1 /**
2  * The fiber module provides OS-indepedent lightweight threads aka fibers.
3  *
4  * Copyright: Copyright Sean Kelly 2005 - 2012.
5  * License: Distributed under the
6  *      $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
7  *    (See accompanying file LICENSE)
8  * Authors:   Sean Kelly, Walter Bright, Alex Rønne Petersen, Martin Nowak
9  * Source:    $(DRUNTIMESRC core/thread/fiber.d)
10  */
11 
12 /* NOTE: This file has been patched from the original DMD distribution to
13  * work with the GDC compiler.
14  */
15 module core.thread.fiber;
16 
17 import core.thread.osthread;
18 import core.thread.threadgroup;
19 import core.thread.types;
20 import core.thread.context;
21 
22 ///////////////////////////////////////////////////////////////////////////////
23 // Fiber Platform Detection
24 ///////////////////////////////////////////////////////////////////////////////
25 
version(GNU)26 version (GNU)
27 {
28     import gcc.builtins;
29     import gcc.config;
30     version (GNU_StackGrowsDown)
31         version = StackGrowsDown;
32 }
33 else
34 {
35     // this should be true for most architectures
36     version = StackGrowsDown;
37 }
38 
version(Windows)39 version (Windows)
40 {
41     import core.stdc.stdlib : malloc, free;
42     import core.sys.windows.winbase;
43     import core.sys.windows.winnt;
44 }
45 
46 private
47 {
version(D_InlineAsm_X86)48     version (D_InlineAsm_X86)
49     {
50         version (Windows)
51             version = AsmX86_Windows;
52         else version (Posix)
53             version = AsmX86_Posix;
54 
55         version = AlignFiberStackTo16Byte;
56     }
version(D_InlineAsm_X86_64)57     else version (D_InlineAsm_X86_64)
58     {
59         version (Windows)
60         {
61             version = AsmX86_64_Windows;
62             version = AlignFiberStackTo16Byte;
63         }
64         else version (Posix)
65         {
66             version = AsmX86_64_Posix;
67             version = AlignFiberStackTo16Byte;
68         }
69     }
version(X86)70     else version (X86)
71     {
72         version = AlignFiberStackTo16Byte;
73 
74         version (CET)
75         {
76             // fiber_switchContext does not support shadow stack from
77             // Intel CET.  So use ucontext implementation.
78         }
79         else
80         {
81             version = AsmExternal;
82 
83             version (MinGW)
84                 version = GNU_AsmX86_Windows;
85             else version (OSX)
86                 version = AsmX86_Posix;
87             else version (Posix)
88                 version = AsmX86_Posix;
89         }
90     }
version(X86_64)91     else version (X86_64)
92     {
93         version = AlignFiberStackTo16Byte;
94 
95         version (CET)
96         {
97             // fiber_switchContext does not support shadow stack from
98             // Intel CET.  So use ucontext implementation.
99         }
100         else version (D_X32)
101         {
102             // let X32 be handled by ucontext swapcontext
103         }
104         else
105         {
106             version = AsmExternal;
107 
108             version (MinGW)
109                 version = GNU_AsmX86_64_Windows;
110             else version (OSX)
111                 version = AsmX86_64_Posix;
112             else version (Posix)
113                 version = AsmX86_64_Posix;
114         }
115     }
version(PPC)116     else version (PPC)
117     {
118         version (OSX)
119         {
120             version = AsmPPC_Darwin;
121             version = AsmExternal;
122             version = AlignFiberStackTo16Byte;
123         }
124         else version (Posix)
125         {
126             version = AsmPPC_Posix;
127             version = AsmExternal;
128         }
129     }
version(PPC64)130     else version (PPC64)
131     {
132         version (OSX)
133         {
134             version = AsmPPC_Darwin;
135             version = AsmExternal;
136             version = AlignFiberStackTo16Byte;
137         }
138         else version (Posix)
139         {
140             version = AlignFiberStackTo16Byte;
141         }
142     }
version(MIPS_O32)143     else version (MIPS_O32)
144     {
145         version (Posix)
146         {
147             version = AsmMIPS_O32_Posix;
148             version = AsmExternal;
149         }
150     }
version(AArch64)151     else version (AArch64)
152     {
153         version (Posix)
154         {
155             version = AsmAArch64_Posix;
156             version = AsmExternal;
157             version = AlignFiberStackTo16Byte;
158         }
159     }
version(ARM)160     else version (ARM)
161     {
162         version (Posix)
163         {
164             version = AsmARM_Posix;
165             version = AsmExternal;
166         }
167     }
version(SPARC)168     else version (SPARC)
169     {
170         // NOTE: The SPARC ABI specifies only doubleword alignment.
171         version = AlignFiberStackTo16Byte;
172     }
version(SPARC64)173     else version (SPARC64)
174     {
175         version = AlignFiberStackTo16Byte;
176     }
177 
version(Posix)178     version (Posix)
179     {
180         version (AsmX86_Windows)    {} else
181         version (AsmX86_Posix)      {} else
182         version (AsmX86_64_Windows) {} else
183         version (AsmX86_64_Posix)   {} else
184         version (AsmExternal)       {} else
185         {
186             // NOTE: The ucontext implementation requires architecture specific
187             //       data definitions to operate so testing for it must be done
188             //       by checking for the existence of ucontext_t rather than by
189             //       a version identifier.  Please note that this is considered
190             //       an obsolescent feature according to the POSIX spec, so a
191             //       custom solution is still preferred.
192             import core.sys.posix.ucontext;
193         }
194     }
195 }
196 
197 ///////////////////////////////////////////////////////////////////////////////
198 // Fiber Entry Point and Context Switch
199 ///////////////////////////////////////////////////////////////////////////////
200 
201 private
202 {
203     import core.atomic : atomicStore, cas, MemoryOrder;
204     import core.exception : onOutOfMemoryError;
205     import core.stdc.stdlib : abort;
206 
fiber_entryPoint()207     extern (C) void fiber_entryPoint() nothrow
208     {
209         Fiber   obj = Fiber.getThis();
210         assert( obj );
211 
212         assert( Thread.getThis().m_curr is obj.m_ctxt );
213         atomicStore!(MemoryOrder.raw)(*cast(shared)&Thread.getThis().m_lock, false);
214         obj.m_ctxt.tstack = obj.m_ctxt.bstack;
215         obj.m_state = Fiber.State.EXEC;
216 
217         try
218         {
219             obj.run();
220         }
221         catch ( Throwable t )
222         {
223             obj.m_unhandled = t;
224         }
225 
226         static if ( __traits( compiles, ucontext_t ) )
227           obj.m_ucur = &obj.m_utxt;
228 
229         obj.m_state = Fiber.State.TERM;
230         obj.switchOut();
231     }
232 
233   // Look above the definition of 'class Fiber' for some information about the implementation of this routine
version(AsmExternal)234   version (AsmExternal)
235   {
236       extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc;
237       version (AArch64)
238           extern (C) void fiber_trampoline() nothrow;
239   }
240   else
fiber_switchContext(void ** oldp,void * newp)241     extern (C) void fiber_switchContext( void** oldp, void* newp ) nothrow @nogc
242     {
243         // NOTE: The data pushed and popped in this routine must match the
244         //       default stack created by Fiber.initStack or the initial
245         //       switch into a new context will fail.
246 
247         version (AsmX86_Windows)
248         {
249             asm pure nothrow @nogc
250             {
251                 naked;
252 
253                 // save current stack state
254                 push EBP;
255                 mov  EBP, ESP;
256                 push EDI;
257                 push ESI;
258                 push EBX;
259                 push dword ptr FS:[0];
260                 push dword ptr FS:[4];
261                 push dword ptr FS:[8];
262                 push EAX;
263 
264                 // store oldp again with more accurate address
265                 mov EAX, dword ptr 8[EBP];
266                 mov [EAX], ESP;
267                 // load newp to begin context switch
268                 mov ESP, dword ptr 12[EBP];
269 
270                 // load saved state from new stack
271                 pop EAX;
272                 pop dword ptr FS:[8];
273                 pop dword ptr FS:[4];
274                 pop dword ptr FS:[0];
275                 pop EBX;
276                 pop ESI;
277                 pop EDI;
278                 pop EBP;
279 
280                 // 'return' to complete switch
281                 pop ECX;
282                 jmp ECX;
283             }
284         }
285         else version (AsmX86_64_Windows)
286         {
287             asm pure nothrow @nogc
288             {
289                 naked;
290 
291                 // save current stack state
292                 // NOTE: When changing the layout of registers on the stack,
293                 //       make sure that the XMM registers are still aligned.
294                 //       On function entry, the stack is guaranteed to not
295                 //       be aligned to 16 bytes because of the return address
296                 //       on the stack.
