void)
2361 {
2362   int regno, hard_regno;
2363   ira_allocno_t a;
2364   ira_allocno_iterator ai;
2365 
2366   caller_save_needed = 0;
2367   FOR_EACH_ALLOCNO (a, ai)
2368     {
2369       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2370 	continue;
2371       /* There are no caps at this point.  */
2372       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2373       if (! ALLOCNO_ASSIGNED_P (a))
2374 	/* It can happen if A is not referenced but partially anticipated
2375 	   somewhere in a region.  */
2376 	ALLOCNO_ASSIGNED_P (a) = true;
2377       ira_free_allocno_updated_costs (a);
2378       hard_regno = ALLOCNO_HARD_REGNO (a);
2379       regno = ALLOCNO_REGNO (a);
2380       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2381       if (hard_regno >= 0)
2382 	{
2383 	  int i, nwords;
2384 	  enum reg_class pclass;
2385 	  ira_object_t obj;
2386 
2387 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2388 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2389 	  for (i = 0; i < nwords; i++)
2390 	    {
2391 	      obj = ALLOCNO_OBJECT (a, i);
2392 	      OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2393 		|= ~reg_class_contents[pclass];
2394 	    }
2395 	  if (ira_need_caller_save_p (a, hard_regno))
2396 	    {
2397 	      ira_assert (!optimize || flag_caller_saves
2398 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2399 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2400 			  || regno >= ira_reg_equiv_len
2401 			  || ira_equiv_no_lvalue_p (regno));
2402 	      caller_save_needed = 1;
2403 	    }
2404 	}
2405     }
2406 }
2407 
2408 /* Set up allocno assignment flags for further allocation
2409    improvements.  */
2410 static void
setup_allocno_assignment_flags(void)2411 setup_allocno_assignment_flags (void)
2412 {
2413   int hard_regno;
2414   ira_allocno_t a;
2415   ira_allocno_iterator ai;
2416 
2417   FOR_EACH_ALLOCNO (a, ai)
2418     {
2419       if (! ALLOCNO_ASSIGNED_P (a))
2420 	/* It can happen if A is not referenced but partially anticipated
2421 	   somewhere in a region.  */
2422 	ira_free_allocno_updated_costs (a);
2423       hard_regno = ALLOCNO_HARD_REGNO (a);
2424       /* Don't assign hard registers to allocnos which are destination
2425 	 of removed store at the end of loop.  It has no sense to keep
2426 	 the same value in different hard registers.  It is also
2427 	 impossible to assign hard registers correctly to such
2428 	 allocnos because the cost info and info about intersected
2429 	 calls are incorrect for them.  */
2430       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2431 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2432 				|| (ALLOCNO_MEMORY_COST (a)
2433 				    - ALLOCNO_CLASS_COST (a)) < 0);
2434       ira_assert
2435 	(hard_regno < 0
2436 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2437 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2438     }
2439 }
2440 
2441 /* Evaluate overall allocation cost and the costs for using hard
2442    registers and memory for allocnos.  */
2443 static void
calculate_allocation_cost(void)2444 calculate_allocation_cost (void)
2445 {
2446   int hard_regno, cost;
2447   ira_allocno_t a;
2448   ira_allocno_iterator ai;
2449 
2450   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2451   FOR_EACH_ALLOCNO (a, ai)
2452     {
2453       hard_regno = ALLOCNO_HARD_REGNO (a);
2454       ira_assert (hard_regno < 0
2455 		  || (ira_hard_reg_in_set_p
2456 		      (hard_regno, ALLOCNO_MODE (a),
2457 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2458       if (hard_regno < 0)
2459 	{
2460 	  cost = ALLOCNO_MEMORY_COST (a);
2461 	  ira_mem_cost += cost;
2462 	}
2463       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2464 	{
2465 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2466 		  [ira_class_hard_reg_index
2467 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2468 	  ira_reg_cost += cost;
2469 	}
2470       else
2471 	{
2472 	  cost = ALLOCNO_CLASS_COST (a);
2473 	  ira_reg_cost += cost;
2474 	}
2475       ira_overall_cost += cost;
2476     }
2477 
2478   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2479     {
2480       fprintf (ira_dump_file,
2481 	       "+++Costs: overall %" PRId64
2482 	       ", reg %" PRId64
2483 	       ", mem %" PRId64
2484 	       ", ld %" PRId64
2485 	       ", st %" PRId64
2486 	       ", move %" PRId64,
2487 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2488 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2489       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2490 	       ira_move_loops_num, ira_additional_jumps_num);
2491     }
2492 
2493 }
2494 
2495 #ifdef ENABLE_IRA_CHECKING
2496 /* Check the correctness of the allocation.  We do need this because
2497    of complicated code to transform more one region internal
2498    representation into one region representation.  */
2499 static void
check_allocation(void)2500 check_allocation (void)
2501 {
2502   ira_allocno_t a;
2503   int hard_regno, nregs, conflict_nregs;
2504   ira_allocno_iterator ai;
2505 
2506   FOR_EACH_ALLOCNO (a, ai)
2507     {
2508       int n = ALLOCNO_NUM_OBJECTS (a);
2509       int i;
2510 
2511       if (ALLOCNO_CAP_MEMBER (a) != NULL
2512 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2513 	continue;
2514       nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2515       if (nregs == 1)
2516 	/* We allocated a single hard register.  */
2517 	n = 1;
2518       else if (n > 1)
2519 	/* We allocated multiple hard registers, and we will test
2520 	   conflicts in a granularity of single hard regs.  */
2521 	nregs = 1;
2522 
2523       for (i = 0; i < n; i++)
2524 	{
2525 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2526 	  ira_object_t conflict_obj;
2527 	  ira_object_conflict_iterator oci;
2528 	  int this_regno = hard_regno;
2529 	  if (n > 1)
2530 	    {
2531 	      if (REG_WORDS_BIG_ENDIAN)
2532 		this_regno += n - i - 1;
2533 	      else
2534 		this_regno += i;
2535 	    }
2536 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2537 	    {
2538 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2539 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2540 	      if (conflict_hard_regno < 0)
2541 		continue;
2542 
2543 	      conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2544 						 ALLOCNO_MODE (conflict_a));
2545 
2546 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2547 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2548 		{
2549 		  if (REG_WORDS_BIG_ENDIAN)
2550 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2551 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2552 		  else
2553 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2554 		  conflict_nregs = 1;
2555 		}
2556 
2557 	      if ((conflict_hard_regno <= this_regno
2558 		 && this_regno < conflict_hard_regno + conflict_nregs)
2559 		|| (this_regno <= conflict_hard_regno
2560 		    && conflict_hard_regno < this_regno + nregs))
2561 		{
2562 		  fprintf (stderr, "bad allocation for %d and %d\n",
2563 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2564 		  gcc_unreachable ();
2565 		}
2566 	    }
2567 	}
2568     }
2569 }
2570 #endif
2571 
2572 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2573    be already calculated.  */
2574 static void
setup_reg_equiv_init(void)2575 setup_reg_equiv_init (void)
2576 {
2577   int i;
2578   int max_regno = max_reg_num ();
2579 
2580   for (i = 0; i < max_regno; i++)
2581     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2582 }
2583 
2584 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2585    are insns which were generated for such movement.  It is assumed
2586    that FROM_REGNO and TO_REGNO always have the same value at the
2587    point of any move containing such registers. This function is used
2588    to update equiv info for register shuffles on the region borders
2589    and for caller save/restore insns.  */
2590 void
ira_update_equiv_info_by_shuffle_insn(int to_regno,int from_regno,rtx_insn * insns)2591 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2592 {
2593   rtx_insn *insn;
2594   rtx x, note;
2595 
2596   if (! ira_reg_equiv[from_regno].defined_p
2597       && (! ira_reg_equiv[to_regno].defined_p
2598 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2599 	      && ! MEM_READONLY_P (x))))
2600     return;
2601   insn = insns;
2602   if (NEXT_INSN (insn) != NULL_RTX)
2603     {
2604       if (! ira_reg_equiv[to_regno].defined_p)
2605 	{
2606 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2607 	  return;
2608 	}
2609       ira_reg_equiv[to_regno].defined_p = false;
2610       ira_reg_equiv[to_regno].memory
2611 	= ira_reg_equiv[to_regno].constant
2612 	= ira_reg_equiv[to_regno].invariant
2613 	= ira_reg_equiv[to_regno].init_insns = NULL;
2614       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2615 	fprintf (ira_dump_file,
2616 		 "      Invalidating equiv info for reg %d\n", to_regno);
2617       return;
2618     }
2619   /* It is possible that FROM_REGNO still has no equivalence because
2620      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2621      insn was not processed yet.  */
2622   if (ira_reg_equiv[from_regno].defined_p)
2623     {
2624       ira_reg_equiv[to_regno].defined_p = true;
2625       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2626 	{
2627 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2628 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2629 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2630 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2631 	  ira_reg_equiv[to_regno].memory = x;
2632 	  if (! MEM_READONLY_P (x))
2633 	    /* We don't add the insn to insn init list because memory
2634 	       equivalence is just to say what memory is better to use
2635 	       when the pseudo is spilled.  */
2636 	    return;
2637 	}
2638       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2639 	{
2640 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2641 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2642 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2643 	  ira_reg_equiv[to_regno].constant = x;
2644 	}
2645       else
2646 	{
2647 	  x = ira_reg_equiv[from_regno].invariant;
2648 	  ira_assert (x != NULL_RTX);
2649 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2650 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2651 	  ira_reg_equiv[to_regno].invariant = x;
2652 	}
2653       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2654 	{
2655 	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2656 	  gcc_assert (note != NULL_RTX);
2657 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 	    {
2659 	      fprintf (ira_dump_file,
2660 		       "      Adding equiv note to insn %u for reg %d ",
2661 		       INSN_UID (insn), to_regno);
2662 	      dump_value_slim (ira_dump_file, x, 1);
2663 	      fprintf (ira_dump_file, "\n");
2664 	    }
2665 	}
2666     }
2667   ira_reg_equiv[to_regno].init_insns
2668     = gen_rtx_INSN_LIST (VOIDmode, insn,
2669 			 ira_reg_equiv[to_regno].init_insns);
2670   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2671     fprintf (ira_dump_file,
2672 	     "      Adding equiv init move insn %u to reg %d\n",
2673 	     INSN_UID (insn), to_regno);
2674 }
2675 
2676 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2677    by IRA.  */
2678 static void
fix_reg_equiv_init(void)2679 fix_reg_equiv_init (void)
2680 {
2681   int max_regno = max_reg_num ();
2682   int i, new_regno, max;
2683   rtx set;
2684   rtx_insn_list *x, *next, *prev;
2685   rtx_insn *insn;
2686 
2687   if (max_regno_before_ira < max_regno)
2688     {
2689       max = vec_safe_length (reg_equivs);
2690       grow_reg_equivs ();
2691       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2692 	for (prev = NULL, x = reg_equiv_init (i);
2693 	     x != NULL_RTX;
2694 	     x = next)
2695 	  {
2696 	    next = x->next ();
2697 	    insn = x->insn ();
2698 	    set = single_set (insn);
2699 	    ira_assert (set != NULL_RTX
2700 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2701 	    if (REG_P (SET_DEST (set))
2702 		&& ((int) REGNO (SET_DEST (set)) == i
2703 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2704 	      new_regno = REGNO (SET_DEST (set));
2705 	    else if (REG_P (SET_SRC (set))
2706 		     && ((int) REGNO (SET_SRC (set)) == i
2707 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2708 	      new_regno = REGNO (SET_SRC (set));
2709 	    else
2710  	      gcc_unreachable ();
2711 	    if (new_regno == i)
2712 	      prev = x;
2713 	    else
2714 	      {
2715 		/* Remove the wrong list element.  */
2716 		if (prev == NULL_RTX)
2717 		  reg_equiv_init (i) = next;
2718 		else
2719 		  XEXP (prev, 1) = next;
2720 		XEXP (x, 1) = reg_equiv_init (new_regno);
2721 		reg_equiv_init (new_regno) = x;
2722 	      }
2723 	  }
2724     }
2725 }
2726 
2727 #ifdef ENABLE_IRA_CHECKING
2728 /* Print redundant memory-memory copies.  */
2729 static void
print_redundant_copies(void)2730 print_redundant_copies (void)
2731 {
2732   int hard_regno;
2733   ira_allocno_t a;
2734   ira_copy_t cp, next_cp;
2735   ira_allocno_iterator ai;
2736 
2737   FOR_EACH_ALLOCNO (a, ai)
2738     {
2739       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2740 	/* It is a cap.  */
2741 	continue;
2742       hard_regno = ALLOCNO_HARD_REGNO (a);
2743       if (hard_regno >= 0)
2744 	continue;
2745       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2746 	if (cp->first == a)
2747 	  next_cp = cp->next_first_allocno_copy;
2748 	else
2749 	  {
2750 	    next_cp = cp->next_second_allocno_copy;
2751 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2752 		&& cp->insn != NULL_RTX
2753 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2754 	      fprintf (ira_dump_file,
2755 		       "        Redundant move from %d(freq %d):%d\n",
2756 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2757 	  }
2758     }
2759 }
2760 #endif
2761 
2762 /* Setup preferred and alternative classes for new pseudo-registers
2763    created by IRA starting with START.  */
2764 static void
setup_preferred_alternate_classes_for_new_pseudos(int start)2765 setup_preferred_alternate_classes_for_new_pseudos (int start)
2766 {
2767   int i, old_regno;
2768   int max_regno = max_reg_num ();
2769 
2770   for (i = start; i < max_regno; i++)
2771     {
2772       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2773       ira_assert (i != old_regno);
2774       setup_reg_classes (i, reg_preferred_class (old_regno),
2775 			 reg_alternate_class (old_regno),
2776 			 reg_allocno_class (old_regno));
2777       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2778 	fprintf (ira_dump_file,
2779 		 "    New r%d: setting preferred %s, alternative %s\n",
2780 		 i, reg_class_names[reg_preferred_class (old_regno)],
2781 		 reg_class_names[reg_alternate_class (old_regno)]);
2782     }
2783 }
2784 
2785 
2786 /* The number of entries allocated in reg_info.  */
2787 static int allocated_reg_info_size;
2788 
2789 /* Regional allocation can create new pseudo-registers.  This function
2790    expands some arrays for pseudo-registers.  */
2791 static void
expand_reg_info(void)2792 expand_reg_info (void)
2793 {
2794   int i;
2795   int size = max_reg_num ();
2796 
2797   resize_reg_info ();
2798   for (i = allocated_reg_info_size; i < size; i++)
2799     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2800   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2801   allocated_reg_info_size = size;
2802 }
2803 
2804 /* Return TRUE if there is too high register pressure in the function.
