1// Copyright 2020 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file implements type unification.
6
7package types
8
9import (
10	"bytes"
11	"go/token"
12	"sort"
13)
14
15// The unifier maintains two separate sets of type parameters x and y
16// which are used to resolve type parameters in the x and y arguments
17// provided to the unify call. For unidirectional unification, only
18// one of these sets (say x) is provided, and then type parameters are
19// only resolved for the x argument passed to unify, not the y argument
20// (even if that also contains possibly the same type parameters). This
21// is crucial to infer the type parameters of self-recursive calls:
22//
23//	func f[P any](a P) { f(a) }
24//
25// For the call f(a) we want to infer that the type argument for P is P.
26// During unification, the parameter type P must be resolved to the type
27// parameter P ("x" side), but the argument type P must be left alone so
28// that unification resolves the type parameter P to P.
29//
30// For bidirection unification, both sets are provided. This enables
31// unification to go from argument to parameter type and vice versa.
32// For constraint type inference, we use bidirectional unification
33// where both the x and y type parameters are identical. This is done
34// by setting up one of them (using init) and then assigning its value
35// to the other.
36
37// A unifier maintains the current type parameters for x and y
38// and the respective types inferred for each type parameter.
39// A unifier is created by calling newUnifier.
40type unifier struct {
41	check *Checker
42	exact bool
43	x, y  tparamsList // x and y must initialized via tparamsList.init
44	types []Type      // inferred types, shared by x and y
45}
46
47// newUnifier returns a new unifier.
48// If exact is set, unification requires unified types to match
49// exactly. If exact is not set, a named type's underlying type
50// is considered if unification would fail otherwise, and the
51// direction of channels is ignored.
52func newUnifier(check *Checker, exact bool) *unifier {
53	u := &unifier{check: check, exact: exact}
54	u.x.unifier = u
55	u.y.unifier = u
56	return u
57}
58
59// unify attempts to unify x and y and reports whether it succeeded.
60func (u *unifier) unify(x, y Type) bool {
61	return u.nify(x, y, nil)
62}
63
64// A tparamsList describes a list of type parameters and the types inferred for them.
65type tparamsList struct {
66	unifier *unifier
67	tparams []*TypeName
68	// For each tparams element, there is a corresponding type slot index in indices.
69	// index  < 0: unifier.types[-index-1] == nil
70	// index == 0: no type slot allocated yet
71	// index  > 0: unifier.types[index-1] == typ
72	// Joined tparams elements share the same type slot and thus have the same index.
73	// By using a negative index for nil types we don't need to check unifier.types
74	// to see if we have a type or not.
75	indices []int // len(d.indices) == len(d.tparams)
76}
77
78// String returns a string representation for a tparamsList. For debugging.
79func (d *tparamsList) String() string {
80	var buf bytes.Buffer
81	buf.WriteByte('[')
82	for i, tname := range d.tparams {
83		if i > 0 {
84			buf.WriteString(", ")
85		}
86		writeType(&buf, tname.typ, nil, nil)
87		buf.WriteString(": ")
88		writeType(&buf, d.at(i), nil, nil)
89	}
90	buf.WriteByte(']')
91	return buf.String()
92}
93
94// init initializes d with the given type parameters.
95// The type parameters must be in the order in which they appear in their declaration
96// (this ensures that the tparams indices match the respective type parameter index).
97func (d *tparamsList) init(tparams []*TypeName) {
98	if len(tparams) == 0 {
99		return
100	}
101	if debug {
102		for i, tpar := range tparams {
103			assert(i == tpar.typ.(*_TypeParam).index)
104		}
105	}
106	d.tparams = tparams
107	d.indices = make([]int, len(tparams))
108}
109
110// join unifies the i'th type parameter of x with the j'th type parameter of y.
111// If both type parameters already have a type associated with them and they are
112// not joined, join fails and return false.
113func (u *unifier) join(i, j int) bool {
114	ti := u.x.indices[i]
115	tj := u.y.indices[j]
116	switch {
117	case ti == 0 && tj == 0:
118		// Neither type parameter has a type slot associated with them.