297                 push RBP;
298                 mov  RBP, RSP;
299                 push R12;
300                 push R13;
301                 push R14;
302                 push R15;
303                 push RDI;
304                 push RSI;
305                 // 7 registers = 56 bytes; stack is now aligned to 16 bytes
306                 sub RSP, 160;
307                 movdqa [RSP + 144], XMM6;
308                 movdqa [RSP + 128], XMM7;
309                 movdqa [RSP + 112], XMM8;
310                 movdqa [RSP + 96], XMM9;
311                 movdqa [RSP + 80], XMM10;
312                 movdqa [RSP + 64], XMM11;
313                 movdqa [RSP + 48], XMM12;
314                 movdqa [RSP + 32], XMM13;
315                 movdqa [RSP + 16], XMM14;
316                 movdqa [RSP], XMM15;
317                 push RBX;
318                 xor  RAX,RAX;
319                 push qword ptr GS:[RAX];
320                 push qword ptr GS:8[RAX];
321                 push qword ptr GS:16[RAX];
322 
323                 // store oldp
324                 mov [RCX], RSP;
325                 // load newp to begin context switch
326                 mov RSP, RDX;
327 
328                 // load saved state from new stack
329                 pop qword ptr GS:16[RAX];
330                 pop qword ptr GS:8[RAX];
331                 pop qword ptr GS:[RAX];
332                 pop RBX;
333                 movdqa XMM15, [RSP];
334                 movdqa XMM14, [RSP + 16];
335                 movdqa XMM13, [RSP + 32];
336                 movdqa XMM12, [RSP + 48];
337                 movdqa XMM11, [RSP + 64];
338                 movdqa XMM10, [RSP + 80];
339                 movdqa XMM9, [RSP + 96];
340                 movdqa XMM8, [RSP + 112];
341                 movdqa XMM7, [RSP + 128];
342                 movdqa XMM6, [RSP + 144];
343                 add RSP, 160;
344                 pop RSI;
345                 pop RDI;
346                 pop R15;
347                 pop R14;
348                 pop R13;
349                 pop R12;
350                 pop RBP;
351 
352                 // 'return' to complete switch
353                 pop RCX;
354                 jmp RCX;
355             }
356         }
357         else version (AsmX86_Posix)
358         {
359             asm pure nothrow @nogc
360             {
361                 naked;
362 
363                 // save current stack state
364                 push EBP;
365                 mov  EBP, ESP;
366                 push EDI;
367                 push ESI;
368                 push EBX;
369                 push EAX;
370 
371                 // store oldp again with more accurate address
372                 mov EAX, dword ptr 8[EBP];
373                 mov [EAX], ESP;
374                 // load newp to begin context switch
375                 mov ESP, dword ptr 12[EBP];
376 
377                 // load saved state from new stack
378                 pop EAX;
379                 pop EBX;
380                 pop ESI;
381                 pop EDI;
382                 pop EBP;
383 
384                 // 'return' to complete switch
385                 pop ECX;
386                 jmp ECX;
387             }
388         }
389         else version (AsmX86_64_Posix)
390         {
391             asm pure nothrow @nogc
392             {
393                 naked;
394 
395                 // save current stack state
396                 push RBP;
397                 mov  RBP, RSP;
398                 push RBX;
399                 push R12;
400                 push R13;
401                 push R14;
402                 push R15;
403 
404                 // store oldp
405                 mov [RDI], RSP;
406                 // load newp to begin context switch
407                 mov RSP, RSI;
408 
409                 // load saved state from new stack
410                 pop R15;
411                 pop R14;
412                 pop R13;
413                 pop R12;
414                 pop RBX;
415                 pop RBP;
416 
417                 // 'return' to complete switch
418                 pop RCX;
419                 jmp RCX;
420             }
421         }
422         else static if ( __traits( compiles, ucontext_t ) )
423         {
424             Fiber   cfib = Fiber.getThis();
425             void*   ucur = cfib.m_ucur;
426 
427             *oldp = &ucur;
428             swapcontext( **(cast(ucontext_t***) oldp),
429                           *(cast(ucontext_t**)  newp) );
430         }
431         else
432             static assert(0, "Not implemented");
433     }
434 }
435 
436 
437 ///////////////////////////////////////////////////////////////////////////////
438 // Fiber
439 ///////////////////////////////////////////////////////////////////////////////
440 /*
441  * Documentation of Fiber internals:
442  *
443  * The main routines to implement when porting Fibers to new architectures are
444  * fiber_switchContext and initStack. Some version constants have to be defined
445  * for the new platform as well, search for "Fiber Platform Detection and Memory Allocation".
446  *
447  * Fibers are based on a concept called 'Context'. A Context describes the execution
448  * state of a Fiber or main thread which is fully described by the stack, some
449  * registers and a return address at which the Fiber/Thread should continue executing.
450  * Please note that not only each Fiber has a Context, but each thread also has got a
451  * Context which describes the threads stack and state. If you call Fiber fib; fib.call
452  * the first time in a thread you switch from Threads Context into the Fibers Context.
453  * If you call fib.yield in that Fiber you switch out of the Fibers context and back
454  * into the Thread Context. (However, this is not always the case. You can call a Fiber
455  * from within another Fiber, then you switch Contexts between the Fibers and the Thread
456  * Context is not involved)
457  *
458  * In all current implementations the registers and the return address are actually
459  * saved on a Contexts stack.
460  *
461  * The fiber_switchContext routine has got two parameters:
462  * void** a:  This is the _location_ where we have to store the current stack pointer,
463  *            the stack pointer of the currently executing Context (Fiber or Thread).
464  * void*  b:  This is the pointer to the stack of the Context which we want to switch into.
465  *            Note that we get the same pointer here as the one we stored into the void** a
466  *            in a previous call to fiber_switchContext.
467  *
468  * In the simplest case, a fiber_switchContext rountine looks like this:
469  * fiber_switchContext:
470  *     push {return Address}
471  *     push {registers}
472  *     copy {stack pointer} into {location pointed to by a}
473  *     //We have now switch to the stack of a different Context!
474  *     copy {b} into {stack pointer}
475  *     pop {registers}
476  *     pop {return Address}
477  *     jump to {return Address}
478  *
479  * The GC uses the value returned in parameter a to scan the Fibers stack. It scans from
480  * the stack base to that value. As the GC dislikes false pointers we can actually optimize
481  * this a little: By storing registers which can not contain references to memory managed
482  * by the GC outside of the region marked by the stack base pointer and the stack pointer
483  * saved in fiber_switchContext we can prevent the GC from scanning them.
484  * Such registers are usually floating point registers and the return address. In order to
485  * implement this, we return a modified stack pointer from fiber_switchContext. However,
486  * we have to remember that when we restore the registers from the stack!
487  *
488  * --------------------------- <= Stack Base
489  * |          Frame          | <= Many other stack frames
490  * |          Frame          |
491  * |-------------------------| <= The last stack frame. This one is created by fiber_switchContext
492  * | registers with pointers |
493  * |                         | <= Stack pointer. GC stops scanning here
494  * |   return address        |
495  * |floating point registers |
496  * --------------------------- <= Real Stack End
497  *
498  * fiber_switchContext:
499  *     push {registers with pointers}
500  *     copy {stack pointer} into {location pointed to by a}
501  *     push {return Address}
502  *     push {Floating point registers}
503  *     //We have now switch to the stack of a different Context!
504  *     copy {b} into {stack pointer}
505  *     //We now have to adjust the stack pointer to point to 'Real Stack End' so we can pop
506  *     //the FP registers
507  *     //+ or - depends on if your stack grows downwards or upwards
508  *     {stack pointer} = {stack pointer} +- ({FPRegisters}.sizeof + {return address}.sizeof}
509  *     pop {Floating point registers}
510  *     pop {return Address}
511  *     pop {registers with pointers}
512  *     jump to {return Address}
513  *
514  * So the question now is which registers need to be saved? This depends on the specific
515  * architecture ABI of course, but here are some general guidelines:
516  * - If a register is callee-save (if the callee modifies the register it must saved and
517  *   restored by the callee) it needs to be saved/restored in switchContext
518  * - If a register is caller-save it needn't be saved/restored. (Calling fiber_switchContext
519  *   is a function call and the compiler therefore already must save these registers before
520  *   calling fiber_switchContext)
521  * - Argument registers used for passing parameters to functions needn't be saved/restored
522  * - The return register needn't be saved/restored (fiber_switchContext hasn't got a return type)
523  * - All scratch registers needn't be saved/restored
524  * - The link register usually needn't be saved/restored (but sometimes it must be cleared -
525  *   see below for details)
526  * - The frame pointer register - if it exists - is usually callee-save
527  * - All current implementations do not save control registers
528  *
529  * What happens on the first switch into a Fiber? We never saved a state for this fiber before,
530  * but the initial state is prepared in the initStack routine. (This routine will also be called
531  * when a Fiber is being resetted). initStack must produce exactly the same stack layout as the
532  * part of fiber_switchContext which saves the registers. Pay special attention to set the stack
533  * pointer correctly if you use the GC optimization mentioned before. the return Address saved in
534  * initStack must be the address of fiber_entrypoint.
535  *
536  * There's now a small but important difference between the first context switch into a fiber and
537  * further context switches. On the first switch, Fiber.call is used and the returnAddress in
538  * fiber_switchContext will point to fiber_entrypoint. The important thing here is that this jump
539  * is a _function call_, we call fiber_entrypoint by jumping before it's function prologue. On later
540  * calls, the user used yield() in a function, and therefore the return address points into a user
541  * function, after the yield call. So here the jump in fiber_switchContext is a _function return_,
542  * not a function call!