2805    It is used to decide when stack slot sharing is worth to do.  */
2806 static bool
too_high_register_pressure_p(void)2807 too_high_register_pressure_p (void)
2808 {
2809   int i;
2810   enum reg_class pclass;
2811 
2812   for (i = 0; i < ira_pressure_classes_num; i++)
2813     {
2814       pclass = ira_pressure_classes[i];
2815       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2816 	return true;
2817     }
2818   return false;
2819 }
2820 
2821 
2822 
2823 /* Indicate that hard register number FROM was eliminated and replaced with
2824    an offset from hard register number TO.  The status of hard registers live
2825    at the start of a basic block is updated by replacing a use of FROM with
2826    a use of TO.  */
2827 
2828 void
mark_elimination(int from,int to)2829 mark_elimination (int from, int to)
2830 {
2831   basic_block bb;
2832   bitmap r;
2833 
2834   FOR_EACH_BB_FN (bb, cfun)
2835     {
2836       r = DF_LR_IN (bb);
2837       if (bitmap_bit_p (r, from))
2838 	{
2839 	  bitmap_clear_bit (r, from);
2840 	  bitmap_set_bit (r, to);
2841 	}
2842       if (! df_live)
2843         continue;
2844       r = DF_LIVE_IN (bb);
2845       if (bitmap_bit_p (r, from))
2846 	{
2847 	  bitmap_clear_bit (r, from);
2848 	  bitmap_set_bit (r, to);
2849 	}
2850     }
2851 }
2852 
2853 
2854 
2855 /* The length of the following array.  */
2856 int ira_reg_equiv_len;
2857 
2858 /* Info about equiv. info for each register.  */
2859 struct ira_reg_equiv_s *ira_reg_equiv;
2860 
2861 /* Expand ira_reg_equiv if necessary.  */
2862 void
ira_expand_reg_equiv(void)2863 ira_expand_reg_equiv (void)
2864 {
2865   int old = ira_reg_equiv_len;
2866 
2867   if (ira_reg_equiv_len > max_reg_num ())
2868     return;
2869   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2870   ira_reg_equiv
2871     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2872 					 ira_reg_equiv_len
2873 					 * sizeof (struct ira_reg_equiv_s));
2874   gcc_assert (old < ira_reg_equiv_len);
2875   memset (ira_reg_equiv + old, 0,
2876 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2877 }
2878 
2879 static void
init_reg_equiv(void)2880 init_reg_equiv (void)
2881 {
2882   ira_reg_equiv_len = 0;
2883   ira_reg_equiv = NULL;
2884   ira_expand_reg_equiv ();
2885 }
2886 
2887 static void
finish_reg_equiv(void)2888 finish_reg_equiv (void)
2889 {
2890   free (ira_reg_equiv);
2891 }
2892 
2893 
2894 
2895 struct equivalence
2896 {
2897   /* Set when a REG_EQUIV note is found or created.  Use to
2898      keep track of what memory accesses might be created later,
2899      e.g. by reload.  */
2900   rtx replacement;
2901   rtx *src_p;
2902 
2903   /* The list of each instruction which initializes this register.
2904 
2905      NULL indicates we know nothing about this register's equivalence
2906      properties.
2907 
2908      An INSN_LIST with a NULL insn indicates this pseudo is already
2909      known to not have a valid equivalence.  */
2910   rtx_insn_list *init_insns;
2911 
2912   /* Loop depth is used to recognize equivalences which appear
2913      to be present within the same loop (or in an inner loop).  */
2914   short loop_depth;
2915   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2916   unsigned char is_arg_equivalence : 1;
2917   /* Set when an attempt should be made to replace a register
2918      with the associated src_p entry.  */
2919   unsigned char replace : 1;
2920   /* Set if this register has no known equivalence.  */
2921   unsigned char no_equiv : 1;
2922   /* Set if this register is mentioned in a paradoxical subreg.  */
2923   unsigned char pdx_subregs : 1;
2924 };
2925 
2926 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2927    structure for that register.  */
2928 static struct equivalence *reg_equiv;
2929 
2930 /* Used for communication between the following two functions.  */
2931 struct equiv_mem_data
2932 {
2933   /* A MEM that we wish to ensure remains unchanged.  */
2934   rtx equiv_mem;
2935 
2936   /* Set true if EQUIV_MEM is modified.  */
2937   bool equiv_mem_modified;
2938 };
2939 
2940 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2941    Called via note_stores.  */
2942 static void
validate_equiv_mem_from_store(rtx dest,const_rtx set ATTRIBUTE_UNUSED,void * data)2943 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2944 			       void *data)
2945 {
2946   struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2947 
2948   if ((REG_P (dest)
2949        && reg_overlap_mentioned_p (dest, info->equiv_mem))
2950       || (MEM_P (dest)
2951 	  && anti_dependence (info->equiv_mem, dest)))
2952     info->equiv_mem_modified = true;
2953 }
2954 
2955 enum valid_equiv { valid_none, valid_combine, valid_reload };
2956 
2957 /* Verify that no store between START and the death of REG invalidates
2958    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2959    by storing into an overlapping memory location, or with a non-const
2960    CALL_INSN.
2961 
2962    Return VALID_RELOAD if MEMREF remains valid for both reload and
2963    combine_and_move insns, VALID_COMBINE if only valid for
2964    combine_and_move_insns, and VALID_NONE otherwise.  */
2965 static enum valid_equiv
validate_equiv_mem(rtx_insn * start,rtx reg,rtx memref)2966 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2967 {
2968   rtx_insn *insn;
2969   rtx note;
2970   struct equiv_mem_data info = { memref, false };
2971   enum valid_equiv ret = valid_reload;
2972 
2973   /* If the memory reference has side effects or is volatile, it isn't a
2974      valid equivalence.  */
2975   if (side_effects_p (memref))
2976     return valid_none;
2977 
2978   for (insn = start; insn; insn = NEXT_INSN (insn))
2979     {
2980       if (!INSN_P (insn))
2981 	continue;
2982 
2983       if (find_reg_note (insn, REG_DEAD, reg))
2984 	return ret;
2985 
2986       if (CALL_P (insn))
2987 	{
2988 	  /* We can combine a reg def from one insn into a reg use in
2989 	     another over a call if the memory is readonly or the call
2990 	     const/pure.  However, we can't set reg_equiv notes up for
2991 	     reload over any call.  The problem is the equivalent form
2992 	     may reference a pseudo which gets assigned a call
2993 	     clobbered hard reg.  When we later replace REG with its
2994 	     equivalent form, the value in the call-clobbered reg has
2995 	     been changed and all hell breaks loose.  */
2996 	  ret = valid_combine;
2997 	  if (!MEM_READONLY_P (memref)
2998 	      && !RTL_CONST_OR_PURE_CALL_P (insn))
2999 	    return valid_none;
3000 	}
3001 
3002       note_stores (insn, validate_equiv_mem_from_store, &info);
3003       if (info.equiv_mem_modified)
3004 	return valid_none;
3005 
3006       /* If a register mentioned in MEMREF is modified via an
3007 	 auto-increment, we lose the equivalence.  Do the same if one
3008 	 dies; although we could extend the life, it doesn't seem worth
3009 	 the trouble.  */
3010 
3011       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3012 	if ((REG_NOTE_KIND (note) == REG_INC
3013 	     || REG_NOTE_KIND (note) == REG_DEAD)
3014 	    && REG_P (XEXP (note, 0))
3015 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3016 	  return valid_none;
3017     }
3018 
3019   return valid_none;
3020 }
3021 
3022 /* Returns zero if X is known to be invariant.  */
3023 static int
equiv_init_varies_p(rtx x)3024 equiv_init_varies_p (rtx x)
3025 {
3026   RTX_CODE code = GET_CODE (x);
3027   int i;
3028   const char *fmt;
3029 
3030   switch (code)
3031     {
3032     case MEM:
3033       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3034 
3035     case CONST:
3036     CASE_CONST_ANY:
3037     case SYMBOL_REF:
3038     case LABEL_REF:
3039       return 0;
3040 
3041     case REG:
3042       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3043 
3044     case ASM_OPERANDS:
3045       if (MEM_VOLATILE_P (x))
3046 	return 1;
3047 
3048       /* Fall through.  */
3049 
3050     default:
3051       break;
3052     }
3053 
3054   fmt = GET_RTX_FORMAT (code);
3055   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3056     if (fmt[i] == 'e')
3057       {
3058 	if (equiv_init_varies_p (XEXP (x, i)))
3059 	  return 1;
3060       }
3061     else if (fmt[i] == 'E')
3062       {
3063 	int j;
3064 	for (j = 0; j < XVECLEN (x, i); j++)
3065 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3066 	    return 1;
3067       }
3068 
3069   return 0;
3070 }
3071 
3072 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3073    X is only movable if the registers it uses have equivalent initializations
3074    which appear to be within the same loop (or in an inner loop) and movable
3075    or if they are not candidates for local_alloc and don't vary.  */
3076 static int
equiv_init_movable_p(rtx x,int regno)3077 equiv_init_movable_p (rtx x, int regno)
3078 {
3079   int i, j;
3080   const char *fmt;
3081   enum rtx_code code = GET_CODE (x);
3082 
3083   switch (code)
3084     {
3085     case SET:
3086       return equiv_init_movable_p (SET_SRC (x), regno);
3087 
3088     case CC0:
3089     case CLOBBER:
3090       return 0;
3091 
3092     case PRE_INC:
3093     case PRE_DEC:
3094     case POST_INC:
3095     case POST_DEC:
3096     case PRE_MODIFY:
3097     case POST_MODIFY:
3098       return 0;
3099 
3100     case REG:
3101       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3102 	       && reg_equiv[REGNO (x)].replace)
3103 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3104 		  && ! rtx_varies_p (x, 0)));
3105 
3106     case UNSPEC_VOLATILE:
3107       return 0;
3108 
3109     case ASM_OPERANDS:
3110       if (MEM_VOLATILE_P (x))
3111 	return 0;
3112 
3113       /* Fall through.  */
3114 
3115     default:
3116       break;
3117     }
3118 
3119   fmt = GET_RTX_FORMAT (code);
3120   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3121     switch (fmt[i])
3122       {
3123       case 'e':
3124 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3125 	  return 0;
3126 	break;
3127       case 'E':
3128 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3129 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3130 	    return 0;
3131 	break;
3132       }
3133 
3134   return 1;
3135 }
3136 
3137 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3138 
3139 /* Auxiliary function for memref_referenced_p.  Process setting X for
3140    MEMREF store.  */
3141 static bool
process_set_for_memref_referenced_p(rtx memref,rtx x)3142 process_set_for_memref_referenced_p (rtx memref, rtx x)
3143 {
3144   /* If we are setting a MEM, it doesn't count (its address does), but any
3145      other SET_DEST that has a MEM in it is referencing the MEM.  */
3146   if (MEM_P (x))
3147     {
3148       if (memref_referenced_p (memref, XEXP (x, 0), true))
3149 	return true;
3150     }
3151   else if (memref_referenced_p (memref, x, false))
3152     return true;
3153 
3154   return false;
3155 }
3156 
3157 /* TRUE if X references a memory location (as a read if READ_P) that
3158    would be affected by a store to MEMREF.  */
3159 static bool
memref_referenced_p(rtx memref,rtx x,bool read_p)3160 memref_referenced_p (rtx memref, rtx x, bool read_p)
3161 {
3162   int i, j;
3163   const char *fmt;
3164   enum rtx_code code = GET_CODE (x);
3165 
3166   switch (code)
3167     {
3168     case CONST:
3169     case LABEL_REF:
3170     case SYMBOL_REF:
3171     CASE_CONST_ANY:
3172     case PC:
3173     case CC0:
3174     case HIGH:
3175     case LO_SUM:
3176       return false;
3177 
3178     case REG:
3179       return (reg_equiv[REGNO (x)].replacement
3180 	      && memref_referenced_p (memref,
3181 				      reg_equiv[REGNO (x)].replacement, read_p));
3182 
3183     case MEM:
3184       /* Memory X might have another effective type than MEMREF.  */
3185       if (read_p || true_dependence (memref, VOIDmode, x))
3186 	return true;
3187       break;
3188 
3189     case SET:
3190       if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3191 	return true;
3192 
3193       return memref_referenced_p (memref, SET_SRC (x), true);
3194 
3195     case CLOBBER:
3196       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3197 	return true;
3198 
3199       return false;
3200 
3201     case PRE_DEC:
3202     case POST_DEC:
3203     case PRE_INC:
3204     case POST_INC:
3205       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3206 	return true;
3207 
3208       return memref_referenced_p (memref, XEXP (x, 0), true);
3209 
3210     case POST_MODIFY:
3211     case PRE_MODIFY:
3212       /* op0 = op0 + op1 */
3213       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3214 	return true;
3215 
3216       if (memref_referenced_p (memref, XEXP (x, 0), true))
3217 	return true;
3218 
3219       return memref_referenced_p (memref, XEXP (x, 1), true);
3220 
3221     default:
3222       break;
3223     }
3224 
3225   fmt = GET_RTX_FORMAT (code);
3226   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3227     switch (fmt[i])
3228       {
3229       case 'e':
3230 	if (memref_referenced_p (memref, XEXP (x, i), read_p))
3231 	  return true;
3232 	break;
3233       case 'E':
3234 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3235 	  if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3236 	    return true;
3237 	break;
3238       }
3239 
3240   return false;
3241 }
3242 
3243 /* TRUE if some insn in the range (START, END] references a memory location
3244    that would be affected by a store to MEMREF.
3245 
3246    Callers should not call this routine if START is after END in the
3247    RTL chain.  */
3248 
3249 static int
memref_used_between_p(rtx memref,rtx_insn * start,rtx_insn * end)3250 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3251 {
3252   rtx_insn *insn;
3253 
3254   for (insn = NEXT_INSN (start);
3255        insn && insn != NEXT_INSN (end);
3256        insn = NEXT_INSN (insn))
3257     {
3258       if (!NONDEBUG_INSN_P (insn))
3259 	continue;
3260 
3261       if (memref_referenced_p (memref, PATTERN (insn), false))
3262 	return 1;
3263 
3264       /* Nonconst functions may access memory.  */
3265       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3266 	return 1;
3267     }
3268 
3269   gcc_assert (insn == NEXT_INSN (end));
3270   return 0;
3271 }
3272 
3273 /* Mark REG as having no known equivalence.
3274    Some instructions might have been processed before and furnished
3275    with REG_EQUIV notes for this register; these notes will have to be
3276    removed.
