1------------------------------------------------------------------------------
2--                                                                          --
3--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4--                                                                          --
5--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6--                                                                          --
7--                                  B o d y                                 --
8--                                                                          --
9--         Copyright (C) 1992-2011, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNARL is free software; you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNARL was developed by the GNARL team at Florida State University.       --
28-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is a HP-UX DCE threads (HPUX 10) version of this package
33
34--  This package contains all the GNULL primitives that interface directly with
35--  the underlying OS.
36
37pragma Polling (Off);
38--  Turn off polling, we do not want ATC polling to take place during tasking
39--  operations. It causes infinite loops and other problems.
40
41with Ada.Unchecked_Conversion;
42
43with Interfaces.C;
44
45with System.Tasking.Debug;
46with System.Interrupt_Management;
47with System.OS_Constants;
48with System.OS_Primitives;
49with System.Task_Primitives.Interrupt_Operations;
50
51pragma Warnings (Off);
52with System.Interrupt_Management.Operations;
53pragma Elaborate_All (System.Interrupt_Management.Operations);
54pragma Warnings (On);
55
56with System.Soft_Links;
57--  We use System.Soft_Links instead of System.Tasking.Initialization
58--  because the later is a higher level package that we shouldn't depend on.
59--  For example when using the restricted run time, it is replaced by
60--  System.Tasking.Restricted.Stages.
61
62package body System.Task_Primitives.Operations is
63
64   package OSC renames System.OS_Constants;
65   package SSL renames System.Soft_Links;
66
67   use System.Tasking.Debug;
68   use System.Tasking;
69   use Interfaces.C;
70   use System.OS_Interface;
71   use System.Parameters;
72   use System.OS_Primitives;
73
74   package PIO renames System.Task_Primitives.Interrupt_Operations;
75
76   ----------------
77   -- Local Data --
78   ----------------
79
80   --  The followings are logically constants, but need to be initialized
81   --  at run time.
82
83   Single_RTS_Lock : aliased RTS_Lock;
84   --  This is a lock to allow only one thread of control in the RTS at
85   --  a time; it is used to execute in mutual exclusion from all other tasks.
86   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
87
88   Environment_Task_Id : Task_Id;
89   --  A variable to hold Task_Id for the environment task
90
91   Unblocked_Signal_Mask : aliased sigset_t;
92   --  The set of signals that should unblocked in all tasks
93
94   Time_Slice_Val : Integer;
95   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
96
97   Dispatching_Policy : Character;
98   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
99
100   --  Note: the reason that Locking_Policy is not needed is that this
101   --  is not implemented for DCE threads. The HPUX 10 port is at this
102   --  stage considered dead, and no further work is planned on it.
103
104   Foreign_Task_Elaborated : aliased Boolean := True;
105   --  Used to identified fake tasks (i.e., non-Ada Threads)
106
107   --------------------
108   -- Local Packages --
109   --------------------
110
111   package Specific is
112
113      procedure Initialize (Environment_Task : Task_Id);
114      pragma Inline (Initialize);
115      --  Initialize various data needed by this package
116
117      function Is_Valid_Task return Boolean;
118      pragma Inline (Is_Valid_Task);
119      --  Does the executing thread have a TCB?
120
121      procedure Set (Self_Id : Task_Id);
122      pragma Inline (Set);
123      --  Set the self id for the current task
124
125      function Self return Task_Id;
126      pragma Inline (Self);
127      --  Return a pointer to the Ada Task Control Block of the calling task
128
129   end Specific;
130
131   package body Specific is separate;
132   --  The body of this package is target specific
133
134   ----------------------------------
135   -- ATCB allocation/deallocation --
136   ----------------------------------
137
138   package body ATCB_Allocation is separate;
139   --  The body of this package is shared across several targets
140
141   ---------------------------------
142   -- Support for foreign threads --
143   ---------------------------------
144
145   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
146   --  Allocate and Initialize a new ATCB for the current Thread
147
148   function Register_Foreign_Thread
149     (Thread : Thread_Id) return Task_Id is separate;
150
151   -----------------------
152   -- Local Subprograms --
153   -----------------------
154
155   procedure Abort_Handler (Sig : Signal);
156
157   function To_Address is
158     new Ada.Unchecked_Conversion (Task_Id, System.Address);
159
160   -------------------
161   -- Abort_Handler --
162   -------------------
163
164   procedure Abort_Handler (Sig : Signal) is
165      pragma Unreferenced (Sig);
166
167      Self_Id : constant Task_Id := Self;
168      Result  : Interfaces.C.int;
169      Old_Set : aliased sigset_t;
170
171   begin
172      if Self_Id.Deferral_Level = 0
173        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
174        and then not Self_Id.Aborting
175      then
176         Self_Id.Aborting := True;
177
178         --  Make sure signals used for RTS internal purpose are unmasked
179
180         Result :=
181           pthread_sigmask
182             (SIG_UNBLOCK,
183              Unblocked_Signal_Mask'Access,
184              Old_Set'Access);
185         pragma Assert (Result = 0);
186
187         raise Standard'Abort_Signal;
188      end if;
189   end Abort_Handler;
190
191   -----------------
192   -- Stack_Guard --
193   -----------------
194
195   --  The underlying thread system sets a guard page at the bottom of a thread
196   --  stack, so nothing is needed.
