1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package flate implements the DEFLATE compressed data format, described in
6// RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
7// formats.
8package flate
9
10import (
11	"bufio"
12	"io"
13	"math/bits"
14	"strconv"
15	"sync"
16)
17
18const (
19	maxCodeLen = 16 // max length of Huffman code
20	// The next three numbers come from the RFC section 3.2.7, with the
21	// additional proviso in section 3.2.5 which implies that distance codes
22	// 30 and 31 should never occur in compressed data.
23	maxNumLit  = 286
24	maxNumDist = 30
25	numCodes   = 19 // number of codes in Huffman meta-code
26)
27
28// Initialize the fixedHuffmanDecoder only once upon first use.
29var fixedOnce sync.Once
30var fixedHuffmanDecoder huffmanDecoder
31
32// A CorruptInputError reports the presence of corrupt input at a given offset.
33type CorruptInputError int64
34
35func (e CorruptInputError) Error() string {
36	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
37}
38
39// An InternalError reports an error in the flate code itself.
40type InternalError string
41
42func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
43
44// A ReadError reports an error encountered while reading input.
45//
46// Deprecated: No longer returned.
47type ReadError struct {
48	Offset int64 // byte offset where error occurred
49	Err    error // error returned by underlying Read
50}
51
52func (e *ReadError) Error() string {
53	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
54}
55
56// A WriteError reports an error encountered while writing output.
57//
58// Deprecated: No longer returned.
59type WriteError struct {
60	Offset int64 // byte offset where error occurred
61	Err    error // error returned by underlying Write
62}
63
64func (e *WriteError) Error() string {
65	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
66}
67
68// Resetter resets a ReadCloser returned by NewReader or NewReaderDict
69// to switch to a new underlying Reader. This permits reusing a ReadCloser
70// instead of allocating a new one.
71type Resetter interface {
72	// Reset discards any buffered data and resets the Resetter as if it was
73	// newly initialized with the given reader.
74	Reset(r io.Reader, dict []byte) error
75}
76
77// The data structure for decoding Huffman tables is based on that of
78// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
79// For codes smaller than the table width, there are multiple entries
80// (each combination of trailing bits has the same value). For codes
81// larger than the table width, the table contains a link to an overflow
82// table. The width of each entry in the link table is the maximum code
83// size minus the chunk width.
84//
85// Note that you can do a lookup in the table even without all bits
86// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
87// have the property that shorter codes come before longer ones, the
88// bit length estimate in the result is a lower bound on the actual
89// number of bits.
90//
91// See the following:
92//	https://github.com/madler/zlib/raw/master/doc/algorithm.txt
93
94// chunk & 15 is number of bits
95// chunk >> 4 is value, including table link
96
97const (
98	huffmanChunkBits  = 9
99	huffmanNumChunks  = 1 << huffmanChunkBits
100	huffmanCountMask  = 15
101	huffmanValueShift = 4
102)
103
104type huffmanDecoder struct {
105	min      int                      // the minimum code length
106	chunks   [huffmanNumChunks]uint32 // chunks as described above
107	links    [][]uint32               // overflow links
108	linkMask uint32                   // mask the width of the link table
109}
110
111// Initialize Huffman decoding tables from array of code lengths.
112// Following this function, h is guaranteed to be initialized into a complete
113// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
114// degenerate case where the tree has only a single symbol with length 1. Empty
115// trees are permitted.
116func (h *huffmanDecoder) init(lengths []int) bool {
117	// Sanity enables additional runtime tests during Huffman
118	// table construction. It's intended to be used during
119	// development to supplement the currently ad-hoc unit tests.
120	const sanity = false
121
122	if h.min != 0 {
123		*h = huffmanDecoder{}
124	}
125
126	// Count number of codes of each length,
127	// compute min and max length.
