1 /* C-compiler utilities for types and variables storage layout
2    Copyright (C) 1987-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 #include "calls.h"
46 
47 /* Data type for the expressions representing sizes of data types.
48    It is the first integer type laid out.  */
49 tree sizetype_tab[(int) stk_type_kind_last];
50 
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52    The value is measured in bits.  */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 			     HOST_WIDE_INT, tree);
61 extern void debug_rli (record_layout_info);
62 
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64    to serve as the actual size-expression for a type or decl.  */
65 
66 tree
variable_size(tree size)67 variable_size (tree size)
68 {
69   /* Obviously.  */
70   if (TREE_CONSTANT (size))
71     return size;
72 
73   /* If the size is self-referential, we can't make a SAVE_EXPR (see
74      save_expr for the rationale).  But we can do something else.  */
75   if (CONTAINS_PLACEHOLDER_P (size))
76     return self_referential_size (size);
77 
78   /* If we are in the global binding level, we can't make a SAVE_EXPR
79      since it may end up being shared across functions, so it is up
80      to the front-end to deal with this case.  */
81   if (lang_hooks.decls.global_bindings_p ())
82     return size;
83 
84   return save_expr (size);
85 }
86 
87 /* An array of functions used for self-referential size computation.  */
88 static GTY(()) vec<tree, va_gc> *size_functions;
89 
90 /* Return true if T is a self-referential component reference.  */
91 
92 static bool
self_referential_component_ref_p(tree t)93 self_referential_component_ref_p (tree t)
94 {
95   if (TREE_CODE (t) != COMPONENT_REF)
96     return false;
97 
98   while (REFERENCE_CLASS_P (t))
99     t = TREE_OPERAND (t, 0);
100 
101   return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 }
103 
104 /* Similar to copy_tree_r but do not copy component references involving
105    PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
106    and substituted in substitute_in_expr.  */
107 
108 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111   enum tree_code code = TREE_CODE (*tp);
112 
113   /* Stop at types, decls, constants like copy_tree_r.  */
114   if (TREE_CODE_CLASS (code) == tcc_type
115       || TREE_CODE_CLASS (code) == tcc_declaration
116       || TREE_CODE_CLASS (code) == tcc_constant)
117     {
118       *walk_subtrees = 0;
119       return NULL_TREE;
120     }
121 
122   /* This is the pattern built in ada/make_aligning_type.  */
123   else if (code == ADDR_EXPR
124 	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125     {
126       *walk_subtrees = 0;
127       return NULL_TREE;
128     }
129 
130   /* Default case: the component reference.  */
131   else if (self_referential_component_ref_p (*tp))
132     {
133       *walk_subtrees = 0;
134       return NULL_TREE;
135     }
136 
137   /* We're not supposed to have them in self-referential size trees
138      because we wouldn't properly control when they are evaluated.
139      However, not creating superfluous SAVE_EXPRs requires accurate
140      tracking of readonly-ness all the way down to here, which we
141      cannot always guarantee in practice.  So punt in this case.  */
142   else if (code == SAVE_EXPR)
143     return error_mark_node;
144 
145   else if (code == STATEMENT_LIST)
146     gcc_unreachable ();
147 
148   return copy_tree_r (tp, walk_subtrees, data);
149 }
150 
151 /* Given a SIZE expression that is self-referential, return an equivalent
152    expression to serve as the actual size expression for a type.  */
153 
154 static tree
self_referential_size(tree size)155 self_referential_size (tree size)
156 {
157   static unsigned HOST_WIDE_INT fnno = 0;
158   vec<tree> self_refs = vNULL;
159   tree param_type_list = NULL, param_decl_list = NULL;
160   tree t, ref, return_type, fntype, fnname, fndecl;
161   unsigned int i;
162   char buf[128];
163   vec<tree, va_gc> *args = NULL;
164 
165   /* Do not factor out simple operations.  */
166   t = skip_simple_constant_arithmetic (size);
167   if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168     return size;
169 
170   /* Collect the list of self-references in the expression.  */
171   find_placeholder_in_expr (size, &self_refs);
172   gcc_assert (self_refs.length () > 0);
173 
174   /* Obtain a private copy of the expression.  */
175   t = size;
176   if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177     return size;
178   size = t;
179 
180   /* Build the parameter and argument lists in parallel; also
181      substitute the former for the latter in the expression.  */
182   vec_alloc (args, self_refs.length ());
183   FOR_EACH_VEC_ELT (self_refs, i, ref)
184     {
185       tree subst, param_name, param_type, param_decl;
186 
187       if (DECL_P (ref))
188 	{
189 	  /* We shouldn't have true variables here.  */
190 	  gcc_assert (TREE_READONLY (ref));
191 	  subst = ref;
192 	}
193       /* This is the pattern built in ada/make_aligning_type.  */
194       else if (TREE_CODE (ref) == ADDR_EXPR)
195         subst = ref;
196       /* Default case: the component reference.  */
197       else
198 	subst = TREE_OPERAND (ref, 1);
199 
200       sprintf (buf, "p%d", i);
201       param_name = get_identifier (buf);
202       param_type = TREE_TYPE (ref);
203       param_decl
204 	= build_decl (input_location, PARM_DECL, param_name, param_type);
205       DECL_ARG_TYPE (param_decl) = param_type;
206       DECL_ARTIFICIAL (param_decl) = 1;
207       TREE_READONLY (param_decl) = 1;
208 
209       size = substitute_in_expr (size, subst, param_decl);
210 
211       param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212       param_decl_list = chainon (param_decl, param_decl_list);
213       args->quick_push (ref);
214     }
215 
216   self_refs.release ();
217 
218   /* Append 'void' to indicate that the number of parameters is fixed.  */
219   param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 
221   /* The 3 lists have been created in reverse order.  */
222   param_type_list = nreverse (param_type_list);
223   param_decl_list = nreverse (param_decl_list);
224 
225   /* Build the function type.  */
226   return_type = TREE_TYPE (size);
227   fntype = build_function_type (return_type, param_type_list);
228 
229   /* Build the function declaration.  */
230   sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231   fnname = get_file_function_name (buf);
232   fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233   for (t = param_decl_list; t; t = DECL_CHAIN (t))
234     DECL_CONTEXT (t) = fndecl;
235   DECL_ARGUMENTS (fndecl) = param_decl_list;
236   DECL_RESULT (fndecl)
237     = build_decl (input_location, RESULT_DECL, 0, return_type);
238   DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 
240   /* The function has been created by the compiler and we don't
241      want to emit debug info for it.  */
242   DECL_ARTIFICIAL (fndecl) = 1;
243   DECL_IGNORED_P (fndecl) = 1;
244 
245   /* It is supposed to be "const" and never throw.  */
246   TREE_READONLY (fndecl) = 1;
247   TREE_NOTHROW (fndecl) = 1;
248 
249   /* We want it to be inlined when this is deemed profitable, as
250      well as discarded if every call has been integrated.  */
251   DECL_DECLARED_INLINE_P (fndecl) = 1;
252 
253   /* It is made up of a unique return statement.  */
254   DECL_INITIAL (fndecl) = make_node (BLOCK);
255   BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256   t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257   DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258   TREE_STATIC (fndecl) = 1;
259 
260   /* Put it onto the list of size functions.  */
261   vec_safe_push (size_functions, fndecl);
262 
263   /* Replace the original expression with a call to the size function.  */
264   return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 }
266 
267 /* Take, queue and compile all the size functions.  It is essential that
268    the size functions be gimplified at the very end of the compilation
269    in order to guarantee transparent handling of self-referential sizes.
270    Otherwise the GENERIC inliner would not be able to inline them back
271    at each of their call sites, thus creating artificial non-constant
272    size expressions which would trigger nasty problems later on.  */
273 
274 void
finalize_size_functions(void)275 finalize_size_functions (void)
276 {
277   unsigned int i;
278   tree fndecl;
279 
280   for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281     {
282       allocate_struct_function (fndecl, false);
283       set_cfun (NULL);
284       dump_function (TDI_original, fndecl);
285 
286       /* As these functions are used to describe the layout of variable-length
287          structures, debug info generation needs their implementation.  */
288       debug_hooks->size_function (fndecl);
289       gimplify_function_tree (fndecl);
290       cgraph_node::finalize_function (fndecl, false);
291     }
292 
293   vec_free (size_functions);
294 }
295 
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297    if one exists.  The mode may have padding bits as well the SIZE
298    value bits.  If LIMIT is nonzero, disregard modes wider than
299    MAX_FIXED_MODE_SIZE.  */
300 
301 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)302 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 {
304   machine_mode mode;
305   int i;
306 
307   if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308     return opt_machine_mode ();
309 
310   /* Get the first mode which has this size, in the specified class.  */
311   FOR_EACH_MODE_IN_CLASS (mode, mclass)
312     if (known_eq (GET_MODE_PRECISION (mode), size))
313       return mode;
314 
315   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316     for (i = 0; i < NUM_INT_N_ENTS; i ++)
317       if (known_eq (int_n_data[i].bitsize, size)
318 	  && int_n_enabled_p[i])
319 	return int_n_data[i].m;
320 
321   return opt_machine_mode ();
322 }
323 
324 /* Similar, except passed a tree node.  */
325 
326 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 {
329   unsigned HOST_WIDE_INT uhwi;
330   unsigned int ui;
331 
332   if (!tree_fits_uhwi_p (size))
333     return opt_machine_mode ();
334   uhwi = tree_to_uhwi (size);
335   ui = uhwi;
336   if (uhwi != ui)
337     return opt_machine_mode ();
338   return mode_for_size (ui, mclass, limit);
339 }
340 
341 /* Return the narrowest mode of class MCLASS that contains at least
342    SIZE bits.  Abort if no such mode exists.  */
343 
344 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)345 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 {
347   machine_mode mode = VOIDmode;
348   int i;
349 
350   /* Get the first mode which has at least this size, in the
351      specified class.  */
352   FOR_EACH_MODE_IN_CLASS (mode, mclass)
353     if (known_ge (GET_MODE_PRECISION (mode), size))
354       break;
355 
356   gcc_assert (mode != VOIDmode);
357 
358   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359     for (i = 0; i < NUM_INT_N_ENTS; i ++)
360       if (known_ge (int_n_data[i].bitsize, size)
361 	  && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 	  && int_n_enabled_p[i])
363 	mode = int_n_data[i].m;
364 
365   return mode;
366 }
367 
368 /* Return an integer mode of exactly the same size as MODE, if one exists.  */
369 
370 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)371 int_mode_for_mode (machine_mode mode)
372 {
373   switch (GET_MODE_CLASS (mode))
374     {
375     case MODE_INT:
376     case MODE_PARTIAL_INT:
377       return as_a <scalar_int_mode> (mode);
378 
379     case MODE_COMPLEX_INT:
380     case MODE_COMPLEX_FLOAT:
381     case MODE_FLOAT:
382     case MODE_DECIMAL_FLOAT:
383     case MODE_FRACT:
384     case MODE_ACCUM:
385     case MODE_UFRACT:
386     case MODE_UACCUM:
387     case MODE_VECTOR_BOOL:
388     case MODE_VECTOR_INT:
389     case MODE_VECTOR_FLOAT:
390     case MODE_VECTOR_FRACT:
391     case MODE_VECTOR_ACCUM:
392     case MODE_VECTOR_UFRACT:
393     case MODE_VECTOR_UACCUM:
394       return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 
396     case MODE_OPAQUE:
397 	return opt_scalar_int_mode ();
398 
399     case MODE_RANDOM:
400       if (mode == BLKmode)
401 	return opt_scalar_int_mode ();
402 
403       /* fall through */
404 
405     case MODE_CC:
406     default:
407       gcc_unreachable ();
408     }
409 }
410 
411 /* Find a mode that can be used for efficient bitwise operations on MODE,
412    if one exists.  */
413 
414 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)415 bitwise_mode_for_mode (machine_mode mode)
416 {
417   /* Quick exit if we already have a suitable mode.  */
418   scalar_int_mode int_mode;
419   if (is_a <scalar_int_mode> (mode, &int_mode)
420       && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
421     return int_mode;
422 
423   /* Reuse the sanity checks from int_mode_for_mode.  */
424   gcc_checking_assert ((int_mode_for_mode (mode), true));
425 
426   poly_int64 bitsize = GET_MODE_BITSIZE (mode);
427 
428   /* Try to replace complex modes with complex modes.  In general we
429      expect both components to be processed independently, so we only
430      care whether there is a register for the inner mode.  */
431   if (COMPLEX_MODE_P (mode))
432     {
433       machine_mode trial = mode;
434       if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
435 	   || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
436 	  && have_regs_of_mode[GET_MODE_INNER (trial)])
437 	return trial;
438     }
439 
440   /* Try to replace vector modes with vector modes.  Also try using vector
441      modes if an integer mode would be too big.  */
442   if (VECTOR_MODE_P (mode)
443       || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
444     {
445       machine_mode trial = mode;
446       if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
447 	   || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
448 	  && have_regs_of_mode[trial]
449 	  && targetm.vector_mode_supported_p (trial))
450 	return trial;
451     }
452 
453   /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
454   return mode_for_size (bitsize, MODE_INT, true);
455 }
456 
457 /* Find a type that can be used for efficient bitwise operations on MODE.
