1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Multiprecision decimal numbers.
6// For floating-point formatting only; not general purpose.
7// Only operations are assign and (binary) left/right shift.
8// Can do binary floating point in multiprecision decimal precisely
9// because 2 divides 10; cannot do decimal floating point
10// in multiprecision binary precisely.
11
12package strconv
13
14type decimal struct {
15	d     [800]byte // digits, big-endian representation
16	nd    int       // number of digits used
17	dp    int       // decimal point
18	neg   bool      // negative flag
19	trunc bool      // discarded nonzero digits beyond d[:nd]
20}
21
22func (a *decimal) String() string {
23	n := 10 + a.nd
24	if a.dp > 0 {
25		n += a.dp
26	}
27	if a.dp < 0 {
28		n += -a.dp
29	}
30
31	buf := make([]byte, n)
32	w := 0
33	switch {
34	case a.nd == 0:
35		return "0"
36
37	case a.dp <= 0:
38		// zeros fill space between decimal point and digits
39		buf[w] = '0'
40		w++
41		buf[w] = '.'
42		w++
43		w += digitZero(buf[w : w+-a.dp])
44		w += copy(buf[w:], a.d[0:a.nd])
45
46	case a.dp < a.nd:
47		// decimal point in middle of digits
48		w += copy(buf[w:], a.d[0:a.dp])
49		buf[w] = '.'
50		w++
51		w += copy(buf[w:], a.d[a.dp:a.nd])
52
53	default:
54		// zeros fill space between digits and decimal point
55		w += copy(buf[w:], a.d[0:a.nd])
56		w += digitZero(buf[w : w+a.dp-a.nd])
57	}
58	return string(buf[0:w])
59}
60
61func digitZero(dst []byte) int {
62	for i := range dst {
63		dst[i] = '0'
64	}
65	return len(dst)
66}
67
68// trim trailing zeros from number.
69// (They are meaningless; the decimal point is tracked
70// independent of the number of digits.)
71func trim(a *decimal) {
72	for a.nd > 0 && a.d[a.nd-1] == '0' {
73		a.nd--
74	}
75	if a.nd == 0 {
76		a.dp = 0
77	}
78}
79
80// Assign v to a.
81func (a *decimal) Assign(v uint64) {
82	var buf [24]byte
83
84	// Write reversed decimal in buf.
85	n := 0
86	for v > 0 {
87		v1 := v / 10
88		v -= 10 * v1
89		buf[n] = byte(v + '0')
90		n++
91		v = v1
92	}
93
94	// Reverse again to produce forward decimal in a.d.
95	a.nd = 0
96	for n--; n >= 0; n-- {
97		a.d[a.nd] = buf[n]
98		a.nd++
99	}
100	a.dp = a.nd
101	trim(a)
102}
103
104// Maximum shift that we can do in one pass without overflow.
105// A uint has 32 or 64 bits, and we have to be able to accommodate 9<<k.
106const uintSize = 32 << (^uint(0) >> 63)
107const maxShift = uintSize - 4
108
109// Binary shift right (/ 2) by k bits.  k <= maxShift to avoid overflow.
110func rightShift(a *decimal, k uint) {
111	r := 0 // read pointer
112	w := 0 // write pointer
113
114	// Pick up enough leading digits to cover first shift.
115	var n uint
116	for ; n>>k == 0; r++ {
117		if r >= a.nd {
118			if n == 0 {
119				// a == 0; shouldn't get here, but handle anyway.
120				a.nd = 0
121				return
122			}
123			for n>>k == 0 {
124				n = n * 10
125				r++
126			}
127			break
128		}
129		c := uint(a.d[r])
130		n = n*10 + c - '0'
131	}
132	a.dp -= r - 1
133
134	var mask uint = (1 << k) - 1
135
136	// Pick up a digit, put down a digit.
137	for ; r < a.nd; r++ {
138		c := uint(a.d[r])
139		dig := n >> k
140		n &= mask
141		a.d[w] = byte(dig + '0')
142		w++
143		n = n*10 + c - '0'
144	}
145
146	// Put down extra digits.
147	for n > 0 {
148		dig := n >> k
149		n &= mask
150		if w < len(a.d) {
151			a.d[w] = byte(dig + '0')
152			w++
153		} else if dig > 0 {
154			a.trunc = true
155		}
156		n = n * 10
157	}
158
159	a.nd = w
160	trim(a)
161}
162
163// Cheat sheet for left shift: table indexed by shift count giving
164// number of new digits that will be introduced by that shift.
