1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--                 ADA.CONTAINERS.INDEFINITE_ORDERED_MAPS                   --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2004-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- This unit was originally developed by Matthew J Heaney.                  --
28------------------------------------------------------------------------------
29
30with Ada.Unchecked_Deallocation;
31
32with Ada.Containers.Red_Black_Trees.Generic_Operations;
33pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
34
35with Ada.Containers.Red_Black_Trees.Generic_Keys;
36pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
37
38with System; use type System.Address;
39
40package body Ada.Containers.Indefinite_Ordered_Maps is
41   pragma Suppress (All_Checks);
42
43   type Iterator is new Limited_Controlled and
44     Map_Iterator_Interfaces.Reversible_Iterator with
45   record
46      Container : Map_Access;
47      Node      : Node_Access;
48   end record;
49
50   overriding procedure Finalize (Object : in out Iterator);
51
52   overriding function First (Object : Iterator) return Cursor;
53   overriding function Last  (Object : Iterator) return Cursor;
54
55   overriding function Next
56     (Object   : Iterator;
57      Position : Cursor) return Cursor;
58
59   overriding function Previous
60     (Object   : Iterator;
61      Position : Cursor) return Cursor;
62
63   -----------------------------
64   -- Node Access Subprograms --
65   -----------------------------
66
67   --  These subprograms provide a functional interface to access fields
68   --  of a node, and a procedural interface for modifying these values.
69
70   function Color (Node : Node_Access) return Color_Type;
71   pragma Inline (Color);
72
73   function Left (Node : Node_Access) return Node_Access;
74   pragma Inline (Left);
75
76   function Parent (Node : Node_Access) return Node_Access;
77   pragma Inline (Parent);
78
79   function Right (Node : Node_Access) return Node_Access;
80   pragma Inline (Right);
81
82   procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
83   pragma Inline (Set_Parent);
84
85   procedure Set_Left (Node : Node_Access; Left : Node_Access);
86   pragma Inline (Set_Left);
87
88   procedure Set_Right (Node : Node_Access; Right : Node_Access);
89   pragma Inline (Set_Right);
90
91   procedure Set_Color (Node : Node_Access; Color : Color_Type);
92   pragma Inline (Set_Color);
93
94   -----------------------
95   -- Local Subprograms --
96   -----------------------
97
98   function Copy_Node (Source : Node_Access) return Node_Access;
99   pragma Inline (Copy_Node);
100
101   procedure Free (X : in out Node_Access);
102
103   function Is_Equal_Node_Node
104     (L, R : Node_Access) return Boolean;
105   pragma Inline (Is_Equal_Node_Node);
106
107   function Is_Greater_Key_Node
108     (Left  : Key_Type;
109      Right : Node_Access) return Boolean;
110   pragma Inline (Is_Greater_Key_Node);
111
112   function Is_Less_Key_Node
113     (Left  : Key_Type;
114      Right : Node_Access) return Boolean;
115   pragma Inline (Is_Less_Key_Node);
116
117   --------------------------
118   -- Local Instantiations --
119   --------------------------
120
121   package Tree_Operations is
122     new Red_Black_Trees.Generic_Operations (Tree_Types);
123
124   procedure Delete_Tree is
125      new Tree_Operations.Generic_Delete_Tree (Free);
126
127   function Copy_Tree is
128      new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
129
130   use Tree_Operations;
131
132   package Key_Ops is
133     new Red_Black_Trees.Generic_Keys
134       (Tree_Operations     => Tree_Operations,
135        Key_Type            => Key_Type,
136        Is_Less_Key_Node    => Is_Less_Key_Node,
137        Is_Greater_Key_Node => Is_Greater_Key_Node);
138
139   procedure Free_Key is
140     new Ada.Unchecked_Deallocation (Key_Type, Key_Access);
141
142   procedure Free_Element is
143     new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
144
145   function Is_Equal is
146     new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
147
148   ---------
149   -- "<" --
150   ---------
151
152   function "<" (Left, Right : Cursor) return Boolean is
153   begin
154      if Left.Node = null then
155         raise Constraint_Error with "Left cursor of ""<"" equals No_Element";
156      end if;
157
158      if Right.Node = null then
159         raise Constraint_Error with "Right cursor of ""<"" equals No_Element";
160      end if;
161
162      if Left.Node.Key = null then
163         raise Program_Error with "Left cursor in ""<"" is bad";
164      end if;
165
166      if Right.Node.Key = null then
167         raise Program_Error with "Right cursor in ""<"" is bad";
168      end if;
169
170      pragma Assert (Vet (Left.Container.Tree, Left.Node),
171                     "Left cursor in ""<"" is bad");
172
173      pragma Assert (Vet (Right.Container.Tree, Right.Node),
174                     "Right cursor in ""<"" is bad");
175
176      return Left.Node.Key.all < Right.Node.Key.all;
177   end "<";
178
179   function "<" (Left : Cursor; Right : Key_Type) return Boolean is
180   begin
181      if Left.Node = null then
182         raise Constraint_Error with "Left cursor of ""<"" equals No_Element";
183      end if;
184
185      if Left.Node.Key = null then
186         raise Program_Error with "Left cursor in ""<"" is bad";
187      end if;
188
189      pragma Assert (Vet (Left.Container.Tree, Left.Node),
190                     "Left cursor in ""<"" is bad");
191
192      return Left.Node.Key.all < Right;
193   end "<";
194
195   function "<" (Left : Key_Type; Right : Cursor) return Boolean is
196   begin
197      if Right.Node = null then
198         raise Constraint_Error with "Right cursor of ""<"" equals No_Element";
199      end if;
200
201      if Right.Node.Key = null then
202         raise Program_Error with "Right cursor in ""<"" is bad";
203      end if;
204
205      pragma Assert (Vet (Right.Container.Tree, Right.Node),
206                     "Right cursor in ""<"" is bad");
207
208      return Left < Right.Node.Key.all;
209   end "<";
210
211   ---------
212   -- "=" --
213   ---------
214
215   function "=" (Left, Right : Map) return Boolean is
216   begin
217      return Is_Equal (Left.Tree, Right.Tree);
218   end "=";
219
220   ---------
221   -- ">" --
222   ---------
223
224   function ">" (Left, Right : Cursor) return Boolean is
225   begin
226      if Left.Node = null then
227         raise Constraint_Error with "Left cursor of "">"" equals No_Element";
228      end if;
229
230      if Right.Node = null then