458    Return null if no such mode exists.  */
459 
460 tree
bitwise_type_for_mode(machine_mode mode)461 bitwise_type_for_mode (machine_mode mode)
462 {
463   if (!bitwise_mode_for_mode (mode).exists (&mode))
464     return NULL_TREE;
465 
466   unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467   tree inner_type = build_nonstandard_integer_type (inner_size, true);
468 
469   if (VECTOR_MODE_P (mode))
470     return build_vector_type_for_mode (inner_type, mode);
471 
472   if (COMPLEX_MODE_P (mode))
473     return build_complex_type (inner_type);
474 
475   gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476   return inner_type;
477 }
478 
479 /* Find a mode that is suitable for representing a vector with NUNITS
480    elements of mode INNERMODE, if one exists.  The returned mode can be
481    either an integer mode or a vector mode.  */
482 
483 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)484 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
485 {
486   machine_mode mode;
487 
488   /* First, look for a supported vector type.  */
489   if (SCALAR_FLOAT_MODE_P (innermode))
490     mode = MIN_MODE_VECTOR_FLOAT;
491   else if (SCALAR_FRACT_MODE_P (innermode))
492     mode = MIN_MODE_VECTOR_FRACT;
493   else if (SCALAR_UFRACT_MODE_P (innermode))
494     mode = MIN_MODE_VECTOR_UFRACT;
495   else if (SCALAR_ACCUM_MODE_P (innermode))
496     mode = MIN_MODE_VECTOR_ACCUM;
497   else if (SCALAR_UACCUM_MODE_P (innermode))
498     mode = MIN_MODE_VECTOR_UACCUM;
499   else
500     mode = MIN_MODE_VECTOR_INT;
501 
502   /* Do not check vector_mode_supported_p here.  We'll do that
503      later in vector_type_mode.  */
504   FOR_EACH_MODE_FROM (mode, mode)
505     if (known_eq (GET_MODE_NUNITS (mode), nunits)
506 	&& GET_MODE_INNER (mode) == innermode)
507       return mode;
508 
509   /* For integers, try mapping it to a same-sized scalar mode.  */
510   if (GET_MODE_CLASS (innermode) == MODE_INT)
511     {
512       poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
513       if (int_mode_for_size (nbits, 0).exists (&mode)
514 	  && have_regs_of_mode[mode])
515 	return mode;
516     }
517 
518   return opt_machine_mode ();
519 }
520 
521 /* If a piece of code is using vector mode VECTOR_MODE and also wants
522    to operate on elements of mode ELEMENT_MODE, return the vector mode
523    it should use for those elements.  If NUNITS is nonzero, ensure that
524    the mode has exactly NUNITS elements, otherwise pick whichever vector
525    size pairs the most naturally with VECTOR_MODE; this may mean choosing
526    a mode with a different size and/or number of elements, depending on
527    what the target prefers.  Return an empty opt_machine_mode if there
528    is no supported vector mode with the required properties.
529 
530    Unlike mode_for_vector. any returned mode is guaranteed to satisfy
531    both VECTOR_MODE_P and targetm.vector_mode_supported_p.  */
532 
533 opt_machine_mode
related_vector_mode(machine_mode vector_mode,scalar_mode element_mode,poly_uint64 nunits)534 related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
535 		     poly_uint64 nunits)
536 {
537   gcc_assert (VECTOR_MODE_P (vector_mode));
538   return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
539 }
540 
541 /* If a piece of code is using vector mode VECTOR_MODE and also wants
542    to operate on integer vectors with the same element size and number
543    of elements, return the vector mode it should use.  Return an empty
544    opt_machine_mode if there is no supported vector mode with the
545    required properties.
546 
547    Unlike mode_for_vector. any returned mode is guaranteed to satisfy
548    both VECTOR_MODE_P and targetm.vector_mode_supported_p.  */
549 
550 opt_machine_mode
related_int_vector_mode(machine_mode vector_mode)551 related_int_vector_mode (machine_mode vector_mode)
552 {
553   gcc_assert (VECTOR_MODE_P (vector_mode));
554   scalar_int_mode int_mode;
555   if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (&int_mode))
556     return related_vector_mode (vector_mode, int_mode,
557 				GET_MODE_NUNITS (vector_mode));
558   return opt_machine_mode ();
559 }
560 
561 /* Return the alignment of MODE. This will be bounded by 1 and
562    BIGGEST_ALIGNMENT.  */
563 
564 unsigned int
get_mode_alignment(machine_mode mode)565 get_mode_alignment (machine_mode mode)
566 {
567   return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
568 }
569 
570 /* Return the natural mode of an array, given that it is SIZE bytes in
571    total and has elements of type ELEM_TYPE.  */
572 
573 static machine_mode
mode_for_array(tree elem_type,tree size)574 mode_for_array (tree elem_type, tree size)
575 {
576   tree elem_size;
577   poly_uint64 int_size, int_elem_size;
578   unsigned HOST_WIDE_INT num_elems;
579   bool limit_p;
580 
581   /* One-element arrays get the component type's mode.  */
582   elem_size = TYPE_SIZE (elem_type);
583   if (simple_cst_equal (size, elem_size))
584     return TYPE_MODE (elem_type);
585 
586   limit_p = true;
587   if (poly_int_tree_p (size, &int_size)
588       && poly_int_tree_p (elem_size, &int_elem_size)
589       && maybe_ne (int_elem_size, 0U)
590       && constant_multiple_p (int_size, int_elem_size, &num_elems))
591     {
592       machine_mode elem_mode = TYPE_MODE (elem_type);
593       machine_mode mode;
594       if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
595 	return mode;
596       if (targetm.array_mode_supported_p (elem_mode, num_elems))
597 	limit_p = false;
598     }
599   return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
600 }
601 
602 /* Subroutine of layout_decl: Force alignment required for the data type.
603    But if the decl itself wants greater alignment, don't override that.  */
604 
605 static inline void
do_type_align(tree type,tree decl)606 do_type_align (tree type, tree decl)
607 {
608   if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
609     {
610       SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
611       if (TREE_CODE (decl) == FIELD_DECL)
612 	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
613     }
614   if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
615     SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
616 }
617 
618 /* Set the size, mode and alignment of a ..._DECL node.
619    TYPE_DECL does need this for C++.
620    Note that LABEL_DECL and CONST_DECL nodes do not need this,
621    and FUNCTION_DECL nodes have them set up in a special (and simple) way.
622    Don't call layout_decl for them.
623 
624    KNOWN_ALIGN is the amount of alignment we can assume this
625    decl has with no special effort.  It is relevant only for FIELD_DECLs
626    and depends on the previous fields.
627    All that matters about KNOWN_ALIGN is which powers of 2 divide it.
628    If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
629    the record will be aligned to suit.  */
630 
631 void
layout_decl(tree decl,unsigned int known_align)632 layout_decl (tree decl, unsigned int known_align)
633 {
634   tree type = TREE_TYPE (decl);
635   enum tree_code code = TREE_CODE (decl);
636   rtx rtl = NULL_RTX;
637   location_t loc = DECL_SOURCE_LOCATION (decl);
638 
639   if (code == CONST_DECL)
640     return;
641 
642   gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
643 	      || code == TYPE_DECL || code == FIELD_DECL);
644 
645   rtl = DECL_RTL_IF_SET (decl);
646 
647   if (type == error_mark_node)
648     type = void_type_node;
649 
650   /* Usually the size and mode come from the data type without change,
651      however, the front-end may set the explicit width of the field, so its
652      size may not be the same as the size of its type.  This happens with
653      bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
654      also happens with other fields.  For example, the C++ front-end creates
655      zero-sized fields corresponding to empty base classes, and depends on
656      layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
657      size in bytes from the size in bits.  If we have already set the mode,
658      don't set it again since we can be called twice for FIELD_DECLs.  */
659 
660   DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
661   if (DECL_MODE (decl) == VOIDmode)
662     SET_DECL_MODE (decl, TYPE_MODE (type));
663 
664   if (DECL_SIZE (decl) == 0)
665     {
666       DECL_SIZE (decl) = TYPE_SIZE (type);
667       DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
668     }
669   else if (DECL_SIZE_UNIT (decl) == 0)
670     DECL_SIZE_UNIT (decl)
671       = fold_convert_loc (loc, sizetype,
672 			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
673 					  bitsize_unit_node));
674 
675   if (code != FIELD_DECL)
676     /* For non-fields, update the alignment from the type.  */
677     do_type_align (type, decl);
678   else
679     /* For fields, it's a bit more complicated...  */
680     {
681       bool old_user_align = DECL_USER_ALIGN (decl);
682       bool zero_bitfield = false;
683       bool packed_p = DECL_PACKED (decl);
684       unsigned int mfa;
685 
686       if (DECL_BIT_FIELD (decl))
687 	{
688 	  DECL_BIT_FIELD_TYPE (decl) = type;
689 
690 	  /* A zero-length bit-field affects the alignment of the next
691 	     field.  In essence such bit-fields are not influenced by
692 	     any packing due to #pragma pack or attribute packed.  */
693 	  if (integer_zerop (DECL_SIZE (decl))
694 	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
695 	    {
696 	      zero_bitfield = true;
697 	      packed_p = false;
698 	      if (PCC_BITFIELD_TYPE_MATTERS)
699 		do_type_align (type, decl);
700 	      else
701 		{
702 #ifdef EMPTY_FIELD_BOUNDARY
703 		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
704 		    {
705 		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
706 		      DECL_USER_ALIGN (decl) = 0;
707 		    }
708 #endif
709 		}
710 	    }
711 
712 	  /* See if we can use an ordinary integer mode for a bit-field.
713 	     Conditions are: a fixed size that is correct for another mode,
714 	     occupying a complete byte or bytes on proper boundary.  */
715 	  if (TYPE_SIZE (type) != 0
716 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
717 	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
718 	    {
719 	      machine_mode xmode;
720 	      if (mode_for_size_tree (DECL_SIZE (decl),
721 				      MODE_INT, 1).exists (&xmode))
722 		{
723 		  unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
724 		  if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
725 		      && (known_align == 0 || known_align >= xalign))
726 		    {
727 		      SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
728 		      SET_DECL_MODE (decl, xmode);
729 		      DECL_BIT_FIELD (decl) = 0;
730 		    }
731 		}
732 	    }
733 
734 	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
735 	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
736 	      && known_align >= TYPE_ALIGN (type)
737 	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
738 	    DECL_BIT_FIELD (decl) = 0;
739 	}
740       else if (packed_p && DECL_USER_ALIGN (decl))
741 	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
742 	   round up; we'll reduce it again below.  We want packing to
743 	   supersede USER_ALIGN inherited from the type, but defer to
744 	   alignment explicitly specified on the field decl.  */;
745       else
746 	do_type_align (type, decl);
747 
748       /* If the field is packed and not explicitly aligned, give it the
749 	 minimum alignment.  Note that do_type_align may set
750 	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
751       if (packed_p
752 	  && !old_user_align)
753 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
754 
755       if (! packed_p && ! DECL_USER_ALIGN (decl))
756 	{
757 	  /* Some targets (i.e. i386, VMS) limit struct field alignment
758 	     to a lower boundary than alignment of variables unless
759 	     it was overridden by attribute aligned.  */
760 #ifdef BIGGEST_FIELD_ALIGNMENT
761 	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
762 				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
763 #endif
764 #ifdef ADJUST_FIELD_ALIGN
765 	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
766 						    DECL_ALIGN (decl)));
767 #endif
768 	}
769 
770       if (zero_bitfield)
771         mfa = initial_max_fld_align * BITS_PER_UNIT;
772       else
773 	mfa = maximum_field_alignment;
774       /* Should this be controlled by DECL_USER_ALIGN, too?  */
775       if (mfa != 0)
776 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
777     }
778 
779   /* Evaluate nonconstant size only once, either now or as soon as safe.  */
780   if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
781     DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
782   if (DECL_SIZE_UNIT (decl) != 0
783       && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
784     DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
785 
786   /* If requested, warn about definitions of large data objects.  */
787   if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
788       && !DECL_EXTERNAL (decl))
789     {
790       tree size = DECL_SIZE_UNIT (decl);
791 
792       if (size != 0 && TREE_CODE (size) == INTEGER_CST)
793 	{
794 	  /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
795 	     as if PTRDIFF_MAX had been specified, with the value
796 	     being that on the target rather than the host.  */
797 	  unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
798 	  if (max_size == HOST_WIDE_INT_MAX)
799 	    max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
800 
801 	  if (compare_tree_int (size, max_size) > 0)
802 	    warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
803 		     "maximum object size %wu",
804 		     decl, size, max_size);
805 	}
806     }
807 
808   /* If the RTL was already set, update its mode and mem attributes.  */
809   if (rtl)
810     {
811       PUT_MODE (rtl, DECL_MODE (decl));
812       SET_DECL_RTL (decl, 0);
813       if (MEM_P (rtl))
814 	set_mem_attributes (rtl, decl, 1);
815       SET_DECL_RTL (decl, rtl);
816     }
817 }
818 
819 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
820    results of a previous call to layout_decl and calls it again.  */
821 
822 void
relayout_decl(tree decl)823 relayout_decl (tree decl)
824 {
825   DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
826   SET_DECL_MODE (decl, VOIDmode);
827   if (!DECL_USER_ALIGN (decl))
828     SET_DECL_ALIGN (decl, 0);
829   if (DECL_RTL_SET_P (decl))
830     SET_DECL_RTL (decl, 0);
831 
832   layout_decl (decl, 0);
833 }
834 
835 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
836    QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
837    is to be passed to all other layout functions for this record.  It is the
838    responsibility of the caller to call `free' for the storage returned.