543  *
544  * The most important result of this is that on entering a function, i.e. fiber_entrypoint, we
545  * would have to provide a return address / set the link register once fiber_entrypoint
546  * returns. Now fiber_entrypoint does never return and therefore the actual value of the return
547  * address / link register is never read/used and therefore doesn't matter. When fiber_switchContext
548  * performs a _function return_ the value in the link register doesn't matter either.
549  * However, the link register will still be saved to the stack in fiber_entrypoint and some
550  * exception handling / stack unwinding code might read it from this stack location and crash.
551  * The exact solution depends on your architecture, but see the ARM implementation for a way
552  * to deal with this issue.
553  *
554  * The ARM implementation is meant to be used as a kind of documented example implementation.
555  * Look there for a concrete example.
556  *
557  * FIXME: fiber_entrypoint might benefit from a @noreturn attribute, but D doesn't have one.
558  */
559 
560 /**
561  * This class provides a cooperative concurrency mechanism integrated with the
562  * threading and garbage collection functionality.  Calling a fiber may be
563  * considered a blocking operation that returns when the fiber yields (via
564  * Fiber.yield()).  Execution occurs within the context of the calling thread
565  * so synchronization is not necessary to guarantee memory visibility so long
566  * as the same thread calls the fiber each time.  Please note that there is no
567  * requirement that a fiber be bound to one specific thread.  Rather, fibers
568  * may be freely passed between threads so long as they are not currently
569  * executing.  Like threads, a new fiber thread may be created using either
570  * derivation or composition, as in the following example.
571  *
572  * Warning:
573  * Status registers are not saved by the current implementations. This means
574  * floating point exception status bits (overflow, divide by 0), rounding mode
575  * and similar stuff is set per-thread, not per Fiber!
576  *
577  * Warning:
578  * On ARM FPU registers are not saved if druntime was compiled as ARM_SoftFloat.
579  * If such a build is used on a ARM_SoftFP system which actually has got a FPU
580  * and other libraries are using the FPU registers (other code is compiled
581  * as ARM_SoftFP) this can cause problems. Druntime must be compiled as
582  * ARM_SoftFP in this case.
583  *
584  * Authors: Based on a design by Mikola Lysenko.
585  */
586 class Fiber
587 {
588     ///////////////////////////////////////////////////////////////////////////
589     // Initialization
590     ///////////////////////////////////////////////////////////////////////////
591 
592     version (Windows)
593         // exception handling walks the stack, invoking DbgHelp.dll which
594         // needs up to 16k of stack space depending on the version of DbgHelp.dll,
595         // the existence of debug symbols and other conditions. Avoid causing
596         // stack overflows by defaulting to a larger stack size
597         enum defaultStackPages = 8;
598     else
599         enum defaultStackPages = 4;
600 
601     /**
602      * Initializes a fiber object which is associated with a static
603      * D function.
604      *
605      * Params:
606      *  fn = The fiber function.
607      *  sz = The stack size for this fiber.
608      *  guardPageSize = size of the guard page to trap fiber's stack
609      *                  overflows. Beware that using this will increase
610      *                  the number of mmaped regions on platforms using mmap
611      *                  so an OS-imposed limit may be hit.
612      *
613      * In:
614      *  fn must not be null.
615      */
function()616     this( void function() fn, size_t sz = PAGESIZE * defaultStackPages,
617           size_t guardPageSize = PAGESIZE ) nothrow
618     in
619     {
620         assert( fn );
621     }
622     do
623     {
624         allocStack( sz, guardPageSize );
625         reset( fn );
626     }
627 
628 
629     /**
630      * Initializes a fiber object which is associated with a dynamic
631      * D function.
632      *
633      * Params:
634      *  dg = The fiber function.
635      *  sz = The stack size for this fiber.
636      *  guardPageSize = size of the guard page to trap fiber's stack
637      *                  overflows. Beware that using this will increase
638      *                  the number of mmaped regions on platforms using mmap
639      *                  so an OS-imposed limit may be hit.
640      *
641      * In:
642      *  dg must not be null.
643      */
delegate()644     this( void delegate() dg, size_t sz = PAGESIZE * defaultStackPages,
645           size_t guardPageSize = PAGESIZE ) nothrow
646     in
647     {
648         assert( dg );
649     }
650     do
651     {
652         allocStack( sz, guardPageSize );
653         reset( dg );
654     }
655 
656 
657     /**
658      * Cleans up any remaining resources used by this object.
659      */
~this()660     ~this() nothrow @nogc
661     {
662         // NOTE: A live reference to this object will exist on its associated
663         //       stack from the first time its call() method has been called
664         //       until its execution completes with State.TERM.  Thus, the only
665         //       times this dtor should be called are either if the fiber has
666         //       terminated (and therefore has no active stack) or if the user
667         //       explicitly deletes this object.  The latter case is an error
668         //       but is not easily tested for, since State.HOLD may imply that
669         //       the fiber was just created but has never been run.  There is
670         //       not a compelling case to create a State.INIT just to offer a
671         //       means of ensuring the user isn't violating this object's
672         //       contract, so for now this requirement will be enforced by
673         //       documentation only.
674         freeStack();
675     }
676 
677 
678     ///////////////////////////////////////////////////////////////////////////
679     // General Actions
680     ///////////////////////////////////////////////////////////////////////////
681 
682 
683     /**
684      * Transfers execution to this fiber object.  The calling context will be
685      * suspended until the fiber calls Fiber.yield() or until it terminates
686      * via an unhandled exception.
687      *
688      * Params:
689      *  rethrow = Rethrow any unhandled exception which may have caused this
690      *            fiber to terminate.
691      *
692      * In:
693      *  This fiber must be in state HOLD.
694      *
695      * Throws:
696      *  Any exception not handled by the joined thread.
697      *
698      * Returns:
699      *  Any exception not handled by this fiber if rethrow = false, null
700      *  otherwise.
701      */
702     // Not marked with any attributes, even though `nothrow @nogc` works
703     // because it calls arbitrary user code. Most of the implementation
704     // is already `@nogc nothrow`, but in order for `Fiber.call` to
705     // propagate the attributes of the user's function, the Fiber
706     // class needs to be templated.
707     final Throwable call( Rethrow rethrow = Rethrow.yes )
708     {
709         return rethrow ? call!(Rethrow.yes)() : call!(Rethrow.no);
710     }
711 
712     /// ditto
call(Rethrow rethrow)713     final Throwable call( Rethrow rethrow )()
714     {
715         callImpl();
716         if ( m_unhandled )
717         {
718             Throwable t = m_unhandled;
719             m_unhandled = null;
720             static if ( rethrow )
721                 throw t;
722             else
723                 return t;
724         }
725         return null;
726     }
727 
callImpl()728     private void callImpl() nothrow @nogc
729     in
730     {
731         assert( m_state == State.HOLD );
732     }
733     do
734     {
735         Fiber   cur = getThis();
736 
737         static if ( __traits( compiles, ucontext_t ) )
738             m_ucur = cur ? &cur.m_utxt : &Fiber.sm_utxt;
739 
740         setThis( this );
741         this.switchIn();
742         setThis( cur );
743 
744         static if ( __traits( compiles, ucontext_t ) )
745             m_ucur = null;
746 
747         // NOTE: If the fiber has terminated then the stack pointers must be
748         //       reset.  This ensures that the stack for this fiber is not
749         //       scanned if the fiber has terminated.  This is necessary to
750         //       prevent any references lingering on the stack from delaying
751         //       the collection of otherwise dead objects.  The most notable
752         //       being the current object, which is referenced at the top of
753         //       fiber_entryPoint.
754         if ( m_state == State.TERM )
755         {
756             m_ctxt.tstack = m_ctxt.bstack;
757         }
758     }
759 
760     /// Flag to control rethrow behavior of $(D $(LREF call))
761     enum Rethrow : bool { no, yes }
762 
763     /**
764      * Resets this fiber so that it may be re-used, optionally with a
765      * new function/delegate.  This routine should only be called for
766      * fibers that have terminated, as doing otherwise could result in
767      * scope-dependent functionality that is not executed.
768      * Stack-based classes, for example, may not be cleaned up
769      * properly if a fiber is reset before it has terminated.
770      *
771      * In:
772      *  This fiber must be in state TERM or HOLD.
773      */
reset()774     final void reset() nothrow @nogc
775     in
776     {
777         assert( m_state == State.TERM || m_state == State.HOLD );
778     }
779     do
780     {
781         m_ctxt.tstack = m_ctxt.bstack;
782         m_state = State.HOLD;
783         initStack();
784         m_unhandled = null;
785     }
786 
787     /// ditto
reset(void function ()fn)788     final void reset( void function() fn ) nothrow @nogc
789     {
790         reset();
791         m_call  = fn;
792     }
793 
794     /// ditto
reset(void delegate ()dg)795     final void reset( void delegate() dg ) nothrow @nogc
796     {
797         reset();
798         m_call  = dg;
799     }
800 
801     ///////////////////////////////////////////////////////////////////////////
802     // General Properties
803     ///////////////////////////////////////////////////////////////////////////
804 
805 
806     /// A fiber may occupy one of three states: HOLD, EXEC, and TERM.