231         raise Constraint_Error with "Right cursor of "">"" equals No_Element";
232      end if;
233
234      if Left.Node.Key = null then
235         raise Program_Error with "Left cursor in ""<"" is bad";
236      end if;
237
238      if Right.Node.Key = null then
239         raise Program_Error with "Right cursor in ""<"" is bad";
240      end if;
241
242      pragma Assert (Vet (Left.Container.Tree, Left.Node),
243                     "Left cursor in "">"" is bad");
244
245      pragma Assert (Vet (Right.Container.Tree, Right.Node),
246                     "Right cursor in "">"" is bad");
247
248      return Right.Node.Key.all < Left.Node.Key.all;
249   end ">";
250
251   function ">" (Left : Cursor; Right : Key_Type) return Boolean is
252   begin
253      if Left.Node = null then
254         raise Constraint_Error with "Left cursor of "">"" equals No_Element";
255      end if;
256
257      if Left.Node.Key = null then
258         raise Program_Error with "Left cursor in ""<"" is bad";
259      end if;
260
261      pragma Assert (Vet (Left.Container.Tree, Left.Node),
262                     "Left cursor in "">"" is bad");
263
264      return Right < Left.Node.Key.all;
265   end ">";
266
267   function ">" (Left : Key_Type; Right : Cursor) return Boolean is
268   begin
269      if Right.Node = null then
270         raise Constraint_Error with "Right cursor of "">"" equals No_Element";
271      end if;
272
273      if Right.Node.Key = null then
274         raise Program_Error with "Right cursor in ""<"" is bad";
275      end if;
276
277      pragma Assert (Vet (Right.Container.Tree, Right.Node),
278                     "Right cursor in "">"" is bad");
279
280      return Right.Node.Key.all < Left;
281   end ">";
282
283   ------------
284   -- Adjust --
285   ------------
286
287   procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree);
288
289   procedure Adjust (Container : in out Map) is
290   begin
291      Adjust (Container.Tree);
292   end Adjust;
293
294   procedure Adjust (Control : in out Reference_Control_Type) is
295   begin
296      if Control.Container /= null then
297         declare
298            T : Tree_Type renames Control.Container.all.Tree;
299            B : Natural renames T.Busy;
300            L : Natural renames T.Lock;
301         begin
302            B := B + 1;
303            L := L + 1;
304         end;
305      end if;
306   end Adjust;
307
308   ------------
309   -- Assign --
310   ------------
311
312   procedure Assign (Target : in out Map; Source : Map) is
313      procedure Insert_Item (Node : Node_Access);
314      pragma Inline (Insert_Item);
315
316      procedure Insert_Items is
317         new Tree_Operations.Generic_Iteration (Insert_Item);
318
319      -----------------
320      -- Insert_Item --
321      -----------------
322
323      procedure Insert_Item (Node : Node_Access) is
324      begin
325         Target.Insert (Key => Node.Key.all, New_Item => Node.Element.all);
326      end Insert_Item;
327
328   --  Start of processing for Assign
329
330   begin
331      if Target'Address = Source'Address then
332         return;
333      end if;
334
335      Target.Clear;
336      Insert_Items (Target.Tree);
337   end Assign;
338
339   -------------
340   -- Ceiling --
341   -------------
342
343   function Ceiling (Container : Map; Key : Key_Type) return Cursor is
344      Node : constant Node_Access := Key_Ops.Ceiling (Container.Tree, Key);
345   begin
346      return (if Node = null then No_Element
347                else Cursor'(Container'Unrestricted_Access, Node));
348   end Ceiling;
349
350   -----------
351   -- Clear --
352   -----------
353
354   procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree);
355
356   procedure Clear (Container : in out Map) is
357   begin
358      Clear (Container.Tree);
359   end Clear;
360
361   -----------
362   -- Color --
363   -----------
364
365   function Color (Node : Node_Access) return Color_Type is
366   begin
367      return Node.Color;
368   end Color;
369
370   ------------------------
371   -- Constant_Reference --
372   ------------------------
373
374   function Constant_Reference
375     (Container : aliased Map;
376      Position  : Cursor) return Constant_Reference_Type
377   is
378   begin
379      if Position.Container = null then
380         raise Constraint_Error with
381           "Position cursor has no element";
382      end if;
383
384      if Position.Container /= Container'Unrestricted_Access then
385         raise Program_Error with
386           "Position cursor designates wrong map";
387      end if;
388
389      if Position.Node.Element = null then
390         raise Program_Error with "Node has no element";
391      end if;
392
393      pragma Assert (Vet (Container.Tree, Position.Node),
394                     "Position cursor in Constant_Reference is bad");
395
396      declare
397         T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
398         B : Natural renames T.Busy;
399         L : Natural renames T.Lock;
400      begin
401         return R : constant Constant_Reference_Type :=
402           (Element => Position.Node.Element.all'Access,
403            Control => (Controlled with Container'Unrestricted_Access))
404         do
405            B := B + 1;
406            L := L + 1;
407         end return;
408      end;
409   end Constant_Reference;
410
411   function Constant_Reference
412     (Container : aliased Map;
413      Key       : Key_Type) return Constant_Reference_Type
414   is
415      Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
416
417   begin
418      if Node = null then
419         raise Constraint_Error with "key not in map";
420      end if;
421
422      if Node.Element = null then
423         raise Program_Error with "Node has no element";
424      end if;
425
426      declare
427         T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
428         B : Natural renames T.Busy;
429         L : Natural renames T.Lock;
430      begin
431         return R : constant Constant_Reference_Type :=
432           (Element => Node.Element.all'Access,
433            Control => (Controlled with Container'Unrestricted_Access))
434         do
435            B := B + 1;
436            L := L + 1;
437         end return;
438      end;
439   end Constant_Reference;
440
441   --------------
442   -- Contains --
443   --------------
444
445   function Contains (Container : Map; Key : Key_Type) return Boolean is
446   begin
447      return Find (Container, Key) /= No_Element;
448   end Contains;
449
450   ----------
451   -- Copy --
452   ----------