197   --  ??? Check the comment above
198
199   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
200      pragma Unreferenced (T, On);
201   begin
202      null;
203   end Stack_Guard;
204
205   -------------------
206   -- Get_Thread_Id --
207   -------------------
208
209   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
210   begin
211      return T.Common.LL.Thread;
212   end Get_Thread_Id;
213
214   ----------
215   -- Self --
216   ----------
217
218   function Self return Task_Id renames Specific.Self;
219
220   ---------------------
221   -- Initialize_Lock --
222   ---------------------
223
224   --  Note: mutexes and cond_variables needed per-task basis are initialized
225   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
226   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
227   --  status change of RTS. Therefore raising Storage_Error in the following
228   --  routines should be able to be handled safely.
229
230   procedure Initialize_Lock
231     (Prio : System.Any_Priority;
232      L    : not null access Lock)
233   is
234      Attributes : aliased pthread_mutexattr_t;
235      Result     : Interfaces.C.int;
236
237   begin
238      Result := pthread_mutexattr_init (Attributes'Access);
239      pragma Assert (Result = 0 or else Result = ENOMEM);
240
241      if Result = ENOMEM then
242         raise Storage_Error;
243      end if;
244
245      L.Priority := Prio;
246
247      Result := pthread_mutex_init (L.L'Access, Attributes'Access);
248      pragma Assert (Result = 0 or else Result = ENOMEM);
249
250      if Result = ENOMEM then
251         raise Storage_Error;
252      end if;
253
254      Result := pthread_mutexattr_destroy (Attributes'Access);
255      pragma Assert (Result = 0);
256   end Initialize_Lock;
257
258   procedure Initialize_Lock
259     (L     : not null access RTS_Lock;
260      Level : Lock_Level)
261   is
262      pragma Unreferenced (Level);
263
264      Attributes : aliased pthread_mutexattr_t;
265      Result     : Interfaces.C.int;
266
267   begin
268      Result := pthread_mutexattr_init (Attributes'Access);
269      pragma Assert (Result = 0 or else Result = ENOMEM);
270
271      if Result = ENOMEM then
272         raise Storage_Error;
273      end if;
274
275      Result := pthread_mutex_init (L, Attributes'Access);
276
277      pragma Assert (Result = 0 or else Result = ENOMEM);
278
279      if Result = ENOMEM then
280         raise Storage_Error;
281      end if;
282
283      Result := pthread_mutexattr_destroy (Attributes'Access);
284      pragma Assert (Result = 0);
285   end Initialize_Lock;
286
287   -------------------
288   -- Finalize_Lock --
289   -------------------
290
291   procedure Finalize_Lock (L : not null access Lock) is
292      Result : Interfaces.C.int;
293   begin
294      Result := pthread_mutex_destroy (L.L'Access);
295      pragma Assert (Result = 0);
296   end Finalize_Lock;
297
298   procedure Finalize_Lock (L : not null access RTS_Lock) is
299      Result : Interfaces.C.int;
300   begin
301      Result := pthread_mutex_destroy (L);
302      pragma Assert (Result = 0);
303   end Finalize_Lock;
304
305   ----------------
306   -- Write_Lock --
307   ----------------
308
309   procedure Write_Lock
310     (L                 : not null access Lock;
311      Ceiling_Violation : out Boolean)
312   is
313      Result : Interfaces.C.int;
314
315   begin
316      L.Owner_Priority := Get_Priority (Self);
317
318      if L.Priority < L.Owner_Priority then
319         Ceiling_Violation := True;
320         return;
321      end if;
322
323      Result := pthread_mutex_lock (L.L'Access);
324      pragma Assert (Result = 0);
325      Ceiling_Violation := False;
326   end Write_Lock;
327
328   procedure Write_Lock
329     (L           : not null access RTS_Lock;
330      Global_Lock : Boolean := False)
331   is
332      Result : Interfaces.C.int;
333   begin
334      if not Single_Lock or else Global_Lock then
335         Result := pthread_mutex_lock (L);
336         pragma Assert (Result = 0);
337      end if;
338   end Write_Lock;
339
340   procedure Write_Lock (T : Task_Id) is