128	var count [maxCodeLen]int
129	var min, max int
130	for _, n := range lengths {
131		if n == 0 {
132			continue
133		}
134		if min == 0 || n < min {
135			min = n
136		}
137		if n > max {
138			max = n
139		}
140		count[n]++
141	}
142
143	// Empty tree. The decompressor.huffSym function will fail later if the tree
144	// is used. Technically, an empty tree is only valid for the HDIST tree and
145	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
146	// is guaranteed to fail since it will attempt to use the tree to decode the
147	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
148	// guaranteed to fail later since the compressed data section must be
149	// composed of at least one symbol (the end-of-block marker).
150	if max == 0 {
151		return true
152	}
153
154	code := 0
155	var nextcode [maxCodeLen]int
156	for i := min; i <= max; i++ {
157		code <<= 1
158		nextcode[i] = code
159		code += count[i]
160	}
161
162	// Check that the coding is complete (i.e., that we've
163	// assigned all 2-to-the-max possible bit sequences).
164	// Exception: To be compatible with zlib, we also need to
165	// accept degenerate single-code codings. See also
166	// TestDegenerateHuffmanCoding.
167	if code != 1<<uint(max) && !(code == 1 && max == 1) {
168		return false
169	}
170
171	h.min = min
172	if max > huffmanChunkBits {
173		numLinks := 1 << (uint(max) - huffmanChunkBits)
174		h.linkMask = uint32(numLinks - 1)
175
176		// create link tables
177		link := nextcode[huffmanChunkBits+1] >> 1
178		h.links = make([][]uint32, huffmanNumChunks-link)
179		for j := uint(link); j < huffmanNumChunks; j++ {
180			reverse := int(bits.Reverse16(uint16(j)))
181			reverse >>= uint(16 - huffmanChunkBits)
182			off := j - uint(link)
183			if sanity && h.chunks[reverse] != 0 {
184				panic("impossible: overwriting existing chunk")
185			}
186			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
187			h.links[off] = make([]uint32, numLinks)
188		}
189	}
190
191	for i, n := range lengths {
192		if n == 0 {
193			continue
194		}
195		code := nextcode[n]
196		nextcode[n]++
197		chunk := uint32(i<<huffmanValueShift | n)
198		reverse := int(bits.Reverse16(uint16(code)))
199		reverse >>= uint(16 - n)
200		if n <= huffmanChunkBits {
201			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
202				// We should never need to overwrite
203				// an existing chunk. Also, 0 is
204				// never a valid chunk, because the
205				// lower 4 "count" bits should be
206				// between 1 and 15.
207				if sanity && h.chunks[off] != 0 {
208					panic("impossible: overwriting existing chunk")
209				}
210				h.chunks[off] = chunk
211			}
212		} else {
213			j := reverse & (huffmanNumChunks - 1)
214			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
215				// Longer codes should have been
216				// associated with a link table above.
217				panic("impossible: not an indirect chunk")
218			}
219			value := h.chunks[j] >> huffmanValueShift
220			linktab := h.links[value]
221			reverse >>= huffmanChunkBits
222			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
223				if sanity && linktab[off] != 0 {
224					panic("impossible: overwriting existing chunk")
225				}
226				linktab[off] = chunk
227			}
228		}
229	}
230
231	if sanity {
232		// Above we've sanity checked that we never overwrote
233		// an existing entry. Here we additionally check that
234		// we filled the tables completely.
235		for i, chunk := range h.chunks {
236			if chunk == 0 {
237				// As an exception, in the degenerate
238				// single-code case, we allow odd
239				// chunks to be missing.
240				if code == 1 && i%2 == 1 {
241					continue
242				}
243				panic("impossible: missing chunk")
244			}
245		}
246		for _, linktab := range h.links {
247			for _, chunk := range linktab {
248				if chunk == 0 {
249					panic("impossible: missing chunk")
250				}
251			}
252		}
253	}
254
255	return true
256}
257
258// The actual read interface needed by NewReader.
259// If the passed in io.Reader does not also have ReadByte,
260// the NewReader will introduce its own buffering.
261type Reader interface {
262	io.Reader
263	io.ByteReader
264}
265
266// Decompress state.