453
454   function Copy (Source : Map) return Map is
455   begin
456      return Target : Map do
457         Target.Assign (Source);
458      end return;
459   end Copy;
460
461   ---------------
462   -- Copy_Node --
463   ---------------
464
465   function Copy_Node (Source : Node_Access) return Node_Access is
466      K : Key_Access := new Key_Type'(Source.Key.all);
467      E : Element_Access;
468
469   begin
470      E := new Element_Type'(Source.Element.all);
471
472      return new Node_Type'(Parent  => null,
473                            Left    => null,
474                            Right   => null,
475                            Color   => Source.Color,
476                            Key     => K,
477                            Element => E);
478   exception
479      when others =>
480         Free_Key (K);
481         Free_Element (E);
482         raise;
483   end Copy_Node;
484
485   ------------
486   -- Delete --
487   ------------
488
489   procedure Delete
490     (Container : in out Map;
491      Position  : in out Cursor)
492   is
493   begin
494      if Position.Node = null then
495         raise Constraint_Error with
496           "Position cursor of Delete equals No_Element";
497      end if;
498
499      if Position.Node.Key = null
500        or else Position.Node.Element = null
501      then
502         raise Program_Error with "Position cursor of Delete is bad";
503      end if;
504
505      if Position.Container /= Container'Unrestricted_Access then
506         raise Program_Error with
507           "Position cursor of Delete designates wrong map";
508      end if;
509
510      pragma Assert (Vet (Container.Tree, Position.Node),
511                     "Position cursor of Delete is bad");
512
513      Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
514      Free (Position.Node);
515
516      Position.Container := null;
517   end Delete;
518
519   procedure Delete (Container : in out Map; Key : Key_Type) is
520      X : Node_Access := Key_Ops.Find (Container.Tree, Key);
521
522   begin
523      if X = null then
524         raise Constraint_Error with "key not in map";
525      end if;
526
527      Delete_Node_Sans_Free (Container.Tree, X);
528      Free (X);
529   end Delete;
530
531   ------------------
532   -- Delete_First --
533   ------------------
534
535   procedure Delete_First (Container : in out Map) is
536      X : Node_Access := Container.Tree.First;
537   begin
538      if X /= null then
539         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
540         Free (X);
541      end if;
542   end Delete_First;
543
544   -----------------
545   -- Delete_Last --
546   -----------------
547
548   procedure Delete_Last (Container : in out Map) is
549      X : Node_Access := Container.Tree.Last;
550   begin
551      if X /= null then
552         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
553         Free (X);
554      end if;
555   end Delete_Last;
556
557   -------------
558   -- Element --
559   -------------
560
561   function Element (Position : Cursor) return Element_Type is
562   begin
563      if Position.Node = null then
564         raise Constraint_Error with
565           "Position cursor of function Element equals No_Element";
566      end if;
567
568      if Position.Node.Element = null then
569         raise Program_Error with
570           "Position cursor of function Element is bad";
571      end if;
572
573      pragma Assert (Vet (Position.Container.Tree, Position.Node),
574                     "Position cursor of function Element is bad");
575
576      return Position.Node.Element.all;
577   end Element;
578
579   function Element (Container : Map; Key : Key_Type) return Element_Type is
580      Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
581
582   begin
583      if Node = null then
584         raise Constraint_Error with "key not in map";
585      end if;
586
587      return Node.Element.all;
588   end Element;
589
590   ---------------------
591   -- Equivalent_Keys --
592   ---------------------
593
594   function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
595   begin
596      return (if Left < Right or else Right < Left then False else True);
597   end Equivalent_Keys;
598
599   -------------
600   -- Exclude --
601   -------------
602
603   procedure Exclude (Container : in out Map; Key : Key_Type) is
604      X : Node_Access := Key_Ops.Find (Container.Tree, Key);
605   begin
606      if X /= null then
607         Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
608         Free (X);
609      end if;
610   end Exclude;
611
612   --------------
613   -- Finalize --
614   --------------
615
616   procedure Finalize (Object : in out Iterator) is
617   begin
618      if Object.Container /= null then
619         declare
620            B : Natural renames Object.Container.all.Tree.Busy;
621         begin
622            B := B - 1;
623         end;
624      end if;
625   end Finalize;
626
627   procedure Finalize (Control : in out Reference_Control_Type) is
628   begin
629      if Control.Container /= null then
630         declare
631            T : Tree_Type renames Control.Container.all.Tree;
632            B : Natural renames T.Busy;
633            L : Natural renames T.Lock;
634         begin
635            B := B - 1;
636            L := L - 1;
637         end;
638
639         Control.Container := null;
640      end if;
641   end Finalize;
642
643   ----------
644   -- Find --
645   ----------
646
647   function Find (Container : Map; Key : Key_Type) return Cursor is
648      Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
649   begin
650      return (if Node = null then No_Element
651              else Cursor'(Container'Unrestricted_Access, Node));
652   end Find;
653
654   -----------
655   -- First --
656   -----------
657
658   function First (Container : Map) return Cursor is
659      T : Tree_Type renames Container.Tree;
660   begin
661      return (if T.First = null then No_Element
662              else Cursor'(Container'Unrestricted_Access, T.First));
663   end First;
664
665   function First (Object : Iterator) return Cursor is
666   begin
667      --  The value of the iterator object's Node component influences the
668      --  behavior of the First (and Last) selector function.
669
670      --  When the Node component is null, this means the iterator object was
671      --  constructed without a start expression, in which case the (forward)
672      --  iteration starts from the (logical) beginning of the entire sequence
673      --  of items (corresponding to Container.First for a forward iterator).