341      Result : Interfaces.C.int;
342   begin
343      if not Single_Lock then
344         Result := pthread_mutex_lock (T.Common.LL.L'Access);
345         pragma Assert (Result = 0);
346      end if;
347   end Write_Lock;
348
349   ---------------
350   -- Read_Lock --
351   ---------------
352
353   procedure Read_Lock
354     (L                 : not null access Lock;
355      Ceiling_Violation : out Boolean)
356   is
357   begin
358      Write_Lock (L, Ceiling_Violation);
359   end Read_Lock;
360
361   ------------
362   -- Unlock --
363   ------------
364
365   procedure Unlock (L : not null access Lock) is
366      Result : Interfaces.C.int;
367   begin
368      Result := pthread_mutex_unlock (L.L'Access);
369      pragma Assert (Result = 0);
370   end Unlock;
371
372   procedure Unlock
373     (L           : not null access RTS_Lock;
374      Global_Lock : Boolean := False)
375   is
376      Result : Interfaces.C.int;
377   begin
378      if not Single_Lock or else Global_Lock then
379         Result := pthread_mutex_unlock (L);
380         pragma Assert (Result = 0);
381      end if;
382   end Unlock;
383
384   procedure Unlock (T : Task_Id) is
385      Result : Interfaces.C.int;
386   begin
387      if not Single_Lock then
388         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
389         pragma Assert (Result = 0);
390      end if;
391   end Unlock;
392
393   -----------------
394   -- Set_Ceiling --
395   -----------------
396
397   --  Dynamic priority ceilings are not supported by the underlying system
398
399   procedure Set_Ceiling
400     (L    : not null access Lock;
401      Prio : System.Any_Priority)
402   is
403      pragma Unreferenced (L, Prio);
404   begin
405      null;
406   end Set_Ceiling;
407
408   -----------
409   -- Sleep --
410   -----------
411
412   procedure Sleep
413     (Self_ID : Task_Id;
414      Reason  : System.Tasking.Task_States)
415   is
416      pragma Unreferenced (Reason);
417
418      Result : Interfaces.C.int;
419
420   begin
421      Result :=
422        pthread_cond_wait
423          (cond  => Self_ID.Common.LL.CV'Access,
424           mutex => (if Single_Lock
425                     then Single_RTS_Lock'Access
426                     else Self_ID.Common.LL.L'Access));
427
428      --  EINTR is not considered a failure
429
430      pragma Assert (Result = 0 or else Result = EINTR);
431   end Sleep;
432
433   -----------------
434   -- Timed_Sleep --
435   -----------------
436
437   procedure Timed_Sleep
438     (Self_ID  : Task_Id;
439      Time     : Duration;
440      Mode     : ST.Delay_Modes;
441      Reason   : System.Tasking.Task_States;
442      Timedout : out Boolean;
443      Yielded  : out Boolean)
444   is
445      pragma Unreferenced (Reason);
446
447      Check_Time : constant Duration := Monotonic_Clock;
448      Abs_Time   : Duration;
449      Request    : aliased timespec;
450      Result     : Interfaces.C.int;
451
452   begin
453      Timedout := True;
454      Yielded := False;
455
456      Abs_Time :=
457        (if Mode = Relative
458         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
459         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
460
461      if Abs_Time > Check_Time then
462         Request := To_Timespec (Abs_Time);
463
464         loop
465            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
466
467            Result :=
468              pthread_cond_timedwait
469                (cond    => Self_ID.Common.LL.CV'Access,
470                 mutex   => (if Single_Lock
471                             then Single_RTS_Lock'Access
472                             else Self_ID.Common.LL.L'Access),
473                 abstime => Request'Access);
474
475            exit when Abs_Time <= Monotonic_Clock;
476
477            if Result = 0 or Result = EINTR then
478
479               --  Somebody may have called Wakeup for us
480
481               Timedout := False;
482               exit;
483            end if;
484
485            pragma Assert (Result = ETIMEDOUT);
486         end loop;
487      end if;