807     enum State
808     {
809         /** The HOLD state applies to any fiber that is suspended and ready to
810         be called. */
811         HOLD,
812         /** The EXEC state will be set for any fiber that is currently
813         executing. */
814         EXEC,
815         /** The TERM state is set when a fiber terminates. Once a fiber
816         terminates, it must be reset before it may be called again. */
817         TERM
818     }
819 
820 
821     /**
822      * Gets the current state of this fiber.
823      *
824      * Returns:
825      *  The state of this fiber as an enumerated value.
826      */
state()827     final @property State state() const @safe pure nothrow @nogc
828     {
829         return m_state;
830     }
831 
832 
833     ///////////////////////////////////////////////////////////////////////////
834     // Actions on Calling Fiber
835     ///////////////////////////////////////////////////////////////////////////
836 
837 
838     /**
839      * Forces a context switch to occur away from the calling fiber.
840      */
yield()841     static void yield() nothrow @nogc
842     {
843         Fiber   cur = getThis();
844         assert( cur, "Fiber.yield() called with no active fiber" );
845         assert( cur.m_state == State.EXEC );
846 
847         static if ( __traits( compiles, ucontext_t ) )
848           cur.m_ucur = &cur.m_utxt;
849 
850         cur.m_state = State.HOLD;
851         cur.switchOut();
852         cur.m_state = State.EXEC;
853     }
854 
855 
856     /**
857      * Forces a context switch to occur away from the calling fiber and then
858      * throws obj in the calling fiber.
859      *
860      * Params:
861      *  t = The object to throw.
862      *
863      * In:
864      *  t must not be null.
865      */
yieldAndThrow(Throwable t)866     static void yieldAndThrow( Throwable t ) nothrow @nogc
867     in
868     {
869         assert( t );
870     }
871     do
872     {
873         Fiber   cur = getThis();
874         assert( cur, "Fiber.yield() called with no active fiber" );
875         assert( cur.m_state == State.EXEC );
876 
877         static if ( __traits( compiles, ucontext_t ) )
878           cur.m_ucur = &cur.m_utxt;
879 
880         cur.m_unhandled = t;
881         cur.m_state = State.HOLD;
882         cur.switchOut();
883         cur.m_state = State.EXEC;
884     }
885 
886 
887     ///////////////////////////////////////////////////////////////////////////
888     // Fiber Accessors
889     ///////////////////////////////////////////////////////////////////////////
890 
891 
892     /**
893      * Provides a reference to the calling fiber or null if no fiber is
894      * currently active.
895      *
896      * Returns:
897      *  The fiber object representing the calling fiber or null if no fiber
898      *  is currently active within this thread. The result of deleting this object is undefined.
899      */
getThis()900     static Fiber getThis() @safe nothrow @nogc
901     {
902         version (GNU) pragma(inline, false);
903         return sm_this;
904     }
905 
906 
907     ///////////////////////////////////////////////////////////////////////////
908     // Static Initialization
909     ///////////////////////////////////////////////////////////////////////////
910 
911 
version(Posix)912     version (Posix)
913     {
914         static this()
915         {
916             static if ( __traits( compiles, ucontext_t ) )
917             {
918               int status = getcontext( &sm_utxt );
919               assert( status == 0 );
920             }
921         }
922     }
923 
924 private:
925 
926     //
927     // Fiber entry point.  Invokes the function or delegate passed on
928     // construction (if any).
929     //
run()930     final void run()
931     {
932         m_call();
933     }
934 
935     //
936     // Standard fiber data
937     //
938     Callable            m_call;
939     bool                m_isRunning;
940     Throwable           m_unhandled;
941     State               m_state;
942 
943 
944 private:
945     ///////////////////////////////////////////////////////////////////////////
946     // Stack Management
947     ///////////////////////////////////////////////////////////////////////////
948 
949 
950     //
951     // Allocate a new stack for this fiber.
952     //
allocStack(size_t sz,size_t guardPageSize)953     final void allocStack( size_t sz, size_t guardPageSize ) nothrow
954     in
955     {
956         assert( !m_pmem && !m_ctxt );
957     }
958     do
959     {
960         // adjust alloc size to a multiple of PAGESIZE
961         sz += PAGESIZE - 1;
962         sz -= sz % PAGESIZE;
963 
964         // NOTE: This instance of Thread.Context is dynamic so Fiber objects
965         //       can be collected by the GC so long as no user level references
966         //       to the object exist.  If m_ctxt were not dynamic then its
967         //       presence in the global context list would be enough to keep
968         //       this object alive indefinitely.  An alternative to allocating
969         //       room for this struct explicitly would be to mash it into the
970         //       base of the stack being allocated below.  However, doing so
971         //       requires too much special logic to be worthwhile.
972         m_ctxt = new StackContext;
973 
version(Windows)974         version (Windows)
975         {
976             // reserve memory for stack
977             m_pmem = VirtualAlloc( null,
978                                    sz + guardPageSize,
979                                    MEM_RESERVE,
980                                    PAGE_NOACCESS );
981             if ( !m_pmem )
982                 onOutOfMemoryError();
983 
984             version (StackGrowsDown)
985             {
986                 void* stack = m_pmem + guardPageSize;
987                 void* guard = m_pmem;
988                 void* pbase = stack + sz;
989             }
990             else
991             {
992                 void* stack = m_pmem;
993                 void* guard = m_pmem + sz;
994                 void* pbase = stack;
995             }
996 
997             // allocate reserved stack segment
998             stack = VirtualAlloc( stack,
999                                   sz,
1000                                   MEM_COMMIT,
1001                                   PAGE_READWRITE );
1002             if ( !stack )
1003                 onOutOfMemoryError();
1004 
1005             if (guardPageSize)
1006             {
1007                 // allocate reserved guard page
1008                 guard = VirtualAlloc( guard,
1009                                       guardPageSize,
1010                                       MEM_COMMIT,
1011                                       PAGE_READWRITE | PAGE_GUARD );
1012                 if ( !guard )
1013                     onOutOfMemoryError();
1014             }
1015 
1016             m_ctxt.bstack = pbase;
1017             m_ctxt.tstack = pbase;
1018             m_size = sz;
1019         }
1020         else
1021         {
1022             version (Posix) import core.sys.posix.sys.mman; // mmap, MAP_ANON
1023 
1024             static if ( __traits( compiles, ucontext_t ) )
1025             {
1026                 // Stack size must be at least the minimum allowable by the OS.
1027                 if (sz < MINSIGSTKSZ)
1028                     sz = MINSIGSTKSZ;
1029             }
1030 
1031             static if ( __traits( compiles, mmap ) )
1032             {
1033                 // Allocate more for the memory guard
1034                 sz += guardPageSize;
1035 
1036                 m_pmem = mmap( null,
1037                                sz,
1038                                PROT_READ | PROT_WRITE,
1039                                MAP_PRIVATE | MAP_ANON,
1040                                -1,
1041                                0 );
1042                 if ( m_pmem == MAP_FAILED )
1043                     m_pmem = null;
1044             }
1045             else static if ( __traits( compiles, valloc ) )
1046             {
1047                 m_pmem = valloc( sz );
1048             }
1049             else static if ( __traits( compiles, malloc ) )
1050             {
1051                 m_pmem = malloc( sz );
1052             }
1053             else
1054             {
1055                 m_pmem = null;
1056             }
1057 
1058             if ( !m_pmem )
1059                 onOutOfMemoryError();
1060 
version(StackGrowsDown)1061             version (StackGrowsDown)
1062             {
1063                 m_ctxt.bstack = m_pmem + sz;
1064                 m_ctxt.tstack = m_pmem + sz;
1065                 void* guard = m_pmem;
1066             }
1067             else
1068             {
1069                 m_ctxt.bstack = m_pmem;
1070                 m_ctxt.tstack = m_pmem;
1071                 void* guard = m_pmem + sz - guardPageSize;
1072             }
1073             m_size = sz;
1074 
1075             static if ( __traits( compiles, mmap ) )
1076             {
1077                 if (guardPageSize)
1078                 {
1079                     // protect end of stack
1080                     if ( mprotect(guard, guardPageSize, PROT_NONE) == -1 )
1081                         abort();
1082                 }
1083             }
1084             else
1085             {
1086                 // Supported only for mmap allocated memory - results are
1087                 // undefined if applied to memory not obtained by mmap
1088             }
1089         }
1090 
1091         Thread.add( m_ctxt );
1092     }
1093 
1094 
1095     //
1096     // Free this fiber's stack.
1097     //
freeStack()1098     final void freeStack() nothrow @nogc
1099     in
1100     {
1101         assert( m_pmem && m_ctxt );
1102     }
1103     do
1104     {
1105         // NOTE: m_ctxt is guaranteed to be alive because it is held in the
1106         //       global context list.
1107         Thread.slock.lock_nothrow();
1108         scope(exit) Thread.slock.unlock_nothrow();
1109         Thread.remove( m_ctxt );
1110 
version(Windows)1111         version (Windows)
1112         {
1113             VirtualFree( m_pmem, 0, MEM_RELEASE );
1114         }
1115         else
1116         {
1117             import core.sys.posix.sys.mman; // munmap
1118 
1119             static if ( __traits( compiles, mmap ) )
1120             {
1121                 munmap( m_pmem, m_size );
1122             }
1123             else static if ( __traits( compiles, valloc ) )
1124             {
1125                 free( m_pmem );
1126             }
1127             else static if ( __traits( compiles, malloc ) )
1128             {
1129                 free( m_pmem );
1130             }
1131         }
1132         m_pmem = null;
1133         m_ctxt = null;
1134     }
1135 
1136 
1137     //
1138     // Initialize the allocated stack.