674
675      --  Otherwise, this is iteration over a partial sequence of items. When
676      --  the Node component is non-null, the iterator object was constructed
677      --  with a start expression, that specifies the position from which the
678      --  (forward) partial iteration begins.
679
680      if Object.Node = null then
681         return Object.Container.First;
682      else
683         return Cursor'(Object.Container, Object.Node);
684      end if;
685   end First;
686
687   -------------------
688   -- First_Element --
689   -------------------
690
691   function First_Element (Container : Map) return Element_Type is
692      T : Tree_Type renames Container.Tree;
693   begin
694      if T.First = null then
695         raise Constraint_Error with "map is empty";
696      else
697         return T.First.Element.all;
698      end if;
699   end First_Element;
700
701   ---------------
702   -- First_Key --
703   ---------------
704
705   function First_Key (Container : Map) return Key_Type is
706      T : Tree_Type renames Container.Tree;
707   begin
708      if T.First = null then
709         raise Constraint_Error with "map is empty";
710      else
711         return T.First.Key.all;
712      end if;
713   end First_Key;
714
715   -----------
716   -- Floor --
717   -----------
718
719   function Floor (Container : Map; Key : Key_Type) return Cursor is
720      Node : constant Node_Access := Key_Ops.Floor (Container.Tree, Key);
721   begin
722      return (if Node = null then No_Element
723              else Cursor'(Container'Unrestricted_Access, Node));
724   end Floor;
725
726   ----------
727   -- Free --
728   ----------
729
730   procedure Free (X : in out Node_Access) is
731      procedure Deallocate is
732        new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
733
734   begin
735      if X = null then
736         return;
737      end if;
738
739      X.Parent := X;
740      X.Left := X;
741      X.Right := X;
742
743      begin
744         Free_Key (X.Key);
745
746      exception
747         when others =>
748            X.Key := null;
749
750            begin
751               Free_Element (X.Element);
752            exception
753               when others =>
754                  X.Element := null;
755            end;
756
757            Deallocate (X);
758            raise;
759      end;
760
761      begin
762         Free_Element (X.Element);
763
764      exception
765         when others =>
766            X.Element := null;
767
768            Deallocate (X);
769            raise;
770      end;
771
772      Deallocate (X);
773   end Free;
774
775   -----------------
776   -- Has_Element --
777   -----------------
778
779   function Has_Element (Position : Cursor) return Boolean is
780   begin
781      return Position /= No_Element;
782   end Has_Element;
783
784   -------------
785   -- Include --
786   -------------
787
788   procedure Include
789     (Container : in out Map;
790      Key       : Key_Type;
791      New_Item  : Element_Type)
792   is
793      Position : Cursor;
794      Inserted : Boolean;
795
796      K : Key_Access;
797      E : Element_Access;
798
799   begin
800      Insert (Container, Key, New_Item, Position, Inserted);
801
802      if not Inserted then
803         if Container.Tree.Lock > 0 then
804            raise Program_Error with
805              "attempt to tamper with elements (map is locked)";
806         end if;
807
808         K := Position.Node.Key;
809         E := Position.Node.Element;
810
811         Position.Node.Key := new Key_Type'(Key);
812
813         declare
814            --  The element allocator may need an accessibility check in the
815            --  case the actual type is class-wide or has access discriminants
816            --  (see RM 4.8(10.1) and AI12-0035).
817
818            pragma Unsuppress (Accessibility_Check);
819
820         begin
821            Position.Node.Element := new Element_Type'(New_Item);
822
823         exception
824            when others =>
825               Free_Key (K);
826               raise;
827         end;
828
829         Free_Key (K);
830         Free_Element (E);
831      end if;
832   end Include;
833
834   ------------
835   -- Insert --
836   ------------
837
838   procedure Insert
839     (Container : in out Map;
840      Key       : Key_Type;
841      New_Item  : Element_Type;
842      Position  : out Cursor;
843      Inserted  : out Boolean)
844   is
845      function New_Node return Node_Access;
846      pragma Inline (New_Node);
847
848      procedure Insert_Post is
849        new Key_Ops.Generic_Insert_Post (New_Node);
850
851      procedure Insert_Sans_Hint is
852        new Key_Ops.Generic_Conditional_Insert (Insert_Post);
853
854      --------------
855      -- New_Node --
856      --------------
857
858      function New_Node return Node_Access is
859         Node : Node_Access := new Node_Type;
860
861         --  The element allocator may need an accessibility check in the case
862         --  the actual type is class-wide or has access discriminants (see
863         --  RM 4.8(10.1) and AI12-0035).
864
865         pragma Unsuppress (Accessibility_Check);
866
867      begin
868         Node.Key := new Key_Type'(Key);
869         Node.Element := new Element_Type'(New_Item);
870         return Node;
871
872      exception
873         when others =>
874
875            --  On exception, deallocate key and elem. Note that free
876            --  deallocates both the key and the elem.