3277    STORE is the piece of RTL that does the non-constant / conflicting
3278    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3279    but needs to be there because this function is called from note_stores.  */
3280 static void
no_equiv(rtx reg,const_rtx store ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)3281 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3282 	  void *data ATTRIBUTE_UNUSED)
3283 {
3284   int regno;
3285   rtx_insn_list *list;
3286 
3287   if (!REG_P (reg))
3288     return;
3289   regno = REGNO (reg);
3290   reg_equiv[regno].no_equiv = 1;
3291   list = reg_equiv[regno].init_insns;
3292   if (list && list->insn () == NULL)
3293     return;
3294   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3295   reg_equiv[regno].replacement = NULL_RTX;
3296   /* This doesn't matter for equivalences made for argument registers, we
3297      should keep their initialization insns.  */
3298   if (reg_equiv[regno].is_arg_equivalence)
3299     return;
3300   ira_reg_equiv[regno].defined_p = false;
3301   ira_reg_equiv[regno].init_insns = NULL;
3302   for (; list; list = list->next ())
3303     {
3304       rtx_insn *insn = list->insn ();
3305       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3306     }
3307 }
3308 
3309 /* Check whether the SUBREG is a paradoxical subreg and set the result
3310    in PDX_SUBREGS.  */
3311 
3312 static void
set_paradoxical_subreg(rtx_insn * insn)3313 set_paradoxical_subreg (rtx_insn *insn)
3314 {
3315   subrtx_iterator::array_type array;
3316   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3317     {
3318       const_rtx subreg = *iter;
3319       if (GET_CODE (subreg) == SUBREG)
3320 	{
3321 	  const_rtx reg = SUBREG_REG (subreg);
3322 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3323 	    reg_equiv[REGNO (reg)].pdx_subregs = true;
3324 	}
3325     }
3326 }
3327 
3328 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3329    equivalent replacement.  */
3330 
3331 static rtx
adjust_cleared_regs(rtx loc,const_rtx old_rtx ATTRIBUTE_UNUSED,void * data)3332 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3333 {
3334   if (REG_P (loc))
3335     {
3336       bitmap cleared_regs = (bitmap) data;
3337       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3338 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3339 					NULL_RTX, adjust_cleared_regs, data);
3340     }
3341   return NULL_RTX;
3342 }
3343 
3344 /* Given register REGNO is set only once, return true if the defining
3345    insn dominates all uses.  */
3346 
3347 static bool
def_dominates_uses(int regno)3348 def_dominates_uses (int regno)
3349 {
3350   df_ref def = DF_REG_DEF_CHAIN (regno);
3351 
3352   struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3353   /* If this is an artificial def (eh handler regs, hard frame pointer
3354      for non-local goto, regs defined on function entry) then def_info
3355      is NULL and the reg is always live before any use.  We might
3356      reasonably return true in that case, but since the only call
3357      of this function is currently here in ira.c when we are looking
3358      at a defining insn we can't have an artificial def as that would
3359      bump DF_REG_DEF_COUNT.  */
3360   gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3361 
3362   rtx_insn *def_insn = DF_REF_INSN (def);
3363   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3364 
3365   for (df_ref use = DF_REG_USE_CHAIN (regno);
3366        use;
3367        use = DF_REF_NEXT_REG (use))
3368     {
3369       struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3370       /* Only check real uses, not artificial ones.  */
3371       if (use_info)
3372 	{
3373 	  rtx_insn *use_insn = DF_REF_INSN (use);
3374 	  if (!DEBUG_INSN_P (use_insn))
3375 	    {
3376 	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3377 	      if (use_bb != def_bb
3378 		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3379 		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3380 		return false;
3381 	    }
3382 	}
3383     }
3384   return true;
3385 }
3386 
3387 /* Scan the instructions before update_equiv_regs.  Record which registers
3388    are referenced as paradoxical subregs.  Also check for cases in which
3389    the current function needs to save a register that one of its call
3390    instructions clobbers.
3391 
3392    These things are logically unrelated, but it's more efficient to do
3393    them together.  */
3394 
3395 static void
update_equiv_regs_prescan(void)3396 update_equiv_regs_prescan (void)
3397 {
3398   basic_block bb;
3399   rtx_insn *insn;
3400   function_abi_aggregator callee_abis;
3401 
3402   FOR_EACH_BB_FN (bb, cfun)
3403     FOR_BB_INSNS (bb, insn)
3404       if (NONDEBUG_INSN_P (insn))
3405 	{
3406 	  set_paradoxical_subreg (insn);
3407 	  if (CALL_P (insn))
3408 	    callee_abis.note_callee_abi (insn_callee_abi (insn));
3409 	}
3410 
3411   HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3412   if (!hard_reg_set_empty_p (extra_caller_saves))
3413     for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3414       if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3415 	df_set_regs_ever_live (regno, true);
3416 }
3417 
3418 /* Find registers that are equivalent to a single value throughout the
3419    compilation (either because they can be referenced in memory or are
3420    set once from a single constant).  Lower their priority for a
3421    register.
3422 
3423    If such a register is only referenced once, try substituting its
3424    value into the using insn.  If it succeeds, we can eliminate the
3425    register completely.
3426 
3427    Initialize init_insns in ira_reg_equiv array.  */
3428 static void
update_equiv_regs(void)3429 update_equiv_regs (void)
3430 {
3431   rtx_insn *insn;
3432   basic_block bb;
3433 
3434   /* Scan the insns and find which registers have equivalences.  Do this
3435      in a separate scan of the insns because (due to -fcse-follow-jumps)
3436      a register can be set below its use.  */
3437   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3438   FOR_EACH_BB_FN (bb, cfun)
3439     {
3440       int loop_depth = bb_loop_depth (bb);
3441 
3442       for (insn = BB_HEAD (bb);
3443 	   insn != NEXT_INSN (BB_END (bb));
3444 	   insn = NEXT_INSN (insn))
3445 	{
3446 	  rtx note;
3447 	  rtx set;
3448 	  rtx dest, src;
3449 	  int regno;
3450 
3451 	  if (! INSN_P (insn))
3452 	    continue;
3453 
3454 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3455 	    if (REG_NOTE_KIND (note) == REG_INC)
3456 	      no_equiv (XEXP (note, 0), note, NULL);
3457 
3458 	  set = single_set (insn);
3459 
3460 	  /* If this insn contains more (or less) than a single SET,
3461 	     only mark all destinations as having no known equivalence.  */
3462 	  if (set == NULL_RTX
3463 	      || side_effects_p (SET_SRC (set)))
3464 	    {
3465 	      note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3466 	      continue;
3467 	    }
3468 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3469 	    {
3470 	      int i;
3471 
3472 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3473 		{
3474 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3475 		  if (part != set)
3476 		    note_pattern_stores (part, no_equiv, NULL);
3477 		}
3478 	    }
3479 
3480 	  dest = SET_DEST (set);
3481 	  src = SET_SRC (set);
3482 
3483 	  /* See if this is setting up the equivalence between an argument
3484 	     register and its stack slot.  */
3485 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3486 	  if (note)
3487 	    {
3488 	      gcc_assert (REG_P (dest));
3489 	      regno = REGNO (dest);
3490 
3491 	      /* Note that we don't want to clear init_insns in
3492 		 ira_reg_equiv even if there are multiple sets of this
3493 		 register.  */
3494 	      reg_equiv[regno].is_arg_equivalence = 1;
3495 
3496 	      /* The insn result can have equivalence memory although
3497 		 the equivalence is not set up by the insn.  We add
3498 		 this insn to init insns as it is a flag for now that
3499 		 regno has an equivalence.  We will remove the insn
3500 		 from init insn list later.  */
3501 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3502 		ira_reg_equiv[regno].init_insns
3503 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3504 				       ira_reg_equiv[regno].init_insns);
3505 
3506 	      /* Continue normally in case this is a candidate for
3507 		 replacements.  */
3508 	    }
3509 
3510 	  if (!optimize)
3511 	    continue;
3512 
3513 	  /* We only handle the case of a pseudo register being set
3514 	     once, or always to the same value.  */
3515 	  /* ??? The mn10200 port breaks if we add equivalences for
3516 	     values that need an ADDRESS_REGS register and set them equivalent
3517 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3518 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3519 	     calculate_needs, but we traditionally work around this problem
3520 	     here by rejecting equivalences when the destination is in a register
3521 	     that's likely spilled.  This is fragile, of course, since the
3522 	     preferred class of a pseudo depends on all instructions that set
3523 	     or use it.  */
3524 
3525 	  if (!REG_P (dest)
3526 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3527 	      || (reg_equiv[regno].init_insns
3528 		  && reg_equiv[regno].init_insns->insn () == NULL)
3529 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3530 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3531 	    {
3532 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3533 		 also set somewhere else to a constant.  */
3534 	      note_pattern_stores (set, no_equiv, NULL);
3535 	      continue;
3536 	    }
3537 
3538 	  /* Don't set reg mentioned in a paradoxical subreg
3539 	     equivalent to a mem.  */
3540 	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3541 	    {
3542 	      note_pattern_stores (set, no_equiv, NULL);
3543 	      continue;
3544 	    }
3545 
3546 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3547 
3548 	  /* cse sometimes generates function invariants, but doesn't put a
3549 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3550 	     there's no point creating it earlier than here.  */
3551 	  if (! note && ! rtx_varies_p (src, 0))
3552 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3553 
3554 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3555 	     since it represents a function call.  */
3556 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3557 	    note = NULL_RTX;
3558 
3559 	  if (DF_REG_DEF_COUNT (regno) != 1)
3560 	    {
3561 	      bool equal_p = true;
3562 	      rtx_insn_list *list;
3563 
3564 	      /* If we have already processed this pseudo and determined it
3565 		 cannot have an equivalence, then honor that decision.  */
3566 	      if (reg_equiv[regno].no_equiv)
3567 		continue;
3568 
3569 	      if (! note
3570 		  || rtx_varies_p (XEXP (note, 0), 0)
3571 		  || (reg_equiv[regno].replacement
3572 		      && ! rtx_equal_p (XEXP (note, 0),
3573 					reg_equiv[regno].replacement)))
3574 		{
3575 		  no_equiv (dest, set, NULL);
3576 		  continue;
3577 		}
3578 
3579 	      list = reg_equiv[regno].init_insns;
3580 	      for (; list; list = list->next ())
3581 		{
3582 		  rtx note_tmp;
3583 		  rtx_insn *insn_tmp;
3584 
3585 		  insn_tmp = list->insn ();
3586 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3587 		  gcc_assert (note_tmp);
3588 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3589 		    {
3590 		      equal_p = false;
3591 		      break;
3592 		    }
3593 		}
3594 
3595 	      if (! equal_p)
3596 		{
3597 		  no_equiv (dest, set, NULL);
3598 		  continue;
3599 		}
3600 	    }
3601 
3602 	  /* Record this insn as initializing this register.  */
3603 	  reg_equiv[regno].init_insns
3604 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3605 
3606 	  /* If this register is known to be equal to a constant, record that
3607 	     it is always equivalent to the constant.
3608 	     Note that it is possible to have a register use before
3609 	     the def in loops (see gcc.c-torture/execute/pr79286.c)
3610 	     where the reg is undefined on first use.  If the def insn
3611 	     won't trap we can use it as an equivalence, effectively
3612 	     choosing the "undefined" value for the reg to be the
3613 	     same as the value set by the def.  */
3614 	  if (DF_REG_DEF_COUNT (regno) == 1
3615 	      && note
3616 	      && !rtx_varies_p (XEXP (note, 0), 0)
3617 	      && (!may_trap_or_fault_p (XEXP (note, 0))
3618 		  || def_dominates_uses (regno)))
3619 	    {
3620 	      rtx note_value = XEXP (note, 0);
3621 	      remove_note (insn, note);
3622 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3623 	    }
3624 
3625 	  /* If this insn introduces a "constant" register, decrease the priority
3626 	     of that register.  Record this insn if the register is only used once
3627 	     more and the equivalence value is the same as our source.
3628 
3629 	     The latter condition is checked for two reasons:  First, it is an
3630 	     indication that it may be more efficient to actually emit the insn
3631 	     as written (if no registers are available, reload will substitute
3632 	     the equivalence).  Secondly, it avoids problems with any registers
3633 	     dying in this insn whose death notes would be missed.
3634 
3635 	     If we don't have a REG_EQUIV note, see if this insn is loading
3636 	     a register used only in one basic block from a MEM.  If so, and the
3637 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3638 	     note.  */
3639 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3640 
3641 	  rtx replacement = NULL_RTX;
3642 	  if (note)
3643 	    replacement = XEXP (note, 0);
3644 	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3645 		   && MEM_P (SET_SRC (set)))
3646 	    {
3647 	      enum valid_equiv validity;
3648 	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3649 	      if (validity != valid_none)
3650 		{
3651 		  replacement = copy_rtx (SET_SRC (set));
3652 		  if (validity == valid_reload)
3653 		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3654 		}
3655 	    }
3656 
3657 	  /* If we haven't done so, record for reload that this is an
3658 	     equivalencing insn.  */
3659 	  if (note && !reg_equiv[regno].is_arg_equivalence)
3660 	    ira_reg_equiv[regno].init_insns
3661 	      = gen_rtx_INSN_LIST (VOIDmode, insn,
3662 				   ira_reg_equiv[regno].init_insns);
3663 
3664 	  if (replacement)
3665 	    {
3666 	      reg_equiv[regno].replacement = replacement;
3667 	      reg_equiv[regno].src_p = &SET_SRC (set);
3668 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3669 
3670 	      /* Don't mess with things live during setjmp.  */
3671 	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3672 		{
3673 		  /* If the register is referenced exactly twice, meaning it is
3674 		     set once and used once, indicate that the reference may be
3675 		     replaced by the equivalence we computed above.  Do this
3676 		     even if the register is only used in one block so that
3677 		     dependencies can be handled where the last register is
3678 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3679 		     and to reduce the number of registers alive across
3680 		     calls.  */
3681 
3682 		  if (REG_N_REFS (regno) == 2
3683 		      && (rtx_equal_p (replacement, src)
3684 			  || ! equiv_init_varies_p (src))
3685 		      && NONJUMP_INSN_P (insn)
3686 		      && equiv_init_movable_p (PATTERN (insn), regno))
3687 		    reg_equiv[regno].replace = 1;
3688 		}
3689 	    }
3690 	}
3691     }
3692 }
3693 
3694 /* For insns that set a MEM to the contents of a REG that is only used
3695    in a single basic block, see if the register is always equivalent
3696    to that memory location and if moving the store from INSN to the
3697    insn that sets REG is safe.  If so, put a REG_EQUIV note on the
3698    initializing insn.  */
3699 static void
add_store_equivs(void)3700 add_store_equivs (void)
3701 {
3702   auto_bitmap seen_insns;
3703 
3704   for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3705     {
3706       rtx set, src, dest;
3707       unsigned regno;
3708       rtx_insn *init_insn;
3709 
3710       bitmap_set_bit (seen_insns, INSN_UID (insn));
3711 
3712       if (! INSN_P (insn))
3713 	continue;
3714 
3715       set = single_set (insn);
3716       if (! set)
3717 	continue;
3718 
3719       dest = SET_DEST (set);
3720       src = SET_SRC (set);
3721 
3722       /* Don't add a REG_EQUIV note if the insn already has one.  The existing
3723 	 REG_EQUIV is likely more useful than the one we are adding.  */
3724       if (MEM_P (dest) && REG_P (src)
3725 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3726 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3727 	  && DF_REG_DEF_COUNT (regno) == 1
3728 	  && ! reg_equiv[regno].pdx_subregs
3729 	  && reg_equiv[regno].init_insns != NULL
3730 	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3731 	  && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3732 	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3733 	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
3734 	  && ! memref_used_between_p (dest, init_insn, insn)
3735 	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3736 	     multiple sets.  */
3737 	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3738 	{
3739 	  /* This insn makes the equivalence, not the one initializing
3740 	     the register.  */
3741 	  ira_reg_equiv[regno].init_insns
3742 	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3743 	  df_notes_rescan (init_insn);
3744 	  if (dump_file)
3745 	    fprintf (dump_file,
3746 		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
3747 		     INSN_UID (init_insn),
3748 		     INSN_UID (insn));
3749 	}
3750     }
3751 }
3752 
3753 /* Scan all regs killed in an insn to see if any of them are registers
3754    only used that once.  If so, see if we can replace the reference
3755    with the equivalent form.  If we can, delete the initializing
3756    reference and this register will go away.  If we can't replace the
3757    reference, and the initializing reference is within the same loop