165//
166// For example, leftcheats[4] = {2, "625"}.  That means that
167// if we are shifting by 4 (multiplying by 16), it will add 2 digits
168// when the string prefix is "625" through "999", and one fewer digit
169// if the string prefix is "000" through "624".
170//
171// Credit for this trick goes to Ken.
172
173type leftCheat struct {
174	delta  int    // number of new digits
175	cutoff string // minus one digit if original < a.
176}
177
178var leftcheats = []leftCheat{
179	// Leading digits of 1/2^i = 5^i.
180	// 5^23 is not an exact 64-bit floating point number,
181	// so have to use bc for the math.
182	// Go up to 60 to be large enough for 32bit and 64bit platforms.
183	/*
184		seq 60 | sed 's/^/5^/' | bc |
185		awk 'BEGIN{ print "\t{ 0, \"\" }," }
186		{
187			log2 = log(2)/log(10)
188			printf("\t{ %d, \"%s\" },\t// * %d\n",
189				int(log2*NR+1), $0, 2**NR)
190		}'
191	*/
192	{0, ""},
193	{1, "5"},                                           // * 2
194	{1, "25"},                                          // * 4
195	{1, "125"},                                         // * 8
196	{2, "625"},                                         // * 16
197	{2, "3125"},                                        // * 32
198	{2, "15625"},                                       // * 64
199	{3, "78125"},                                       // * 128
200	{3, "390625"},                                      // * 256
201	{3, "1953125"},                                     // * 512
202	{4, "9765625"},                                     // * 1024
203	{4, "48828125"},                                    // * 2048
204	{4, "244140625"},                                   // * 4096
205	{4, "1220703125"},                                  // * 8192
206	{5, "6103515625"},                                  // * 16384
207	{5, "30517578125"},                                 // * 32768
208	{5, "152587890625"},                                // * 65536
209	{6, "762939453125"},                                // * 131072
210	{6, "3814697265625"},                               // * 262144
211	{6, "19073486328125"},                              // * 524288
212	{7, "95367431640625"},                              // * 1048576
213	{7, "476837158203125"},                             // * 2097152
214	{7, "2384185791015625"},                            // * 4194304
215	{7, "11920928955078125"},                           // * 8388608
216	{8, "59604644775390625"},                           // * 16777216
217	{8, "298023223876953125"},                          // * 33554432
218	{8, "1490116119384765625"},                         // * 67108864
219	{9, "7450580596923828125"},                         // * 134217728
220	{9, "37252902984619140625"},                        // * 268435456
221	{9, "186264514923095703125"},                       // * 536870912
222	{10, "931322574615478515625"},                      // * 1073741824
223	{10, "4656612873077392578125"},                     // * 2147483648
224	{10, "23283064365386962890625"},                    // * 4294967296
225	{10, "116415321826934814453125"},                   // * 8589934592
226	{11, "582076609134674072265625"},                   // * 17179869184
227	{11, "2910383045673370361328125"},                  // * 34359738368
228	{11, "14551915228366851806640625"},                 // * 68719476736
229	{12, "72759576141834259033203125"},                 // * 137438953472
230	{12, "363797880709171295166015625"},                // * 274877906944
231	{12, "1818989403545856475830078125"},               // * 549755813888
232	{13, "9094947017729282379150390625"},               // * 1099511627776
233	{13, "45474735088646411895751953125"},              // * 2199023255552
234	{13, "227373675443232059478759765625"},             // * 4398046511104
235	{13, "1136868377216160297393798828125"},            // * 8796093022208
236	{14, "5684341886080801486968994140625"},            // * 17592186044416
237	{14, "28421709430404007434844970703125"},           // * 35184372088832
238	{14, "142108547152020037174224853515625"},          // * 70368744177664
239	{15, "710542735760100185871124267578125"},          // * 140737488355328
240	{15, "3552713678800500929355621337890625"},         // * 281474976710656
241	{15, "17763568394002504646778106689453125"},        // * 562949953421312
242	{16, "88817841970012523233890533447265625"},        // * 1125899906842624
243	{16, "444089209850062616169452667236328125"},       // * 2251799813685248
244	{16, "2220446049250313080847263336181640625"},      // * 4503599627370496
245	{16, "11102230246251565404236316680908203125"},     // * 9007199254740992
246	{17, "55511151231257827021181583404541015625"},     // * 18014398509481984
247	{17, "277555756156289135105907917022705078125"},    // * 36028797018963968
248	{17, "1387778780781445675529539585113525390625"},   // * 72057594037927936
249	{18, "6938893903907228377647697925567626953125"},   // * 144115188075855872
250	{18, "34694469519536141888238489627838134765625"},  // * 288230376151711744
251	{18, "173472347597680709441192448139190673828125"}, // * 576460752303423488
252	{19, "867361737988403547205962240695953369140625"}, // * 1152921504606846976
253}
254
255// Is the leading prefix of b lexicographically less than s?