119		// Allocate a new joined nil type slot (negative index).
120		u.types = append(u.types, nil)
121		u.x.indices[i] = -len(u.types)
122		u.y.indices[j] = -len(u.types)
123	case ti == 0:
124		// The type parameter for x has no type slot yet. Use slot of y.
125		u.x.indices[i] = tj
126	case tj == 0:
127		// The type parameter for y has no type slot yet. Use slot of x.
128		u.y.indices[j] = ti
129
130	// Both type parameters have a slot: ti != 0 && tj != 0.
131	case ti == tj:
132		// Both type parameters already share the same slot. Nothing to do.
133		break
134	case ti > 0 && tj > 0:
135		// Both type parameters have (possibly different) inferred types. Cannot join.
136		return false
137	case ti > 0:
138		// Only the type parameter for x has an inferred type. Use x slot for y.
139		u.y.setIndex(j, ti)
140	default:
141		// Either the type parameter for y has an inferred type, or neither type
142		// parameter has an inferred type. In either case, use y slot for x.
143		u.x.setIndex(i, tj)
144	}
145	return true
146}
147
148// If typ is a type parameter of d, index returns the type parameter index.
149// Otherwise, the result is < 0.
150func (d *tparamsList) index(typ Type) int {
151	if t, ok := typ.(*_TypeParam); ok {
152		if i := t.index; i < len(d.tparams) && d.tparams[i].typ == t {
153			return i
154		}
155	}
156	return -1
157}
158
159// setIndex sets the type slot index for the i'th type parameter
160// (and all its joined parameters) to tj. The type parameter
161// must have a (possibly nil) type slot associated with it.
162func (d *tparamsList) setIndex(i, tj int) {
163	ti := d.indices[i]
164	assert(ti != 0 && tj != 0)
165	for k, tk := range d.indices {
166		if tk == ti {
167			d.indices[k] = tj
168		}
169	}
170}
171
172// at returns the type set for the i'th type parameter; or nil.
173func (d *tparamsList) at(i int) Type {
174	if ti := d.indices[i]; ti > 0 {
175		return d.unifier.types[ti-1]
176	}
177	return nil
178}
179
180// set sets the type typ for the i'th type parameter;
181// typ must not be nil and it must not have been set before.
182func (d *tparamsList) set(i int, typ Type) {
183	assert(typ != nil)
184	u := d.unifier
185	switch ti := d.indices[i]; {
186	case ti < 0:
187		u.types[-ti-1] = typ
188		d.setIndex(i, -ti)
189	case ti == 0:
190		u.types = append(u.types, typ)
191		d.indices[i] = len(u.types)
192	default:
193		panic("type already set")
194	}
195}
196
197// types returns the list of inferred types (via unification) for the type parameters
198// described by d, and an index. If all types were inferred, the returned index is < 0.
199// Otherwise, it is the index of the first type parameter which couldn't be inferred;
200// i.e., for which list[index] is nil.
201func (d *tparamsList) types() (list []Type, index int) {
202	list = make([]Type, len(d.tparams))
203	index = -1
204	for i := range d.tparams {
205		t := d.at(i)
206		list[i] = t
207		if index < 0 && t == nil {
208			index = i
209		}
210	}
211	return
212}
213
214func (u *unifier) nifyEq(x, y Type, p *ifacePair) bool {
215	return x == y || u.nify(x, y, p)
216}
217
218// nify implements the core unification algorithm which is an
219// adapted version of Checker.identical0. For changes to that
220// code the corresponding changes should be made here.
221// Must not be called directly from outside the unifier.
222func (u *unifier) nify(x, y Type, p *ifacePair) bool {
223	// types must be expanded for comparison
224	x = expand(x)
225	y = expand(y)
226
227	if !u.exact {
228		// If exact unification is known to fail because we attempt to
229		// match a type name against an unnamed type literal, consider
230		// the underlying type of the named type.
231		// (Subtle: We use isNamed to include any type with a name (incl.