3758    (or in an inner loop), then move the register initialization just
3759    before the use, so that they are in the same basic block.  */
3760 static void
combine_and_move_insns(void)3761 combine_and_move_insns (void)
3762 {
3763   auto_bitmap cleared_regs;
3764   int max = max_reg_num ();
3765 
3766   for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3767     {
3768       if (!reg_equiv[regno].replace)
3769 	continue;
3770 
3771       rtx_insn *use_insn = 0;
3772       for (df_ref use = DF_REG_USE_CHAIN (regno);
3773 	   use;
3774 	   use = DF_REF_NEXT_REG (use))
3775 	if (DF_REF_INSN_INFO (use))
3776 	  {
3777 	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
3778 	      continue;
3779 	    gcc_assert (!use_insn);
3780 	    use_insn = DF_REF_INSN (use);
3781 	  }
3782       gcc_assert (use_insn);
3783 
3784       /* Don't substitute into jumps.  indirect_jump_optimize does
3785 	 this for anything we are prepared to handle.  */
3786       if (JUMP_P (use_insn))
3787 	continue;
3788 
3789       /* Also don't substitute into a conditional trap insn -- it can become
3790 	 an unconditional trap, and that is a flow control insn.  */
3791       if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3792 	continue;
3793 
3794       df_ref def = DF_REG_DEF_CHAIN (regno);
3795       gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3796       rtx_insn *def_insn = DF_REF_INSN (def);
3797 
3798       /* We may not move instructions that can throw, since that
3799 	 changes basic block boundaries and we are not prepared to
3800 	 adjust the CFG to match.  */
3801       if (can_throw_internal (def_insn))
3802 	continue;
3803 
3804       /* Instructions with multiple sets can only be moved if DF analysis is
3805 	 performed for all of the registers set.  See PR91052.  */
3806       if (multiple_sets (def_insn))
3807 	continue;
3808 
3809       basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3810       basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3811       if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3812 	continue;
3813 
3814       if (asm_noperands (PATTERN (def_insn)) < 0
3815 	  && validate_replace_rtx (regno_reg_rtx[regno],
3816 				   *reg_equiv[regno].src_p, use_insn))
3817 	{
3818 	  rtx link;
3819 	  /* Append the REG_DEAD notes from def_insn.  */
3820 	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3821 	    {
3822 	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3823 		{
3824 		  *p = XEXP (link, 1);
3825 		  XEXP (link, 1) = REG_NOTES (use_insn);
3826 		  REG_NOTES (use_insn) = link;
3827 		}
3828 	      else
3829 		p = &XEXP (link, 1);
3830 	    }
3831 
3832 	  remove_death (regno, use_insn);
3833 	  SET_REG_N_REFS (regno, 0);
3834 	  REG_FREQ (regno) = 0;
3835 	  df_ref use;
3836 	  FOR_EACH_INSN_USE (use, def_insn)
3837 	    {
3838 	      unsigned int use_regno = DF_REF_REGNO (use);
3839 	      if (!HARD_REGISTER_NUM_P (use_regno))
3840 		reg_equiv[use_regno].replace = 0;
3841 	    }
3842 
3843 	  delete_insn (def_insn);
3844 
3845 	  reg_equiv[regno].init_insns = NULL;
3846 	  ira_reg_equiv[regno].init_insns = NULL;
3847 	  bitmap_set_bit (cleared_regs, regno);
3848 	}
3849 
3850       /* Move the initialization of the register to just before
3851 	 USE_INSN.  Update the flow information.  */
3852       else if (prev_nondebug_insn (use_insn) != def_insn)
3853 	{
3854 	  rtx_insn *new_insn;
3855 
3856 	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3857 	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
3858 	  REG_NOTES (def_insn) = 0;
3859 	  /* Rescan it to process the notes.  */
3860 	  df_insn_rescan (new_insn);
3861 
3862 	  /* Make sure this insn is recognized before reload begins,
3863 	     otherwise eliminate_regs_in_insn will die.  */
3864 	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
3865 
3866 	  delete_insn (def_insn);
3867 
3868 	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3869 
3870 	  REG_BASIC_BLOCK (regno) = use_bb->index;
3871 	  REG_N_CALLS_CROSSED (regno) = 0;
3872 
3873 	  if (use_insn == BB_HEAD (use_bb))
3874 	    BB_HEAD (use_bb) = new_insn;
3875 
3876 	  /* We know regno dies in use_insn, but inside a loop
3877 	     REG_DEAD notes might be missing when def_insn was in
3878 	     another basic block.  However, when we move def_insn into
3879 	     this bb we'll definitely get a REG_DEAD note and reload
3880 	     will see the death.  It's possible that update_equiv_regs
3881 	     set up an equivalence referencing regno for a reg set by
3882 	     use_insn, when regno was seen as non-local.  Now that
3883 	     regno is local to this block, and dies, such an
3884 	     equivalence is invalid.  */
3885 	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3886 	    {
3887 	      rtx set = single_set (use_insn);
3888 	      if (set && REG_P (SET_DEST (set)))
3889 		no_equiv (SET_DEST (set), set, NULL);
3890 	    }
3891 
3892 	  ira_reg_equiv[regno].init_insns
3893 	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3894 	  bitmap_set_bit (cleared_regs, regno);
3895 	}
3896     }
3897 
3898   if (!bitmap_empty_p (cleared_regs))
3899     {
3900       basic_block bb;
3901 
3902       FOR_EACH_BB_FN (bb, cfun)
3903 	{
3904 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3905 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3906 	  if (!df_live)
3907 	    continue;
3908 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3909 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3910 	}
3911 
3912       /* Last pass - adjust debug insns referencing cleared regs.  */
3913       if (MAY_HAVE_DEBUG_BIND_INSNS)
3914 	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3915 	  if (DEBUG_BIND_INSN_P (insn))
3916 	    {
3917 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3918 	      INSN_VAR_LOCATION_LOC (insn)
3919 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3920 					   adjust_cleared_regs,
3921 					   (void *) cleared_regs);
3922 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3923 		df_insn_rescan (insn);
3924 	    }
3925     }
3926 }
3927 
3928 /* A pass over indirect jumps, converting simple cases to direct jumps.
3929    Combine does this optimization too, but only within a basic block.  */
3930 static void
indirect_jump_optimize(void)3931 indirect_jump_optimize (void)
3932 {
3933   basic_block bb;
3934   bool rebuild_p = false;
3935 
3936   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3937     {
3938       rtx_insn *insn = BB_END (bb);
3939       if (!JUMP_P (insn)
3940 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3941 	continue;
3942 
3943       rtx x = pc_set (insn);
3944       if (!x || !REG_P (SET_SRC (x)))
3945 	continue;
3946 
3947       int regno = REGNO (SET_SRC (x));
3948       if (DF_REG_DEF_COUNT (regno) == 1)
3949 	{
3950 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3951 	  if (!DF_REF_IS_ARTIFICIAL (def))
3952 	    {
3953 	      rtx_insn *def_insn = DF_REF_INSN (def);
3954 	      rtx lab = NULL_RTX;
3955 	      rtx set = single_set (def_insn);
3956 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3957 		lab = SET_SRC (set);
3958 	      else
3959 		{
3960 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3961 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3962 		    lab = XEXP (eqnote, 0);
3963 		}
3964 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3965 		rebuild_p = true;
3966 	    }
3967 	}
3968     }
3969 
3970   if (rebuild_p)
3971     {
3972       timevar_push (TV_JUMP);
3973       rebuild_jump_labels (get_insns ());
3974       if (purge_all_dead_edges ())
3975 	delete_unreachable_blocks ();
3976       timevar_pop (TV_JUMP);
3977     }
3978 }
3979 
3980 /* Set up fields memory, constant, and invariant from init_insns in
3981    the structures of array ira_reg_equiv.  */
3982 static void
setup_reg_equiv(void)3983 setup_reg_equiv (void)
3984 {
3985   int i;
3986   rtx_insn_list *elem, *prev_elem, *next_elem;
3987   rtx_insn *insn;
3988   rtx set, x;
3989 
3990   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3991     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3992 	 elem;
3993 	 prev_elem = elem, elem = next_elem)
3994       {
3995 	next_elem = elem->next ();
3996 	insn = elem->insn ();
3997 	set = single_set (insn);
3998 
3999 	/* Init insns can set up equivalence when the reg is a destination or
4000 	   a source (in this case the destination is memory).  */
4001 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
4002 	  {
4003 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
4004 	      {
4005 		x = XEXP (x, 0);
4006 		if (REG_P (SET_DEST (set))
4007 		    && REGNO (SET_DEST (set)) == (unsigned int) i
4008 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4009 		  {
4010 		    /* This insn reporting the equivalence but
4011 		       actually not setting it.  Remove it from the
4012 		       list.  */
4013 		    if (prev_elem == NULL)
4014 		      ira_reg_equiv[i].init_insns = next_elem;
4015 		    else
4016 		      XEXP (prev_elem, 1) = next_elem;
4017 		    elem = prev_elem;
4018 		  }
4019 	      }
4020 	    else if (REG_P (SET_DEST (set))
4021 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
4022 	      x = SET_SRC (set);
4023 	    else
4024 	      {
4025 		gcc_assert (REG_P (SET_SRC (set))
4026 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
4027 		x = SET_DEST (set);
4028 	      }
4029 	    if (! function_invariant_p (x)
4030 		|| ! flag_pic
4031 		/* A function invariant is often CONSTANT_P but may
4032 		   include a register.  We promise to only pass
4033 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
4034 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4035 	      {
4036 		/* It can happen that a REG_EQUIV note contains a MEM
4037 		   that is not a legitimate memory operand.  As later
4038 		   stages of reload assume that all addresses found in
4039 		   the lra_regno_equiv_* arrays were originally
4040 		   legitimate, we ignore such REG_EQUIV notes.  */
4041 		if (memory_operand (x, VOIDmode))
4042 		  {
4043 		    ira_reg_equiv[i].defined_p = true;
4044 		    ira_reg_equiv[i].memory = x;
4045 		    continue;
4046 		  }
4047 		else if (function_invariant_p (x))
4048 		  {
4049 		    machine_mode mode;
4050 
4051 		    mode = GET_MODE (SET_DEST (set));
4052 		    if (GET_CODE (x) == PLUS
4053 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
4054 		      /* This is PLUS of frame pointer and a constant,
4055 			 or fp, or argp.  */
4056 		      ira_reg_equiv[i].invariant = x;
4057 		    else if (targetm.legitimate_constant_p (mode, x))
4058 		      ira_reg_equiv[i].constant = x;
4059 		    else
4060 		      {
4061 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
4062 			if (ira_reg_equiv[i].memory == NULL_RTX)
4063 			  {
4064 			    ira_reg_equiv[i].defined_p = false;
4065 			    ira_reg_equiv[i].init_insns = NULL;
4066 			    break;
4067 			  }
4068 		      }
4069 		    ira_reg_equiv[i].defined_p = true;
4070 		    continue;
4071 		  }
4072 	      }
4073 	  }
4074 	ira_reg_equiv[i].defined_p = false;
4075 	ira_reg_equiv[i].init_insns = NULL;
4076 	break;
4077       }
4078 }
4079 
4080 
4081 
4082 /* Print chain C to FILE.  */
4083 static void
print_insn_chain(FILE * file,class insn_chain * c)4084 print_insn_chain (FILE *file, class insn_chain *c)
4085 {
4086   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4087   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4088   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4089 }
4090 
4091 
4092 /* Print all reload_insn_chains to FILE.  */
4093 static void
print_insn_chains(FILE * file)4094 print_insn_chains (FILE *file)
4095 {
4096   class insn_chain *c;
4097   for (c = reload_insn_chain; c ; c = c->next)
4098     print_insn_chain (file, c);
4099 }
4100 
4101 /* Return true if pseudo REGNO should be added to set live_throughout
4102    or dead_or_set of the insn chains for reload consideration.  */
4103 static bool
pseudo_for_reload_consideration_p(int regno)4104 pseudo_for_reload_consideration_p (int regno)
4105 {
4106   /* Consider spilled pseudos too for IRA because they still have a
4107      chance to get hard-registers in the reload when IRA is used.  */
4108   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4109 }
4110 
4111 /* Return true if we can track the individual bytes of subreg X.
4112    When returning true, set *OUTER_SIZE to the number of bytes in
4113    X itself, *INNER_SIZE to the number of bytes in the inner register
4114    and *START to the offset of the first byte.  */
4115 static bool
get_subreg_tracking_sizes(rtx x,HOST_WIDE_INT * outer_size,HOST_WIDE_INT * inner_size,HOST_WIDE_INT * start)4116 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4117 			   HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4118 {
4119   rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4120   return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4121 	  && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4122 	  && SUBREG_BYTE (x).is_constant (start));
4123 }
4124 
4125 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4126    a register with SIZE bytes, making the register live if INIT_VALUE.  */
4127 static void
init_live_subregs(bool init_value,sbitmap * live_subregs,bitmap live_subregs_used,int allocnum,int size)4128 init_live_subregs (bool init_value, sbitmap *live_subregs,
4129 		   bitmap live_subregs_used, int allocnum, int size)
4130 {
4131   gcc_assert (size > 0);
4132 
4133   /* Been there, done that.  */
4134   if (bitmap_bit_p (live_subregs_used, allocnum))
4135     return;
4136 
4137   /* Create a new one.  */
4138   if (live_subregs[allocnum] == NULL)
4139     live_subregs[allocnum] = sbitmap_alloc (size);
4140 
4141   /* If the entire reg was live before blasting into subregs, we need
4142      to init all of the subregs to ones else init to 0.  */
4143   if (init_value)
4144     bitmap_ones (live_subregs[allocnum]);
4145   else
4146     bitmap_clear (live_subregs[allocnum]);
4147 
4148   bitmap_set_bit (live_subregs_used, allocnum);
4149 }
4150 
4151 /* Walk the insns of the current function and build reload_insn_chain,
4152    and record register life information.  */
4153 static void
build_insn_chain(void)4154 build_insn_chain (void)
4155 {
4156   unsigned int i;
4157   class insn_chain **p = &reload_insn_chain;
4158   basic_block bb;
4159   class insn_chain *c = NULL;
4160   class insn_chain *next = NULL;
4161   auto_bitmap live_relevant_regs;
4162   auto_bitmap elim_regset;
4163   /* live_subregs is a vector used to keep accurate information about
4164      which hardregs are live in multiword pseudos.  live_subregs and
4165      live_subregs_used are indexed by pseudo number.  The live_subreg
4166      entry for a particular pseudo is only used if the corresponding
4167      element is non zero in live_subregs_used.  The sbitmap size of
4168      live_subreg[allocno] is number of bytes that the pseudo can
4169      occupy.  */
4170   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4171   auto_bitmap live_subregs_used;
4172 
4173   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4174     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4175       bitmap_set_bit (elim_regset, i);
4176   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4177     {
4178       bitmap_iterator bi;
4179       rtx_insn *insn;
4180 
4181       CLEAR_REG_SET (live_relevant_regs);
4182       bitmap_clear (live_subregs_used);
4183 
4184       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4185 	{
4186 	  if (i >= FIRST_PSEUDO_REGISTER)
4187 	    break;
4188 	  bitmap_set_bit (live_relevant_regs, i);
4189 	}
4190 
4191       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4192 				FIRST_PSEUDO_REGISTER, i, bi)
4193 	{
4194 	  if (pseudo_for_reload_consideration_p (i))
4195 	    bitmap_set_bit (live_relevant_regs, i);
4196 	}
4197 
4198       FOR_BB_INSNS_REVERSE (bb, insn)
4199 	{
4200 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4201 	    {
4202 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4203 	      df_ref def, use;
4204 
4205 	      c = new_insn_chain ();
4206 	      c->next = next;
4207 	      next = c;
4208 	      *p = c;
4209 	      p = &c->prev;
4210 
4211 	      c->insn = insn;
4212 	      c->block = bb->index;
4213 
4214 	      if (NONDEBUG_INSN_P (insn))
4215 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4216 		  {
4217 		    unsigned int regno = DF_REF_REGNO (def);
4218 
4219 		    /* Ignore may clobbers because these are generated
4220 		       from calls. However, every other kind of def is
4221 		       added to dead_or_set.  */
4222 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4223 		      {
4224 			if (regno < FIRST_PSEUDO_REGISTER)
4225 			  {
4226 			    if (!fixed_regs[regno])
4227 			      bitmap_set_bit (&c->dead_or_set, regno);
4228 			  }
4229 			else if (pseudo_for_reload_consideration_p (regno))
4230 			  bitmap_set_bit (&c->dead_or_set, regno);
4231 		      }
4232 
4233 		    if ((regno < FIRST_PSEUDO_REGISTER
4234 			 || reg_renumber[regno] >= 0
4235 			 || ira_conflicts_p)
4236 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4237 		      {
4238 			rtx reg = DF_REF_REG (def);
4239 			HOST_WIDE_INT outer_size, inner_size, start;
4240 
4241 			/* We can usually track the liveness of individual
4242 			   bytes within a subreg.  The only exceptions are
4243 			   subregs wrapped in ZERO_EXTRACTs and subregs whose
4244 			   size is not known; in those cases we need to be
4245 			   conservative and treat the definition as a partial
4246 			   definition of the full register rather than a full
4247 			   definition of a specific part of the register.  */
4248 			if (GET_CODE (reg) == SUBREG
4249 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4250 			    && get_subreg_tracking_sizes (reg, &outer_size,
4251 							  &inner_size, &start))
4252 			  {
4253 			    HOST_WIDE_INT last = start + outer_size;
4254 
4255 			    init_live_subregs
4256 			      (bitmap_bit_p (live_relevant_regs, regno),
4257 			       live_subregs, live_subregs_used, regno,
4258 			       inner_size);
4259 
4260 			    if (!DF_REF_FLAGS_IS_SET
4261 				(def, DF_REF_STRICT_LOW_PART))
4262 			      {
4263 				/* Expand the range to cover entire words.