1139     // Look above the definition of 'class Fiber' for some information about the implementation of this routine
1140     //
initStack()1141     final void initStack() nothrow @nogc
1142     in
1143     {
1144         assert( m_ctxt.tstack && m_ctxt.tstack == m_ctxt.bstack );
1145         assert( cast(size_t) m_ctxt.bstack % (void*).sizeof == 0 );
1146     }
1147     do
1148     {
1149         void* pstack = m_ctxt.tstack;
1150         scope( exit )  m_ctxt.tstack = pstack;
1151 
push(size_t val)1152         void push( size_t val ) nothrow
1153         {
1154             version (StackGrowsDown)
1155             {
1156                 pstack -= size_t.sizeof;
1157                 *(cast(size_t*) pstack) = val;
1158             }
1159             else
1160             {
1161                 pstack += size_t.sizeof;
1162                 *(cast(size_t*) pstack) = val;
1163             }
1164         }
1165 
1166         // NOTE: On OS X the stack must be 16-byte aligned according
1167         // to the IA-32 call spec. For x86_64 the stack also needs to
1168         // be aligned to 16-byte according to SysV AMD64 ABI.
version(AlignFiberStackTo16Byte)1169         version (AlignFiberStackTo16Byte)
1170         {
1171             version (StackGrowsDown)
1172             {
1173                 pstack = cast(void*)(cast(size_t)(pstack) - (cast(size_t)(pstack) & 0x0F));
1174             }
1175             else
1176             {
1177                 pstack = cast(void*)(cast(size_t)(pstack) + (cast(size_t)(pstack) & 0x0F));
1178             }
1179         }
1180 
version(AsmX86_Windows)1181         version (AsmX86_Windows)
1182         {
1183             version (StackGrowsDown) {} else static assert( false );
1184 
1185             // On Windows Server 2008 and 2008 R2, an exploit mitigation
1186             // technique known as SEHOP is activated by default. To avoid
1187             // hijacking of the exception handler chain, the presence of a
1188             // Windows-internal handler (ntdll.dll!FinalExceptionHandler) at
1189             // its end is tested by RaiseException. If it is not present, all
1190             // handlers are disregarded, and the program is thus aborted
1191             // (see http://blogs.technet.com/b/srd/archive/2009/02/02/
1192             // preventing-the-exploitation-of-seh-overwrites-with-sehop.aspx).
1193             // For new threads, this handler is installed by Windows immediately
1194             // after creation. To make exception handling work in fibers, we
1195             // have to insert it for our new stacks manually as well.
1196             //
1197             // To do this, we first determine the handler by traversing the SEH
1198             // chain of the current thread until its end, and then construct a
1199             // registration block for the last handler on the newly created
1200             // thread. We then continue to push all the initial register values
1201             // for the first context switch as for the other implementations.
1202             //
1203             // Note that this handler is never actually invoked, as we install
1204             // our own one on top of it in the fiber entry point function.
1205             // Thus, it should not have any effects on OSes not implementing
1206             // exception chain verification.
1207 
1208             alias fp_t = void function(); // Actual signature not relevant.
1209             static struct EXCEPTION_REGISTRATION
1210             {
1211                 EXCEPTION_REGISTRATION* next; // sehChainEnd if last one.
1212                 fp_t handler;
1213             }
1214             enum sehChainEnd = cast(EXCEPTION_REGISTRATION*) 0xFFFFFFFF;
1215 
1216             __gshared static fp_t finalHandler = null;
1217             if ( finalHandler is null )
1218             {
1219                 static EXCEPTION_REGISTRATION* fs0() nothrow
1220                 {
1221                     asm pure nothrow @nogc
1222                     {
1223                         naked;
1224                         mov EAX, FS:[0];
1225                         ret;
1226                     }
1227                 }
1228                 auto reg = fs0();
1229                 while ( reg.next != sehChainEnd ) reg = reg.next;
1230 
1231                 // Benign races are okay here, just to avoid re-lookup on every
1232                 // fiber creation.
1233                 finalHandler = reg.handler;
1234             }
1235 
1236             // When linking with /safeseh (supported by LDC, but not DMD)
1237             // the exception chain must not extend to the very top
1238             // of the stack, otherwise the exception chain is also considered
1239             // invalid. Reserving additional 4 bytes at the top of the stack will
1240             // keep the EXCEPTION_REGISTRATION below that limit
1241             size_t reserve = EXCEPTION_REGISTRATION.sizeof + 4;
1242             pstack -= reserve;
1243             *(cast(EXCEPTION_REGISTRATION*)pstack) =
1244                 EXCEPTION_REGISTRATION( sehChainEnd, finalHandler );
1245             auto pChainEnd = pstack;
1246 
1247             push( cast(size_t) &fiber_entryPoint );                 // EIP
1248             push( cast(size_t) m_ctxt.bstack - reserve );           // EBP
1249             push( 0x00000000 );                                     // EDI
1250             push( 0x00000000 );                                     // ESI
1251             push( 0x00000000 );                                     // EBX
1252             push( cast(size_t) pChainEnd );                         // FS:[0]
1253             push( cast(size_t) m_ctxt.bstack );                     // FS:[4]
1254             push( cast(size_t) m_ctxt.bstack - m_size );            // FS:[8]
1255             push( 0x00000000 );                                     // EAX
1256         }
version(AsmX86_64_Windows)1257         else version (AsmX86_64_Windows)
1258         {
1259             // Using this trampoline instead of the raw fiber_entryPoint
1260             // ensures that during context switches, source and destination
1261             // stacks have the same alignment. Otherwise, the stack would need
1262             // to be shifted by 8 bytes for the first call, as fiber_entryPoint
1263             // is an actual function expecting a stack which is not aligned
1264             // to 16 bytes.
1265             static void trampoline()
1266             {
1267                 asm pure nothrow @nogc
1268                 {
1269                     naked;
1270                     sub RSP, 32; // Shadow space (Win64 calling convention)
1271                     call fiber_entryPoint;
1272                     xor RCX, RCX; // This should never be reached, as
1273                     jmp RCX;      // fiber_entryPoint must never return.
1274                 }
1275             }
1276 
1277             push( cast(size_t) &trampoline );                       // RIP
1278             push( 0x00000000_00000000 );                            // RBP
1279             push( 0x00000000_00000000 );                            // R12
1280             push( 0x00000000_00000000 );                            // R13
1281             push( 0x00000000_00000000 );                            // R14
1282             push( 0x00000000_00000000 );                            // R15
1283             push( 0x00000000_00000000 );                            // RDI
1284             push( 0x00000000_00000000 );                            // RSI
1285             push( 0x00000000_00000000 );                            // XMM6 (high)
1286             push( 0x00000000_00000000 );                            // XMM6 (low)
1287             push( 0x00000000_00000000 );                            // XMM7 (high)
1288             push( 0x00000000_00000000 );                            // XMM7 (low)
1289             push( 0x00000000_00000000 );                            // XMM8 (high)
1290             push( 0x00000000_00000000 );                            // XMM8 (low)
1291             push( 0x00000000_00000000 );                            // XMM9 (high)
1292             push( 0x00000000_00000000 );                            // XMM9 (low)
1293             push( 0x00000000_00000000 );                            // XMM10 (high)
1294             push( 0x00000000_00000000 );                            // XMM10 (low)
1295             push( 0x00000000_00000000 );                            // XMM11 (high)
1296             push( 0x00000000_00000000 );                            // XMM11 (low)
1297             push( 0x00000000_00000000 );                            // XMM12 (high)
1298             push( 0x00000000_00000000 );                            // XMM12 (low)
1299             push( 0x00000000_00000000 );                            // XMM13 (high)
1300             push( 0x00000000_00000000 );                            // XMM13 (low)
1301             push( 0x00000000_00000000 );                            // XMM14 (high)
1302             push( 0x00000000_00000000 );                            // XMM14 (low)
1303             push( 0x00000000_00000000 );                            // XMM15 (high)
1304             push( 0x00000000_00000000 );                            // XMM15 (low)
1305             push( 0x00000000_00000000 );                            // RBX
1306             push( 0xFFFFFFFF_FFFFFFFF );                            // GS:[0]
1307             version (StackGrowsDown)
1308             {
1309                 push( cast(size_t) m_ctxt.bstack );                 // GS:[8]
1310                 push( cast(size_t) m_ctxt.bstack - m_size );        // GS:[16]
1311             }
1312             else
1313             {
1314                 push( cast(size_t) m_ctxt.bstack );                 // GS:[8]
1315                 push( cast(size_t) m_ctxt.bstack + m_size );        // GS:[16]
1316             }
1317         }
version(AsmX86_Posix)1318         else version (AsmX86_Posix)
1319         {
1320             push( 0x00000000 );                                     // Return address of fiber_entryPoint call
1321             push( cast(size_t) &fiber_entryPoint );                 // EIP
1322             push( cast(size_t) m_ctxt.bstack );                     // EBP
1323             push( 0x00000000 );                                     // EDI
1324             push( 0x00000000 );                                     // ESI
1325             push( 0x00000000 );                                     // EBX
1326             push( 0x00000000 );                                     // EAX
1327         }
version(AsmX86_64_Posix)1328         else version (AsmX86_64_Posix)
1329         {
1330             push( 0x00000000_00000000 );                            // Return address of fiber_entryPoint call
1331             push( cast(size_t) &fiber_entryPoint );                 // RIP
1332             push( cast(size_t) m_ctxt.bstack );                     // RBP
1333             push( 0x00000000_00000000 );                            // RBX
1334             push( 0x00000000_00000000 );                            // R12
1335             push( 0x00000000_00000000 );                            // R13
1336             push( 0x00000000_00000000 );                            // R14
1337             push( 0x00000000_00000000 );                            // R15
1338         }
version(AsmPPC_Posix)1339         else version (AsmPPC_Posix)
1340         {
1341             version (StackGrowsDown)
1342             {
1343                 pstack -= int.sizeof * 5;
1344             }
1345             else
1346             {
1347                 pstack += int.sizeof * 5;
1348             }
1349 
1350             push( cast(size_t) &fiber_entryPoint );     // link register
1351             push( 0x00000000 );                         // control register
1352             push( 0x00000000 );                         // old stack pointer
1353 
1354             // GPR values
1355             version (StackGrowsDown)
1356             {
1357                 pstack -= int.sizeof * 20;
1358             }
1359             else
1360             {
1361                 pstack += int.sizeof * 20;
1362             }
1363 
1364             assert( (cast(size_t) pstack & 0x0f) == 0 );
1365         }
version(AsmPPC_Darwin)1366         else version (AsmPPC_Darwin)
1367         {
1368             version (StackGrowsDown) {}
1369             else static assert(false, "PowerPC Darwin only supports decrementing stacks");
1370 
1371             uint wsize = size_t.sizeof;
1372 
1373             // linkage + regs + FPRs + VRs
1374             uint space = 8 * wsize + 20 * wsize + 18 * 8 + 12 * 16;
1375             (cast(ubyte*)pstack - space)[0 .. space] = 0;
1376 
1377             pstack -= wsize * 6;
1378             *cast(size_t*)pstack = cast(size_t) &fiber_entryPoint; // LR
1379             pstack -= wsize * 22;
1380 
1381             // On Darwin PPC64 pthread self is in R13 (which is reserved).