256func prefixIsLessThan(b []byte, s string) bool {
257	for i := 0; i < len(s); i++ {
258		if i >= len(b) {
259			return true
260		}
261		if b[i] != s[i] {
262			return b[i] < s[i]
263		}
264	}
265	return false
266}
267
268// Binary shift left (* 2) by k bits.  k <= maxShift to avoid overflow.
269func leftShift(a *decimal, k uint) {
270	delta := leftcheats[k].delta
271	if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) {
272		delta--
273	}
274
275	r := a.nd         // read index
276	w := a.nd + delta // write index
277
278	// Pick up a digit, put down a digit.
279	var n uint
280	for r--; r >= 0; r-- {
281		n += (uint(a.d[r]) - '0') << k
282		quo := n / 10
283		rem := n - 10*quo
284		w--
285		if w < len(a.d) {
286			a.d[w] = byte(rem + '0')
287		} else if rem != 0 {
288			a.trunc = true
289		}
290		n = quo
291	}
292
293	// Put down extra digits.
294	for n > 0 {
295		quo := n / 10
296		rem := n - 10*quo
297		w--
298		if w < len(a.d) {
299			a.d[w] = byte(rem + '0')
300		} else if rem != 0 {
301			a.trunc = true
302		}
303		n = quo
304	}
305
306	a.nd += delta
307	if a.nd >= len(a.d) {
308		a.nd = len(a.d)
309	}
310	a.dp += delta
311	trim(a)
312}
313
314// Binary shift left (k > 0) or right (k < 0).
315func (a *decimal) Shift(k int) {
316	switch {
317	case a.nd == 0:
318		// nothing to do: a == 0
319	case k > 0:
320		for k > maxShift {
321			leftShift(a, maxShift)
322			k -= maxShift
323		}
324		leftShift(a, uint(k))
325	case k < 0:
326		for k < -maxShift {
327			rightShift(a, maxShift)
328			k += maxShift
329		}
330		rightShift(a, uint(-k))
331	}
332}
333
334// If we chop a at nd digits, should we round up?
335func shouldRoundUp(a *decimal, nd int) bool {
336	if nd < 0 || nd >= a.nd {
337		return false
338	}
339	if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even
340		// if we truncated, a little higher than what's recorded - always round up
341		if a.trunc {
342			return true
343		}
344		return nd > 0 && (a.d[nd-1]-'0')%2 != 0
345	}
346	// not halfway - digit tells all
347	return a.d[nd] >= '5'
348}
349
350// Round a to nd digits (or fewer).
351// If nd is zero, it means we're rounding
352// just to the left of the digits, as in
353// 0.09 -> 0.1.
354func (a *decimal) Round(nd int) {
355	if nd < 0 || nd >= a.nd {
356		return
357	}
358	if shouldRoundUp(a, nd) {
359		a.RoundUp(nd)
360	} else {
361		a.RoundDown(nd)
362	}
363}
364
365// Round a down to nd digits (or fewer).
366func (a *decimal) RoundDown(nd int) {
367	if nd < 0 || nd >= a.nd {
368		return
369	}
370	a.nd = nd
371	trim(a)
372}
373
374// Round a up to nd digits (or fewer).
375func (a *decimal) RoundUp(nd int) {
376	if nd < 0 || nd >= a.nd {
377		return
378	}
379
380	// round up
381	for i := nd - 1; i >= 0; i-- {
382		c := a.d[i]
383		if c < '9' { // can stop after this digit
384			a.d[i]++
385			a.nd = i + 1
386			return
387		}
388	}
389
390	// Number is all 9s.
391	// Change to single 1 with adjusted decimal point.
392	a.d[0] = '1'
393	a.nd = 1
394	a.dp++
395}
396
397// Extract integer part, rounded appropriately.
398// No guarantees about overflow.
399func (a *decimal) RoundedInteger() uint64 {
400	if a.dp > 20 {
401		return 0xFFFFFFFFFFFFFFFF
402	}
403	var i int
404	n := uint64(0)
405	for i = 0; i < a.dp && i < a.nd; i++ {
406		n = n*10 + uint64(a.d[i]-'0')
407	}
408	for ; i < a.dp; i++ {
409		n *= 10
410	}
411	if shouldRoundUp(a, a.dp) {
412		n++
413	}
414	return n
415}
416