4264 				   Bytes added here are "don't care".  */
4265 				start
4266 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4267 				last = ((last + UNITS_PER_WORD - 1)
4268 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4269 			      }
4270 
4271 			    /* Ignore the paradoxical bits.  */
4272 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4273 			      last = SBITMAP_SIZE (live_subregs[regno]);
4274 
4275 			    while (start < last)
4276 			      {
4277 				bitmap_clear_bit (live_subregs[regno], start);
4278 				start++;
4279 			      }
4280 
4281 			    if (bitmap_empty_p (live_subregs[regno]))
4282 			      {
4283 				bitmap_clear_bit (live_subregs_used, regno);
4284 				bitmap_clear_bit (live_relevant_regs, regno);
4285 			      }
4286 			    else
4287 			      /* Set live_relevant_regs here because
4288 				 that bit has to be true to get us to
4289 				 look at the live_subregs fields.  */
4290 			      bitmap_set_bit (live_relevant_regs, regno);
4291 			  }
4292 			else
4293 			  {
4294 			    /* DF_REF_PARTIAL is generated for
4295 			       subregs, STRICT_LOW_PART, and
4296 			       ZERO_EXTRACT.  We handle the subreg
4297 			       case above so here we have to keep from
4298 			       modeling the def as a killing def.  */
4299 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4300 			      {
4301 				bitmap_clear_bit (live_subregs_used, regno);
4302 				bitmap_clear_bit (live_relevant_regs, regno);
4303 			      }
4304 			  }
4305 		      }
4306 		  }
4307 
4308 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4309 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4310 
4311 	      if (NONDEBUG_INSN_P (insn))
4312 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4313 		  {
4314 		    unsigned int regno = DF_REF_REGNO (use);
4315 		    rtx reg = DF_REF_REG (use);
4316 
4317 		    /* DF_REF_READ_WRITE on a use means that this use
4318 		       is fabricated from a def that is a partial set
4319 		       to a multiword reg.  Here, we only model the
4320 		       subreg case that is not wrapped in ZERO_EXTRACT
4321 		       precisely so we do not need to look at the
4322 		       fabricated use.  */
4323 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4324 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4325 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4326 		      continue;
4327 
4328 		    /* Add the last use of each var to dead_or_set.  */
4329 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4330 		      {
4331 			if (regno < FIRST_PSEUDO_REGISTER)
4332 			  {
4333 			    if (!fixed_regs[regno])
4334 			      bitmap_set_bit (&c->dead_or_set, regno);
4335 			  }
4336 			else if (pseudo_for_reload_consideration_p (regno))
4337 			  bitmap_set_bit (&c->dead_or_set, regno);
4338 		      }
4339 
4340 		    if (regno < FIRST_PSEUDO_REGISTER
4341 			|| pseudo_for_reload_consideration_p (regno))
4342 		      {
4343 			HOST_WIDE_INT outer_size, inner_size, start;
4344 			if (GET_CODE (reg) == SUBREG
4345 			    && !DF_REF_FLAGS_IS_SET (use,
4346 						     DF_REF_SIGN_EXTRACT
4347 						     | DF_REF_ZERO_EXTRACT)
4348 			    && get_subreg_tracking_sizes (reg, &outer_size,
4349 							  &inner_size, &start))
4350 			  {
4351 			    HOST_WIDE_INT last = start + outer_size;
4352 
4353 			    init_live_subregs
4354 			      (bitmap_bit_p (live_relevant_regs, regno),
4355 			       live_subregs, live_subregs_used, regno,
4356 			       inner_size);
4357 
4358 			    /* Ignore the paradoxical bits.  */
4359 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4360 			      last = SBITMAP_SIZE (live_subregs[regno]);
4361 
4362 			    while (start < last)
4363 			      {
4364 				bitmap_set_bit (live_subregs[regno], start);
4365 				start++;
4366 			      }
4367 			  }
4368 			else
4369 			  /* Resetting the live_subregs_used is
4370 			     effectively saying do not use the subregs
4371 			     because we are reading the whole
4372 			     pseudo.  */
4373 			  bitmap_clear_bit (live_subregs_used, regno);
4374 			bitmap_set_bit (live_relevant_regs, regno);
4375 		      }
4376 		  }
4377 	    }
4378 	}
4379 
4380       /* FIXME!! The following code is a disaster.  Reload needs to see the
4381 	 labels and jump tables that are just hanging out in between
4382 	 the basic blocks.  See pr33676.  */
4383       insn = BB_HEAD (bb);
4384 
4385       /* Skip over the barriers and cruft.  */
4386       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4387 		      || BLOCK_FOR_INSN (insn) == bb))
4388 	insn = PREV_INSN (insn);
4389 
4390       /* While we add anything except barriers and notes, the focus is
4391 	 to get the labels and jump tables into the
4392 	 reload_insn_chain.  */
4393       while (insn)
4394 	{
4395 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4396 	    {
4397 	      if (BLOCK_FOR_INSN (insn))
4398 		break;
4399 
4400 	      c = new_insn_chain ();
4401 	      c->next = next;
4402 	      next = c;
4403 	      *p = c;
4404 	      p = &c->prev;
4405 
4406 	      /* The block makes no sense here, but it is what the old
4407 		 code did.  */
4408 	      c->block = bb->index;
4409 	      c->insn = insn;
4410 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4411 	    }
4412 	  insn = PREV_INSN (insn);
4413 	}
4414     }
4415 
4416   reload_insn_chain = c;
4417   *p = NULL;
4418 
4419   for (i = 0; i < (unsigned int) max_regno; i++)
4420     if (live_subregs[i] != NULL)
4421       sbitmap_free (live_subregs[i]);
4422   free (live_subregs);
4423 
4424   if (dump_file)
4425     print_insn_chains (dump_file);
4426 }
4427 
4428 /* Examine the rtx found in *LOC, which is read or written to as determined
4429    by TYPE.  Return false if we find a reason why an insn containing this
4430    rtx should not be moved (such as accesses to non-constant memory), true
4431    otherwise.  */
4432 static bool
rtx_moveable_p(rtx * loc,enum op_type type)4433 rtx_moveable_p (rtx *loc, enum op_type type)
4434 {
4435   const char *fmt;
4436   rtx x = *loc;
4437   int i, j;
4438 
4439   enum rtx_code code = GET_CODE (x);
4440   switch (code)
4441     {
4442     case CONST:
4443     CASE_CONST_ANY:
4444     case SYMBOL_REF:
4445     case LABEL_REF:
4446       return true;
4447 
4448     case PC:
4449       return type == OP_IN;
4450 
4451     case CC0:
4452       return false;
4453 
4454     case REG:
4455       if (x == frame_pointer_rtx)
4456 	return true;
4457       if (HARD_REGISTER_P (x))
4458 	return false;
4459 
4460       return true;
4461 
4462     case MEM:
4463       if (type == OP_IN && MEM_READONLY_P (x))
4464 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4465       return false;
4466 
4467     case SET:
4468       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4469 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4470 
4471     case STRICT_LOW_PART:
4472       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4473 
4474     case ZERO_EXTRACT:
4475     case SIGN_EXTRACT:
4476       return (rtx_moveable_p (&XEXP (x, 0), type)
4477 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4478 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4479 
4480     case CLOBBER:
4481       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4482 
4483     case UNSPEC_VOLATILE:
4484       /* It is a bad idea to consider insns with such rtl
4485 	 as moveable ones.  The insn scheduler also considers them as barrier
4486 	 for a reason.  */
4487       return false;
4488 
4489     case ASM_OPERANDS:
4490       /* The same is true for volatile asm: it has unknown side effects, it
4491          cannot be moved at will.  */
4492       if (MEM_VOLATILE_P (x))
4493 	return false;
4494 
4495     default:
4496       break;
4497     }
4498 
4499   fmt = GET_RTX_FORMAT (code);
4500   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4501     {
4502       if (fmt[i] == 'e')
4503 	{
4504 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4505 	    return false;
4506 	}
4507       else if (fmt[i] == 'E')
4508 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4509 	  {
4510 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4511 	      return false;
4512 	  }
4513     }
4514   return true;
4515 }
4516 
4517 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4518    to give dominance relationships between two insns I1 and I2.  */
4519 static bool
insn_dominated_by_p(rtx i1,rtx i2,int * uid_luid)4520 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4521 {
4522   basic_block bb1 = BLOCK_FOR_INSN (i1);
4523   basic_block bb2 = BLOCK_FOR_INSN (i2);
4524 
4525   if (bb1 == bb2)
4526     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4527   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4528 }
4529 
4530 /* Record the range of register numbers added by find_moveable_pseudos.  */
4531 int first_moveable_pseudo, last_moveable_pseudo;
4532 
4533 /* These two vectors hold data for every register added by
4534    find_movable_pseudos, with index 0 holding data for the
4535    first_moveable_pseudo.  */
4536 /* The original home register.  */
4537 static vec<rtx> pseudo_replaced_reg;
4538 
4539 /* Look for instances where we have an instruction that is known to increase
4540    register pressure, and whose result is not used immediately.  If it is
4541    possible to move the instruction downwards to just before its first use,
4542    split its lifetime into two ranges.  We create a new pseudo to compute the
4543    value, and emit a move instruction just before the first use.  If, after
4544    register allocation, the new pseudo remains unallocated, the function
4545    move_unallocated_pseudos then deletes the move instruction and places
4546    the computation just before the first use.
4547 
4548    Such a move is safe and profitable if all the input registers remain live
4549    and unchanged between the original computation and its first use.  In such
4550    a situation, the computation is known to increase register pressure, and
4551    moving it is known to at least not worsen it.