1382             // At present, it is not safe to migrate fibers between threads, but if that
1383             // changes, then updating the value of R13 will also need to be handled.
1384             version (PPC64)
1385               *cast(size_t*)(pstack + wsize) = cast(size_t) Thread.getThis().m_addr;
1386             assert( (cast(size_t) pstack & 0x0f) == 0 );
1387         }
version(AsmMIPS_O32_Posix)1388         else version (AsmMIPS_O32_Posix)
1389         {
1390             version (StackGrowsDown) {}
1391             else static assert(0);
1392 
1393             /* We keep the FP registers and the return address below
1394              * the stack pointer, so they don't get scanned by the
1395              * GC. The last frame before swapping the stack pointer is
1396              * organized like the following.
1397              *
1398              *     |-----------|<= frame pointer
1399              *     |    $gp    |
1400              *     |   $s0-8   |
1401              *     |-----------|<= stack pointer
1402              *     |    $ra    |
1403              *     |  align(8) |
1404              *     |  $f20-30  |
1405              *     |-----------|
1406              *
1407              */
1408             enum SZ_GP = 10 * size_t.sizeof; // $gp + $s0-8
1409             enum SZ_RA = size_t.sizeof;      // $ra
1410             version (MIPS_HardFloat)
1411             {
1412                 enum SZ_FP = 6 * 8;          // $f20-30
1413                 enum ALIGN = -(SZ_FP + SZ_RA) & (8 - 1);
1414             }
1415             else
1416             {
1417                 enum SZ_FP = 0;
1418                 enum ALIGN = 0;
1419             }
1420 
1421             enum BELOW = SZ_FP + ALIGN + SZ_RA;
1422             enum ABOVE = SZ_GP;
1423             enum SZ = BELOW + ABOVE;
1424 
1425             (cast(ubyte*)pstack - SZ)[0 .. SZ] = 0;
1426             pstack -= ABOVE;
1427             *cast(size_t*)(pstack - SZ_RA) = cast(size_t)&fiber_entryPoint;
1428         }
version(AsmAArch64_Posix)1429         else version (AsmAArch64_Posix)
1430         {
1431             // Like others, FP registers and return address (lr) are kept
1432             // below the saved stack top (tstack) to hide from GC scanning.
1433             // fiber_switchContext expects newp sp to look like this:
1434             //   19: x19
1435             //   ...
1436             //    9: x29 (fp)  <-- newp tstack
1437             //    8: x30 (lr)  [&fiber_entryPoint]
1438             //    7: d8
1439             //   ...
1440             //    0: d15
1441 
1442             version (StackGrowsDown) {}
1443             else
1444                 static assert(false, "Only full descending stacks supported on AArch64");
1445 
1446             // Only need to set return address (lr).  Everything else is fine
1447             // zero initialized.
1448             pstack -= size_t.sizeof * 11;    // skip past x19-x29
1449             push(cast(size_t) &fiber_trampoline); // see threadasm.S for docs
1450             pstack += size_t.sizeof;         // adjust sp (newp) above lr
1451         }
version(AsmARM_Posix)1452         else version (AsmARM_Posix)
1453         {
1454             /* We keep the FP registers and the return address below
1455              * the stack pointer, so they don't get scanned by the
1456              * GC. The last frame before swapping the stack pointer is
1457              * organized like the following.
1458              *
1459              *   |  |-----------|<= 'frame starts here'
1460              *   |  |     fp    | (the actual frame pointer, r11 isn't
1461              *   |  |   r10-r4  |  updated and still points to the previous frame)
1462              *   |  |-----------|<= stack pointer
1463              *   |  |     lr    |
1464              *   |  | 4byte pad |
1465              *   |  |   d15-d8  |(if FP supported)
1466              *   |  |-----------|
1467              *   Y
1468              *   stack grows down: The pointer value here is smaller than some lines above
1469              */
1470             // frame pointer can be zero, r10-r4 also zero initialized
1471             version (StackGrowsDown)
1472                 pstack -= int.sizeof * 8;
1473             else
1474                 static assert(false, "Only full descending stacks supported on ARM");
1475 
1476             // link register
1477             push( cast(size_t) &fiber_entryPoint );
1478             /*
1479              * We do not push padding and d15-d8 as those are zero initialized anyway
1480              * Position the stack pointer above the lr register
1481              */
1482             pstack += int.sizeof * 1;
1483         }
version(GNU_AsmX86_Windows)1484         else version (GNU_AsmX86_Windows)
1485         {
1486             version (StackGrowsDown) {} else static assert( false );
1487 
1488             // Currently, MinGW doesn't utilize SEH exceptions.
1489             // See DMD AsmX86_Windows If this code ever becomes fails and SEH is used.
1490 
1491             push( 0x00000000 );                                     // Return address of fiber_entryPoint call
1492             push( cast(size_t) &fiber_entryPoint );                 // EIP
1493             push( 0x00000000 );                                     // EBP
1494             push( 0x00000000 );                                     // EDI
1495             push( 0x00000000 );                                     // ESI
1496             push( 0x00000000 );                                     // EBX
1497             push( 0xFFFFFFFF );                                     // FS:[0] - Current SEH frame
1498             push( cast(size_t) m_ctxt.bstack );                     // FS:[4] - Top of stack
1499             push( cast(size_t) m_ctxt.bstack - m_size );            // FS:[8] - Bottom of stack
1500             push( 0x00000000 );                                     // EAX
1501         }
version(GNU_AsmX86_64_Windows)1502         else version (GNU_AsmX86_64_Windows)
1503         {
1504             push( 0x00000000_00000000 );                            // Return address of fiber_entryPoint call
1505             push( cast(size_t) &fiber_entryPoint );                 // RIP
1506             push( 0x00000000_00000000 );                            // RBP
1507             push( 0x00000000_00000000 );                            // RBX
1508             push( 0x00000000_00000000 );                            // R12
1509             push( 0x00000000_00000000 );                            // R13
1510             push( 0x00000000_00000000 );                            // R14
1511             push( 0x00000000_00000000 );                            // R15
1512             push( 0xFFFFFFFF_FFFFFFFF );                            // GS:[0] - Current SEH frame
1513             version (StackGrowsDown)
1514             {
1515                 push( cast(size_t) m_ctxt.bstack );                 // GS:[8]  - Top of stack
1516                 push( cast(size_t) m_ctxt.bstack - m_size );        // GS:[16] - Bottom of stack
1517             }
1518             else
1519             {
1520                 push( cast(size_t) m_ctxt.bstack );                 // GS:[8]  - Top of stack
1521                 push( cast(size_t) m_ctxt.bstack + m_size );        // GS:[16] - Bottom of stack
1522             }
1523         }
1524         else static if ( __traits( compiles, ucontext_t ) )
1525         {
1526             getcontext( &m_utxt );
1527             m_utxt.uc_stack.ss_sp   = m_pmem;
1528             m_utxt.uc_stack.ss_size = m_size;
1529             makecontext( &m_utxt, &fiber_entryPoint, 0 );
1530             // NOTE: If ucontext is being used then the top of the stack will
1531             //       be a pointer to the ucontext_t struct for that fiber.