877
878            Free (Node);
879            raise;
880      end New_Node;
881
882   --  Start of processing for Insert
883
884   begin
885      Insert_Sans_Hint
886        (Container.Tree,
887         Key,
888         Position.Node,
889         Inserted);
890
891      Position.Container := Container'Unrestricted_Access;
892   end Insert;
893
894   procedure Insert
895     (Container : in out Map;
896      Key       : Key_Type;
897      New_Item  : Element_Type)
898   is
899      Position : Cursor;
900      pragma Unreferenced (Position);
901
902      Inserted : Boolean;
903
904   begin
905      Insert (Container, Key, New_Item, Position, Inserted);
906
907      if not Inserted then
908         raise Constraint_Error with "key already in map";
909      end if;
910   end Insert;
911
912   --------------
913   -- Is_Empty --
914   --------------
915
916   function Is_Empty (Container : Map) return Boolean is
917   begin
918      return Container.Tree.Length = 0;
919   end Is_Empty;
920
921   ------------------------
922   -- Is_Equal_Node_Node --
923   ------------------------
924
925   function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
926   begin
927      return (if L.Key.all < R.Key.all then False
928              elsif R.Key.all < L.Key.all then False
929              else L.Element.all = R.Element.all);
930   end Is_Equal_Node_Node;
931
932   -------------------------
933   -- Is_Greater_Key_Node --
934   -------------------------
935
936   function Is_Greater_Key_Node
937     (Left  : Key_Type;
938      Right : Node_Access) return Boolean
939   is
940   begin
941      --  k > node same as node < k
942
943      return Right.Key.all < Left;
944   end Is_Greater_Key_Node;
945
946   ----------------------
947   -- Is_Less_Key_Node --
948   ----------------------
949
950   function Is_Less_Key_Node
951     (Left  : Key_Type;
952      Right : Node_Access) return Boolean is
953   begin
954      return Left < Right.Key.all;
955   end Is_Less_Key_Node;
956
957   -------------
958   -- Iterate --
959   -------------
960
961   procedure Iterate
962     (Container : Map;
963      Process   : not null access procedure (Position : Cursor))
964   is
965      procedure Process_Node (Node : Node_Access);
966      pragma Inline (Process_Node);
967
968      procedure Local_Iterate is
969        new Tree_Operations.Generic_Iteration (Process_Node);
970
971      ------------------
972      -- Process_Node --
973      ------------------
974
975      procedure Process_Node (Node : Node_Access) is
976      begin
977         Process (Cursor'(Container'Unrestricted_Access, Node));
978      end Process_Node;
979
980      B : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
981
982   --  Start of processing for Iterate
983
984   begin
985      B := B + 1;
986
987      begin
988         Local_Iterate (Container.Tree);
989      exception
990         when others =>
991            B := B - 1;
992            raise;
993      end;
994
995      B := B - 1;
996   end Iterate;
997
998   function Iterate
999     (Container : Map) return Map_Iterator_Interfaces.Reversible_Iterator'Class
1000   is
1001      B  : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1002
1003   begin
1004      --  The value of the Node component influences the behavior of the First
1005      --  and Last selector functions of the iterator object. When the Node
1006      --  component is null (as is the case here), this means the iterator
1007      --  object was constructed without a start expression. This is a complete
1008      --  iterator, meaning that the iteration starts from the (logical)
1009      --  beginning of the sequence of items.
1010
1011      --  Note: For a forward iterator, Container.First is the beginning, and
1012      --  for a reverse iterator, Container.Last is the beginning.
1013
1014      return It : constant Iterator :=
1015        (Limited_Controlled with
1016           Container => Container'Unrestricted_Access,
1017           Node      => null)
1018      do
1019         B := B + 1;
1020      end return;
1021   end Iterate;
1022
1023   function Iterate
1024     (Container : Map;
1025      Start     : Cursor)
1026      return Map_Iterator_Interfaces.Reversible_Iterator'Class
1027   is
1028      B  : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1029
1030   begin
1031      --  It was formerly the case that when Start = No_Element, the partial
1032      --  iterator was defined to behave the same as for a complete iterator,
1033      --  and iterate over the entire sequence of items. However, those
1034      --  semantics were unintuitive and arguably error-prone (it is too easy
1035      --  to accidentally create an endless loop), and so they were changed,
1036      --  per the ARG meeting in Denver on 2011/11. However, there was no
1037      --  consensus about what positive meaning this corner case should have,
1038      --  and so it was decided to simply raise an exception. This does imply,
1039      --  however, that it is not possible to use a partial iterator to specify
1040      --  an empty sequence of items.
1041
1042      if Start = No_Element then
1043         raise Constraint_Error with
1044           "Start position for iterator equals No_Element";
1045      end if;
1046
1047      if Start.Container /= Container'Unrestricted_Access then
1048         raise Program_Error with
1049           "Start cursor of Iterate designates wrong map";
1050      end if;
1051
1052      pragma Assert (Vet (Container.Tree, Start.Node),
1053                     "Start cursor of Iterate is bad");
1054
1055      --  The value of the Node component influences the behavior of the First
1056      --  and Last selector functions of the iterator object. When the Node
1057      --  component is non-null (as is the case here), it means that this
1058      --  is a partial iteration, over a subset of the complete sequence of
1059      --  items. The iterator object was constructed with a start expression,
1060      --  indicating the position from which the iteration begins. Note that
1061      --  the start position has the same value irrespective of whether this
1062      --  is a forward or reverse iteration.
1063
1064      return It : constant Iterator :=
1065        (Limited_Controlled with
1066           Container => Container'Unrestricted_Access,
1067           Node      => Start.Node)
1068      do
1069         B := B + 1;
1070      end return;
1071   end Iterate;
1072
1073   ---------
1074   -- Key --
1075   ---------
1076
1077   function Key (Position : Cursor) return Key_Type is
1078   begin
1079      if Position.Node = null then
1080         raise Constraint_Error with
1081           "Position cursor of function Key equals No_Element";
1082      end if;
1083
1084      if Position.Node.Key = null then
1085         raise Program_Error with
1086           "Position cursor of function Key is bad";
1087      end if;
1088
1089      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1090                     "Position cursor of function Key is bad");
1091
1092      return Position.Node.Key.all;
1093   end Key;
1094
1095   ----------
1096   -- Last --
1097   ----------
1098
1099   function Last (Container : Map) return Cursor is
1100      T : Tree_Type renames Container.Tree;
1101   begin
1102      return (if T.Last = null then No_Element
1103              else Cursor'(Container'Unrestricted_Access, T.Last));
1104   end Last;
1105
1106   function Last (Object : Iterator) return Cursor is
1107   begin
1108      --  The value of the iterator object's Node component influences the
1109      --  behavior of the Last (and First) selector function.
1110
1111      --  When the Node component is null, this means the iterator object was
1112      --  constructed without a start expression, in which case the (reverse)
1113      --  iteration starts from the (logical) beginning of the entire sequence
1114      --  (corresponding to Container.Last, for a reverse iterator).
1115
1116      --  Otherwise, this is iteration over a partial sequence of items. When
1117      --  the Node component is non-null, the iterator object was constructed
1118      --  with a start expression, that specifies the position from which the
1119      --  (reverse) partial iteration begins.