267type decompressor struct {
268	// Input source.
269	r       Reader
270	roffset int64
271
272	// Input bits, in top of b.
273	b  uint32
274	nb uint
275
276	// Huffman decoders for literal/length, distance.
277	h1, h2 huffmanDecoder
278
279	// Length arrays used to define Huffman codes.
280	bits     *[maxNumLit + maxNumDist]int
281	codebits *[numCodes]int
282
283	// Output history, buffer.
284	dict dictDecoder
285
286	// Temporary buffer (avoids repeated allocation).
287	buf [4]byte
288
289	// Next step in the decompression,
290	// and decompression state.
291	step      func(*decompressor)
292	stepState int
293	final     bool
294	err       error
295	toRead    []byte
296	hl, hd    *huffmanDecoder
297	copyLen   int
298	copyDist  int
299}
300
301func (f *decompressor) nextBlock() {
302	for f.nb < 1+2 {
303		if f.err = f.moreBits(); f.err != nil {
304			return
305		}
306	}
307	f.final = f.b&1 == 1
308	f.b >>= 1
309	typ := f.b & 3
310	f.b >>= 2
311	f.nb -= 1 + 2
312	switch typ {
313	case 0:
314		f.dataBlock()
315	case 1:
316		// compressed, fixed Huffman tables
317		f.hl = &fixedHuffmanDecoder
318		f.hd = nil
319		f.huffmanBlock()
320	case 2:
321		// compressed, dynamic Huffman tables
322		if f.err = f.readHuffman(); f.err != nil {
323			break
324		}
325		f.hl = &f.h1
326		f.hd = &f.h2
327		f.huffmanBlock()
328	default:
329		// 3 is reserved.
330		f.err = CorruptInputError(f.roffset)
331	}
332}
333
334func (f *decompressor) Read(b []byte) (int, error) {
335	for {
336		if len(f.toRead) > 0 {
337			n := copy(b, f.toRead)
338			f.toRead = f.toRead[n:]
339			if len(f.toRead) == 0 {
340				return n, f.err
341			}
342			return n, nil
343		}
344		if f.err != nil {
345			return 0, f.err
346		}
347		f.step(f)
348		if f.err != nil && len(f.toRead) == 0 {
349			f.toRead = f.dict.readFlush() // Flush what's left in case of error
350		}
351	}
352}
353
354func (f *decompressor) Close() error {
355	if f.err == io.EOF {
356		return nil
357	}
358	return f.err
359}
360
361// RFC 1951 section 3.2.7.
362// Compression with dynamic Huffman codes
363
364var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
365
366func (f *decompressor) readHuffman() error {
367	// HLIT[5], HDIST[5], HCLEN[4].
368	for f.nb < 5+5+4 {
369		if err := f.moreBits(); err != nil {
370			return err
371		}
372	}
373	nlit := int(f.b&0x1F) + 257
374	if nlit > maxNumLit {
375		return CorruptInputError(f.roffset)
376	}
377	f.b >>= 5
378	ndist := int(f.b&0x1F) + 1
379	if ndist > maxNumDist {
380		return CorruptInputError(f.roffset)
381	}
382	f.b >>= 5
383	nclen := int(f.b&0xF) + 4
384	// numCodes is 19, so nclen is always valid.
385	f.b >>= 4
386	f.nb -= 5 + 5 + 4
387
388	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
389	for i := 0; i < nclen; i++ {
390		for f.nb < 3 {
391			if err := f.moreBits(); err != nil {
392				return err
393			}
394		}
395		f.codebits[codeOrder[i]] = int(f.b & 0x7)
396		f.b >>= 3
397		f.nb -= 3
398	}
399	for i := nclen; i < len(codeOrder); i++ {
400		f.codebits[codeOrder[i]] = 0
401	}
402	if !f.h1.init(f.codebits[0:]) {
403		return CorruptInputError(f.roffset)
404	}
405
406	// HLIT + 257 code lengths, HDIST + 1 code lengths,
407	// using the code length Huffman code.