839    Note that garbage collection is not permitted until we finish laying
840    out the record.  */
841 
842 record_layout_info
start_record_layout(tree t)843 start_record_layout (tree t)
844 {
845   record_layout_info rli = XNEW (struct record_layout_info_s);
846 
847   rli->t = t;
848 
849   /* If the type has a minimum specified alignment (via an attribute
850      declaration, for example) use it -- otherwise, start with a
851      one-byte alignment.  */
852   rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
853   rli->unpacked_align = rli->record_align;
854   rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
855 
856 #ifdef STRUCTURE_SIZE_BOUNDARY
857   /* Packed structures don't need to have minimum size.  */
858   if (! TYPE_PACKED (t))
859     {
860       unsigned tmp;
861 
862       /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
863       tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
864       if (maximum_field_alignment != 0)
865 	tmp = MIN (tmp, maximum_field_alignment);
866       rli->record_align = MAX (rli->record_align, tmp);
867     }
868 #endif
869 
870   rli->offset = size_zero_node;
871   rli->bitpos = bitsize_zero_node;
872   rli->prev_field = 0;
873   rli->pending_statics = 0;
874   rli->packed_maybe_necessary = 0;
875   rli->remaining_in_alignment = 0;
876 
877   return rli;
878 }
879 
880 /* Fold sizetype value X to bitsizetype, given that X represents a type
881    size or offset.  */
882 
883 static tree
bits_from_bytes(tree x)884 bits_from_bytes (tree x)
885 {
886   if (POLY_INT_CST_P (x))
887     /* The runtime calculation isn't allowed to overflow sizetype;
888        increasing the runtime values must always increase the size
889        or offset of the object.  This means that the object imposes
890        a maximum value on the runtime parameters, but we don't record
891        what that is.  */
892     return build_poly_int_cst
893       (bitsizetype,
894        poly_wide_int::from (poly_int_cst_value (x),
895 			    TYPE_PRECISION (bitsizetype),
896 			    TYPE_SIGN (TREE_TYPE (x))));
897   x = fold_convert (bitsizetype, x);
898   gcc_checking_assert (x);
899   return x;
900 }
901 
902 /* Return the combined bit position for the byte offset OFFSET and the
903    bit position BITPOS.
904 
905    These functions operate on byte and bit positions present in FIELD_DECLs
906    and assume that these expressions result in no (intermediate) overflow.
907    This assumption is necessary to fold the expressions as much as possible,
908    so as to avoid creating artificially variable-sized types in languages
909    supporting variable-sized types like Ada.  */
910 
911 tree
bit_from_pos(tree offset,tree bitpos)912 bit_from_pos (tree offset, tree bitpos)
913 {
914   return size_binop (PLUS_EXPR, bitpos,
915 		     size_binop (MULT_EXPR, bits_from_bytes (offset),
916 				 bitsize_unit_node));
917 }
918 
919 /* Return the combined truncated byte position for the byte offset OFFSET and
920    the bit position BITPOS.  */
921 
922 tree
byte_from_pos(tree offset,tree bitpos)923 byte_from_pos (tree offset, tree bitpos)
924 {
925   tree bytepos;
926   if (TREE_CODE (bitpos) == MULT_EXPR
927       && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
928     bytepos = TREE_OPERAND (bitpos, 0);
929   else
930     bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
931   return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
932 }
933 
934 /* Split the bit position POS into a byte offset *POFFSET and a bit
935    position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */
936 
937 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)938 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
939 	      tree pos)
940 {
941   tree toff_align = bitsize_int (off_align);
942   if (TREE_CODE (pos) == MULT_EXPR
943       && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
944     {
945       *poffset = size_binop (MULT_EXPR,
946 			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
947 			     size_int (off_align / BITS_PER_UNIT));
948       *pbitpos = bitsize_zero_node;
949     }
950   else
951     {
952       *poffset = size_binop (MULT_EXPR,
953 			     fold_convert (sizetype,
954 					   size_binop (FLOOR_DIV_EXPR, pos,
955 						       toff_align)),
956 			     size_int (off_align / BITS_PER_UNIT));
957       *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
958     }
959 }
960 
961 /* Given a pointer to bit and byte offsets and an offset alignment,
962    normalize the offsets so they are within the alignment.  */
963 
964 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)965 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
966 {
967   /* If the bit position is now larger than it should be, adjust it
968      downwards.  */
969   if (compare_tree_int (*pbitpos, off_align) >= 0)
970     {
971       tree offset, bitpos;
972       pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
973       *poffset = size_binop (PLUS_EXPR, *poffset, offset);
974       *pbitpos = bitpos;
975     }
976 }
977 
978 /* Print debugging information about the information in RLI.  */
979 
980 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)981 debug_rli (record_layout_info rli)
982 {
983   print_node_brief (stderr, "type", rli->t, 0);
984   print_node_brief (stderr, "\noffset", rli->offset, 0);
985   print_node_brief (stderr, " bitpos", rli->bitpos, 0);
986 
987   fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
988 	   rli->record_align, rli->unpacked_align,
989 	   rli->offset_align);
990 
991   /* The ms_struct code is the only that uses this.  */
992   if (targetm.ms_bitfield_layout_p (rli->t))
993     fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
994 
995   if (rli->packed_maybe_necessary)
996     fprintf (stderr, "packed may be necessary\n");
997 
998   if (!vec_safe_is_empty (rli->pending_statics))
999     {
1000       fprintf (stderr, "pending statics:\n");
1001       debug (rli->pending_statics);
1002     }
1003 }
1004 
1005 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1006    BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */
1007 
1008 void
normalize_rli(record_layout_info rli)1009 normalize_rli (record_layout_info rli)
1010 {
1011   normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
1012 }
1013 
1014 /* Returns the size in bytes allocated so far.  */
1015 
1016 tree
rli_size_unit_so_far(record_layout_info rli)1017 rli_size_unit_so_far (record_layout_info rli)
1018 {
1019   return byte_from_pos (rli->offset, rli->bitpos);
1020 }
1021 
1022 /* Returns the size in bits allocated so far.  */
1023 
1024 tree
rli_size_so_far(record_layout_info rli)1025 rli_size_so_far (record_layout_info rli)
1026 {
1027   return bit_from_pos (rli->offset, rli->bitpos);
1028 }
1029 
1030 /* FIELD is about to be added to RLI->T.  The alignment (in bits) of
1031    the next available location within the record is given by KNOWN_ALIGN.
1032    Update the variable alignment fields in RLI, and return the alignment
1033    to give the FIELD.  */
1034 
1035 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1036 update_alignment_for_field (record_layout_info rli, tree field,
1037 			    unsigned int known_align)
1038 {
1039   /* The alignment required for FIELD.  */
1040   unsigned int desired_align;
1041   /* The type of this field.  */
1042   tree type = TREE_TYPE (field);
1043   /* True if the field was explicitly aligned by the user.  */
1044   bool user_align;
1045   bool is_bitfield;
1046 
1047   /* Do not attempt to align an ERROR_MARK node */
1048   if (TREE_CODE (type) == ERROR_MARK)
1049     return 0;
1050 
1051   /* Lay out the field so we know what alignment it needs.  */
1052   layout_decl (field, known_align);
1053   desired_align = DECL_ALIGN (field);
1054   user_align = DECL_USER_ALIGN (field);
1055 
1056   is_bitfield = (type != error_mark_node
1057 		 && DECL_BIT_FIELD_TYPE (field)
1058 		 && ! integer_zerop (TYPE_SIZE (type)));
1059 
1060   /* Record must have at least as much alignment as any field.
1061      Otherwise, the alignment of the field within the record is
1062      meaningless.  */
1063   if (targetm.ms_bitfield_layout_p (rli->t))
1064     {
1065       /* Here, the alignment of the underlying type of a bitfield can
1066 	 affect the alignment of a record; even a zero-sized field
1067 	 can do this.  The alignment should be to the alignment of
1068 	 the type, except that for zero-size bitfields this only
1069 	 applies if there was an immediately prior, nonzero-size
1070 	 bitfield.  (That's the way it is, experimentally.) */
1071       if (!is_bitfield
1072 	  || ((DECL_SIZE (field) == NULL_TREE
1073 	       || !integer_zerop (DECL_SIZE (field)))
1074 	      ? !DECL_PACKED (field)
1075 	      : (rli->prev_field
1076 		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1077 		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1078 	{
1079 	  unsigned int type_align = TYPE_ALIGN (type);
1080 	  if (!is_bitfield && DECL_PACKED (field))
1081 	    type_align = desired_align;
1082 	  else
1083 	    type_align = MAX (type_align, desired_align);
1084 	  if (maximum_field_alignment != 0)
1085 	    type_align = MIN (type_align, maximum_field_alignment);
1086 	  rli->record_align = MAX (rli->record_align, type_align);
1087 	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1088 	}
1089     }
1090   else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1091     {
1092       /* Named bit-fields cause the entire structure to have the
1093 	 alignment implied by their type.  Some targets also apply the same
1094 	 rules to unnamed bitfields.  */
1095       if (DECL_NAME (field) != 0
1096 	  || targetm.align_anon_bitfield ())
1097 	{
1098 	  unsigned int type_align = TYPE_ALIGN (type);
1099 
1100 #ifdef ADJUST_FIELD_ALIGN
1101 	  if (! TYPE_USER_ALIGN (type))
1102 	    type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1103 #endif
1104 
1105 	  /* Targets might chose to handle unnamed and hence possibly
1106 	     zero-width bitfield.  Those are not influenced by #pragmas
1107 	     or packed attributes.  */
1108 	  if (integer_zerop (DECL_SIZE (field)))
1109 	    {
1110 	      if (initial_max_fld_align)
1111 	        type_align = MIN (type_align,
1112 				  initial_max_fld_align * BITS_PER_UNIT);
1113 	    }
1114 	  else if (maximum_field_alignment != 0)
1115 	    type_align = MIN (type_align, maximum_field_alignment);
1116 	  else if (DECL_PACKED (field))
1117 	    type_align = MIN (type_align, BITS_PER_UNIT);
1118 
1119 	  /* The alignment of the record is increased to the maximum
1120 	     of the current alignment, the alignment indicated on the
1121 	     field (i.e., the alignment specified by an __aligned__
1122 	     attribute), and the alignment indicated by the type of
1123 	     the field.  */
1124 	  rli->record_align = MAX (rli->record_align, desired_align);
1125 	  rli->record_align = MAX (rli->record_align, type_align);
1126 
1127 	  if (warn_packed)
1128 	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1129 	  user_align |= TYPE_USER_ALIGN (type);
1130 	}
1131     }
1132   else
1133     {
1134       rli->record_align = MAX (rli->record_align, desired_align);
1135       rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1136     }
1137 
1138   TYPE_USER_ALIGN (rli->t) |= user_align;
1139 
1140   return desired_align;
1141 }
1142 
1143 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1144    the field alignment of FIELD or FIELD isn't aligned. */
1145 
1146 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1147 handle_warn_if_not_align (tree field, unsigned int record_align)
1148 {
1149   tree type = TREE_TYPE (field);
1150 
1151   if (type == error_mark_node)
1152     return;
1153 
1154   unsigned int warn_if_not_align = 0;
1155 
1156   int opt_w = 0;
1157 
1158   if (warn_if_not_aligned)
1159     {
1160       warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1161       if (!warn_if_not_align)
1162 	warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1163       if (warn_if_not_align)
1164 	opt_w = OPT_Wif_not_aligned;
1165     }
1166 
1167   if (!warn_if_not_align
1168       && warn_packed_not_aligned
1169       && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1170     {
1171       warn_if_not_align = TYPE_ALIGN (type);
1172       opt_w = OPT_Wpacked_not_aligned;
1173     }
1174 
1175   if (!warn_if_not_align)
1176     return;
1177 
1178   tree context = DECL_CONTEXT (field);
1179 
1180   warn_if_not_align /= BITS_PER_UNIT;
1181   record_align /= BITS_PER_UNIT;
1182   if ((record_align % warn_if_not_align) != 0)
1183     warning (opt_w, "alignment %u of %qT is less than %u",
1184 	     record_align, context, warn_if_not_align);
1185 
1186   tree off = byte_position (field);
1187   if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1188     {
1189       if (TREE_CODE (off) == INTEGER_CST)
1190 	warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1191 		 field, off, context, warn_if_not_align);
1192       else
1193 	warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1194 		 field, off, context, warn_if_not_align);
1195     }
1196 }
1197 
1198 /* Called from place_field to handle unions.  */
1199 
1200 static void
place_union_field(record_layout_info rli,tree field)1201 place_union_field (record_layout_info rli, tree field)
1202 {
1203   update_alignment_for_field (rli, field, /*known_align=*/0);
1204 
1205   DECL_FIELD_OFFSET (field) = size_zero_node;
1206   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1207   SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1208   handle_warn_if_not_align (field, rli->record_align);
1209 
1210   /* If this is an ERROR_MARK return *after* having set the
1211      field at the start of the union. This helps when parsing
1212      invalid fields. */
1213   if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1214     return;
1215 
1216   if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1217       && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1218     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1219 
1220   /* We assume the union's size will be a multiple of a byte so we don't
1221      bother with BITPOS.  */
1222   if (TREE_CODE (rli->t) == UNION_TYPE)
1223     rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1224   else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1225     rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1226 			       DECL_SIZE_UNIT (field), rli->offset);
1227 }
1228 
1229 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1230    at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
1231    units of alignment than the underlying TYPE.  */
1232 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1233 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1234 		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1235 {
1236   /* Note that the calculation of OFFSET might overflow; we calculate it so
1237      that we still get the right result as long as ALIGN is a power of two.  */
1238   unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1239 
1240   offset = offset % align;
1241   return ((offset + size + align - 1) / align
1242 	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
1243 }
1244 
1245 /* RLI contains information about the layout of a RECORD_TYPE.  FIELD
1246    is a FIELD_DECL to be added after those fields already present in
1247    T.  (FIELD is not actually added to the TYPE_FIELDS list here;
1248    callers that desire that behavior must manually perform that step.)  */
1249 
1250 void
place_field(record_layout_info rli,tree field)1251 place_field (record_layout_info rli, tree field)
1252 {
1253   /* The alignment required for FIELD.  */
1254   unsigned int desired_align;
1255   /* The alignment FIELD would have if we just dropped it into the
1256      record as it presently stands.  */
1257   unsigned int known_align;
1258   unsigned int actual_align;
1259   /* The type of this field.  */
1260   tree type = TREE_TYPE (field);
1261 
1262   gcc_assert (TREE_CODE (field) != ERROR_MARK);
1263 
1264   /* If FIELD is static, then treat it like a separate variable, not
1265      really like a structure field.  If it is a FUNCTION_DECL, it's a
1266      method.  In both cases, all we do is lay out the decl, and we do
1267      it *after* the record is laid out.  */
1268   if (VAR_P (field))
1269     {
1270       vec_safe_push (rli->pending_statics, field);
1271       return;
1272     }
1273 
1274   /* Enumerators and enum types which are local to this class need not
1275      be laid out.  Likewise for initialized constant fields.  */
1276   else if (TREE_CODE (field) != FIELD_DECL)
1277     return;
1278 
1279   /* Unions are laid out very differently than records, so split
1280      that code off to another function.  */
1281   else if (TREE_CODE (rli->t) != RECORD_TYPE)
1282     {
1283       place_union_field (rli, field);
1284       return;
1285     }
1286 
1287   else if (TREE_CODE (type) == ERROR_MARK)
1288     {
1289       /* Place this field at the current allocation position, so we
1290 	 maintain monotonicity.  */
1291       DECL_FIELD_OFFSET (field) = rli->offset;
1292       DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1293       SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1294       handle_warn_if_not_align (field, rli->record_align);
1295       return;
1296     }
1297 
1298   if (AGGREGATE_TYPE_P (type)
1299       && TYPE_TYPELESS_STORAGE (type))
1300     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1301 
1302   /* Work out the known alignment so far.  Note that A & (-A) is the
1303      value of the least-significant bit in A that is one.  */
1304   if (! integer_zerop (rli->bitpos))
1305     known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1306   else if (integer_zerop (rli->offset))
1307     known_align = 0;
1308   else if (tree_fits_uhwi_p (rli->offset))
1309     known_align = (BITS_PER_UNIT
1310 		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
1311   else
1312     known_align = rli->offset_align;
1313 
1314   desired_align = update_alignment_for_field (rli, field, known_align);
1315   if (known_align == 0)
1316     known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1317 
1318   if (warn_packed && DECL_PACKED (field))
1319     {
1320       if (known_align >= TYPE_ALIGN (type))
1321 	{
1322 	  if (TYPE_ALIGN (type) > desired_align)
1323 	    {
1324 	      if (STRICT_ALIGNMENT)
1325 		warning (OPT_Wattributes, "packed attribute causes "
1326                          "inefficient alignment for %q+D", field);
1327 	      /* Don't warn if DECL_PACKED was set by the type.  */
1328 	      else if (!TYPE_PACKED (rli->t))
1329 		warning (OPT_Wattributes, "packed attribute is "
1330 			 "unnecessary for %q+D", field);
1331 	    }
1332 	}
1333       else
1334 	rli->packed_maybe_necessary = 1;
1335     }
1336 
1337   /* Does this field automatically have alignment it needs by virtue
1338      of the fields that precede it and the record's own alignment?  */
1339   if (known_align < desired_align
1340       && (! targetm.ms_bitfield_layout_p (rli->t)
1341 	  || rli->prev_field == NULL))
1342     {
1343       /* No, we need to skip space before this field.