1120
1121      if Object.Node = null then
1122         return Object.Container.Last;
1123      else
1124         return Cursor'(Object.Container, Object.Node);
1125      end if;
1126   end Last;
1127
1128   ------------------
1129   -- Last_Element --
1130   ------------------
1131
1132   function Last_Element (Container : Map) return Element_Type is
1133      T : Tree_Type renames Container.Tree;
1134
1135   begin
1136      if T.Last = null then
1137         raise Constraint_Error with "map is empty";
1138      end if;
1139
1140      return T.Last.Element.all;
1141   end Last_Element;
1142
1143   --------------
1144   -- Last_Key --
1145   --------------
1146
1147   function Last_Key (Container : Map) return Key_Type is
1148      T : Tree_Type renames Container.Tree;
1149
1150   begin
1151      if T.Last = null then
1152         raise Constraint_Error with "map is empty";
1153      end if;
1154
1155      return T.Last.Key.all;
1156   end Last_Key;
1157
1158   ----------
1159   -- Left --
1160   ----------
1161
1162   function Left (Node : Node_Access) return Node_Access is
1163   begin
1164      return Node.Left;
1165   end Left;
1166
1167   ------------
1168   -- Length --
1169   ------------
1170
1171   function Length (Container : Map) return Count_Type is
1172   begin
1173      return Container.Tree.Length;
1174   end Length;
1175
1176   ----------
1177   -- Move --
1178   ----------
1179
1180   procedure Move is new Tree_Operations.Generic_Move (Clear);
1181
1182   procedure Move (Target : in out Map; Source : in out Map) is
1183   begin
1184      Move (Target => Target.Tree, Source => Source.Tree);
1185   end Move;
1186
1187   ----------
1188   -- Next --
1189   ----------
1190
1191   function Next (Position : Cursor) return Cursor is
1192   begin
1193      if Position = No_Element then
1194         return No_Element;
1195      end if;
1196
1197      pragma Assert (Position.Node /= null);
1198      pragma Assert (Position.Node.Key /= null);
1199      pragma Assert (Position.Node.Element /= null);
1200      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1201                     "Position cursor of Next is bad");
1202
1203      declare
1204         Node : constant Node_Access :=
1205           Tree_Operations.Next (Position.Node);
1206      begin
1207         return (if Node = null then No_Element
1208                 else Cursor'(Position.Container, Node));
1209      end;
1210   end Next;
1211
1212   procedure Next (Position : in out Cursor) is
1213   begin
1214      Position := Next (Position);
1215   end Next;
1216
1217   function Next
1218     (Object   : Iterator;
1219      Position : Cursor) return Cursor
1220   is
1221   begin
1222      if Position.Container = null then
1223         return No_Element;
1224      end if;
1225
1226      if Position.Container /= Object.Container then
1227         raise Program_Error with
1228           "Position cursor of Next designates wrong map";
1229      end if;
1230
1231      return Next (Position);
1232   end Next;
1233
1234   ------------
1235   -- Parent --
1236   ------------
1237
1238   function Parent (Node : Node_Access) return Node_Access is
1239   begin
1240      return Node.Parent;
1241   end Parent;
1242
1243   --------------
1244   -- Previous --
1245   --------------
1246
1247   function Previous (Position : Cursor) return Cursor is
1248   begin
1249      if Position = No_Element then
1250         return No_Element;
1251      end if;
1252
1253      pragma Assert (Position.Node /= null);
1254      pragma Assert (Position.Node.Key /= null);
1255      pragma Assert (Position.Node.Element /= null);
1256      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1257                     "Position cursor of Previous is bad");
1258
1259      declare
1260         Node : constant Node_Access :=
1261           Tree_Operations.Previous (Position.Node);
1262      begin
1263         return (if Node = null then No_Element
1264                 else Cursor'(Position.Container, Node));
1265      end;
1266   end Previous;
1267
1268   procedure Previous (Position : in out Cursor) is
1269   begin
1270      Position := Previous (Position);
1271   end Previous;
1272
1273   function Previous
1274     (Object   : Iterator;
1275      Position : Cursor) return Cursor
1276   is
1277   begin
1278      if Position.Container = null then
1279         return No_Element;
1280      end if;
1281
1282      if Position.Container /= Object.Container then
1283         raise Program_Error with
1284           "Position cursor of Previous designates wrong map";
1285      end if;
1286
1287      return Previous (Position);
1288   end Previous;
1289
1290   -------------------
1291   -- Query_Element --
1292   -------------------
1293
1294   procedure Query_Element
1295     (Position : Cursor;
1296      Process  : not null access procedure (Key     : Key_Type;
1297                                            Element : Element_Type))
1298   is
1299   begin
1300      if Position.Node = null then
1301         raise Constraint_Error with
1302           "Position cursor of Query_Element equals No_Element";
1303      end if;
1304
1305      if Position.Node.Key = null
1306        or else Position.Node.Element = null
1307      then
1308         raise Program_Error with
1309           "Position cursor of Query_Element is bad";
1310      end if;
1311
1312      pragma Assert (Vet (Position.Container.Tree, Position.Node),
1313                     "Position cursor of Query_Element is bad");
1314
1315      declare
1316         T : Tree_Type renames Position.Container.Tree;
1317
1318         B : Natural renames T.Busy;
1319         L : Natural renames T.Lock;
1320
1321      begin
1322         B := B + 1;
1323         L := L + 1;
1324
1325         declare
1326            K : Key_Type renames Position.Node.Key.all;
1327            E : Element_Type renames Position.Node.Element.all;
1328
1329         begin
1330            Process (K, E);
1331         exception
1332            when others =>
1333               L := L - 1;
1334               B := B - 1;
1335               raise;
1336         end;
1337
1338         L := L - 1;
1339         B := B - 1;
1340      end;
1341   end Query_Element;
1342
1343   ----------
1344   -- Read --
1345   ----------
1346
1347   procedure Read
1348     (Stream    : not null access Root_Stream_Type'Class;
1349      Container : out Map)
1350   is
1351      function Read_Node
1352        (Stream : not null access Root_Stream_Type'Class) return Node_Access;
1353      pragma Inline (Read_Node);
1354