4552 
4553    We restrict moves to only those cases where a register remains unallocated,
4554    in order to avoid interfering too much with the instruction schedule.  As
4555    an exception, we may move insns which only modify their input register
4556    (typically induction variables), as this increases the freedom for our
4557    intended transformation, and does not limit the second instruction
4558    scheduler pass.  */
4559 
4560 static void
find_moveable_pseudos(void)4561 find_moveable_pseudos (void)
4562 {
4563   unsigned i;
4564   int max_regs = max_reg_num ();
4565   int max_uid = get_max_uid ();
4566   basic_block bb;
4567   int *uid_luid = XNEWVEC (int, max_uid);
4568   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4569   /* A set of registers which are live but not modified throughout a block.  */
4570   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4571 					 last_basic_block_for_fn (cfun));
4572   /* A set of registers which only exist in a given basic block.  */
4573   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4574 				   last_basic_block_for_fn (cfun));
4575   /* A set of registers which are set once, in an instruction that can be
4576      moved freely downwards, but are otherwise transparent to a block.  */
4577   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4578 					       last_basic_block_for_fn (cfun));
4579   auto_bitmap live, used, set, interesting, unusable_as_input;
4580   bitmap_iterator bi;
4581 
4582   first_moveable_pseudo = max_regs;
4583   pseudo_replaced_reg.release ();
4584   pseudo_replaced_reg.safe_grow_cleared (max_regs, true);
4585 
4586   df_analyze ();
4587   calculate_dominance_info (CDI_DOMINATORS);
4588 
4589   i = 0;
4590   FOR_EACH_BB_FN (bb, cfun)
4591     {
4592       rtx_insn *insn;
4593       bitmap transp = bb_transp_live + bb->index;
4594       bitmap moveable = bb_moveable_reg_sets + bb->index;
4595       bitmap local = bb_local + bb->index;
4596 
4597       bitmap_initialize (local, 0);
4598       bitmap_initialize (transp, 0);
4599       bitmap_initialize (moveable, 0);
4600       bitmap_copy (live, df_get_live_out (bb));
4601       bitmap_and_into (live, df_get_live_in (bb));
4602       bitmap_copy (transp, live);
4603       bitmap_clear (moveable);
4604       bitmap_clear (live);
4605       bitmap_clear (used);
4606       bitmap_clear (set);
4607       FOR_BB_INSNS (bb, insn)
4608 	if (NONDEBUG_INSN_P (insn))
4609 	  {
4610 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4611 	    df_ref def, use;
4612 
4613 	    uid_luid[INSN_UID (insn)] = i++;
4614 
4615 	    def = df_single_def (insn_info);
4616 	    use = df_single_use (insn_info);
4617 	    if (use
4618 		&& def
4619 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4620 		&& !bitmap_bit_p (set, DF_REF_REGNO (use))
4621 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4622 	      {
4623 		unsigned regno = DF_REF_REGNO (use);
4624 		bitmap_set_bit (moveable, regno);
4625 		bitmap_set_bit (set, regno);
4626 		bitmap_set_bit (used, regno);
4627 		bitmap_clear_bit (transp, regno);
4628 		continue;
4629 	      }
4630 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4631 	      {
4632 		unsigned regno = DF_REF_REGNO (use);
4633 		bitmap_set_bit (used, regno);
4634 		if (bitmap_clear_bit (moveable, regno))
4635 		  bitmap_clear_bit (transp, regno);
4636 	      }
4637 
4638 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4639 	      {
4640 		unsigned regno = DF_REF_REGNO (def);
4641 		bitmap_set_bit (set, regno);
4642 		bitmap_clear_bit (transp, regno);
4643 		bitmap_clear_bit (moveable, regno);
4644 	      }
4645 	  }
4646     }
4647 
4648   FOR_EACH_BB_FN (bb, cfun)
4649     {
4650       bitmap local = bb_local + bb->index;
4651       rtx_insn *insn;
4652 
4653       FOR_BB_INSNS (bb, insn)
4654 	if (NONDEBUG_INSN_P (insn))
4655 	  {
4656 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4657 	    rtx_insn *def_insn;
4658 	    rtx closest_use, note;
4659 	    df_ref def, use;
4660 	    unsigned regno;
4661 	    bool all_dominated, all_local;
4662 	    machine_mode mode;
4663 
4664 	    def = df_single_def (insn_info);
4665 	    /* There must be exactly one def in this insn.  */
4666 	    if (!def || !single_set (insn))
4667 	      continue;
4668 	    /* This must be the only definition of the reg.  We also limit
4669 	       which modes we deal with so that we can assume we can generate
4670 	       move instructions.  */
4671 	    regno = DF_REF_REGNO (def);
4672 	    mode = GET_MODE (DF_REF_REG (def));
4673 	    if (DF_REG_DEF_COUNT (regno) != 1
4674 		|| !DF_REF_INSN_INFO (def)
4675 		|| HARD_REGISTER_NUM_P (regno)
4676 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4677 		|| (!INTEGRAL_MODE_P (mode)
4678 		    && !FLOAT_MODE_P (mode)
4679 		    && !OPAQUE_MODE_P (mode)))
4680 	      continue;
4681 	    def_insn = DF_REF_INSN (def);
4682 
4683 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4684 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4685 		break;
4686 
4687 	    if (note)
4688 	      {
4689 		if (dump_file)
4690 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4691 			   regno);
4692 		bitmap_set_bit (unusable_as_input, regno);
4693 		continue;
4694 	      }
4695 
4696 	    use = DF_REG_USE_CHAIN (regno);
4697 	    all_dominated = true;
4698 	    all_local = true;
4699 	    closest_use = NULL_RTX;
4700 	    for (; use; use = DF_REF_NEXT_REG (use))
4701 	      {
4702 		rtx_insn *insn;
4703 		if (!DF_REF_INSN_INFO (use))
4704 		  {
4705 		    all_dominated = false;
4706 		    all_local = false;
4707 		    break;
4708 		  }
4709 		insn = DF_REF_INSN (use);
4710 		if (DEBUG_INSN_P (insn))
4711 		  continue;
4712 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4713 		  all_local = false;
4714 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4715 		  all_dominated = false;
4716 		if (closest_use != insn && closest_use != const0_rtx)
4717 		  {
4718 		    if (closest_use == NULL_RTX)
4719 		      closest_use = insn;
4720 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4721 		      closest_use = insn;
4722 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4723 		      closest_use = const0_rtx;
4724 		  }
4725 	      }
4726 	    if (!all_dominated)
4727 	      {
4728 		if (dump_file)
4729 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4730 			   regno);
4731 		continue;
4732 	      }
4733 	    if (all_local)
4734 	      bitmap_set_bit (local, regno);
4735 	    if (closest_use == const0_rtx || closest_use == NULL
4736 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4737 	      {
4738 		if (dump_file)
4739 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4740 			   closest_use == const0_rtx || closest_use == NULL
4741 			   ? " (no unique first use)" : "");
4742 		continue;
4743 	      }
4744 	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4745 	      {
4746 		if (dump_file)
4747 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4748 			   regno);
4749 		continue;
4750 	      }
4751 
4752 	    bitmap_set_bit (interesting, regno);
4753 	    /* If we get here, we know closest_use is a non-NULL insn
4754 	       (as opposed to const_0_rtx).  */
4755 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4756 
4757 	    if (dump_file && (all_local || all_dominated))
4758 	      {
4759 		fprintf (dump_file, "Reg %u:", regno);
4760 		if (all_local)
4761 		  fprintf (dump_file, " local to bb %d", bb->index);
4762 		if (all_dominated)
4763 		  fprintf (dump_file, " def dominates all uses");
4764 		if (closest_use != const0_rtx)
4765 		  fprintf (dump_file, " has unique first use");
4766 		fputs ("\n", dump_file);
4767 	      }
4768 	  }
4769     }
4770 
4771   EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4772     {
4773       df_ref def = DF_REG_DEF_CHAIN (i);
4774       rtx_insn *def_insn = DF_REF_INSN (def);
4775       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4776       bitmap def_bb_local = bb_local + def_block->index;
4777       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4778       bitmap def_bb_transp = bb_transp_live + def_block->index;
4779       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4780       rtx_insn *use_insn = closest_uses[i];
4781       df_ref use;
4782       bool all_ok = true;
4783       bool all_transp = true;
4784 
4785       if (!REG_P (DF_REF_REG (def)))
4786 	continue;
4787 
4788       if (!local_to_bb_p)
4789 	{
4790 	  if (dump_file)
4791 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4792 		     i);
4793 	  continue;
4794 	}
4795       if (reg_equiv_init (i) != NULL_RTX)
4796 	{
4797 	  if (dump_file)
4798 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4799 		     i);
4800 	  continue;
4801 	}
4802       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4803 	{
4804 	  if (dump_file)
4805 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4806 		     INSN_UID (def_insn), i);
4807 	  continue;
4808 	}
4809       if (dump_file)
4810 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4811 		 INSN_UID (def_insn), i);
4812       FOR_EACH_INSN_USE (use, def_insn)
4813 	{
4814 	  unsigned regno = DF_REF_REGNO (use);
4815 	  if (bitmap_bit_p (unusable_as_input, regno))
4816 	    {
4817 	      all_ok = false;
4818 	      if (dump_file)
4819 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4820 	      break;
4821 	    }
4822 	  if (!bitmap_bit_p (def_bb_transp, regno))
4823 	    {
4824 	      if (bitmap_bit_p (def_bb_moveable, regno)
4825 		  && !control_flow_insn_p (use_insn)
4826 		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4827 		{
4828 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4829 		    {
4830 		      rtx_insn *x = NEXT_INSN (def_insn);
4831 		      while (!modified_in_p (DF_REF_REG (use), x))
4832 			{
4833 			  gcc_assert (x != use_insn);
4834 			  x = NEXT_INSN (x);
4835 			}
4836 		      if (dump_file)
4837 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4838 				 regno, INSN_UID (x));
4839 		      emit_insn_after (PATTERN (x), use_insn);
4840 		      set_insn_deleted (x);
4841 		    }
4842 		  else
4843 		    {
4844 		      if (dump_file)
4845 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4846 				 regno);
4847 		      all_transp = false;
4848 		    }
4849 		}
4850 	      else
4851 		all_transp = false;
4852 	    }
4853 	}
4854       if (!all_ok)
4855 	continue;
4856       if (!dbg_cnt (ira_move))
4857 	break;
4858       if (dump_file)
4859 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4860 
4861       if (all_transp)
4862 	{
4863 	  rtx def_reg = DF_REF_REG (def);
4864 	  rtx newreg = ira_create_new_reg (def_reg);
4865 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4866 	    {
4867 	      unsigned nregno = REGNO (newreg);
4868 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4869 	      nregno -= max_regs;
4870 	      pseudo_replaced_reg[nregno] = def_reg;
4871 	    }
4872 	}
4873     }
4874 
4875   FOR_EACH_BB_FN (bb, cfun)
4876     {
4877       bitmap_clear (bb_local + bb->index);
4878       bitmap_clear (bb_transp_live + bb->index);
4879       bitmap_clear (bb_moveable_reg_sets + bb->index);
4880     }
4881   free (uid_luid);
4882   free (closest_uses);
4883   free (bb_local);
4884   free (bb_transp_live);
4885   free (bb_moveable_reg_sets);
4886 
4887   last_moveable_pseudo = max_reg_num ();
4888 
4889   fix_reg_equiv_init ();
4890   expand_reg_info ();
4891   regstat_free_n_sets_and_refs ();
4892   regstat_free_ri ();
4893   regstat_init_n_sets_and_refs ();
4894   regstat_compute_ri ();
4895   free_dominance_info (CDI_DOMINATORS);
4896 }
4897 
4898 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4899    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4900    the destination.  Otherwise return NULL.  */
4901 
4902 static rtx
interesting_dest_for_shprep_1(rtx set,basic_block call_dom)4903 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4904 {
4905   rtx src = SET_SRC (set);
4906   rtx dest = SET_DEST (set);
4907   if (!REG_P (src) || !HARD_REGISTER_P (src)
4908       || !REG_P (dest) || HARD_REGISTER_P (dest)
4909       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4910     return NULL;
4911   return dest;
4912 }
4913 
4914 /* If insn is interesting for parameter range-splitting shrink-wrapping
4915    preparation, i.e. it is a single set from a hard register to a pseudo, which
4916    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4917    parallel statement with only one such statement, return the destination.
4918    Otherwise return NULL.  */
4919 
4920 static rtx
interesting_dest_for_shprep(rtx_insn * insn,basic_block call_dom)4921 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4922 {
4923   if (!INSN_P (insn))
4924     return NULL;
4925   rtx pat = PATTERN (insn);
4926   if (GET_CODE (pat) == SET)
4927     return interesting_dest_for_shprep_1 (pat, call_dom);
4928 
4929   if (GET_CODE (pat) != PARALLEL)
4930     return NULL;
4931   rtx ret = NULL;
4932   for (int i = 0; i < XVECLEN (pat, 0); i++)
4933     {
4934       rtx sub = XVECEXP (pat, 0, i);
4935       if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4936 	continue;
4937       if (GET_CODE (sub) != SET
4938 	  || side_effects_p (sub))
4939 	return NULL;
4940       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4941       if (dest && ret)
4942 	return NULL;
4943       if (dest)
4944 	ret = dest;
4945     }
4946   return ret;
4947 }
4948 
4949 /* Split live ranges of pseudos that are loaded from hard registers in the
4950    first BB in a BB that dominates all non-sibling call if such a BB can be
4951    found and is not in a loop.  Return true if the function has made any
4952    changes.  */
4953 
4954 static bool
split_live_ranges_for_shrink_wrap(void)4955 split_live_ranges_for_shrink_wrap (void)
4956 {
4957   basic_block bb, call_dom = NULL;
4958   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4959   rtx_insn *insn, *last_interesting_insn = NULL;
4960   auto_bitmap need_new, reachable;
4961   vec<basic_block> queue;
4962 
4963   if (!SHRINK_WRAPPING_ENABLED)
4964     return false;
4965 
4966   queue.create (n_basic_blocks_for_fn (cfun));
4967 
4968   FOR_EACH_BB_FN (bb, cfun)
4969     FOR_BB_INSNS (bb, insn)
4970       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4971 	{
4972 	  if (bb == first)
4973 	    {
4974 	      queue.release ();
4975 	      return false;
4976 	    }
4977 
4978 	  bitmap_set_bit (need_new, bb->index);
4979 	  bitmap_set_bit (reachable, bb->index);
4980 	  queue.quick_push (bb);
4981 	  break;
4982 	}
4983 
4984   if (queue.is_empty ())
4985     {
4986       queue.release ();
4987       return false;
4988     }
4989 
4990   while (!queue.is_empty ())
4991     {
4992       edge e;
4993       edge_iterator ei;
4994 
4995       bb = queue.pop ();
4996       FOR_EACH_EDGE (e, ei, bb->succs)
4997 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4998 	    && bitmap_set_bit (reachable, e->dest->index))
4999 	  queue.quick_push (e->dest);
5000     }
5001   queue.release ();
5002 
5003   FOR_BB_INSNS (first, insn)
5004     {
5005       rtx dest = interesting_dest_for_shprep (insn, NULL);
5006       if (!dest)
5007 	continue;
5008 
5009       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5010 	return false;
5011 
5012       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5013 	   use;
5014 	   use = DF_REF_NEXT_REG (use))
5015 	{
5016 	  int ubbi = DF_REF_BB (use)->index;
5017 	  if (bitmap_bit_p (reachable, ubbi))
5018 	    bitmap_set_bit (need_new, ubbi);
5019 	}
5020       last_interesting_insn = insn;
5021     }
5022 
5023   if (!last_interesting_insn)
5024     return false;
5025 
5026   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5027   if (call_dom == first)
5028     return false;
5029 
5030   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5031   while (bb_loop_depth (call_dom) > 0)
5032     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5033   loop_optimizer_finalize ();
5034 
5035   if (call_dom == first)
5036     return false;
5037 
5038   calculate_dominance_info (CDI_POST_DOMINATORS);
5039   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5040     {
5041       free_dominance_info (CDI_POST_DOMINATORS);
5042       return false;
5043     }
5044   free_dominance_info (CDI_POST_DOMINATORS);
5045 
5046   if (dump_file)
5047     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5048 	     call_dom->index);
5049 
5050   bool ret = false;
5051   FOR_BB_INSNS (first, insn)
5052     {
5053       rtx dest = interesting_dest_for_shprep (insn, call_dom);
5054       if (!dest || dest == pic_offset_table_rtx)
5055 	continue;
5056 
5057       bool need_newreg = false;
5058       df_ref use, next;
5059       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5060 	{
5061 	  rtx_insn *uin = DF_REF_INSN (use);
5062 	  next = DF_REF_NEXT_REG (use);
5063 
5064 	  if (DEBUG_INSN_P (uin))
5065 	    continue;
5066 
5067 	  basic_block ubb = BLOCK_FOR_INSN (uin);
5068 	  if (ubb == call_dom
5069 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5070 	    {
5071 	      need_newreg = true;
5072 	      break;
5073 	    }
5074 	}
5075 
5076       if (need_newreg)
5077 	{
5078 	  rtx newreg = ira_create_new_reg (dest);
5079 
5080 	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5081 	    {
5082 	      rtx_insn *uin = DF_REF_INSN (use);
5083 	      next = DF_REF_NEXT_REG (use);
5084 
5085 	      basic_block ubb = BLOCK_FOR_INSN (uin);
5086 	      if (ubb == call_dom
5087 		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5088 		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5089 	    }
5090 
5091 	  rtx_insn *new_move = gen_move_insn (newreg, dest);
5092 	  emit_insn_after (new_move, bb_note (call_dom));
5093 	  if (dump_file)
5094 	    {
5095 	      fprintf (dump_file, "Split live-range of register ");
5096 	      print_rtl_single (dump_file, dest);
5097 	    }
5098 	  ret = true;
5099 	}
5100 
5101       if (insn == last_interesting_insn)
5102 	break;
5103     }
5104   apply_change_group ();
5105   return ret;
5106 }
5107 
5108 /* Perform the second half of the transformation started in
5109    find_moveable_pseudos.  We look for instances where the newly introduced
5110    pseudo remains unallocated, and remove it by moving the definition to
5111    just before its use, replacing the move instruction generated by
5112    find_moveable_pseudos.  */
5113 static void
move_unallocated_pseudos(void)5114 move_unallocated_pseudos (void)
5115 {
5116   int i;
5117   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5118     if (reg_renumber[i] < 0)
5119       {
5120 	int idx = i - first_moveable_pseudo;
5121 	rtx other_reg = pseudo_replaced_reg[idx];
5122 	/* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5123 	   covers every new pseudo created in find_moveable_pseudos,
5124 	   regardless of the validation with it is successful or not.
5125 	   So we need to skip the pseudos which were used in those failed
5126 	   validations to avoid unexpected DF info and consequent ICE.