1344 	 Bump the cumulative size to multiple of field alignment.  */
1345 
1346       if (!targetm.ms_bitfield_layout_p (rli->t)
1347 	  && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1348 	  && !TYPE_ARTIFICIAL (rli->t))
1349 	warning (OPT_Wpadded, "padding struct to align %q+D", field);
1350 
1351       /* If the alignment is still within offset_align, just align
1352 	 the bit position.  */
1353       if (desired_align < rli->offset_align)
1354 	rli->bitpos = round_up (rli->bitpos, desired_align);
1355       else
1356 	{
1357 	  /* First adjust OFFSET by the partial bits, then align.  */
1358 	  rli->offset
1359 	    = size_binop (PLUS_EXPR, rli->offset,
1360 			  fold_convert (sizetype,
1361 					size_binop (CEIL_DIV_EXPR, rli->bitpos,
1362 						    bitsize_unit_node)));
1363 	  rli->bitpos = bitsize_zero_node;
1364 
1365 	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1366 	}
1367 
1368       if (! TREE_CONSTANT (rli->offset))
1369 	rli->offset_align = desired_align;
1370     }
1371 
1372   /* Handle compatibility with PCC.  Note that if the record has any
1373      variable-sized fields, we need not worry about compatibility.  */
1374   if (PCC_BITFIELD_TYPE_MATTERS
1375       && ! targetm.ms_bitfield_layout_p (rli->t)
1376       && TREE_CODE (field) == FIELD_DECL
1377       && type != error_mark_node
1378       && DECL_BIT_FIELD (field)
1379       && (! DECL_PACKED (field)
1380 	  /* Enter for these packed fields only to issue a warning.  */
1381 	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1382       && maximum_field_alignment == 0
1383       && ! integer_zerop (DECL_SIZE (field))
1384       && tree_fits_uhwi_p (DECL_SIZE (field))
1385       && tree_fits_uhwi_p (rli->offset)
1386       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1387     {
1388       unsigned int type_align = TYPE_ALIGN (type);
1389       tree dsize = DECL_SIZE (field);
1390       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1391       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1392       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1393 
1394 #ifdef ADJUST_FIELD_ALIGN
1395       if (! TYPE_USER_ALIGN (type))
1396 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1397 #endif
1398 
1399       /* A bit field may not span more units of alignment of its type
1400 	 than its type itself.  Advance to next boundary if necessary.  */
1401       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1402 	{
1403 	  if (DECL_PACKED (field))
1404 	    {
1405 	      if (warn_packed_bitfield_compat == 1)
1406 		inform
1407 		  (input_location,
1408 		   "offset of packed bit-field %qD has changed in GCC 4.4",
1409 		   field);
1410 	    }
1411 	  else
1412 	    rli->bitpos = round_up (rli->bitpos, type_align);
1413 	}
1414 
1415       if (! DECL_PACKED (field))
1416 	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1417 
1418       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1419 				  TYPE_WARN_IF_NOT_ALIGN (type));
1420     }
1421 
1422 #ifdef BITFIELD_NBYTES_LIMITED
1423   if (BITFIELD_NBYTES_LIMITED
1424       && ! targetm.ms_bitfield_layout_p (rli->t)
1425       && TREE_CODE (field) == FIELD_DECL
1426       && type != error_mark_node
1427       && DECL_BIT_FIELD_TYPE (field)
1428       && ! DECL_PACKED (field)
1429       && ! integer_zerop (DECL_SIZE (field))
1430       && tree_fits_uhwi_p (DECL_SIZE (field))
1431       && tree_fits_uhwi_p (rli->offset)
1432       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1433     {
1434       unsigned int type_align = TYPE_ALIGN (type);
1435       tree dsize = DECL_SIZE (field);
1436       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1437       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1438       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1439 
1440 #ifdef ADJUST_FIELD_ALIGN
1441       if (! TYPE_USER_ALIGN (type))
1442 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1443 #endif
1444 
1445       if (maximum_field_alignment != 0)
1446 	type_align = MIN (type_align, maximum_field_alignment);
1447       /* ??? This test is opposite the test in the containing if
1448 	 statement, so this code is unreachable currently.  */
1449       else if (DECL_PACKED (field))
1450 	type_align = MIN (type_align, BITS_PER_UNIT);
1451 
1452       /* A bit field may not span the unit of alignment of its type.
1453 	 Advance to next boundary if necessary.  */
1454       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1455 	rli->bitpos = round_up (rli->bitpos, type_align);
1456 
1457       TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1458       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1459 				  TYPE_WARN_IF_NOT_ALIGN (type));
1460     }
1461 #endif
1462 
1463   /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1464      A subtlety:
1465 	When a bit field is inserted into a packed record, the whole
1466 	size of the underlying type is used by one or more same-size
1467 	adjacent bitfields.  (That is, if its long:3, 32 bits is
1468 	used in the record, and any additional adjacent long bitfields are
1469 	packed into the same chunk of 32 bits. However, if the size
1470 	changes, a new field of that size is allocated.)  In an unpacked
1471 	record, this is the same as using alignment, but not equivalent
1472 	when packing.
1473 
1474      Note: for compatibility, we use the type size, not the type alignment
1475      to determine alignment, since that matches the documentation */
1476 
1477   if (targetm.ms_bitfield_layout_p (rli->t))
1478     {
1479       tree prev_saved = rli->prev_field;
1480       tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1481 
1482       /* This is a bitfield if it exists.  */
1483       if (rli->prev_field)
1484 	{
1485 	  bool realign_p = known_align < desired_align;
1486 
1487 	  /* If both are bitfields, nonzero, and the same size, this is
1488 	     the middle of a run.  Zero declared size fields are special
1489 	     and handled as "end of run". (Note: it's nonzero declared
1490 	     size, but equal type sizes!) (Since we know that both
1491 	     the current and previous fields are bitfields by the
1492 	     time we check it, DECL_SIZE must be present for both.) */
1493 	  if (DECL_BIT_FIELD_TYPE (field)
1494 	      && !integer_zerop (DECL_SIZE (field))
1495 	      && !integer_zerop (DECL_SIZE (rli->prev_field))
1496 	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1497 	      && tree_fits_uhwi_p (TYPE_SIZE (type))
1498 	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1499 	    {
1500 	      /* We're in the middle of a run of equal type size fields; make
1501 		 sure we realign if we run out of bits.  (Not decl size,
1502 		 type size!) */
1503 	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1504 
1505 	      if (rli->remaining_in_alignment < bitsize)
1506 		{
1507 		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1508 
1509 		  /* out of bits; bump up to next 'word'.  */
1510 		  rli->bitpos
1511 		    = size_binop (PLUS_EXPR, rli->bitpos,
1512 				  bitsize_int (rli->remaining_in_alignment));
1513 		  rli->prev_field = field;
1514 		  if (typesize < bitsize)
1515 		    rli->remaining_in_alignment = 0;
1516 		  else
1517 		    rli->remaining_in_alignment = typesize - bitsize;
1518 		}
1519 	      else
1520 		{
1521 		  rli->remaining_in_alignment -= bitsize;
1522 		  realign_p = false;
1523 		}
1524 	    }
1525 	  else
1526 	    {
1527 	      /* End of a run: if leaving a run of bitfields of the same type
1528 		 size, we have to "use up" the rest of the bits of the type
1529 		 size.
1530 
1531 		 Compute the new position as the sum of the size for the prior
1532 		 type and where we first started working on that type.
1533 		 Note: since the beginning of the field was aligned then
1534 		 of course the end will be too.  No round needed.  */
1535 
1536 	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1537 		{
1538 		  rli->bitpos
1539 		    = size_binop (PLUS_EXPR, rli->bitpos,
1540 				  bitsize_int (rli->remaining_in_alignment));
1541 		}
1542 	      else
1543 		/* We "use up" size zero fields; the code below should behave
1544 		   as if the prior field was not a bitfield.  */
1545 		prev_saved = NULL;
1546 
1547 	      /* Cause a new bitfield to be captured, either this time (if
1548 		 currently a bitfield) or next time we see one.  */
1549 	      if (!DECL_BIT_FIELD_TYPE (field)
1550 		  || integer_zerop (DECL_SIZE (field)))
1551 		rli->prev_field = NULL;
1552 	    }
1553 
1554 	  /* Does this field automatically have alignment it needs by virtue
1555 	     of the fields that precede it and the record's own alignment?  */
1556 	  if (realign_p)
1557 	    {
1558 	      /* If the alignment is still within offset_align, just align
1559 		 the bit position.  */
1560 	      if (desired_align < rli->offset_align)
1561 		rli->bitpos = round_up (rli->bitpos, desired_align);
1562 	      else
1563 		{
1564 		  /* First adjust OFFSET by the partial bits, then align.  */
1565 		  tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1566 				       bitsize_unit_node);
1567 		  rli->offset = size_binop (PLUS_EXPR, rli->offset,
1568 					    fold_convert (sizetype, d));
1569 		  rli->bitpos = bitsize_zero_node;
1570 
1571 		  rli->offset = round_up (rli->offset,
1572 					  desired_align / BITS_PER_UNIT);
1573 		}
1574 
1575 	      if (! TREE_CONSTANT (rli->offset))
1576 		rli->offset_align = desired_align;
1577 	    }
1578 
1579 	  normalize_rli (rli);
1580         }
1581 
1582       /* If we're starting a new run of same type size bitfields
1583 	 (or a run of non-bitfields), set up the "first of the run"
1584 	 fields.
1585 
1586 	 That is, if the current field is not a bitfield, or if there
1587 	 was a prior bitfield the type sizes differ, or if there wasn't
1588 	 a prior bitfield the size of the current field is nonzero.