1355      procedure Read is
1356         new Tree_Operations.Generic_Read (Clear, Read_Node);
1357
1358      ---------------
1359      -- Read_Node --
1360      ---------------
1361
1362      function Read_Node
1363        (Stream : not null access Root_Stream_Type'Class) return Node_Access
1364      is
1365         Node : Node_Access := new Node_Type;
1366      begin
1367         Node.Key := new Key_Type'(Key_Type'Input (Stream));
1368         Node.Element := new Element_Type'(Element_Type'Input (Stream));
1369         return Node;
1370      exception
1371         when others =>
1372            Free (Node);  --  Note that Free deallocates key and elem too
1373            raise;
1374      end Read_Node;
1375
1376   --  Start of processing for Read
1377
1378   begin
1379      Read (Stream, Container.Tree);
1380   end Read;
1381
1382   procedure Read
1383     (Stream : not null access Root_Stream_Type'Class;
1384      Item   : out Cursor)
1385   is
1386   begin
1387      raise Program_Error with "attempt to stream map cursor";
1388   end Read;
1389
1390   procedure Read
1391     (Stream : not null access Root_Stream_Type'Class;
1392      Item   : out Reference_Type)
1393   is
1394   begin
1395      raise Program_Error with "attempt to stream reference";
1396   end Read;
1397
1398   procedure Read
1399     (Stream : not null access Root_Stream_Type'Class;
1400      Item   : out Constant_Reference_Type)
1401   is
1402   begin
1403      raise Program_Error with "attempt to stream reference";
1404   end Read;
1405
1406   ---------------
1407   -- Reference --
1408   ---------------
1409
1410   function Reference
1411     (Container : aliased in out Map;
1412      Position  : Cursor) return Reference_Type
1413   is
1414   begin
1415      if Position.Container = null then
1416         raise Constraint_Error with
1417           "Position cursor has no element";
1418      end if;
1419
1420      if Position.Container /= Container'Unrestricted_Access then
1421         raise Program_Error with
1422           "Position cursor designates wrong map";
1423      end if;
1424
1425      if Position.Node.Element = null then
1426         raise Program_Error with "Node has no element";
1427      end if;
1428
1429      pragma Assert (Vet (Container.Tree, Position.Node),
1430                     "Position cursor in function Reference is bad");
1431
1432      declare
1433         T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
1434         B : Natural renames T.Busy;
1435         L : Natural renames T.Lock;
1436      begin
1437         return R : constant Reference_Type :=
1438           (Element => Position.Node.Element.all'Access,
1439            Control => (Controlled with Position.Container))
1440         do
1441            B := B + 1;
1442            L := L + 1;
1443         end return;
1444      end;
1445   end Reference;
1446
1447   function Reference
1448     (Container : aliased in out Map;
1449      Key       : Key_Type) return Reference_Type
1450   is
1451      Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
1452
1453   begin
1454      if Node = null then
1455         raise Constraint_Error with "key not in map";
1456      end if;
1457
1458      if Node.Element = null then
1459         raise Program_Error with "Node has no element";
1460      end if;
1461
1462      declare
1463         T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
1464         B : Natural renames T.Busy;
1465         L : Natural renames T.Lock;
1466      begin
1467         return R : constant Reference_Type :=
1468           (Element => Node.Element.all'Access,
1469            Control => (Controlled with Container'Unrestricted_Access))
1470         do
1471            B := B + 1;
1472            L := L + 1;
1473         end return;
1474      end;
1475   end Reference;
1476
1477   -------------
1478   -- Replace --
1479   -------------
1480
1481   procedure Replace
1482     (Container : in out Map;
1483      Key       : Key_Type;
1484      New_Item  : Element_Type)
1485   is
1486      Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key);
1487
1488      K : Key_Access;
1489      E : Element_Access;
1490
1491   begin
1492      if Node = null then
1493         raise Constraint_Error with "key not in map";
1494      end if;
1495
1496      if Container.Tree.Lock > 0 then
1497         raise Program_Error with
1498           "attempt to tamper with elements (map is locked)";
1499      end if;
1500
1501      K := Node.Key;
1502      E := Node.Element;
1503
1504      Node.Key := new Key_Type'(Key);
1505
1506      declare
1507         --  The element allocator may need an accessibility check in the case
1508         --  the actual type is class-wide or has access discriminants (see
1509         --  RM 4.8(10.1) and AI12-0035).
1510
1511         pragma Unsuppress (Accessibility_Check);
1512
1513      begin
1514         Node.Element := new Element_Type'(New_Item);
1515
1516      exception
1517         when others =>
1518            Free_Key (K);
1519            raise;
1520      end;
1521
1522      Free_Key (K);
1523      Free_Element (E);
1524   end Replace;
1525
1526   ---------------------
1527   -- Replace_Element --
1528   ---------------------
1529
1530   procedure Replace_Element
1531     (Container : in out Map;
1532      Position  : Cursor;
1533      New_Item  : Element_Type)
1534   is
1535   begin
1536      if Position.Node = null then
1537         raise Constraint_Error with
1538           "Position cursor of Replace_Element equals No_Element";
1539      end if;
1540
1541      if Position.Node.Key = null
1542        or else Position.Node.Element = null
1543      then
1544         raise Program_Error with
1545           "Position cursor of Replace_Element is bad";
1546      end if;
1547
1548      if Position.Container /= Container'Unrestricted_Access then
1549         raise Program_Error with
1550           "Position cursor of Replace_Element designates wrong map";
1551      end if;
1552
1553      if Container.Tree.Lock > 0 then
1554         raise Program_Error with
1555           "attempt to tamper with elements (map is locked)";
1556      end if;
1557
1558      pragma Assert (Vet (Container.Tree, Position.Node),
1559                     "Position cursor of Replace_Element is bad");
1560
1561      declare
1562         X : Element_Access := Position.Node.Element;
1563
1564         --  The element allocator may need an accessibility check in the case
1565         --  the actual type is class-wide or has access discriminants (see
1566         --  RM 4.8(10.1) and AI12-0035).