5127 	   We only set pseudo_replaced_reg[] when the validation is successful
5128 	   in find_moveable_pseudos, it's enough to check it here.  */
5129 	if (!other_reg)
5130 	  continue;
5131 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5132 	/* The use must follow all definitions of OTHER_REG, so we can
5133 	   insert the new definition immediately after any of them.  */
5134 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5135 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5136 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5137 	rtx set;
5138 	int success;
5139 
5140 	if (dump_file)
5141 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5142 		   REGNO (other_reg), INSN_UID (def_insn));
5143 
5144 	delete_insn (move_insn);
5145 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5146 	  delete_insn (DF_REF_INSN (other_def));
5147 	delete_insn (def_insn);
5148 
5149 	set = single_set (newinsn);
5150 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5151 	gcc_assert (success);
5152 	if (dump_file)
5153 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5154 		   INSN_UID (newinsn), i);
5155 	SET_REG_N_REFS (i, 0);
5156       }
5157 
5158   first_moveable_pseudo = last_moveable_pseudo = 0;
5159 }
5160 
5161 
5162 
5163 /* Code dealing with scratches (changing them onto
5164    pseudos and restoring them from the pseudos).
5165 
5166    We change scratches into pseudos at the beginning of IRA to
5167    simplify dealing with them (conflicts, hard register assignments).
5168 
5169    If the pseudo denoting scratch was spilled it means that we do not
5170    need a hard register for it.  Such pseudos are transformed back to
5171    scratches at the end of LRA.  */
5172 
5173 /* Description of location of a former scratch operand.	 */
5174 struct sloc
5175 {
5176   rtx_insn *insn; /* Insn where the scratch was.  */
5177   int nop;  /* Number of the operand which was a scratch.  */
5178   unsigned regno; /* regno gnerated instead of scratch */
5179   int icode;  /* Original icode from which scratch was removed.  */
5180 };
5181 
5182 typedef struct sloc *sloc_t;
5183 
5184 /* Locations of the former scratches.  */
5185 static vec<sloc_t> scratches;
5186 
5187 /* Bitmap of scratch regnos.  */
5188 static bitmap_head scratch_bitmap;
5189 
5190 /* Bitmap of scratch operands.	*/
5191 static bitmap_head scratch_operand_bitmap;
5192 
5193 /* Return true if pseudo REGNO is made of SCRATCH.  */
5194 bool
ira_former_scratch_p(int regno)5195 ira_former_scratch_p (int regno)
5196 {
5197   return bitmap_bit_p (&scratch_bitmap, regno);
5198 }
5199 
5200 /* Return true if the operand NOP of INSN is a former scratch.	*/
5201 bool
ira_former_scratch_operand_p(rtx_insn * insn,int nop)5202 ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5203 {
5204   return bitmap_bit_p (&scratch_operand_bitmap,
5205 		       INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5206 }
5207 
5208 /* Register operand NOP in INSN as a former scratch.  It will be
5209    changed to scratch back, if it is necessary, at the LRA end.  */
5210 void
ira_register_new_scratch_op(rtx_insn * insn,int nop,int icode)5211 ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5212 {
5213   rtx op = *recog_data.operand_loc[nop];
5214   sloc_t loc = XNEW (struct sloc);
5215   ira_assert (REG_P (op));
5216   loc->insn = insn;
5217   loc->nop = nop;
5218   loc->regno = REGNO (op);
5219   loc->icode = icode;
5220   scratches.safe_push (loc);
5221   bitmap_set_bit (&scratch_bitmap, REGNO (op));
5222   bitmap_set_bit (&scratch_operand_bitmap,
5223 		  INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5224   add_reg_note (insn, REG_UNUSED, op);
5225 }
5226 
5227 /* Return true if string STR contains constraint 'X'.  */
5228 static bool
contains_X_constraint_p(const char * str)5229 contains_X_constraint_p (const char *str)
5230 {
5231   int c;
5232 
5233   while ((c = *str))
5234     {
5235       str += CONSTRAINT_LEN (c, str);
5236       if (c == 'X') return true;
5237     }
5238   return false;
5239 }
5240 
5241 /* Change INSN's scratches into pseudos and save their location.
5242    Return true if we changed any scratch.  */
5243 bool
ira_remove_insn_scratches(rtx_insn * insn,bool all_p,FILE * dump_file,rtx (* get_reg)(rtx original))5244 ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5245 			   rtx (*get_reg) (rtx original))
5246 {
5247   int i;
5248   bool insn_changed_p;
5249   rtx reg, *loc;
5250 
5251   extract_insn (insn);
5252   insn_changed_p = false;
5253   for (i = 0; i < recog_data.n_operands; i++)
5254     {
5255       loc = recog_data.operand_loc[i];
5256       if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5257 	{
5258 	  if (! all_p && contains_X_constraint_p (recog_data.constraints[i]))
5259 	    continue;
5260 	  insn_changed_p = true;
5261 	  *loc = reg = get_reg (*loc);
5262 	  ira_register_new_scratch_op (insn, i, INSN_CODE (insn));
5263 	  if (ira_dump_file != NULL)
5264 	    fprintf (dump_file,
5265 		     "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5266 		     REGNO (reg), INSN_UID (insn), i);
5267 	}
5268     }
5269   return insn_changed_p;
5270 }
5271 
5272 /* Return new register of the same mode as ORIGINAL.  Used in
5273    remove_scratches.  */
5274 static rtx
get_scratch_reg(rtx original)5275 get_scratch_reg (rtx original)
5276 {
5277   return gen_reg_rtx (GET_MODE (original));
5278 }
5279 
5280 /* Change scratches into pseudos and save their location.  Return true
5281    if we changed any scratch.  */
5282 static bool
remove_scratches(void)5283 remove_scratches (void)
5284 {
5285   bool change_p = false;
5286   basic_block bb;
5287   rtx_insn *insn;
5288 
5289   scratches.create (get_max_uid ());
5290   bitmap_initialize (&scratch_bitmap, &reg_obstack);
5291   bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
5292   FOR_EACH_BB_FN (bb, cfun)
5293     FOR_BB_INSNS (bb, insn)
5294     if (INSN_P (insn)
5295 	&& ira_remove_insn_scratches (insn, false, ira_dump_file, get_scratch_reg))
5296       {
5297 	/* Because we might use DF, we need to keep DF info up to date.  */
5298 	df_insn_rescan (insn);
5299 	change_p = true;
5300       }
5301   return change_p;
5302 }
5303 
5304 /* Changes pseudos created by function remove_scratches onto scratches.	 */
5305 void
ira_restore_scratches(FILE * dump_file)5306 ira_restore_scratches (FILE *dump_file)
5307 {
5308   int regno, n;
5309   unsigned i;
5310   rtx *op_loc;
5311   sloc_t loc;
5312 
5313   for (i = 0; scratches.iterate (i, &loc); i++)
5314     {
5315       /* Ignore already deleted insns.  */
5316       if (NOTE_P (loc->insn)
5317 	  && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5318 	continue;
5319       extract_insn (loc->insn);
5320       if (loc->icode != INSN_CODE (loc->insn))
5321 	{
5322 	  /* The icode doesn't match, which means the insn has been modified
5323 	     (e.g. register elimination).  The scratch cannot be restored.  */
5324 	  continue;
5325 	}
5326       op_loc = recog_data.operand_loc[loc->nop];
5327       if (REG_P (*op_loc)
5328 	  && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5329 	  && reg_renumber[regno] < 0)
5330 	{
5331 	  /* It should be only case when scratch register with chosen
5332 	     constraint 'X' did not get memory or hard register.  */
5333 	  ira_assert (ira_former_scratch_p (regno));
5334 	  *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5335 	  for (n = 0; n < recog_data.n_dups; n++)
5336 	    *recog_data.dup_loc[n]
5337 	      = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5338 	  if (dump_file != NULL)
5339 	    fprintf (dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
5340 		     INSN_UID (loc->insn), loc->nop);
5341 	}
5342     }
5343   for (i = 0; scratches.iterate (i, &loc); i++)
5344     free (loc);
5345   scratches.release ();
5346   bitmap_clear (&scratch_bitmap);
5347   bitmap_clear (&scratch_operand_bitmap);
5348 }
5349 
5350 
5351 
5352 /* If the backend knows where to allocate pseudos for hard
5353    register initial values, register these allocations now.  */
5354 static void
allocate_initial_values(void)5355 allocate_initial_values (void)
5356 {
5357   if (targetm.allocate_initial_value)
5358     {
5359       rtx hreg, preg, x;
5360       int i, regno;
5361 
5362       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5363 	{
5364 	  if (! initial_value_entry (i, &hreg, &preg))
5365 	    break;
5366 
5367 	  x = targetm.allocate_initial_value (hreg);
5368 	  regno = REGNO (preg);
5369 	  if (x && REG_N_SETS (regno) <= 1)
5370 	    {
5371 	      if (MEM_P (x))
5372 		reg_equiv_memory_loc (regno) = x;
5373 	      else
5374 		{
5375 		  basic_block bb;
5376 		  int new_regno;
5377 
5378 		  gcc_assert (REG_P (x));
5379 		  new_regno = REGNO (x);
5380 		  reg_renumber[regno] = new_regno;
5381 		  /* Poke the regno right into regno_reg_rtx so that even
5382 		     fixed regs are accepted.  */
5383 		  SET_REGNO (preg, new_regno);
5384 		  /* Update global register liveness information.  */
5385 		  FOR_EACH_BB_FN (bb, cfun)
5386 		    {
5387 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5388 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5389 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5390 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5391 		    }
5392 		}
5393 	    }
5394 	}
5395 
5396       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5397 						  &hreg, &preg));
5398     }
5399 }
5400 
5401 
5402 
5403 
5404 /* True when we use LRA instead of reload pass for the current
5405    function.  */
5406 bool ira_use_lra_p;
5407 
5408 /* True if we have allocno conflicts.  It is false for non-optimized
5409    mode or when the conflict table is too big.  */
5410 bool ira_conflicts_p;
5411 
5412 /* Saved between IRA and reload.  */
5413 static int saved_flag_ira_share_spill_slots;
5414 
5415 /* This is the main entry of IRA.  */
5416 static void
ira(FILE * f)5417 ira (FILE *f)
5418 {
5419   bool loops_p;
5420   int ira_max_point_before_emit;
5421   bool saved_flag_caller_saves = flag_caller_saves;
5422   enum ira_region saved_flag_ira_region = flag_ira_region;
5423   basic_block bb;
5424   edge_iterator ei;
5425   edge e;
5426   bool output_jump_reload_p = false;
5427 
5428   if (ira_use_lra_p)
5429     {
5430       /* First put potential jump output reloads on the output edges
5431 	 as USE which will be removed at the end of LRA.  The major
5432 	 goal is actually to create BBs for critical edges for LRA and
5433 	 populate them later by live info.  In LRA it will be
5434 	 difficult to do this. */
5435       FOR_EACH_BB_FN (bb, cfun)
5436 	{
5437 	  rtx_insn *end = BB_END (bb);
5438 	  if (!JUMP_P (end))
5439 	    continue;
5440 	  extract_insn (end);
5441 	  for (int i = 0; i < recog_data.n_operands; i++)
5442 	    if (recog_data.operand_type[i] != OP_IN)
5443 	      {
5444 		bool skip_p = false;
5445 		FOR_EACH_EDGE (e, ei, bb->succs)
5446 		  if (EDGE_CRITICAL_P (e)
5447 		      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5448 		      && (e->flags & EDGE_ABNORMAL))
5449 		    {
5450 		      skip_p = true;
5451 		      break;
5452 		    }
5453 		if (skip_p)
5454 		  break;
5455 		output_jump_reload_p = true;
5456 		FOR_EACH_EDGE (e, ei, bb->succs)
5457 		  if (EDGE_CRITICAL_P (e)
5458 		      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5459 		    {
5460 		      start_sequence ();
5461 		      /* We need to put some no-op insn here.  We can
5462 			 not put a note as commit_edges insertion will
5463 			 fail.  */
5464 		      emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5465 		      rtx_insn *insns = get_insns ();
5466 		      end_sequence ();
5467 		      insert_insn_on_edge (insns, e);
5468 		    }
5469 		break;
5470 	      }
5471 	}
5472       if (output_jump_reload_p)
5473 	commit_edge_insertions ();
5474     }
5475 
5476   if (flag_ira_verbose < 10)
5477     {
5478       internal_flag_ira_verbose = flag_ira_verbose;
5479       ira_dump_file = f;
5480     }
5481   else
5482     {
5483       internal_flag_ira_verbose = flag_ira_verbose - 10;
5484       ira_dump_file = stderr;
5485     }
5486 
5487   clear_bb_flags ();
5488 
5489   /* Determine if the current function is a leaf before running IRA
5490      since this can impact optimizations done by the prologue and
5491      epilogue thus changing register elimination offsets.
5492      Other target callbacks may use crtl->is_leaf too, including
5493      SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
5494   crtl->is_leaf = leaf_function_p ();
5495 
5496   /* Perform target specific PIC register initialization.  */
5497   targetm.init_pic_reg ();
5498 
5499   ira_conflicts_p = optimize > 0;
5500 
5501   /* Determine the number of pseudos actually requiring coloring.  */
5502   unsigned int num_used_regs = 0;
5503   for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5504     if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5505       num_used_regs++;
5506 
5507   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5508      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5509      use simplified and faster algorithms in LRA.  */
5510   lra_simple_p
5511     = ira_use_lra_p
5512       && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5513 
5514   if (lra_simple_p)
5515     {
5516       /* It permits to skip live range splitting in LRA.  */
5517       flag_caller_saves = false;
5518       /* There is no sense to do regional allocation when we use
5519 	simplified LRA.  */
5520       flag_ira_region = IRA_REGION_ONE;
5521       ira_conflicts_p = false;
5522     }
5523 
5524 #ifndef IRA_NO_OBSTACK
5525   gcc_obstack_init (&ira_obstack);
5526 #endif
5527   bitmap_obstack_initialize (&ira_bitmap_obstack);
5528 
5529   /* LRA uses its own infrastructure to handle caller save registers.  */
5530   if (flag_caller_saves && !ira_use_lra_p)
5531     init_caller_save ();
5532 
5533   setup_prohibited_mode_move_regs ();
5534   decrease_live_ranges_number ();
5535   df_note_add_problem ();
5536 
5537   /* DF_LIVE can't be used in the register allocator, too many other
5538      parts of the compiler depend on using the "classic" liveness
5539      interpretation of the DF_LR problem.  See PR38711.