408	for i, n := 0, nlit+ndist; i < n; {
409		x, err := f.huffSym(&f.h1)
410		if err != nil {
411			return err
412		}
413		if x < 16 {
414			// Actual length.
415			f.bits[i] = x
416			i++
417			continue
418		}
419		// Repeat previous length or zero.
420		var rep int
421		var nb uint
422		var b int
423		switch x {
424		default:
425			return InternalError("unexpected length code")
426		case 16:
427			rep = 3
428			nb = 2
429			if i == 0 {
430				return CorruptInputError(f.roffset)
431			}
432			b = f.bits[i-1]
433		case 17:
434			rep = 3
435			nb = 3
436			b = 0
437		case 18:
438			rep = 11
439			nb = 7
440			b = 0
441		}
442		for f.nb < nb {
443			if err := f.moreBits(); err != nil {
444				return err
445			}
446		}
447		rep += int(f.b & uint32(1<<nb-1))
448		f.b >>= nb
449		f.nb -= nb
450		if i+rep > n {
451			return CorruptInputError(f.roffset)
452		}
453		for j := 0; j < rep; j++ {
454			f.bits[i] = b
455			i++
456		}
457	}
458
459	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
460		return CorruptInputError(f.roffset)
461	}
462
463	// As an optimization, we can initialize the min bits to read at a time
464	// for the HLIT tree to the length of the EOB marker since we know that
465	// every block must terminate with one. This preserves the property that
466	// we never read any extra bytes after the end of the DEFLATE stream.
467	if f.h1.min < f.bits[endBlockMarker] {
468		f.h1.min = f.bits[endBlockMarker]
469	}
470
471	return nil
472}
473
474// Decode a single Huffman block from f.
475// hl and hd are the Huffman states for the lit/length values
476// and the distance values, respectively. If hd == nil, using the
477// fixed distance encoding associated with fixed Huffman blocks.
478func (f *decompressor) huffmanBlock() {
479	const (
480		stateInit = iota // Zero value must be stateInit
481		stateDict
482	)
483
484	switch f.stepState {
485	case stateInit:
486		goto readLiteral
487	case stateDict:
488		goto copyHistory
489	}
490
491readLiteral:
492	// Read literal and/or (length, distance) according to RFC section 3.2.3.
493	{
494		v, err := f.huffSym(f.hl)
495		if err != nil {
496			f.err = err
497			return
498		}
499		var n uint // number of bits extra
500		var length int
501		switch {
502		case v < 256:
503			f.dict.writeByte(byte(v))
504			if f.dict.availWrite() == 0 {
505				f.toRead = f.dict.readFlush()
506				f.step = (*decompressor).huffmanBlock
507				f.stepState = stateInit
508				return
509			}
510			goto readLiteral
511		case v == 256:
512			f.finishBlock()
513			return
514		// otherwise, reference to older data
515		case v < 265:
516			length = v - (257 - 3)
517			n = 0
518		case v < 269:
519			length = v*2 - (265*2 - 11)
520			n = 1
521		case v < 273:
522			length = v*4 - (269*4 - 19)
523			n = 2
524		case v < 277:
525			length = v*8 - (273*8 - 35)
526			n = 3
527		case v < 281:
528			length = v*16 - (277*16 - 67)
529			n = 4
530		case v < 285:
531			length = v*32 - (281*32 - 131)
532			n = 5
533		case v < maxNumLit:
534			length = 258
535			n = 0
536		default:
537			f.err = CorruptInputError(f.roffset)
538			return
539		}
540		if n > 0 {
541			for f.nb < n {
542				if err = f.moreBits(); err != nil {
543					f.err = err
544					return
545				}
546			}
547			length += int(f.b & uint32(1<<n-1))
548			f.b >>= n
549			f.nb -= n
550		}
551
552		var dist int
553		if f.hd == nil {
554			for f.nb < 5 {
555				if err = f.moreBits(); err != nil {
556					f.err = err
557					return
558				}
559			}
560			dist = int(bits.Reverse8(uint8(f.b & 0x1F << 3)))
561			f.b >>= 5
562			f.nb -= 5
563		} else {
564			if dist, err = f.huffSym(f.hd); err != nil {
565				f.err = err
566				return
567			}
568		}
569
570		switch {
571		case dist < 4:
572			dist++
573		case dist < maxNumDist:
574			nb := uint(dist-2) >> 1
575			// have 1 bit in bottom of dist, need nb more.