1567
1568         pragma Unsuppress (Accessibility_Check);
1569
1570      begin
1571         Position.Node.Element := new Element_Type'(New_Item);
1572         Free_Element (X);
1573      end;
1574   end Replace_Element;
1575
1576   ---------------------
1577   -- Reverse_Iterate --
1578   ---------------------
1579
1580   procedure Reverse_Iterate
1581     (Container : Map;
1582      Process   : not null access procedure (Position : Cursor))
1583   is
1584      procedure Process_Node (Node : Node_Access);
1585      pragma Inline (Process_Node);
1586
1587      procedure Local_Reverse_Iterate is
1588        new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1589
1590      ------------------
1591      -- Process_Node --
1592      ------------------
1593
1594      procedure Process_Node (Node : Node_Access) is
1595      begin
1596         Process (Cursor'(Container'Unrestricted_Access, Node));
1597      end Process_Node;
1598
1599      B : Natural renames Container.Tree'Unrestricted_Access.all.Busy;
1600
1601   --  Start of processing for Reverse_Iterate
1602
1603   begin
1604      B := B + 1;
1605
1606      begin
1607         Local_Reverse_Iterate (Container.Tree);
1608      exception
1609         when others =>
1610            B := B - 1;
1611            raise;
1612      end;
1613
1614      B := B - 1;
1615   end Reverse_Iterate;
1616
1617   -----------
1618   -- Right --
1619   -----------
1620
1621   function Right (Node : Node_Access) return Node_Access is
1622   begin
1623      return Node.Right;
1624   end Right;
1625
1626   ---------------
1627   -- Set_Color --
1628   ---------------
1629
1630   procedure Set_Color (Node : Node_Access; Color : Color_Type) is
1631   begin
1632      Node.Color := Color;
1633   end Set_Color;
1634
1635   --------------
1636   -- Set_Left --
1637   --------------
1638
1639   procedure Set_Left (Node : Node_Access; Left : Node_Access) is
1640   begin
1641      Node.Left := Left;
1642   end Set_Left;
1643
1644   ----------------
1645   -- Set_Parent --
1646   ----------------
1647
1648   procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
1649   begin
1650      Node.Parent := Parent;
1651   end Set_Parent;
1652
1653   ---------------
1654   -- Set_Right --
1655   ---------------
1656
1657   procedure Set_Right (Node : Node_Access; Right : Node_Access) is
1658   begin
1659      Node.Right := Right;
1660   end Set_Right;
1661
1662   --------------------
1663   -- Update_Element --
1664   --------------------
1665
1666   procedure Update_Element
1667     (Container : in out Map;
1668      Position  : Cursor;
1669      Process   : not null access procedure (Key     : Key_Type;
1670                                             Element : in out Element_Type))
1671   is
1672   begin
1673      if Position.Node = null then
1674         raise Constraint_Error with
1675           "Position cursor of Update_Element equals No_Element";
1676      end if;
1677
1678      if Position.Node.Key = null
1679        or else Position.Node.Element = null
1680      then
1681         raise Program_Error with
1682           "Position cursor of Update_Element is bad";
1683      end if;
1684
1685      if Position.Container /= Container'Unrestricted_Access then
1686         raise Program_Error with
1687           "Position cursor of Update_Element designates wrong map";
1688      end if;
1689
1690      pragma Assert (Vet (Container.Tree, Position.Node),
1691                     "Position cursor of Update_Element is bad");
1692
1693      declare
1694         T : Tree_Type renames Position.Container.Tree;
1695
1696         B : Natural renames T.Busy;
1697         L : Natural renames T.Lock;
1698
1699      begin
1700         B := B + 1;
1701         L := L + 1;
1702
1703         declare
1704            K : Key_Type renames Position.Node.Key.all;
1705            E : Element_Type renames Position.Node.Element.all;
1706
1707         begin
1708            Process (K, E);
1709
1710         exception
1711            when others =>
1712               L := L - 1;
1713               B := B - 1;
1714               raise;
1715         end;
1716
1717         L := L - 1;
1718         B := B - 1;
1719      end;
1720   end Update_Element;
1721
1722   -----------
1723   -- Write --
1724   -----------
1725
1726   procedure Write
1727     (Stream    : not null access Root_Stream_Type'Class;
1728      Container : Map)
1729   is
1730      procedure Write_Node
1731        (Stream : not null access Root_Stream_Type'Class;
1732         Node   : Node_Access);
1733      pragma Inline (Write_Node);
1734
1735      procedure Write is
1736         new Tree_Operations.Generic_Write (Write_Node);
1737
1738      ----------------
1739      -- Write_Node --
1740      ----------------
1741
1742      procedure Write_Node
1743        (Stream : not null access Root_Stream_Type'Class;
1744         Node   : Node_Access)
1745      is
1746      begin
1747         Key_Type'Output (Stream, Node.Key.all);
1748         Element_Type'Output (Stream, Node.Element.all);
1749      end Write_Node;
1750
1751   --  Start of processing for Write
1752
1753   begin
1754      Write (Stream, Container.Tree);
1755   end Write;
1756
1757   procedure Write
1758     (Stream : not null access Root_Stream_Type'Class;
1759      Item   : Cursor)
1760   is
1761   begin
1762      raise Program_Error with "attempt to stream map cursor";
1763   end Write;
1764
1765   procedure Write
1766     (Stream : not null access Root_Stream_Type'Class;
1767      Item   : Reference_Type)
1768   is
1769   begin
1770      raise Program_Error with "attempt to stream reference";
1771   end Write;
1772
1773   procedure Write
1774     (Stream : not null access Root_Stream_Type'Class;
1775      Item   : Constant_Reference_Type)
1776   is
1777   begin
1778      raise Program_Error with "attempt to stream reference";
1779   end Write;
1780
1781end Ada.Containers.Indefinite_Ordered_Maps;
1782