232		// basic types and type parameters. We use asNamed() because we only
233		// want *Named types.)
234		switch {
235		case !isNamed(x) && y != nil && asNamed(y) != nil:
236			return u.nify(x, under(y), p)
237		case x != nil && asNamed(x) != nil && !isNamed(y):
238			return u.nify(under(x), y, p)
239		}
240	}
241
242	// Cases where at least one of x or y is a type parameter.
243	switch i, j := u.x.index(x), u.y.index(y); {
244	case i >= 0 && j >= 0:
245		// both x and y are type parameters
246		if u.join(i, j) {
247			return true
248		}
249		// both x and y have an inferred type - they must match
250		return u.nifyEq(u.x.at(i), u.y.at(j), p)
251
252	case i >= 0:
253		// x is a type parameter, y is not
254		if tx := u.x.at(i); tx != nil {
255			return u.nifyEq(tx, y, p)
256		}
257		// otherwise, infer type from y
258		u.x.set(i, y)
259		return true
260
261	case j >= 0:
262		// y is a type parameter, x is not
263		if ty := u.y.at(j); ty != nil {
264			return u.nifyEq(x, ty, p)
265		}
266		// otherwise, infer type from x
267		u.y.set(j, x)
268		return true
269	}
270
271	// For type unification, do not shortcut (x == y) for identical
272	// types. Instead keep comparing them element-wise to unify the
273	// matching (and equal type parameter types). A simple test case
274	// where this matters is: func f[P any](a P) { f(a) } .
275
276	switch x := x.(type) {
277	case *Basic:
278		// Basic types are singletons except for the rune and byte
279		// aliases, thus we cannot solely rely on the x == y check
280		// above. See also comment in TypeName.IsAlias.
281		if y, ok := y.(*Basic); ok {
282			return x.kind == y.kind
283		}
284
285	case *Array:
286		// Two array types are identical if they have identical element types
287		// and the same array length.
288		if y, ok := y.(*Array); ok {
289			// If one or both array lengths are unknown (< 0) due to some error,
290			// assume they are the same to avoid spurious follow-on errors.
291			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, p)
292		}
293
294	case *Slice:
295		// Two slice types are identical if they have identical element types.
296		if y, ok := y.(*Slice); ok {
297			return u.nify(x.elem, y.elem, p)
298		}
299
300	case *Struct:
301		// Two struct types are identical if they have the same sequence of fields,
302		// and if corresponding fields have the same names, and identical types,
303		// and identical tags. Two embedded fields are considered to have the same
304		// name. Lower-case field names from different packages are always different.
305		if y, ok := y.(*Struct); ok {
306			if x.NumFields() == y.NumFields() {
307				for i, f := range x.fields {
308					g := y.fields[i]
309					if f.embedded != g.embedded ||
310						x.Tag(i) != y.Tag(i) ||
311						!f.sameId(g.pkg, g.name) ||
312						!u.nify(f.typ, g.typ, p) {
313						return false
314					}
315				}
316				return true
317			}
318		}
319
320	case *Pointer:
321		// Two pointer types are identical if they have identical base types.
322		if y, ok := y.(*Pointer); ok {
323			return u.nify(x.base, y.base, p)
324		}
325
326	case *Tuple:
327		// Two tuples types are identical if they have the same number of elements
328		// and corresponding elements have identical types.
329		if y, ok := y.(*Tuple); ok {
330			if x.Len() == y.Len() {
331				if x != nil {
332					for i, v := range x.vars {
333						w := y.vars[i]
334						if !u.nify(v.typ, w.typ, p) {
335							return false
336						}
337					}
338				}
339				return true
340			}
341		}
342
343	case *Signature:
344		// Two function types are identical if they have the same number of parameters
345		// and result values, corresponding parameter and result types are identical,
346		// and either both functions are variadic or neither is. Parameter and result
347		// names are not required to match.
348		// TODO(gri) handle type parameters or document why we can ignore them.