576			extra := (dist & 1) << nb
577			for f.nb < nb {
578				if err = f.moreBits(); err != nil {
579					f.err = err
580					return
581				}
582			}
583			extra |= int(f.b & uint32(1<<nb-1))
584			f.b >>= nb
585			f.nb -= nb
586			dist = 1<<(nb+1) + 1 + extra
587		default:
588			f.err = CorruptInputError(f.roffset)
589			return
590		}
591
592		// No check on length; encoding can be prescient.
593		if dist > f.dict.histSize() {
594			f.err = CorruptInputError(f.roffset)
595			return
596		}
597
598		f.copyLen, f.copyDist = length, dist
599		goto copyHistory
600	}
601
602copyHistory:
603	// Perform a backwards copy according to RFC section 3.2.3.
604	{
605		cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
606		if cnt == 0 {
607			cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
608		}
609		f.copyLen -= cnt
610
611		if f.dict.availWrite() == 0 || f.copyLen > 0 {
612			f.toRead = f.dict.readFlush()
613			f.step = (*decompressor).huffmanBlock // We need to continue this work
614			f.stepState = stateDict
615			return
616		}
617		goto readLiteral
618	}
619}
620
621// Copy a single uncompressed data block from input to output.
622func (f *decompressor) dataBlock() {
623	// Uncompressed.
624	// Discard current half-byte.
625	f.nb = 0
626	f.b = 0
627
628	// Length then ones-complement of length.
629	nr, err := io.ReadFull(f.r, f.buf[0:4])
630	f.roffset += int64(nr)
631	if err != nil {
632		f.err = noEOF(err)
633		return
634	}
635	n := int(f.buf[0]) | int(f.buf[1])<<8
636	nn := int(f.buf[2]) | int(f.buf[3])<<8
637	if uint16(nn) != uint16(^n) {
638		f.err = CorruptInputError(f.roffset)
639		return
640	}
641
642	if n == 0 {
643		f.toRead = f.dict.readFlush()
644		f.finishBlock()
645		return
646	}
647
648	f.copyLen = n
649	f.copyData()
650}
651
652// copyData copies f.copyLen bytes from the underlying reader into f.hist.
653// It pauses for reads when f.hist is full.
654func (f *decompressor) copyData() {
655	buf := f.dict.writeSlice()
656	if len(buf) > f.copyLen {
657		buf = buf[:f.copyLen]
658	}
659
660	cnt, err := io.ReadFull(f.r, buf)
661	f.roffset += int64(cnt)
662	f.copyLen -= cnt
663	f.dict.writeMark(cnt)
664	if err != nil {
665		f.err = noEOF(err)
666		return
667	}
668
669	if f.dict.availWrite() == 0 || f.copyLen > 0 {
670		f.toRead = f.dict.readFlush()
671		f.step = (*decompressor).copyData
672		return
673	}
674	f.finishBlock()
675}
676
677func (f *decompressor) finishBlock() {
678	if f.final {
679		if f.dict.availRead() > 0 {
680			f.toRead = f.dict.readFlush()
681		}
682		f.err = io.EOF
683	}
684	f.step = (*decompressor).nextBlock
685}
686
687// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
688func noEOF(e error) error {
689	if e == io.EOF {
690		return io.ErrUnexpectedEOF
691	}
692	return e
693}
694
695func (f *decompressor) moreBits() error {
696	c, err := f.r.ReadByte()
697	if err != nil {
698		return noEOF(err)
699	}
700	f.roffset++
701	f.b |= uint32(c) << f.nb
702	f.nb += 8
703	return nil
704}
705
706// Read the next Huffman-encoded symbol from f according to h.