488   end Timed_Sleep;
489
490   -----------------
491   -- Timed_Delay --
492   -----------------
493
494   procedure Timed_Delay
495     (Self_ID : Task_Id;
496      Time    : Duration;
497      Mode    : ST.Delay_Modes)
498   is
499      Check_Time : constant Duration := Monotonic_Clock;
500      Abs_Time   : Duration;
501      Request    : aliased timespec;
502
503      Result : Interfaces.C.int;
504      pragma Warnings (Off, Result);
505
506   begin
507      if Single_Lock then
508         Lock_RTS;
509      end if;
510
511      Write_Lock (Self_ID);
512
513      Abs_Time :=
514        (if Mode = Relative
515         then Time + Check_Time
516         else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
517
518      if Abs_Time > Check_Time then
519         Request := To_Timespec (Abs_Time);
520         Self_ID.Common.State := Delay_Sleep;
521
522         loop
523            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
524
525            Result :=
526              pthread_cond_timedwait
527                (cond    => Self_ID.Common.LL.CV'Access,
528                 mutex   => (if Single_Lock
529                             then Single_RTS_Lock'Access
530                             else Self_ID.Common.LL.L'Access),
531                 abstime => Request'Access);
532
533            exit when Abs_Time <= Monotonic_Clock;
534
535            pragma Assert (Result = 0 or else
536              Result = ETIMEDOUT or else
537              Result = EINTR);
538         end loop;
539
540         Self_ID.Common.State := Runnable;
541      end if;
542
543      Unlock (Self_ID);
544
545      if Single_Lock then
546         Unlock_RTS;
547      end if;
548
549      Result := sched_yield;
550   end Timed_Delay;
551
552   ---------------------
553   -- Monotonic_Clock --
554   ---------------------
555
556   function Monotonic_Clock return Duration is
557      TS     : aliased timespec;
558      Result : Interfaces.C.int;
559   begin
560      Result := Clock_Gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
561      pragma Assert (Result = 0);
562      return To_Duration (TS);
563   end Monotonic_Clock;
564
565   -------------------
566   -- RT_Resolution --
567   -------------------
568
569   function RT_Resolution return Duration is
570   begin
571      return 10#1.0#E-6;
572   end RT_Resolution;
573
574   ------------
575   -- Wakeup --
576   ------------
577
578   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
579      pragma Unreferenced (Reason);
580      Result : Interfaces.C.int;
581   begin
582      Result := pthread_cond_signal (T.Common.LL.CV'Access);
583      pragma Assert (Result = 0);
584   end Wakeup;
585
586   -----------
587   -- Yield --
588   -----------
589
590   procedure Yield (Do_Yield : Boolean := True) is
591      Result : Interfaces.C.int;
592      pragma Unreferenced (Result);
593   begin
594      if Do_Yield then
595         Result := sched_yield;
596      end if;
597   end Yield;
598
599   ------------------
600   -- Set_Priority --
601   ------------------
602
603   type Prio_Array_Type is array (System.Any_Priority) of Integer;
604   pragma Atomic_Components (Prio_Array_Type);
605
606   Prio_Array : Prio_Array_Type;
607   --  Global array containing the id of the currently running task for
608   --  each priority.
609   --
610   --  Note: assume we are on single processor with run-til-blocked scheduling
611
612   procedure Set_Priority
613     (T                   : Task_Id;
614      Prio                : System.Any_Priority;
615      Loss_Of_Inheritance : Boolean := False)
616   is
617      Result     : Interfaces.C.int;
618      Array_Item : Integer;
619      Param      : aliased struct_sched_param;
620
621      function Get_Policy (Prio : System.Any_Priority) return Character;
622      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
623      --  Get priority specific dispatching policy
624
625      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
626      --  Upper case first character of the policy name corresponding to the
627      --  task as set by a Priority_Specific_Dispatching pragma.