1532             push( cast(size_t) &m_utxt );
1533         }
1534         else
1535             static assert(0, "Not implemented");
1536     }
1537 
1538 
1539     StackContext*   m_ctxt;
1540     size_t          m_size;
1541     void*           m_pmem;
1542 
1543     static if ( __traits( compiles, ucontext_t ) )
1544     {
1545         // NOTE: The static ucontext instance is used to represent the context
1546         //       of the executing thread.
1547         static ucontext_t       sm_utxt = void;
1548         ucontext_t              m_utxt  = void;
1549         ucontext_t*             m_ucur  = null;
1550     }
1551     else static if (GNU_Enable_CET)
1552     {
1553         // When libphobos was built with --enable-cet, these fields need to
1554         // always be present in the Fiber class layout.
1555         import core.sys.posix.ucontext;
1556         static ucontext_t       sm_utxt = void;
1557         ucontext_t              m_utxt  = void;
1558         ucontext_t*             m_ucur  = null;
1559     }
1560 
1561 
1562 private:
1563     ///////////////////////////////////////////////////////////////////////////
1564     // Storage of Active Fiber
1565     ///////////////////////////////////////////////////////////////////////////
1566 
1567 
1568     //
1569     // Sets a thread-local reference to the current fiber object.
1570     //
setThis(Fiber f)1571     static void setThis( Fiber f ) nothrow @nogc
1572     {
1573         sm_this = f;
1574     }
1575 
1576     static Fiber sm_this;
1577 
1578 
1579 private:
1580     ///////////////////////////////////////////////////////////////////////////
1581     // Context Switching
1582     ///////////////////////////////////////////////////////////////////////////
1583 
1584 
1585     //
1586     // Switches into the stack held by this fiber.
1587     //
switchIn()1588     final void switchIn() nothrow @nogc
1589     {
1590         Thread  tobj = Thread.getThis();
1591         void**  oldp = &tobj.m_curr.tstack;
1592         void*   newp = m_ctxt.tstack;
1593 
1594         // NOTE: The order of operations here is very important.  The current
1595         //       stack top must be stored before m_lock is set, and pushContext
1596         //       must not be called until after m_lock is set.  This process
1597         //       is intended to prevent a race condition with the suspend
1598         //       mechanism used for garbage collection.  If it is not followed,
1599         //       a badly timed collection could cause the GC to scan from the
1600         //       bottom of one stack to the top of another, or to miss scanning
1601         //       a stack that still contains valid data.  The old stack pointer
1602         //       oldp will be set again before the context switch to guarantee
1603         //       that it points to exactly the correct stack location so the
1604         //       successive pop operations will succeed.
1605         *oldp = getStackTop();
1606         atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
1607         tobj.pushContext( m_ctxt );
1608 
1609         fiber_switchContext( oldp, newp );
1610 
1611         // NOTE: As above, these operations must be performed in a strict order
1612         //       to prevent Bad Things from happening.
1613         tobj.popContext();
1614         atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
1615         tobj.m_curr.tstack = tobj.m_curr.bstack;
1616     }
1617 
1618 
1619     //
1620     // Switches out of the current stack and into the enclosing stack.
1621     //
switchOut()1622     final void switchOut() nothrow @nogc
1623     {
1624         Thread  tobj = Thread.getThis();
1625         void**  oldp = &m_ctxt.tstack;
1626         void*   newp = tobj.m_curr.within.tstack;
1627 
1628         // NOTE: The order of operations here is very important.  The current
1629         //       stack top must be stored before m_lock is set, and pushContext
1630         //       must not be called until after m_lock is set.  This process
1631         //       is intended to prevent a race condition with the suspend
1632         //       mechanism used for garbage collection.  If it is not followed,
1633         //       a badly timed collection could cause the GC to scan from the
1634         //       bottom of one stack to the top of another, or to miss scanning
1635         //       a stack that still contains valid data.  The old stack pointer
1636         //       oldp will be set again before the context switch to guarantee
1637         //       that it points to exactly the correct stack location so the
1638         //       successive pop operations will succeed.
1639         *oldp = getStackTop();
1640         atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, true);
1641 
1642         fiber_switchContext( oldp, newp );
1643 
1644         // NOTE: As above, these operations must be performed in a strict order
1645         //       to prevent Bad Things from happening.
1646         // NOTE: If use of this fiber is multiplexed across threads, the thread
1647         //       executing here may be different from the one above, so get the
1648         //       current thread handle before unlocking, etc.
1649         tobj = Thread.getThis();
1650         atomicStore!(MemoryOrder.raw)(*cast(shared)&tobj.m_lock, false);
1651         tobj.m_curr.tstack = tobj.m_curr.bstack;
1652     }
1653 }
1654 
1655 ///
1656 unittest {
1657     int counter;
1658 
1659     class DerivedFiber : Fiber
1660     {
this()1661         this()
1662         {
1663             super( &run );
1664         }
1665 
1666     private :
run()1667         void run()
1668         {
1669             counter += 2;
1670         }
1671     }
1672 
fiberFunc()1673     void fiberFunc()
1674     {
1675         counter += 4;
1676         Fiber.yield();
1677         counter += 8;
1678     }
1679 
1680     // create instances of each type
1681     Fiber derived = new DerivedFiber();
1682     Fiber composed = new Fiber( &fiberFunc );
1683 
1684     assert( counter == 0 );
1685 
1686     derived.call();
1687     assert( counter == 2, "Derived fiber increment." );
1688 
1689     composed.call();
1690     assert( counter == 6, "First composed fiber increment." );
1691 
1692     counter += 16;
1693     assert( counter == 22, "Calling context increment." );
1694 
1695     composed.call();
1696     assert( counter == 30, "Second composed fiber increment." );
1697 
1698     // since each fiber has run to completion, each should have state TERM
1699     assert( derived.state == Fiber.State.TERM );
1700     assert( composed.state == Fiber.State.TERM );
1701 }
1702 
version(unittest)1703 version (unittest)
1704 {
1705     class TestFiber : Fiber
1706     {
1707         this()
1708         {
1709             super(&run);
1710         }
1711 
1712         void run()
1713         {
1714             foreach (i; 0 .. 1000)
1715             {
1716                 sum += i;
1717                 Fiber.yield();
1718             }
1719         }
1720 
1721         enum expSum = 1000 * 999 / 2;
1722         size_t sum;
1723     }
1724 
1725     void runTen()
1726     {
1727         TestFiber[10] fibs;
1728         foreach (ref fib; fibs)
1729             fib = new TestFiber();
1730 
1731         bool cont;
1732         do {
1733             cont = false;
1734             foreach (fib; fibs) {
1735                 if (fib.state == Fiber.State.HOLD)
1736                 {
1737                     fib.call();
1738                     cont |= fib.state != Fiber.State.TERM;
1739                 }
1740             }
1741         } while (cont);
1742 
1743         foreach (fib; fibs)
1744         {
1745             assert(fib.sum == TestFiber.expSum);
1746         }
1747     }
1748 }
1749 
1750 
1751 // Single thread running separate fibers
1752 unittest
1753 {
1754     runTen();
1755 }
1756 
1757 
1758 // Multiple threads running separate fibers
1759 unittest
1760 {
1761     auto group = new ThreadGroup();
1762     foreach (_; 0 .. 4)
1763     {
1764         group.create(&runTen);
1765     }
1766     group.joinAll();
1767 }
1768 
1769 
1770 // Multiple threads running shared fibers
1771 version (PPC)   version = UnsafeFiberMigration;
1772 version (PPC64) version = UnsafeFiberMigration;
version(OSX)1773 version (OSX)
1774 {
1775     version (X86)    version = UnsafeFiberMigration;
1776     version (X86_64) version = UnsafeFiberMigration;
1777 }
1778 
version(UnsafeFiberMigration)1779 version (UnsafeFiberMigration)
1780 {
1781     // XBUG: core.thread fibers are supposed to be safe to migrate across
1782     // threads, however, there is a problem: GCC always assumes that the
1783     // address of thread-local variables don't change while on a given stack.
1784     // In consequence, migrating fibers between threads currently is an unsafe
1785     // thing to do, and will break on some targets (possibly PR26461).
1786 }
1787 else
1788 {
1789     version = FiberMigrationUnittest;
1790 }
1791 
version(FiberMigrationUnittest)1792 version (FiberMigrationUnittest)
1793 unittest
1794 {
1795     shared bool[10] locks;
1796     TestFiber[10] fibs;
1797 
1798     void runShared()
1799     {
1800         bool cont;
1801         do {
1802             cont = false;
1803             foreach (idx; 0 .. 10)
1804             {
1805                 if (cas(&locks[idx], false, true))
1806                 {
1807                     if (fibs[idx].state == Fiber.State.HOLD)
1808                     {
1809                         fibs[idx].call();
1810                         cont |= fibs[idx].state != Fiber.State.TERM;
1811                     }
1812                     locks[idx] = false;
1813                 }
1814                 else
1815                 {
1816                     cont = true;
1817                 }
1818             }
1819         } while (cont);
1820     }
1821 
1822     foreach (ref fib; fibs)
1823     {
1824         fib = new TestFiber();
1825     }
1826 
1827     auto group = new ThreadGroup();
1828     foreach (_; 0 .. 4)
1829     {
1830         group.create(&runShared);
1831     }
1832     group.joinAll();
1833 
1834     foreach (fib; fibs)
1835     {
1836         assert(fib.sum == TestFiber.expSum);
1837     }
1838 }
1839 
1840 
1841 // Test exception handling inside fibers.