1589 
1590 	 Note: we must be sure to test ONLY the type size if there was
1591 	 a prior bitfield and ONLY for the current field being zero if
1592 	 there wasn't.  */
1593 
1594       if (!DECL_BIT_FIELD_TYPE (field)
1595 	  || (prev_saved != NULL
1596 	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1597 	      : !integer_zerop (DECL_SIZE (field))))
1598 	{
1599 	  /* Never smaller than a byte for compatibility.  */
1600 	  unsigned int type_align = BITS_PER_UNIT;
1601 
1602 	  /* (When not a bitfield), we could be seeing a flex array (with
1603 	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
1604 	     until we see a bitfield (and come by here again) we just skip
1605 	     calculating it.  */
1606 	  if (DECL_SIZE (field) != NULL
1607 	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1608 	      && tree_fits_uhwi_p (DECL_SIZE (field)))
1609 	    {
1610 	      unsigned HOST_WIDE_INT bitsize
1611 		= tree_to_uhwi (DECL_SIZE (field));
1612 	      unsigned HOST_WIDE_INT typesize
1613 		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1614 
1615 	      if (typesize < bitsize)
1616 		rli->remaining_in_alignment = 0;
1617 	      else
1618 		rli->remaining_in_alignment = typesize - bitsize;
1619 	    }
1620 
1621 	  /* Now align (conventionally) for the new type.  */
1622 	  if (! DECL_PACKED (field))
1623 	    type_align = TYPE_ALIGN (TREE_TYPE (field));
1624 
1625 	  if (maximum_field_alignment != 0)
1626 	    type_align = MIN (type_align, maximum_field_alignment);
1627 
1628 	  rli->bitpos = round_up (rli->bitpos, type_align);
1629 
1630           /* If we really aligned, don't allow subsequent bitfields
1631 	     to undo that.  */
1632 	  rli->prev_field = NULL;
1633 	}
1634     }
1635 
1636   /* Offset so far becomes the position of this field after normalizing.  */
1637   normalize_rli (rli);
1638   DECL_FIELD_OFFSET (field) = rli->offset;
1639   DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1640   SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1641   handle_warn_if_not_align (field, rli->record_align);
1642 
1643   /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
1644   if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1645     DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1646 
1647   /* If this field ended up more aligned than we thought it would be (we
1648      approximate this by seeing if its position changed), lay out the field
1649      again; perhaps we can use an integral mode for it now.  */
1650   if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1651     actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1652   else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1653     actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1654   else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1655     actual_align = (BITS_PER_UNIT
1656 		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1657   else
1658     actual_align = DECL_OFFSET_ALIGN (field);
1659   /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1660      store / extract bit field operations will check the alignment of the
1661      record against the mode of bit fields.  */
1662 
1663   if (known_align != actual_align)
1664     layout_decl (field, actual_align);
1665 
1666   if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1667     rli->prev_field = field;
1668 
1669   /* Now add size of this field to the size of the record.  If the size is
1670      not constant, treat the field as being a multiple of bytes and just
1671      adjust the offset, resetting the bit position.  Otherwise, apportion the
1672      size amongst the bit position and offset.  First handle the case of an
1673      unspecified size, which can happen when we have an invalid nested struct
1674      definition, such as struct j { struct j { int i; } }.  The error message
1675      is printed in finish_struct.  */
1676   if (DECL_SIZE (field) == 0)
1677     /* Do nothing.  */;
1678   else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1679 	   || TREE_OVERFLOW (DECL_SIZE (field)))
1680     {
1681       rli->offset
1682 	= size_binop (PLUS_EXPR, rli->offset,
1683 		      fold_convert (sizetype,
1684 				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
1685 						bitsize_unit_node)));
1686       rli->offset
1687 	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1688       rli->bitpos = bitsize_zero_node;
1689       rli->offset_align = MIN (rli->offset_align, desired_align);
1690 
1691       if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1692 			  bitsize_int (rli->offset_align)))
1693 	{
1694 	  tree type = strip_array_types (TREE_TYPE (field));
1695 	  /* The above adjusts offset_align just based on the start of the
1696 	     field.  The field might not have a size that is a multiple of
1697 	     that offset_align though.  If the field is an array of fixed
1698 	     sized elements, assume there can be any multiple of those
1699 	     sizes.  If it is a variable length aggregate or array of
1700 	     variable length aggregates, assume worst that the end is
1701 	     just BITS_PER_UNIT aligned.  */
1702 	  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1703 	    {
1704 	      if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1705 		{
1706 		  unsigned HOST_WIDE_INT sz
1707 		    = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1708 		  rli->offset_align = MIN (rli->offset_align, sz);
1709 		}
1710 	    }
1711 	  else
1712 	    rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1713 	}
1714     }
1715   else if (targetm.ms_bitfield_layout_p (rli->t))
1716     {
1717       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1718 
1719       /* If FIELD is the last field and doesn't end at the full length
1720 	 of the type then pad the struct out to the full length of the
1721 	 last type.  */
1722       if (DECL_BIT_FIELD_TYPE (field)
1723 	  && !integer_zerop (DECL_SIZE (field)))
1724 	{
1725 	  /* We have to scan, because non-field DECLS are also here.  */
1726 	  tree probe = field;
1727 	  while ((probe = DECL_CHAIN (probe)))
1728 	    if (TREE_CODE (probe) == FIELD_DECL)
1729 	      break;
1730 	  if (!probe)
1731 	    rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1732 				      bitsize_int (rli->remaining_in_alignment));
1733 	}
1734 
1735       normalize_rli (rli);
1736     }
1737   else
1738     {
1739       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1740       normalize_rli (rli);
1741     }
1742 }
1743 
1744 /* Assuming that all the fields have been laid out, this function uses
1745    RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1746    indicated by RLI.  */
1747 
1748 static void
finalize_record_size(record_layout_info rli)1749 finalize_record_size (record_layout_info rli)
1750 {
1751   tree unpadded_size, unpadded_size_unit;
1752 
1753   /* Now we want just byte and bit offsets, so set the offset alignment
1754      to be a byte and then normalize.  */
1755   rli->offset_align = BITS_PER_UNIT;
1756   normalize_rli (rli);
1757 
1758   /* Determine the desired alignment.  */
1759 #ifdef ROUND_TYPE_ALIGN
1760   SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1761 					    rli->record_align));
1762 #else
1763   SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1764 #endif
1765 
1766   /* Compute the size so far.  Be sure to allow for extra bits in the
1767      size in bytes.  We have guaranteed above that it will be no more
1768      than a single byte.  */
1769   unpadded_size = rli_size_so_far (rli);
1770   unpadded_size_unit = rli_size_unit_so_far (rli);
1771   if (! integer_zerop (rli->bitpos))
1772     unpadded_size_unit
1773       = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1774 
1775   /* Round the size up to be a multiple of the required alignment.  */
1776   TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1777   TYPE_SIZE_UNIT (rli->t)
1778     = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1779 
1780   if (TREE_CONSTANT (unpadded_size)
1781       && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1782       && input_location != BUILTINS_LOCATION
1783       && !TYPE_ARTIFICIAL (rli->t))
1784     warning (OPT_Wpadded, "padding struct size to alignment boundary");
1785 
1786   if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1787       && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1788       && TREE_CONSTANT (unpadded_size))
1789     {
1790       tree unpacked_size;
1791 
1792 #ifdef ROUND_TYPE_ALIGN
1793       rli->unpacked_align
1794 	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1795 #else
1796       rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1797 #endif
1798 
1799       unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1800       if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1801 	{
1802 	  if (TYPE_NAME (rli->t))
1803 	    {
1804 	      tree name;
1805 
1806 	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1807 		name = TYPE_NAME (rli->t);
1808 	      else
1809 		name = DECL_NAME (TYPE_NAME (rli->t));
1810 
1811 	      if (STRICT_ALIGNMENT)
1812 		warning (OPT_Wpacked, "packed attribute causes inefficient "
1813 			 "alignment for %qE", name);
1814 	      else
1815 		warning (OPT_Wpacked,
1816 			 "packed attribute is unnecessary for %qE", name);
1817 	    }
1818 	  else
1819 	    {
1820 	      if (STRICT_ALIGNMENT)
1821 		warning (OPT_Wpacked,
1822 			 "packed attribute causes inefficient alignment");
1823 	      else
1824 		warning (OPT_Wpacked, "packed attribute is unnecessary");
1825 	    }
1826 	}
1827     }
1828 }
1829 
1830 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */
1831 
1832 void
compute_record_mode(tree type)1833 compute_record_mode (tree type)
1834 {
1835   tree field;
1836   machine_mode mode = VOIDmode;
1837 
1838   /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1839      However, if possible, we use a mode that fits in a register
1840      instead, in order to allow for better optimization down the
1841      line.  */
1842   SET_TYPE_MODE (type, BLKmode);
1843 
1844   poly_uint64 type_size;
1845   if (!poly_int_tree_p (TYPE_SIZE (type), &type_size))
1846     return;
1847 
1848   /* A record which has any BLKmode members must itself be
1849      BLKmode; it can't go in a register.  Unless the member is
1850      BLKmode only because it isn't aligned.  */
1851   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1852     {
1853       if (TREE_CODE (field) != FIELD_DECL)
1854 	continue;
1855 
1856       poly_uint64 field_size;
1857       if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1858 	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1859 	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1860 	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1861 		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1862 	  || !tree_fits_poly_uint64_p (bit_position (field))
1863 	  || DECL_SIZE (field) == 0
1864 	  || !poly_int_tree_p (DECL_SIZE (field), &field_size))
1865 	return;
1866 
1867       /* If this field is the whole struct, remember its mode so
1868 	 that, say, we can put a double in a class into a DF
1869 	 register instead of forcing it to live in the stack.  */
1870       if (known_eq (field_size, type_size)
1871 	  /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1872 	     wider types (e.g. int32), despite precision being less.  Ensure
1873 	     that the TYPE_MODE of the struct does not get set to the partial
1874 	     int mode if there is a wider type also in the struct.  */
1875 	  && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1876 		       GET_MODE_PRECISION (mode)))
1877 	mode = DECL_MODE (field);
1878 
1879       /* With some targets, it is sub-optimal to access an aligned
1880 	 BLKmode structure as a scalar.  */
1881       if (targetm.member_type_forces_blk (field, mode))
1882 	return;
1883     }
1884 
1885   /* If we only have one real field; use its mode if that mode's size
1886      matches the type's size.  This generally only applies to RECORD_TYPE.
1887      For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1888      If the widest field is MODE_PARTIAL_INT, and the union will be passed
1889      by reference, then use that mode.  */
1890   if ((TREE_CODE (type) == RECORD_TYPE
1891        || (TREE_CODE (type) == UNION_TYPE
1892 	   && (GET_MODE_CLASS (mode) == MODE_INT
1893 	       || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1894 		   && (targetm.calls.pass_by_reference
1895 		       (pack_cumulative_args (0),
1896 			function_arg_info (type, mode, /*named=*/false)))))))
1897       && mode != VOIDmode
1898       && known_eq (GET_MODE_BITSIZE (mode), type_size))
1899     ;
1900   else
1901     mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1902 
1903   /* If structure's known alignment is less than what the scalar
1904      mode would need, and it matters, then stick with BLKmode.  */
1905   if (mode != BLKmode
1906       && STRICT_ALIGNMENT
1907       && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1908 	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1909     {
1910       /* If this is the only reason this type is BLKmode, then
1911 	 don't force containing types to be BLKmode.  */
1912       TYPE_NO_FORCE_BLK (type) = 1;
1913       mode = BLKmode;
1914     }
1915 
1916   SET_TYPE_MODE (type, mode);
1917 }
1918 
1919 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1920    out.  */
1921 
1922 static void
finalize_type_size(tree type)1923 finalize_type_size (tree type)
1924 {
1925   /* Normally, use the alignment corresponding to the mode chosen.