628
629   begin
630      Param.sched_priority  := Interfaces.C.int (Underlying_Priorities (Prio));
631
632      if Dispatching_Policy = 'R'
633        or else Priority_Specific_Policy = 'R'
634        or else Time_Slice_Val > 0
635      then
636         Result :=
637           pthread_setschedparam
638             (T.Common.LL.Thread, SCHED_RR, Param'Access);
639
640      elsif Dispatching_Policy = 'F'
641        or else Priority_Specific_Policy = 'F'
642        or else Time_Slice_Val = 0
643      then
644         Result :=
645           pthread_setschedparam
646             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
647
648      else
649         Result :=
650           pthread_setschedparam
651             (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
652      end if;
653
654      pragma Assert (Result = 0);
655
656      if Dispatching_Policy = 'F' or else Priority_Specific_Policy = 'F' then
657
658         --  Annex D requirement [RM D.2.2 par. 9]:
659         --    If the task drops its priority due to the loss of inherited
660         --    priority, it is added at the head of the ready queue for its
661         --    new active priority.
662
663         if Loss_Of_Inheritance
664           and then Prio < T.Common.Current_Priority
665         then
666            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
667            Prio_Array (T.Common.Base_Priority) := Array_Item;
668
669            loop
670               --  Let some processes a chance to arrive
671
672               Yield;
673
674               --  Then wait for our turn to proceed
675
676               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
677                 or else Prio_Array (T.Common.Base_Priority) = 1;
678            end loop;
679
680            Prio_Array (T.Common.Base_Priority) :=
681              Prio_Array (T.Common.Base_Priority) - 1;
682         end if;
683      end if;
684
685      T.Common.Current_Priority := Prio;
686   end Set_Priority;
687
688   ------------------
689   -- Get_Priority --
690   ------------------
691
692   function Get_Priority (T : Task_Id) return System.Any_Priority is
693   begin
694      return T.Common.Current_Priority;
695   end Get_Priority;
696
697   ----------------
698   -- Enter_Task --
699   ----------------
700
701   procedure Enter_Task (Self_ID : Task_Id) is
702   begin
703      Self_ID.Common.LL.Thread := pthread_self;
704      Specific.Set (Self_ID);
705   end Enter_Task;
706
707   -------------------
708   -- Is_Valid_Task --
709   -------------------
710
711   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
712
713   -----------------------------
714   -- Register_Foreign_Thread --
715   -----------------------------
716
717   function Register_Foreign_Thread return Task_Id is
718   begin
719      if Is_Valid_Task then
720         return Self;
721      else
722         return Register_Foreign_Thread (pthread_self);
723      end if;
724   end Register_Foreign_Thread;
725
726   --------------------
727   -- Initialize_TCB --
728   --------------------
729
730   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
731      Mutex_Attr : aliased pthread_mutexattr_t;
732      Result     : Interfaces.C.int;
733      Cond_Attr  : aliased pthread_condattr_t;
734
735   begin
736      if not Single_Lock then
737         Result := pthread_mutexattr_init (Mutex_Attr'Access);
738         pragma Assert (Result = 0 or else Result = ENOMEM);
739
740         if Result = 0 then
741            Result :=
742              pthread_mutex_init
743                (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
744            pragma Assert (Result = 0 or else Result = ENOMEM);
745         end if;
746
747         if Result /= 0 then
748            Succeeded := False;
749            return;
750         end if;
751
752         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
753         pragma Assert (Result = 0);
754      end if;
755
756      Result := pthread_condattr_init (Cond_Attr'Access);
757      pragma Assert (Result = 0 or else Result = ENOMEM);
758
759      if Result = 0 then
760         Result :=
761           pthread_cond_init
762             (Self_ID.Common.LL.CV'Access,
763              Cond_Attr'Access);
764         pragma Assert (Result = 0 or else Result = ENOMEM);
765      end if;
766
767      if Result = 0 then
768         Succeeded := True;
769      else
770         if not Single_Lock then
771            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
772            pragma Assert (Result = 0);
773         end if;
774
775         Succeeded := False;
776      end if;
777
778      Result := pthread_condattr_destroy (Cond_Attr'Access);
779      pragma Assert (Result = 0);
780   end Initialize_TCB;
781
782   -----------------
783   -- Create_Task --
784   -----------------
785
786   procedure Create_Task
787     (T          : Task_Id;
788      Wrapper    : System.Address;
789      Stack_Size : System.Parameters.Size_Type;
790      Priority   : System.Any_Priority;
791      Succeeded  : out Boolean)
792   is
793      Attributes : aliased pthread_attr_t;
794      Result     : Interfaces.C.int;
795
796      function Thread_Body_Access is new
797        Ada.Unchecked_Conversion (System.Address, Thread_Body);
798
799   begin
800      Result := pthread_attr_init (Attributes'Access);
801      pragma Assert (Result = 0 or else Result = ENOMEM);
802
803      if Result /= 0 then
804         Succeeded := False;
805         return;
806      end if;
807
808      Result := pthread_attr_setstacksize
809        (Attributes'Access, Interfaces.C.size_t (Stack_Size));
810      pragma Assert (Result = 0);
811
812      --  Since the initial signal mask of a thread is inherited from the
813      --  creator, and the Environment task has all its signals masked, we
814      --  do not need to manipulate caller's signal mask at this point.