5540      Remove the problem, so that we don't spend time updating it in
5541      any of the df_analyze() calls during IRA/LRA.  */
5542   if (optimize > 1)
5543     df_remove_problem (df_live);
5544   gcc_checking_assert (df_live == NULL);
5545 
5546   if (flag_checking)
5547     df->changeable_flags |= DF_VERIFY_SCHEDULED;
5548 
5549   df_analyze ();
5550 
5551   init_reg_equiv ();
5552   if (ira_conflicts_p)
5553     {
5554       calculate_dominance_info (CDI_DOMINATORS);
5555 
5556       if (split_live_ranges_for_shrink_wrap ())
5557 	df_analyze ();
5558 
5559       free_dominance_info (CDI_DOMINATORS);
5560     }
5561 
5562   df_clear_flags (DF_NO_INSN_RESCAN);
5563 
5564   indirect_jump_optimize ();
5565   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5566     df_analyze ();
5567 
5568   regstat_init_n_sets_and_refs ();
5569   regstat_compute_ri ();
5570 
5571   /* If we are not optimizing, then this is the only place before
5572      register allocation where dataflow is done.  And that is needed
5573      to generate these warnings.  */
5574   if (warn_clobbered)
5575     generate_setjmp_warnings ();
5576 
5577   /* update_equiv_regs can use reg classes of pseudos and they are set up in
5578      register pressure sensitive scheduling and loop invariant motion and in
5579      live range shrinking.  This info can become obsolete if we add new pseudos
5580      since the last set up.  Recalculate it again if the new pseudos were
5581      added.  */
5582   if (resize_reg_info () && (flag_sched_pressure || flag_live_range_shrinkage
5583 			     || flag_ira_loop_pressure))
5584     ira_set_pseudo_classes (true, ira_dump_file);
5585 
5586   init_alias_analysis ();
5587   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5588   reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5589   update_equiv_regs_prescan ();
5590   update_equiv_regs ();
5591 
5592   /* Don't move insns if live range shrinkage or register
5593      pressure-sensitive scheduling were done because it will not
5594      improve allocation but likely worsen insn scheduling.  */
5595   if (optimize
5596       && !flag_live_range_shrinkage
5597       && !(flag_sched_pressure && flag_schedule_insns))
5598     combine_and_move_insns ();
5599 
5600   /* Gather additional equivalences with memory.  */
5601   if (optimize)
5602     add_store_equivs ();
5603 
5604   loop_optimizer_finalize ();
5605   free_dominance_info (CDI_DOMINATORS);
5606   end_alias_analysis ();
5607   free (reg_equiv);
5608 
5609   /* Once max_regno changes, we need to free and re-init/re-compute
5610      some data structures like regstat_n_sets_and_refs and reg_info_p.  */
5611   auto regstat_recompute_for_max_regno = []() {
5612     regstat_free_n_sets_and_refs ();
5613     regstat_free_ri ();
5614     regstat_init_n_sets_and_refs ();
5615     regstat_compute_ri ();
5616   };
5617 
5618   int max_regno_before_rm = max_reg_num ();
5619   if (ira_use_lra_p && remove_scratches ())
5620     {
5621       ira_expand_reg_equiv ();
5622       /* For now remove_scatches is supposed to create pseudos when it
5623 	 succeeds, assert this happens all the time.  Once it doesn't
5624 	 hold, we should guard the regstat recompute for the case
5625 	 max_regno changes.  */
5626       gcc_assert (max_regno_before_rm != max_reg_num ());
5627       regstat_recompute_for_max_regno ();
5628     }
5629 
5630   setup_reg_equiv ();
5631   grow_reg_equivs ();
5632   setup_reg_equiv_init ();
5633 
5634   allocated_reg_info_size = max_reg_num ();
5635 
5636   /* It is not worth to do such improvement when we use a simple
5637      allocation because of -O0 usage or because the function is too
5638      big.  */
5639   if (ira_conflicts_p)
5640     find_moveable_pseudos ();
5641 
5642   max_regno_before_ira = max_reg_num ();
5643   ira_setup_eliminable_regset ();
5644 
5645   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5646   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5647   ira_move_loops_num = ira_additional_jumps_num = 0;
5648 
5649   ira_assert (current_loops == NULL);
5650   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5651     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5652 
5653   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5654     fprintf (ira_dump_file, "Building IRA IR\n");
5655   loops_p = ira_build ();
5656 
5657   ira_assert (ira_conflicts_p || !loops_p);
5658 
5659   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5660   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5661     /* It is just wasting compiler's time to pack spilled pseudos into
5662        stack slots in this case -- prohibit it.  We also do this if
5663        there is setjmp call because a variable not modified between
5664        setjmp and longjmp the compiler is required to preserve its
5665        value and sharing slots does not guarantee it.  */
5666     flag_ira_share_spill_slots = FALSE;
5667 
5668   ira_color ();
5669 
5670   ira_max_point_before_emit = ira_max_point;
5671 
5672   ira_initiate_emit_data ();
5673 
5674   ira_emit (loops_p);
5675 
5676   max_regno = max_reg_num ();
5677   if (ira_conflicts_p)
5678     {
5679       if (! loops_p)
5680 	{
5681 	  if (! ira_use_lra_p)
5682 	    ira_initiate_assign ();
5683 	}
5684       else
5685 	{
5686 	  expand_reg_info ();
5687 
5688 	  if (ira_use_lra_p)
5689 	    {
5690 	      ira_allocno_t a;
5691 	      ira_allocno_iterator ai;
5692 
5693 	      FOR_EACH_ALLOCNO (a, ai)
5694                 {
5695                   int old_regno = ALLOCNO_REGNO (a);
5696                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5697 
5698                   ALLOCNO_REGNO (a) = new_regno;
5699 
5700                   if (old_regno != new_regno)
5701                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5702                                        reg_alternate_class (old_regno),
5703                                        reg_allocno_class (old_regno));
5704                 }
5705 	    }
5706 	  else
5707 	    {
5708 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5709 		fprintf (ira_dump_file, "Flattening IR\n");
5710 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5711 	    }
5712 	  /* New insns were generated: add notes and recalculate live
5713 	     info.  */
5714 	  df_analyze ();
5715 
5716 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5717 	     change if new insns were generated?  Can that be handled
5718 	     by updating the loop tree incrementally?  */
5719 	  loop_optimizer_finalize ();
5720 	  free_dominance_info (CDI_DOMINATORS);
5721 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5722 			       | LOOPS_HAVE_RECORDED_EXITS);
5723 
5724 	  if (! ira_use_lra_p)
5725 	    {
5726 	      setup_allocno_assignment_flags ();
5727 	      ira_initiate_assign ();
5728 	      ira_reassign_conflict_allocnos (max_regno);
5729 	    }
5730 	}
5731     }
5732 
5733   ira_finish_emit_data ();
5734 
5735   setup_reg_renumber ();
5736 
5737   calculate_allocation_cost ();
5738 
5739 #ifdef ENABLE_IRA_CHECKING
5740   if (ira_conflicts_p && ! ira_use_lra_p)
5741     /* Opposite to reload pass, LRA does not use any conflict info
5742        from IRA.  We don't rebuild conflict info for LRA (through
5743        ira_flattening call) and cannot use the check here.  We could
5744        rebuild this info for LRA in the check mode but there is a risk
5745        that code generated with the check and without it will be a bit
5746        different.  Calling ira_flattening in any mode would be a
5747        wasting CPU time.  So do not check the allocation for LRA.  */
5748     check_allocation ();
5749 #endif
5750 
5751   if (max_regno != max_regno_before_ira)
5752     regstat_recompute_for_max_regno ();
5753 
5754   overall_cost_before = ira_overall_cost;
5755   if (! ira_conflicts_p)
5756     grow_reg_equivs ();
5757   else
5758     {
5759       fix_reg_equiv_init ();
5760 
5761 #ifdef ENABLE_IRA_CHECKING
5762       print_redundant_copies ();
5763 #endif
5764       if (! ira_use_lra_p)
5765 	{
5766 	  ira_spilled_reg_stack_slots_num = 0;
5767 	  ira_spilled_reg_stack_slots
5768 	    = ((class ira_spilled_reg_stack_slot *)
5769 	       ira_allocate (max_regno
5770 			     * sizeof (class ira_spilled_reg_stack_slot)));
5771 	  memset ((void *)ira_spilled_reg_stack_slots, 0,
5772 		  max_regno * sizeof (class ira_spilled_reg_stack_slot));
5773 	}
5774     }
5775   allocate_initial_values ();
5776 
5777   /* See comment for find_moveable_pseudos call.  */
5778   if (ira_conflicts_p)
5779     move_unallocated_pseudos ();
5780 
5781   /* Restore original values.  */
5782   if (lra_simple_p)
5783     {
5784       flag_caller_saves = saved_flag_caller_saves;
5785       flag_ira_region = saved_flag_ira_region;
5786     }
5787 }
5788 
5789 /* Modify asm goto to avoid further trouble with this insn.  We can
5790    not replace the insn by USE as in other asm insns as we still
5791    need to keep CFG consistency.  */
5792 void
ira_nullify_asm_goto(rtx_insn * insn)5793 ira_nullify_asm_goto (rtx_insn *insn)
5794 {
5795   ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5796   rtx tmp = extract_asm_operands (PATTERN (insn));
5797   PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5798 					 rtvec_alloc (0),
5799 					 rtvec_alloc (0),
5800 					 ASM_OPERANDS_LABEL_VEC (tmp),
5801 					 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5802 }
5803 
5804 static void
do_reload(void)5805 do_reload (void)
5806 {
5807   basic_block bb;
5808   bool need_dce;
5809   unsigned pic_offset_table_regno = INVALID_REGNUM;
5810 
5811   if (flag_ira_verbose < 10)
5812     ira_dump_file = dump_file;
5813 
5814   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5815      after reload to avoid possible wrong usages of hard reg assigned
5816      to it.  */
5817   if (pic_offset_table_rtx
5818       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5819     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5820 
5821   timevar_push (TV_RELOAD);
5822   if (ira_use_lra_p)
5823     {
5824       if (current_loops != NULL)
5825 	{
5826 	  loop_optimizer_finalize ();
5827 	  free_dominance_info (CDI_DOMINATORS);
5828 	}
5829       FOR_ALL_BB_FN (bb, cfun)
5830 	bb->loop_father = NULL;
5831       current_loops = NULL;
5832 
5833       ira_destroy ();
5834 
5835       lra (ira_dump_file);
5836       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5837 	 LRA.  */
5838       vec_free (reg_equivs);
5839       reg_equivs = NULL;
5840       need_dce = false;
5841     }
5842   else
5843     {
5844       df_set_flags (DF_NO_INSN_RESCAN);
5845       build_insn_chain ();
5846 
5847       need_dce = reload (get_insns (), ira_conflicts_p);
5848     }
5849 
5850   timevar_pop (TV_RELOAD);
5851 
5852   timevar_push (TV_IRA);
5853 
5854   if (ira_conflicts_p && ! ira_use_lra_p)
5855     {
5856       ira_free (ira_spilled_reg_stack_slots);
5857       ira_finish_assign ();
5858     }
5859 
5860   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5861       && overall_cost_before != ira_overall_cost)
5862     fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5863 	     ira_overall_cost);
5864 
5865   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5866 
5867   if (! ira_use_lra_p)
5868     {
5869       ira_destroy ();
5870       if (current_loops != NULL)
5871 	{
5872 	  loop_optimizer_finalize ();
5873 	  free_dominance_info (CDI_DOMINATORS);
5874 	}
5875       FOR_ALL_BB_FN (bb, cfun)
5876 	bb->loop_father = NULL;
5877       current_loops = NULL;
5878 
5879       regstat_free_ri ();
5880       regstat_free_n_sets_and_refs ();
5881     }
5882 
5883   if (optimize)
5884     cleanup_cfg (CLEANUP_EXPENSIVE);
5885 
5886   finish_reg_equiv ();
5887 
5888   bitmap_obstack_release (&ira_bitmap_obstack);
5889 #ifndef IRA_NO_OBSTACK
5890   obstack_free (&ira_obstack, NULL);
5891 #endif
5892 
5893   /* The code after the reload has changed so much that at this point
5894      we might as well just rescan everything.  Note that
5895      df_rescan_all_insns is not going to help here because it does not
5896      touch the artificial uses and defs.  */
5897   df_finish_pass (true);
5898   df_scan_alloc (NULL);
5899   df_scan_blocks ();
5900 
5901   if (optimize > 1)
5902     {
5903       df_live_add_problem ();
5904       df_live_set_all_dirty ();
5905     }
5906 
5907   if (optimize)
5908     df_analyze ();
5909 
5910   if (need_dce && optimize)
5911     run_fast_dce ();
5912 
5913   /* Diagnose uses of the hard frame pointer when it is used as a global
5914      register.  Often we can get away with letting the user appropriate
5915      the frame pointer, but we should let them know when code generation
5916      makes that impossible.  */
5917   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5918     {
5919       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5920       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5921                 "frame pointer required, but reserved");
5922       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5923     }
5924 
5925   /* If we are doing generic stack checking, give a warning if this
5926      function's frame size is larger than we expect.  */
5927   if (flag_stack_check == GENERIC_STACK_CHECK)
5928     {
5929       poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5930 
5931       for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5932 	if (df_regs_ever_live_p (i)
5933 	    && !fixed_regs[i]
5934 	    && !crtl->abi->clobbers_full_reg_p (i))
5935 	  size += UNITS_PER_WORD;
5936 
5937       if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5938 	warning (0, "frame size too large for reliable stack checking");
5939     }
5940 
5941   if (pic_offset_table_regno != INVALID_REGNUM)
5942     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5943 
5944   timevar_pop (TV_IRA);
5945 }
5946 
5947 /* Run the integrated register allocator.  */
5948 
5949 namespace {
5950 
5951 const pass_data pass_data_ira =
5952 {
5953   RTL_PASS, /* type */
5954   "ira", /* name */
5955   OPTGROUP_NONE, /* optinfo_flags */
5956   TV_IRA, /* tv_id */
5957   0, /* properties_required */
5958   0, /* properties_provided */
5959   0, /* properties_destroyed */
5960   0, /* todo_flags_start */
5961   TODO_do_not_ggc_collect, /* todo_flags_finish */
5962 };
5963 
5964 class pass_ira : public rtl_opt_pass
5965 {
5966 public:
pass_ira(gcc::context * ctxt)5967   pass_ira (gcc::context *ctxt)
5968     : rtl_opt_pass (pass_data_ira, ctxt)
5969   {}
5970 
5971   /* opt_pass methods: */
gate(function *)5972   virtual bool gate (function *)
5973     {
5974       return !targetm.no_register_allocation;
5975     }
execute(function *)5976   virtual unsigned int execute (function *)
5977     {
5978       ira (dump_file);
5979       return 0;
5980     }
5981 
5982 }; // class pass_ira
5983 
5984 } // anon namespace
5985 
5986 rtl_opt_pass *
make_pass_ira(gcc::context * ctxt)5987 make_pass_ira (gcc::context *ctxt)
5988 {
5989   return new pass_ira (ctxt);
5990 }
5991 
5992 namespace {
5993 
5994 const pass_data pass_data_reload =
5995 {
5996   RTL_PASS, /* type */
5997   "reload", /* name */
5998   OPTGROUP_NONE, /* optinfo_flags */
5999   TV_RELOAD, /* tv_id */
6000   0, /* properties_required */
6001   0, /* properties_provided */
6002   0, /* properties_destroyed */
6003   0, /* todo_flags_start */
6004   0, /* todo_flags_finish */
6005 };
6006 
6007 class pass_reload : public rtl_opt_pass
6008 {
6009 public:
pass_reload(gcc::context * ctxt)6010   pass_reload (gcc::context *ctxt)
6011     : rtl_opt_pass (pass_data_reload, ctxt)
6012   {}
6013 
6014   /* opt_pass methods: */
gate(function *)6015   virtual bool gate (function *)
6016     {
6017       return !targetm.no_register_allocation;
6018     }
execute(function *)6019   virtual unsigned int execute (function *)
6020     {
6021       do_reload ();
6022       return 0;
6023     }
6024 
6025 }; // class pass_reload
6026 
6027 } // anon namespace
6028 
6029 rtl_opt_pass *
make_pass_reload(gcc::context * ctxt)6030 make_pass_reload (gcc::context *ctxt)
6031 {
6032   return new pass_reload (ctxt);
6033 }
6034