1926      However, where strict alignment is not required, avoid
1927      over-aligning structures, since most compilers do not do this
1928      alignment.  */
1929   bool tua_cleared_p = false;
1930   if (TYPE_MODE (type) != BLKmode
1931       && TYPE_MODE (type) != VOIDmode
1932       && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1933     {
1934       unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1935 
1936       /* Don't override a larger alignment requirement coming from a user
1937 	 alignment of one of the fields.  */
1938       if (mode_align >= TYPE_ALIGN (type))
1939 	{
1940 	  SET_TYPE_ALIGN (type, mode_align);
1941 	  /* Remember that we're about to reset this flag.  */
1942 	  tua_cleared_p = TYPE_USER_ALIGN (type);
1943 	  TYPE_USER_ALIGN (type) = false;
1944 	}
1945     }
1946 
1947   /* Do machine-dependent extra alignment.  */
1948 #ifdef ROUND_TYPE_ALIGN
1949   SET_TYPE_ALIGN (type,
1950                   ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1951 #endif
1952 
1953   /* If we failed to find a simple way to calculate the unit size
1954      of the type, find it by division.  */
1955   if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1956     /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
1957        result will fit in sizetype.  We will get more efficient code using
1958        sizetype, so we force a conversion.  */
1959     TYPE_SIZE_UNIT (type)
1960       = fold_convert (sizetype,
1961 		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1962 				  bitsize_unit_node));
1963 
1964   if (TYPE_SIZE (type) != 0)
1965     {
1966       TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1967       TYPE_SIZE_UNIT (type)
1968 	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1969     }
1970 
1971   /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
1972   if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1973     TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1974   if (TYPE_SIZE_UNIT (type) != 0
1975       && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1976     TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1977 
1978   /* Handle empty records as per the x86-64 psABI.  */
1979   TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1980 
1981   /* Also layout any other variants of the type.  */
1982   if (TYPE_NEXT_VARIANT (type)
1983       || type != TYPE_MAIN_VARIANT (type))
1984     {
1985       tree variant;
1986       /* Record layout info of this variant.  */
1987       tree size = TYPE_SIZE (type);
1988       tree size_unit = TYPE_SIZE_UNIT (type);
1989       unsigned int align = TYPE_ALIGN (type);
1990       unsigned int precision = TYPE_PRECISION (type);
1991       unsigned int user_align = TYPE_USER_ALIGN (type);
1992       machine_mode mode = TYPE_MODE (type);
1993       bool empty_p = TYPE_EMPTY_P (type);
1994 
1995       /* Copy it into all variants.  */
1996       for (variant = TYPE_MAIN_VARIANT (type);
1997 	   variant != NULL_TREE;
1998 	   variant = TYPE_NEXT_VARIANT (variant))
1999 	{
2000 	  TYPE_SIZE (variant) = size;
2001 	  TYPE_SIZE_UNIT (variant) = size_unit;
2002 	  unsigned valign = align;
2003 	  if (TYPE_USER_ALIGN (variant))
2004 	    {
2005 	      valign = MAX (valign, TYPE_ALIGN (variant));
2006 	      /* If we reset TYPE_USER_ALIGN on the main variant, we might
2007 		 need to reset it on the variants too.  TYPE_MODE will be set
2008 		 to MODE in this variant, so we can use that.  */
2009 	      if (tua_cleared_p && GET_MODE_ALIGNMENT (mode) >= valign)
2010 		TYPE_USER_ALIGN (variant) = false;
2011 	    }
2012 	  else
2013 	    TYPE_USER_ALIGN (variant) = user_align;
2014 	  SET_TYPE_ALIGN (variant, valign);
2015 	  TYPE_PRECISION (variant) = precision;
2016 	  SET_TYPE_MODE (variant, mode);
2017 	  TYPE_EMPTY_P (variant) = empty_p;
2018 	}
2019     }
2020 }
2021 
2022 /* Return a new underlying object for a bitfield started with FIELD.  */
2023 
2024 static tree
start_bitfield_representative(tree field)2025 start_bitfield_representative (tree field)
2026 {
2027   tree repr = make_node (FIELD_DECL);
2028   DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2029   /* Force the representative to begin at a BITS_PER_UNIT aligned
2030      boundary - C++ may use tail-padding of a base object to
2031      continue packing bits so the bitfield region does not start
2032      at bit zero (see g++.dg/abi/bitfield5.C for example).
2033      Unallocated bits may happen for other reasons as well,
2034      for example Ada which allows explicit bit-granular structure layout.  */
2035   DECL_FIELD_BIT_OFFSET (repr)
2036     = size_binop (BIT_AND_EXPR,
2037 		  DECL_FIELD_BIT_OFFSET (field),
2038 		  bitsize_int (~(BITS_PER_UNIT - 1)));
2039   SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2040   DECL_SIZE (repr) = DECL_SIZE (field);
2041   DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2042   DECL_PACKED (repr) = DECL_PACKED (field);
2043   DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2044   /* There are no indirect accesses to this field.  If we introduce
2045      some then they have to use the record alias set.  This makes
2046      sure to properly conflict with [indirect] accesses to addressable
2047      fields of the bitfield group.  */
2048   DECL_NONADDRESSABLE_P (repr) = 1;
2049   return repr;
2050 }
2051 
2052 /* Finish up a bitfield group that was started by creating the underlying
2053    object REPR with the last field in the bitfield group FIELD.  */
2054 
2055 static void
finish_bitfield_representative(tree repr,tree field)2056 finish_bitfield_representative (tree repr, tree field)
2057 {
2058   unsigned HOST_WIDE_INT bitsize, maxbitsize;
2059   tree nextf, size;
2060 
2061   size = size_diffop (DECL_FIELD_OFFSET (field),
2062 		      DECL_FIELD_OFFSET (repr));
2063   while (TREE_CODE (size) == COMPOUND_EXPR)
2064     size = TREE_OPERAND (size, 1);
2065   gcc_assert (tree_fits_uhwi_p (size));
2066   bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2067 	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2068 	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2069 	     + tree_to_uhwi (DECL_SIZE (field)));
2070 
2071   /* Round up bitsize to multiples of BITS_PER_UNIT.  */
2072   bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2073 
2074   /* Now nothing tells us how to pad out bitsize ...  */
2075   if (TREE_CODE (DECL_CONTEXT (field)) == RECORD_TYPE)
2076     {
2077       nextf = DECL_CHAIN (field);
2078       while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2079 	nextf = DECL_CHAIN (nextf);
2080     }
2081   else
2082     nextf = NULL_TREE;
2083   if (nextf)
2084     {
2085       tree maxsize;
2086       /* If there was an error, the field may be not laid out
2087          correctly.  Don't bother to do anything.  */
2088       if (TREE_TYPE (nextf) == error_mark_node)
2089 	{
2090 	  TREE_TYPE (repr) = error_mark_node;
2091 	  return;
2092 	}
2093       maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2094 			     DECL_FIELD_OFFSET (repr));
2095       if (tree_fits_uhwi_p (maxsize))
2096 	{
2097 	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2098 			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2099 			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2100 	  /* If the group ends within a bitfield nextf does not need to be
2101 	     aligned to BITS_PER_UNIT.  Thus round up.  */
2102 	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2103 	}
2104       else
2105 	maxbitsize = bitsize;
2106     }
2107   else
2108     {
2109       /* Note that if the C++ FE sets up tail-padding to be re-used it
2110          creates a as-base variant of the type with TYPE_SIZE adjusted
2111 	 accordingly.  So it is safe to include tail-padding here.  */
2112       tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2113 							(DECL_CONTEXT (field));
2114       tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2115       /* We cannot generally rely on maxsize to fold to an integer constant,
2116 	 so use bitsize as fallback for this case.  */
2117       if (tree_fits_uhwi_p (maxsize))
2118 	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2119 		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2120       else
2121 	maxbitsize = bitsize;
2122     }
2123 
2124   /* Only if we don't artificially break up the representative in
2125      the middle of a large bitfield with different possibly
2126      overlapping representatives.  And all representatives start
2127      at byte offset.  */
2128   gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2129 
2130   /* Find the smallest nice mode to use.  */
2131   opt_scalar_int_mode mode_iter;
2132   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2133     if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2134       break;
2135 
2136   scalar_int_mode mode;
2137   if (!mode_iter.exists (&mode)
2138       || GET_MODE_BITSIZE (mode) > maxbitsize
2139       || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2140     {
2141       /* We really want a BLKmode representative only as a last resort,
2142          considering the member b in
2143 	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2144 	 Otherwise we simply want to split the representative up
2145 	 allowing for overlaps within the bitfield region as required for
2146 	   struct { int a : 7; int b : 7;
2147 		    int c : 10; int d; } __attribute__((packed));
2148 	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
2149       DECL_SIZE (repr) = bitsize_int (bitsize);
2150       DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2151       SET_DECL_MODE (repr, BLKmode);
2152       TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2153 						 bitsize / BITS_PER_UNIT);
2154     }
2155   else
2156     {
2157       unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2158       DECL_SIZE (repr) = bitsize_int (modesize);
2159       DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2160       SET_DECL_MODE (repr, mode);
2161       TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2162     }
2163 
2164   /* Remember whether the bitfield group is at the end of the
2165      structure or not.  */
2166   DECL_CHAIN (repr) = nextf;
2167 }
2168 
2169 /* Compute and set FIELD_DECLs for the underlying objects we should
2170    use for bitfield access for the structure T.  */
2171 
2172 void
finish_bitfield_layout(tree t)2173 finish_bitfield_layout (tree t)
2174 {
2175   tree field, prev;
2176   tree repr = NULL_TREE;
2177 
2178   if (TREE_CODE (t) == QUAL_UNION_TYPE)
2179     return;
2180 
2181   for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2182        field; field = DECL_CHAIN (field))
2183     {
2184       if (TREE_CODE (field) != FIELD_DECL)
2185 	continue;
2186 
2187       /* In the C++ memory model, consecutive bit fields in a structure are
2188 	 considered one memory location and updating a memory location
2189 	 may not store into adjacent memory locations.  */
2190       if (!repr
2191 	  && DECL_BIT_FIELD_TYPE (field))
2192 	{
2193 	  /* Start new representative.  */
2194 	  repr = start_bitfield_representative (field);
2195 	}
2196       else if (repr
2197 	       && ! DECL_BIT_FIELD_TYPE (field))
2198 	{
2199 	  /* Finish off new representative.  */
2200 	  finish_bitfield_representative (repr, prev);
2201 	  repr = NULL_TREE;
2202 	}
2203       else if (DECL_BIT_FIELD_TYPE (field))
2204 	{
2205 	  gcc_assert (repr != NULL_TREE);
2206 
2207 	  /* Zero-size bitfields finish off a representative and
2208 	     do not have a representative themselves.  This is
2209 	     required by the C++ memory model.  */
2210 	  if (integer_zerop (DECL_SIZE (field)))
2211 	    {
2212 	      finish_bitfield_representative (repr, prev);
2213 	      repr = NULL_TREE;
2214 	    }
2215 
2216 	  /* We assume that either DECL_FIELD_OFFSET of the representative
2217 	     and each bitfield member is a constant or they are equal.
2218 	     This is because we need to be able to compute the bit-offset
2219 	     of each field relative to the representative in get_bit_range
2220 	     during RTL expansion.
2221 	     If these constraints are not met, simply force a new
2222 	     representative to be generated.  That will at most
2223 	     generate worse code but still maintain correctness with
2224 	     respect to the C++ memory model.  */
2225 	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2226 		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2227 		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
2228 					 DECL_FIELD_OFFSET (field), 0)))
2229 	    {
2230 	      finish_bitfield_representative (repr, prev);
2231 	      repr = start_bitfield_representative (field);
2232 	    }
2233 	}
2234       else
2235 	continue;
2236 
2237       if (repr)
2238 	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2239 
2240       if (TREE_CODE (t) == RECORD_TYPE)
2241 	prev = field;
2242       else if (repr)
2243 	{
2244 	  finish_bitfield_representative (repr, field);
2245 	  repr = NULL_TREE;
2246 	}
2247     }
2248 
2249   if (repr)
2250     finish_bitfield_representative (repr, prev);
2251 }
2252 
2253 /* Do all of the work required to layout the type indicated by RLI,
2254    once the fields have been laid out.  This function will call `free'
2255    for RLI, unless FREE_P is false.  Passing a value other than false
2256    for FREE_P is bad practice; this option only exists to support the
2257    G++ 3.2 ABI.  */
2258 
2259 void
finish_record_layout(record_layout_info rli,int free_p)2260 finish_record_layout (record_layout_info rli, int free_p)
2261 {
2262   tree variant;
2263 
2264   /* Compute the final size.  */
2265   finalize_record_size (rli);
2266 
2267   /* Compute the TYPE_MODE for the record.  */
2268   compute_record_mode (rli->t);
2269 
2270   /* Perform any last tweaks to the TYPE_SIZE, etc.  */
2271   finalize_type_size (rli->t);
2272 
2273   /* Compute bitfield representatives.  */
2274   finish_bitfield_layout (rli->t);
2275 
2276   /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2277      With C++ templates, it is too early to do this when the attribute
2278      is being parsed.  */
2279   for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2280        variant = TYPE_NEXT_VARIANT (variant))
2281     {
2282       TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2283       TYPE_REVERSE_STORAGE_ORDER (variant)
2284 	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
2285     }
2286 
2287   /* Lay out any static members.  This is done now because their type
2288      may use the record's type.  */
2289   while (!vec_safe_is_empty (rli->pending_statics))
2290     layout_decl (rli->pending_statics->pop (), 0);
2291 
2292   /* Clean up.  */
2293   if (free_p)
2294     {
2295       vec_free (rli->pending_statics);
2296       free (rli);
2297     }
2298 }
2299 
2300 
2301 /* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
2302    NAME, its fields are chained in reverse on FIELDS.
2303 
2304    If ALIGN_TYPE is non-null, it is given the same alignment as
2305    ALIGN_TYPE.  */
2306 
2307 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2308 finish_builtin_struct (tree type, const char *name, tree fields,
2309 		       tree align_type)
2310 {
2311   tree tail, next;
2312 
2313   for (tail = NULL_TREE; fields; tail = fields, fields = next)
2314     {
2315       DECL_FIELD_CONTEXT (fields) = type;
2316       next = DECL_CHAIN (fields);
2317       DECL_CHAIN (fields) = tail;
2318     }
2319   TYPE_FIELDS (type) = tail;
2320 
2321   if (align_type)
2322     {
2323       SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2324       TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2325       SET_TYPE_WARN_IF_NOT_ALIGN (type,
2326 				  TYPE_WARN_IF_NOT_ALIGN (align_type));
2327     }
2328 
2329   layout_type (type);
2330 #if 0 /* not yet, should get fixed properly later */
2331   TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2332 #else
2333   TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2334 				 TYPE_DECL, get_identifier (name), type);
2335 #endif
2336   TYPE_STUB_DECL (type) = TYPE_NAME (type);
2337   layout_decl (TYPE_NAME (type), 0);
2338 }
2339 
2340 /* Calculate the mode, size, and alignment for TYPE.
2341    For an array type, calculate the element separation as well.
2342    Record TYPE on the chain of permanent or temporary types
2343    so that dbxout will find out about it.
2344 
2345    TYPE_SIZE of a type is nonzero if the type has been laid out already.
2346    layout_type does nothing on such a type.