349		if y, ok := y.(*Signature); ok {
350			return x.variadic == y.variadic &&
351				u.nify(x.params, y.params, p) &&
352				u.nify(x.results, y.results, p)
353		}
354
355	case *_Sum:
356		// This should not happen with the current internal use of sum types.
357		panic("type inference across sum types not implemented")
358
359	case *Interface:
360		// Two interface types are identical if they have the same set of methods with
361		// the same names and identical function types. Lower-case method names from
362		// different packages are always different. The order of the methods is irrelevant.
363		if y, ok := y.(*Interface); ok {
364			// If identical0 is called (indirectly) via an external API entry point
365			// (such as Identical, IdenticalIgnoreTags, etc.), check is nil. But in
366			// that case, interfaces are expected to be complete and lazy completion
367			// here is not needed.
368			if u.check != nil {
369				u.check.completeInterface(token.NoPos, x)
370				u.check.completeInterface(token.NoPos, y)
371			}
372			a := x.allMethods
373			b := y.allMethods
374			if len(a) == len(b) {
375				// Interface types are the only types where cycles can occur
376				// that are not "terminated" via named types; and such cycles
377				// can only be created via method parameter types that are
378				// anonymous interfaces (directly or indirectly) embedding
379				// the current interface. Example:
380				//
381				//    type T interface {
382				//        m() interface{T}
383				//    }
384				//
385				// If two such (differently named) interfaces are compared,
386				// endless recursion occurs if the cycle is not detected.
387				//
388				// If x and y were compared before, they must be equal
389				// (if they were not, the recursion would have stopped);
390				// search the ifacePair stack for the same pair.
391				//
392				// This is a quadratic algorithm, but in practice these stacks
393				// are extremely short (bounded by the nesting depth of interface
394				// type declarations that recur via parameter types, an extremely
395				// rare occurrence). An alternative implementation might use a
396				// "visited" map, but that is probably less efficient overall.
397				q := &ifacePair{x, y, p}
398				for p != nil {
399					if p.identical(q) {
400						return true // same pair was compared before
401					}
402					p = p.prev
403				}
404				if debug {
405					assert(sort.IsSorted(byUniqueMethodName(a)))
406					assert(sort.IsSorted(byUniqueMethodName(b)))
407				}
408				for i, f := range a {
409					g := b[i]
410					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, q) {
411						return false
412					}
413				}
414				return true
415			}
416		}
417
418	case *Map:
419		// Two map types are identical if they have identical key and value types.
420		if y, ok := y.(*Map); ok {
421			return u.nify(x.key, y.key, p) && u.nify(x.elem, y.elem, p)
422		}
423
424	case *Chan:
425		// Two channel types are identical if they have identical value types.
426		if y, ok := y.(*Chan); ok {
427			return (!u.exact || x.dir == y.dir) && u.nify(x.elem, y.elem, p)
428		}
429
430	case *Named:
431		// Two named types are identical if their type names originate
432		// in the same type declaration.
433		// if y, ok := y.(*Named); ok {
434		// 	return x.obj == y.obj
435		// }
436		if y, ok := y.(*Named); ok {
437			// TODO(gri) This is not always correct: two types may have the same names
438			//           in the same package if one of them is nested in a function.
439			//           Extremely unlikely but we need an always correct solution.
440			if x.obj.pkg == y.obj.pkg && x.obj.name == y.obj.name {
441				assert(len(x.targs) == len(y.targs))
442				for i, x := range x.targs {
443					if !u.nify(x, y.targs[i], p) {
444						return false
445					}
446				}
447				return true
448			}
449		}
450
451	case *_TypeParam:
452		// Two type parameters (which are not part of the type parameters of the
453		// enclosing type as those are handled in the beginning of this function)
454		// are identical if they originate in the same declaration.
455		return x == y
456
457	// case *instance:
458	//	unreachable since types are expanded
459
460	case nil:
461		// avoid a crash in case of nil type
462
463	default:
464		u.check.dump("### u.nify(%s, %s), u.x.tparams = %s", x, y, u.x.tparams)
465		unreachable()
466	}
467
468	return false
469}
470