1842 unittest
1843 {
1844     enum MSG = "Test message.";
1845     string caughtMsg;
1846     (new Fiber({
1847         try
1848         {
1849             throw new Exception(MSG);
1850         }
1851         catch (Exception e)
1852         {
1853             caughtMsg = e.msg;
1854         }
1855     })).call();
1856     assert(caughtMsg == MSG);
1857 }
1858 
1859 
1860 unittest
1861 {
1862     int x = 0;
1863 
1864     (new Fiber({
1865         x++;
1866     })).call();
1867     assert( x == 1 );
1868 }
1869 
1870 nothrow unittest
1871 {
1872     new Fiber({}).call!(Fiber.Rethrow.no)();
1873 }
1874 
1875 unittest
1876 {
1877     new Fiber({}).call(Fiber.Rethrow.yes);
1878     new Fiber({}).call(Fiber.Rethrow.no);
1879 }
1880 
1881 unittest
1882 {
1883     enum MSG = "Test message.";
1884 
1885     try
1886     {
1887         (new Fiber({
1888             throw new Exception( MSG );
1889         })).call();
1890         assert( false, "Expected rethrown exception." );
1891     }
catch(Throwable t)1892     catch ( Throwable t )
1893     {
1894         assert( t.msg == MSG );
1895     }
1896 }
1897 
1898 // Test exception chaining when switching contexts in finally blocks.
1899 unittest
1900 {
throwAndYield(string msg)1901     static void throwAndYield(string msg) {
1902       try {
1903         throw new Exception(msg);
1904       } finally {
1905         Fiber.yield();
1906       }
1907     }
1908 
fiber(string name)1909     static void fiber(string name) {
1910       try {
1911         try {
1912           throwAndYield(name ~ ".1");
1913         } finally {
1914           throwAndYield(name ~ ".2");
1915         }
1916       } catch (Exception e) {
1917         assert(e.msg == name ~ ".1");
1918         assert(e.next);
1919         assert(e.next.msg == name ~ ".2");
1920         assert(!e.next.next);
1921       }
1922     }
1923 
1924     auto first = new Fiber(() => fiber("first"));
1925     auto second = new Fiber(() => fiber("second"));
1926     first.call();
1927     second.call();
1928     first.call();
1929     second.call();
1930     first.call();
1931     second.call();
1932     assert(first.state == Fiber.State.TERM);
1933     assert(second.state == Fiber.State.TERM);
1934 }
1935 
1936 // Test Fiber resetting
1937 unittest
1938 {
1939     static string method;
1940 
foo()1941     static void foo()
1942     {
1943         method = "foo";
1944     }
1945 
bar()1946     void bar()
1947     {
1948         method = "bar";
1949     }
1950 
expect(Fiber fib,string s)1951     static void expect(Fiber fib, string s)
1952     {
1953         assert(fib.state == Fiber.State.HOLD);
1954         fib.call();
1955         assert(fib.state == Fiber.State.TERM);
1956         assert(method == s); method = null;
1957     }
1958     auto fib = new Fiber(&foo);
1959     expect(fib, "foo");
1960 
1961     fib.reset();
1962     expect(fib, "foo");
1963 
1964     fib.reset(&foo);
1965     expect(fib, "foo");
1966 
1967     fib.reset(&bar);
1968     expect(fib, "bar");
1969 
1970     fib.reset(function void(){method = "function";});
1971     expect(fib, "function");
1972 
1973     fib.reset(delegate void(){method = "delegate";});
1974     expect(fib, "delegate");
1975 }
1976 
1977 // Test unsafe reset in hold state
1978 unittest
1979 {
1980     auto fib = new Fiber(function {ubyte[2048] buf = void; Fiber.yield();}, 4096);
1981     foreach (_; 0 .. 10)
1982     {
1983         fib.call();
1984         assert(fib.state == Fiber.State.HOLD);
1985         fib.reset();
1986     }
1987 }
1988 
1989 // stress testing GC stack scanning
1990 unittest
1991 {
1992     import core.memory;
1993     import core.time : dur;
1994 
unreferencedThreadObject()1995     static void unreferencedThreadObject()
1996     {
1997         static void sleep() { Thread.sleep(dur!"msecs"(100)); }
1998         auto thread = new Thread(&sleep).start();
1999     }
2000     unreferencedThreadObject();
2001     GC.collect();
2002 
2003     static class Foo
2004     {
this(int value)2005         this(int value)
2006         {
2007             _value = value;
2008         }
2009 
bar()2010         int bar()
2011         {
2012             return _value;
2013         }
2014 
2015         int _value;
2016     }
2017 
collect()2018     static void collect()
2019     {
2020         auto foo = new Foo(2);
2021         assert(foo.bar() == 2);
2022         GC.collect();
2023         Fiber.yield();
2024         GC.collect();
2025         assert(foo.bar() == 2);
2026     }
2027 
2028     auto fiber = new Fiber(&collect);
2029 
2030     fiber.call();
2031     GC.collect();
2032     fiber.call();
2033 
2034     // thread reference
2035     auto foo = new Foo(2);
2036 
collect2()2037     void collect2()
2038     {
2039         assert(foo.bar() == 2);
2040         GC.collect();
2041         Fiber.yield();
2042         GC.collect();
2043         assert(foo.bar() == 2);
2044     }
2045 
2046     fiber = new Fiber(&collect2);
2047 
2048     fiber.call();
2049     GC.collect();
2050     fiber.call();
2051 
recurse(size_t cnt)2052     static void recurse(size_t cnt)
2053     {
2054         --cnt;
2055         Fiber.yield();
2056         if (cnt)
2057         {
2058             auto fib = new Fiber(() { recurse(cnt); });
2059             fib.call();
2060             GC.collect();
2061             fib.call();
2062         }
2063     }
2064     fiber = new Fiber(() { recurse(20); });
2065     fiber.call();
2066 }
2067 
2068 
version(AsmX86_64_Windows)2069 version (AsmX86_64_Windows)
2070 {
2071     // Test Windows x64 calling convention
2072     unittest
2073     {
2074         void testNonvolatileRegister(alias REG)()
2075         {
2076             auto zeroRegister = new Fiber(() {
2077                 mixin("asm pure nothrow @nogc { naked; xor "~REG~", "~REG~"; ret; }");
2078             });
2079             long after;
2080 
2081             mixin("asm pure nothrow @nogc { mov "~REG~", 0xFFFFFFFFFFFFFFFF; }");
2082             zeroRegister.call();
2083             mixin("asm pure nothrow @nogc { mov after, "~REG~"; }");
2084 
2085             assert(after == -1);
2086         }
2087 
2088         void testNonvolatileRegisterSSE(alias REG)()
2089         {
2090             auto zeroRegister = new Fiber(() {
2091                 mixin("asm pure nothrow @nogc { naked; xorpd "~REG~", "~REG~"; ret; }");
2092             });
2093             long[2] before = [0xFFFFFFFF_FFFFFFFF, 0xFFFFFFFF_FFFFFFFF], after;
2094 
2095             mixin("asm pure nothrow @nogc { movdqu "~REG~", before; }");
2096             zeroRegister.call();
2097             mixin("asm pure nothrow @nogc { movdqu after, "~REG~"; }");
2098 
2099             assert(before == after);
2100         }
2101 
2102         testNonvolatileRegister!("R12")();
2103         testNonvolatileRegister!("R13")();
2104         testNonvolatileRegister!("R14")();
2105         testNonvolatileRegister!("R15")();
2106         testNonvolatileRegister!("RDI")();
2107         testNonvolatileRegister!("RSI")();
2108         testNonvolatileRegister!("RBX")();
2109 
2110         testNonvolatileRegisterSSE!("XMM6")();
2111         testNonvolatileRegisterSSE!("XMM7")();
2112         testNonvolatileRegisterSSE!("XMM8")();
2113         testNonvolatileRegisterSSE!("XMM9")();
2114         testNonvolatileRegisterSSE!("XMM10")();
2115         testNonvolatileRegisterSSE!("XMM11")();
2116         testNonvolatileRegisterSSE!("XMM12")();
2117         testNonvolatileRegisterSSE!("XMM13")();
2118         testNonvolatileRegisterSSE!("XMM14")();
2119         testNonvolatileRegisterSSE!("XMM15")();
2120     }
2121 }
2122 
2123 
version(D_InlineAsm_X86_64)2124 version (D_InlineAsm_X86_64)
2125 {
2126     unittest
2127     {
2128         void testStackAlignment()
2129         {
2130             void* pRSP;
2131             asm pure nothrow @nogc
2132             {
2133                 mov pRSP, RSP;
2134             }
2135             assert((cast(size_t)pRSP & 0xF) == 0);
2136         }
2137 
2138         auto fib = new Fiber(&testStackAlignment);
2139         fib.call();
2140     }
2141 }
2142