2347 
2348    If the type is incomplete, its TYPE_SIZE remains zero.  */
2349 
2350 void
layout_type(tree type)2351 layout_type (tree type)
2352 {
2353   gcc_assert (type);
2354 
2355   if (type == error_mark_node)
2356     return;
2357 
2358   /* We don't want finalize_type_size to copy an alignment attribute to
2359      variants that don't have it.  */
2360   type = TYPE_MAIN_VARIANT (type);
2361 
2362   /* Do nothing if type has been laid out before.  */
2363   if (TYPE_SIZE (type))
2364     return;
2365 
2366   switch (TREE_CODE (type))
2367     {
2368     case LANG_TYPE:
2369       /* This kind of type is the responsibility
2370 	 of the language-specific code.  */
2371       gcc_unreachable ();
2372 
2373     case BOOLEAN_TYPE:
2374     case INTEGER_TYPE:
2375     case ENUMERAL_TYPE:
2376       {
2377 	scalar_int_mode mode
2378 	  = smallest_int_mode_for_size (TYPE_PRECISION (type));
2379 	SET_TYPE_MODE (type, mode);
2380 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2381 	/* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
2382 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2383 	break;
2384       }
2385 
2386     case REAL_TYPE:
2387       {
2388 	/* Allow the caller to choose the type mode, which is how decimal
2389 	   floats are distinguished from binary ones.  */
2390 	if (TYPE_MODE (type) == VOIDmode)
2391 	  SET_TYPE_MODE
2392 	    (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2393 	scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2394 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2395 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2396 	break;
2397       }
2398 
2399    case FIXED_POINT_TYPE:
2400      {
2401        /* TYPE_MODE (type) has been set already.  */
2402        scalar_mode mode = SCALAR_TYPE_MODE (type);
2403        TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2404        TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2405        break;
2406      }
2407 
2408     case COMPLEX_TYPE:
2409       TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2410       SET_TYPE_MODE (type,
2411 		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2412 
2413       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2414       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2415       break;
2416 
2417     case VECTOR_TYPE:
2418       {
2419 	poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2420 	tree innertype = TREE_TYPE (type);
2421 
2422 	/* Find an appropriate mode for the vector type.  */
2423 	if (TYPE_MODE (type) == VOIDmode)
2424 	  SET_TYPE_MODE (type,
2425 			 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2426 					  nunits).else_blk ());
2427 
2428 	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2429         TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2430 	/* Several boolean vector elements may fit in a single unit.  */
2431 	if (VECTOR_BOOLEAN_TYPE_P (type)
2432 	    && type->type_common.mode != BLKmode)
2433 	  TYPE_SIZE_UNIT (type)
2434 	    = size_int (GET_MODE_SIZE (type->type_common.mode));
2435 	else
2436 	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2437 						   TYPE_SIZE_UNIT (innertype),
2438 						   size_int (nunits));
2439 	TYPE_SIZE (type) = int_const_binop
2440 	  (MULT_EXPR,
2441 	   bits_from_bytes (TYPE_SIZE_UNIT (type)),
2442 	   bitsize_int (BITS_PER_UNIT));
2443 
2444 	/* For vector types, we do not default to the mode's alignment.
2445 	   Instead, query a target hook, defaulting to natural alignment.
2446 	   This prevents ABI changes depending on whether or not native
2447 	   vector modes are supported.  */
2448 	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2449 
2450 	/* However, if the underlying mode requires a bigger alignment than
2451 	   what the target hook provides, we cannot use the mode.  For now,
2452 	   simply reject that case.  */
2453 	gcc_assert (TYPE_ALIGN (type)
2454 		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2455         break;
2456       }
2457 
2458     case VOID_TYPE:
2459       /* This is an incomplete type and so doesn't have a size.  */
2460       SET_TYPE_ALIGN (type, 1);
2461       TYPE_USER_ALIGN (type) = 0;
2462       SET_TYPE_MODE (type, VOIDmode);
2463       break;
2464 
2465     case OFFSET_TYPE:
2466       TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2467       TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2468       /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2469 	 integral, which may be an __intN.  */
2470       SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2471       TYPE_PRECISION (type) = POINTER_SIZE;
2472       break;
2473 
2474     case FUNCTION_TYPE:
2475     case METHOD_TYPE:
2476       /* It's hard to see what the mode and size of a function ought to
2477 	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2478 	 make it consistent with that.  */
2479       SET_TYPE_MODE (type,
2480 		     int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2481       TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2482       TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2483       break;
2484 
2485     case POINTER_TYPE:
2486     case REFERENCE_TYPE:
2487       {
2488 	scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2489 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2490 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2491 	TYPE_UNSIGNED (type) = 1;
2492 	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2493       }
2494       break;
2495 
2496     case ARRAY_TYPE:
2497       {
2498 	tree index = TYPE_DOMAIN (type);
2499 	tree element = TREE_TYPE (type);
2500 
2501 	/* We need to know both bounds in order to compute the size.  */
2502 	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2503 	    && TYPE_SIZE (element))
2504 	  {
2505 	    tree ub = TYPE_MAX_VALUE (index);
2506 	    tree lb = TYPE_MIN_VALUE (index);
2507 	    tree element_size = TYPE_SIZE (element);
2508 	    tree length;
2509 
2510 	    /* Make sure that an array of zero-sized element is zero-sized
2511 	       regardless of its extent.  */
2512 	    if (integer_zerop (element_size))
2513 	      length = size_zero_node;
2514 
2515 	    /* The computation should happen in the original signedness so
2516 	       that (possible) negative values are handled appropriately
2517 	       when determining overflow.  */
2518 	    else
2519 	      {
2520 		/* ???  When it is obvious that the range is signed
2521 		   represent it using ssizetype.  */
2522 		if (TREE_CODE (lb) == INTEGER_CST
2523 		    && TREE_CODE (ub) == INTEGER_CST
2524 		    && TYPE_UNSIGNED (TREE_TYPE (lb))
2525 		    && tree_int_cst_lt (ub, lb))
2526 		  {
2527 		    lb = wide_int_to_tree (ssizetype,
2528 					   offset_int::from (wi::to_wide (lb),
2529 							     SIGNED));
2530 		    ub = wide_int_to_tree (ssizetype,
2531 					   offset_int::from (wi::to_wide (ub),
2532 							     SIGNED));
2533 		  }
2534 		length
2535 		  = fold_convert (sizetype,
2536 				  size_binop (PLUS_EXPR,
2537 					      build_int_cst (TREE_TYPE (lb), 1),
2538 					      size_binop (MINUS_EXPR, ub, lb)));
2539 	      }
2540 
2541 	    /* ??? We have no way to distinguish a null-sized array from an
2542 	       array spanning the whole sizetype range, so we arbitrarily
2543 	       decide that [0, -1] is the only valid representation.  */
2544 	    if (integer_zerop (length)
2545 	        && TREE_OVERFLOW (length)
2546 		&& integer_zerop (lb))
2547 	      length = size_zero_node;
2548 
2549 	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2550 					   bits_from_bytes (length));
2551 
2552 	    /* If we know the size of the element, calculate the total size
2553 	       directly, rather than do some division thing below.  This
2554 	       optimization helps Fortran assumed-size arrays (where the
2555 	       size of the array is determined at runtime) substantially.  */
2556 	    if (TYPE_SIZE_UNIT (element))
2557 	      TYPE_SIZE_UNIT (type)
2558 		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2559 	  }
2560 
2561 	/* Now round the alignment and size,
2562 	   using machine-dependent criteria if any.  */
2563 
2564 	unsigned align = TYPE_ALIGN (element);
2565 	if (TYPE_USER_ALIGN (type))
2566 	  align = MAX (align, TYPE_ALIGN (type));
2567 	else
2568 	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2569 	if (!TYPE_WARN_IF_NOT_ALIGN (type))
2570 	  SET_TYPE_WARN_IF_NOT_ALIGN (type,
2571 				      TYPE_WARN_IF_NOT_ALIGN (element));
2572 #ifdef ROUND_TYPE_ALIGN
2573 	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2574 #else
2575 	align = MAX (align, BITS_PER_UNIT);
2576 #endif
2577 	SET_TYPE_ALIGN (type, align);
2578 	SET_TYPE_MODE (type, BLKmode);
2579 	if (TYPE_SIZE (type) != 0
2580 	    && ! targetm.member_type_forces_blk (type, VOIDmode)
2581 	    /* BLKmode elements force BLKmode aggregate;
2582 	       else extract/store fields may lose.  */
2583 	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2584 		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2585 	  {
2586 	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2587 						 TYPE_SIZE (type)));
2588 	    if (TYPE_MODE (type) != BLKmode
2589 		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2590 		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2591 	      {
2592 		TYPE_NO_FORCE_BLK (type) = 1;
2593 		SET_TYPE_MODE (type, BLKmode);
2594 	      }
2595 	  }
2596 	if (AGGREGATE_TYPE_P (element))
2597 	  TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2598 	/* When the element size is constant, check that it is at least as
2599 	   large as the element alignment.  */
2600 	if (TYPE_SIZE_UNIT (element)
2601 	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2602 	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2603 	       TYPE_ALIGN_UNIT.  */
2604 	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2605 	    && !integer_zerop (TYPE_SIZE_UNIT (element)))
2606 	  {
2607 	    if (compare_tree_int (TYPE_SIZE_UNIT (element),
2608 				  TYPE_ALIGN_UNIT (element)) < 0)
2609 	      error ("alignment of array elements is greater than "
2610 		     "element size");
2611 	    else if (TYPE_ALIGN_UNIT (element) > 1
2612 		     && (wi::zext (wi::to_wide (TYPE_SIZE_UNIT (element)),
2613 				  ffs_hwi (TYPE_ALIGN_UNIT (element)) - 1)
2614 			 != 0))
2615 	      error ("size of array element is not a multiple of its "
2616 		     "alignment");
2617 	  }
2618 	break;
2619       }
2620 
2621     case RECORD_TYPE:
2622     case UNION_TYPE:
2623     case QUAL_UNION_TYPE:
2624       {
2625 	tree field;
2626 	record_layout_info rli;
2627 
2628 	/* Initialize the layout information.  */
2629 	rli = start_record_layout (type);
2630 
2631 	/* If this is a QUAL_UNION_TYPE, we want to process the fields
2632 	   in the reverse order in building the COND_EXPR that denotes
2633 	   its size.  We reverse them again later.  */
2634 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2635 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2636 
2637 	/* Place all the fields.  */
2638 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2639 	  place_field (rli, field);
2640 
2641 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2642 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2643 
2644 	/* Finish laying out the record.  */
2645 	finish_record_layout (rli, /*free_p=*/true);
2646       }
2647       break;
2648 
2649     default:
2650       gcc_unreachable ();
2651     }
2652 
2653   /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
2654      records and unions, finish_record_layout already called this
2655      function.  */
2656   if (!RECORD_OR_UNION_TYPE_P (type))
2657     finalize_type_size (type);
2658 
2659   /* We should never see alias sets on incomplete aggregates.  And we
2660      should not call layout_type on not incomplete aggregates.  */
2661   if (AGGREGATE_TYPE_P (type))
2662     gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2663 }
2664 
2665 /* Return the least alignment required for type TYPE.  */
2666 
2667 unsigned int
min_align_of_type(tree type)2668 min_align_of_type (tree type)
2669 {
2670   unsigned int align = TYPE_ALIGN (type);
2671   if (!TYPE_USER_ALIGN (type))
2672     {
2673       align = MIN (align, BIGGEST_ALIGNMENT);
2674 #ifdef BIGGEST_FIELD_ALIGNMENT
2675       align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2676 #endif
2677       unsigned int field_align = align;
2678 #ifdef ADJUST_FIELD_ALIGN
2679       field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2680 #endif
2681       align = MIN (align, field_align);
2682     }
2683   return align / BITS_PER_UNIT;
2684 }
2685 
2686 /* Create and return a type for signed integers of PRECISION bits.  */
2687 
2688 tree
make_signed_type(int precision)2689 make_signed_type (int precision)
2690 {
2691   tree type = make_node (INTEGER_TYPE);
2692 
2693   TYPE_PRECISION (type) = precision;
2694 
2695   fixup_signed_type (type);
2696   return type;
2697 }
2698 
2699 /* Create and return a type for unsigned integers of PRECISION bits.  */
2700 
2701 tree
make_unsigned_type(int precision)2702 make_unsigned_type (int precision)
2703 {
2704   tree type = make_node (INTEGER_TYPE);
2705 
2706   TYPE_PRECISION (type) = precision;
2707 
2708   fixup_unsigned_type (type);
2709   return type;
2710 }
2711 
2712 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2713    and SATP.  */
2714 
2715 tree
make_fract_type(int precision,int unsignedp,int satp)2716 make_fract_type (int precision, int unsignedp, int satp)
2717 {
2718   tree type = make_node (FIXED_POINT_TYPE);
2719 
2720   TYPE_PRECISION (type) = precision;
2721 
2722   if (satp)
2723     TYPE_SATURATING (type) = 1;
2724 
2725   /* Lay out the type: set its alignment, size, etc.  */
2726   TYPE_UNSIGNED (type) = unsignedp;
2727   enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2728   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2729   layout_type (type);
2730 
2731   return type;
2732 }
2733 
2734 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2735    and SATP.  */
2736 
2737 tree
make_accum_type(int precision,int unsignedp,int satp)2738 make_accum_type (int precision, int unsignedp, int satp)
2739 {
2740   tree type = make_node (FIXED_POINT_TYPE);
2741 
2742   TYPE_PRECISION (type) = precision;
2743 
2744   if (satp)
2745     TYPE_SATURATING (type) = 1;
2746 
2747   /* Lay out the type: set its alignment, size, etc.  */
2748   TYPE_UNSIGNED (type) = unsignedp;
2749   enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2750   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2751   layout_type (type);
2752 
2753   return type;
2754 }
2755 
2756 /* Initialize sizetypes so layout_type can use them.  */