707func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
708	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
709	// with single element, huffSym must error on these two edge cases. In both
710	// cases, the chunks slice will be 0 for the invalid sequence, leading it
711	// satisfy the n == 0 check below.
712	n := uint(h.min)
713	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
714	// but is smart enough to keep local variables in registers, so use nb and b,
715	// inline call to moreBits and reassign b,nb back to f on return.
716	nb, b := f.nb, f.b
717	for {
718		for nb < n {
719			c, err := f.r.ReadByte()
720			if err != nil {
721				f.b = b
722				f.nb = nb
723				return 0, noEOF(err)
724			}
725			f.roffset++
726			b |= uint32(c) << (nb & 31)
727			nb += 8
728		}
729		chunk := h.chunks[b&(huffmanNumChunks-1)]
730		n = uint(chunk & huffmanCountMask)
731		if n > huffmanChunkBits {
732			chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
733			n = uint(chunk & huffmanCountMask)
734		}
735		if n <= nb {
736			if n == 0 {
737				f.b = b
738				f.nb = nb
739				f.err = CorruptInputError(f.roffset)
740				return 0, f.err
741			}
742			f.b = b >> (n & 31)
743			f.nb = nb - n
744			return int(chunk >> huffmanValueShift), nil
745		}
746	}
747}
748
749func makeReader(r io.Reader) Reader {
750	if rr, ok := r.(Reader); ok {
751		return rr
752	}
753	return bufio.NewReader(r)
754}
755
756func fixedHuffmanDecoderInit() {
757	fixedOnce.Do(func() {
758		// These come from the RFC section 3.2.6.
759		var bits [288]int
760		for i := 0; i < 144; i++ {
761			bits[i] = 8
762		}
763		for i := 144; i < 256; i++ {
764			bits[i] = 9
765		}
766		for i := 256; i < 280; i++ {
767			bits[i] = 7
768		}
769		for i := 280; i < 288; i++ {
770			bits[i] = 8
771		}
772		fixedHuffmanDecoder.init(bits[:])
773	})
774}
775
776func (f *decompressor) Reset(r io.Reader, dict []byte) error {
777	*f = decompressor{
778		r:        makeReader(r),
779		bits:     f.bits,
780		codebits: f.codebits,
781		dict:     f.dict,
782		step:     (*decompressor).nextBlock,
783	}
784	f.dict.init(maxMatchOffset, dict)
785	return nil
786}
787
788// NewReader returns a new ReadCloser that can be used
789// to read the uncompressed version of r.
790// If r does not also implement io.ByteReader,
791// the decompressor may read more data than necessary from r.
792// It is the caller's responsibility to call Close on the ReadCloser
793// when finished reading.
794//
795// The ReadCloser returned by NewReader also implements Resetter.
796func NewReader(r io.Reader) io.ReadCloser {
797	fixedHuffmanDecoderInit()
798
799	var f decompressor
800	f.r = makeReader(r)
801	f.bits = new([maxNumLit + maxNumDist]int)
802	f.codebits = new([numCodes]int)
803	f.step = (*decompressor).nextBlock
804	f.dict.init(maxMatchOffset, nil)
805	return &f
806}
807
808// NewReaderDict is like NewReader but initializes the reader
809// with a preset dictionary. The returned Reader behaves as if
810// the uncompressed data stream started with the given dictionary,
811// which has already been read. NewReaderDict is typically used
812// to read data compressed by NewWriterDict.
813//
814// The ReadCloser returned by NewReader also implements Resetter.
815func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
816	fixedHuffmanDecoderInit()
817
818	var f decompressor
819	f.r = makeReader(r)
820	f.bits = new([maxNumLit + maxNumDist]int)
821	f.codebits = new([numCodes]int)
822	f.step = (*decompressor).nextBlock
823	f.dict.init(maxMatchOffset, dict)
824	return &f
825}
826