2757 
2758 void
initialize_sizetypes(void)2759 initialize_sizetypes (void)
2760 {
2761   int precision, bprecision;
2762 
2763   /* Get sizetypes precision from the SIZE_TYPE target macro.  */
2764   if (strcmp (SIZETYPE, "unsigned int") == 0)
2765     precision = INT_TYPE_SIZE;
2766   else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2767     precision = LONG_TYPE_SIZE;
2768   else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2769     precision = LONG_LONG_TYPE_SIZE;
2770   else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2771     precision = SHORT_TYPE_SIZE;
2772   else
2773     {
2774       int i;
2775 
2776       precision = -1;
2777       for (i = 0; i < NUM_INT_N_ENTS; i++)
2778 	if (int_n_enabled_p[i])
2779 	  {
2780 	    char name[50], altname[50];
2781 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2782 	    sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
2783 
2784 	    if (strcmp (name, SIZETYPE) == 0
2785 		|| strcmp (altname, SIZETYPE) == 0)
2786 	      {
2787 		precision = int_n_data[i].bitsize;
2788 	      }
2789 	  }
2790       if (precision == -1)
2791 	gcc_unreachable ();
2792     }
2793 
2794   bprecision
2795     = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2796   bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2797   if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2798     bprecision = HOST_BITS_PER_DOUBLE_INT;
2799 
2800   /* Create stubs for sizetype and bitsizetype so we can create constants.  */
2801   sizetype = make_node (INTEGER_TYPE);
2802   TYPE_NAME (sizetype) = get_identifier ("sizetype");
2803   TYPE_PRECISION (sizetype) = precision;
2804   TYPE_UNSIGNED (sizetype) = 1;
2805   bitsizetype = make_node (INTEGER_TYPE);
2806   TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2807   TYPE_PRECISION (bitsizetype) = bprecision;
2808   TYPE_UNSIGNED (bitsizetype) = 1;
2809 
2810   /* Now layout both types manually.  */
2811   scalar_int_mode mode = smallest_int_mode_for_size (precision);
2812   SET_TYPE_MODE (sizetype, mode);
2813   SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2814   TYPE_SIZE (sizetype) = bitsize_int (precision);
2815   TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2816   set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2817 
2818   mode = smallest_int_mode_for_size (bprecision);
2819   SET_TYPE_MODE (bitsizetype, mode);
2820   SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2821   TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2822   TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2823   set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2824 
2825   /* Create the signed variants of *sizetype.  */
2826   ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2827   TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2828   sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2829   TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2830 }
2831 
2832 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2833    or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2834    for TYPE, based on the PRECISION and whether or not the TYPE
2835    IS_UNSIGNED.  PRECISION need not correspond to a width supported
2836    natively by the hardware; for example, on a machine with 8-bit,
2837    16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2838    61.  */
2839 
2840 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2841 set_min_and_max_values_for_integral_type (tree type,
2842 					  int precision,
2843 					  signop sgn)
2844 {
2845   /* For bitfields with zero width we end up creating integer types
2846      with zero precision.  Don't assign any minimum/maximum values
2847      to those types, they don't have any valid value.  */
2848   if (precision < 1)
2849     return;
2850 
2851   gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2852 
2853   TYPE_MIN_VALUE (type)
2854     = wide_int_to_tree (type, wi::min_value (precision, sgn));
2855   TYPE_MAX_VALUE (type)
2856     = wide_int_to_tree (type, wi::max_value (precision, sgn));
2857 }
2858 
2859 /* Set the extreme values of TYPE based on its precision in bits,
2860    then lay it out.  Used when make_signed_type won't do
2861    because the tree code is not INTEGER_TYPE.  */
2862 
2863 void
fixup_signed_type(tree type)2864 fixup_signed_type (tree type)
2865 {
2866   int precision = TYPE_PRECISION (type);
2867 
2868   set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2869 
2870   /* Lay out the type: set its alignment, size, etc.  */
2871   layout_type (type);
2872 }
2873 
2874 /* Set the extreme values of TYPE based on its precision in bits,
2875    then lay it out.  This is used both in `make_unsigned_type'
2876    and for enumeral types.  */
2877 
2878 void
fixup_unsigned_type(tree type)2879 fixup_unsigned_type (tree type)
2880 {
2881   int precision = TYPE_PRECISION (type);
2882 
2883   TYPE_UNSIGNED (type) = 1;
2884 
2885   set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2886 
2887   /* Lay out the type: set its alignment, size, etc.  */
2888   layout_type (type);
2889 }
2890 
2891 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2892    starting at BITPOS.
2893 
2894    BITREGION_START is the bit position of the first bit in this
2895    sequence of bit fields.  BITREGION_END is the last bit in this
2896    sequence.  If these two fields are non-zero, we should restrict the
2897    memory access to that range.  Otherwise, we are allowed to touch
2898    any adjacent non bit-fields.
2899 
2900    ALIGN is the alignment of the underlying object in bits.
2901    VOLATILEP says whether the bitfield is volatile.  */
2902 
2903 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2904 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2905 			   poly_int64 bitregion_start,
2906 			   poly_int64 bitregion_end,
2907 			   unsigned int align, bool volatilep)
2908 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2909   m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2910   m_bitregion_end (bitregion_end), m_align (align),
2911   m_volatilep (volatilep), m_count (0)
2912 {
2913   if (known_eq (m_bitregion_end, 0))
2914     {
2915       /* We can assume that any aligned chunk of ALIGN bits that overlaps
2916 	 the bitfield is mapped and won't trap, provided that ALIGN isn't
2917 	 too large.  The cap is the biggest required alignment for data,
2918 	 or at least the word size.  And force one such chunk at least.  */
2919       unsigned HOST_WIDE_INT units
2920 	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2921       if (bitsize <= 0)
2922 	bitsize = 1;
2923       HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2924       m_bitregion_end = end - end % units - 1;
2925     }
2926 }
2927 
2928 /* Calls to this function return successively larger modes that can be used
2929    to represent the bitfield.  Return true if another bitfield mode is
2930    available, storing it in *OUT_MODE if so.  */
2931 
2932 bool
next_mode(scalar_int_mode * out_mode)2933 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2934 {
2935   scalar_int_mode mode;
2936   for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2937     {
2938       unsigned int unit = GET_MODE_BITSIZE (mode);
2939 
2940       /* Skip modes that don't have full precision.  */
2941       if (unit != GET_MODE_PRECISION (mode))
2942 	continue;
2943 
2944       /* Stop if the mode is too wide to handle efficiently.  */
2945       if (unit > MAX_FIXED_MODE_SIZE)
2946 	break;
2947 
2948       /* Don't deliver more than one multiword mode; the smallest one
2949 	 should be used.  */
2950       if (m_count > 0 && unit > BITS_PER_WORD)
2951 	break;
2952 
2953       /* Skip modes that are too small.  */
2954       unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2955       unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2956       if (subend > unit)
2957 	continue;
2958 
2959       /* Stop if the mode goes outside the bitregion.  */
2960       HOST_WIDE_INT start = m_bitpos - substart;
2961       if (maybe_ne (m_bitregion_start, 0)
2962 	  && maybe_lt (start, m_bitregion_start))
2963 	break;
2964       HOST_WIDE_INT end = start + unit;
2965       if (maybe_gt (end, m_bitregion_end + 1))
2966 	break;
2967 
2968       /* Stop if the mode requires too much alignment.  */
2969       if (GET_MODE_ALIGNMENT (mode) > m_align
2970 	  && targetm.slow_unaligned_access (mode, m_align))
2971 	break;
2972 
2973       *out_mode = mode;
2974       m_mode = GET_MODE_WIDER_MODE (mode);
2975       m_count++;
2976       return true;
2977     }
2978   return false;
2979 }
2980 
2981 /* Return true if smaller modes are generally preferred for this kind
2982    of bitfield.  */
2983 
2984 bool
prefer_smaller_modes()2985 bit_field_mode_iterator::prefer_smaller_modes ()
2986 {
2987   return (m_volatilep
2988 	  ? targetm.narrow_volatile_bitfield ()
2989 	  : !SLOW_BYTE_ACCESS);
2990 }
2991 
2992 /* Find the best machine mode to use when referencing a bit field of length
2993    BITSIZE bits starting at BITPOS.
2994 
2995    BITREGION_START is the bit position of the first bit in this
2996    sequence of bit fields.  BITREGION_END is the last bit in this
2997    sequence.  If these two fields are non-zero, we should restrict the
2998    memory access to that range.  Otherwise, we are allowed to touch
2999    any adjacent non bit-fields.
3000 
3001    The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
3002    INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
3003    doesn't want to apply a specific limit.
3004 
3005    If no mode meets all these conditions, we return VOIDmode.
3006 
3007    The underlying object is known to be aligned to a boundary of ALIGN bits.
3008 
3009    If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
3010    smallest mode meeting these conditions.
3011 
3012    If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
3013    largest mode (but a mode no wider than UNITS_PER_WORD) that meets
3014    all the conditions.
3015 
3016    If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
3017    decide which of the above modes should be used.  */
3018 
3019 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)3020 get_best_mode (int bitsize, int bitpos,
3021 	       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
3022 	       unsigned int align,
3023 	       unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
3024 	       scalar_int_mode *best_mode)
3025 {
3026   bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
3027 				bitregion_end, align, volatilep);
3028   scalar_int_mode mode;
3029   bool found = false;
3030   while (iter.next_mode (&mode)
3031 	 /* ??? For historical reasons, reject modes that would normally
3032 	    receive greater alignment, even if unaligned accesses are
3033 	    acceptable.  This has both advantages and disadvantages.
3034 	    Removing this check means that something like:
3035 
3036 	       struct s { unsigned int x; unsigned int y; };
3037 	       int f (struct s *s) { return s->x == 0 && s->y == 0; }
3038 
3039 	    can be implemented using a single load and compare on
3040 	    64-bit machines that have no alignment restrictions.
3041 	    For example, on powerpc64-linux-gnu, we would generate:
3042 
3043 		    ld 3,0(3)
3044 		    cntlzd 3,3
3045 		    srdi 3,3,6
3046 		    blr
3047 
3048 	    rather than:
3049 
3050 		    lwz 9,0(3)
3051 		    cmpwi 7,9,0
3052 		    bne 7,.L3
3053 		    lwz 3,4(3)
3054 		    cntlzw 3,3
3055 		    srwi 3,3,5
3056 		    extsw 3,3
3057 		    blr
3058 		    .p2align 4,,15
3059 	    .L3:
3060 		    li 3,0
3061 		    blr
3062 
3063 	    However, accessing more than one field can make life harder
3064 	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
3065 	    has a series of unsigned short copies followed by a series of
3066 	    unsigned short comparisons.  With this check, both the copies
3067 	    and comparisons remain 16-bit accesses and FRE is able
3068 	    to eliminate the latter.  Without the check, the comparisons
3069 	    can be done using 2 64-bit operations, which FRE isn't able
3070 	    to handle in the same way.
3071 
3072 	    Either way, it would probably be worth disabling this check
3073 	    during expand.  One particular example where removing the
3074 	    check would help is the get_best_mode call in store_bit_field.
3075 	    If we are given a memory bitregion of 128 bits that is aligned
3076 	    to a 64-bit boundary, and the bitfield we want to modify is
3077 	    in the second half of the bitregion, this check causes
3078 	    store_bitfield to turn the memory into a 64-bit reference
3079 	    to the _first_ half of the region.  We later use
3080 	    adjust_bitfield_address to get a reference to the correct half,
3081 	    but doing so looks to adjust_bitfield_address as though we are
3082 	    moving past the end of the original object, so it drops the
3083 	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
3084 	    causes store_bit_field to keep a 128-bit memory reference,
3085 	    so that the final bitfield reference still has a MEM_EXPR
3086 	    and MEM_OFFSET.  */
3087 	 && GET_MODE_ALIGNMENT (mode) <= align
3088 	 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3089     {
3090       *best_mode = mode;
3091       found = true;
3092       if (iter.prefer_smaller_modes ())
3093 	break;
3094     }
3095 
3096   return found;
3097 }
3098 
3099 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3100    SIGN).  The returned constants are made to be usable in TARGET_MODE.  */
3101 
3102 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3103 get_mode_bounds (scalar_int_mode mode, int sign,
3104 		 scalar_int_mode target_mode,
3105 		 rtx *mmin, rtx *mmax)
3106 {
3107   unsigned size = GET_MODE_PRECISION (mode);
3108   unsigned HOST_WIDE_INT min_val, max_val;
3109 
3110   gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3111 
3112   /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
3113   if (mode == BImode)
3114     {
3115       if (STORE_FLAG_VALUE < 0)
3116 	{
3117 	  min_val = STORE_FLAG_VALUE;
3118 	  max_val = 0;
3119 	}
3120       else
3121 	{
3122 	  min_val = 0;
3123 	  max_val = STORE_FLAG_VALUE;
3124 	}
3125     }
3126   else if (sign)
3127     {
3128       min_val = -(HOST_WIDE_INT_1U << (size - 1));
3129       max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3130     }
3131   else
3132     {
3133       min_val = 0;
3134       max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3135     }
3136 
3137   *mmin = gen_int_mode (min_val, target_mode);
3138   *mmax = gen_int_mode (max_val, target_mode);
3139 }
3140 
3141 #include "gt-stor-layout.h"
3142