815      --  All tasks in RTS will have All_Tasks_Mask initially.
816
817      Result := pthread_create
818        (T.Common.LL.Thread'Access,
819         Attributes'Access,
820         Thread_Body_Access (Wrapper),
821         To_Address (T));
822      pragma Assert (Result = 0 or else Result = EAGAIN);
823
824      Succeeded := Result = 0;
825
826      pthread_detach (T.Common.LL.Thread'Access);
827      --  Detach the thread using pthread_detach, since DCE threads do not have
828      --  pthread_attr_set_detachstate.
829
830      Result := pthread_attr_destroy (Attributes'Access);
831      pragma Assert (Result = 0);
832
833      Set_Priority (T, Priority);
834   end Create_Task;
835
836   ------------------
837   -- Finalize_TCB --
838   ------------------
839
840   procedure Finalize_TCB (T : Task_Id) is
841      Result : Interfaces.C.int;
842
843   begin
844      if not Single_Lock then
845         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
846         pragma Assert (Result = 0);
847      end if;
848
849      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
850      pragma Assert (Result = 0);
851
852      if T.Known_Tasks_Index /= -1 then
853         Known_Tasks (T.Known_Tasks_Index) := null;
854      end if;
855
856      ATCB_Allocation.Free_ATCB (T);
857   end Finalize_TCB;
858
859   ---------------
860   -- Exit_Task --
861   ---------------
862
863   procedure Exit_Task is
864   begin
865      Specific.Set (null);
866   end Exit_Task;
867
868   ----------------
869   -- Abort_Task --
870   ----------------
871
872   procedure Abort_Task (T : Task_Id) is
873   begin
874      --  Interrupt Server_Tasks may be waiting on an "event" flag (signal)
875
876      if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
877         System.Interrupt_Management.Operations.Interrupt_Self_Process
878           (PIO.Get_Interrupt_ID (T));
879      end if;
880   end Abort_Task;
881
882   ----------------
883   -- Initialize --
884   ----------------
885
886   procedure Initialize (S : in out Suspension_Object) is
887      Mutex_Attr : aliased pthread_mutexattr_t;
888      Cond_Attr  : aliased pthread_condattr_t;
889      Result     : Interfaces.C.int;
890   begin
891      --  Initialize internal state (always to False (ARM D.10(6)))
892
893      S.State := False;
894      S.Waiting := False;
895
896      --  Initialize internal mutex
897
898      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
899      pragma Assert (Result = 0 or else Result = ENOMEM);
900
901      if Result = ENOMEM then
902         raise Storage_Error;
903      end if;
904
905      --  Initialize internal condition variable
906
907      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
908      pragma Assert (Result = 0 or else Result = ENOMEM);
909
910      if Result /= 0 then
911         Result := pthread_mutex_destroy (S.L'Access);
912         pragma Assert (Result = 0);
913
914         if Result = ENOMEM then
915            raise Storage_Error;
916         end if;
917      end if;
918   end Initialize;
919
920   --------------
921   -- Finalize --
922   --------------
923
924   procedure Finalize (S : in out Suspension_Object) is
925      Result  : Interfaces.C.int;
926
927   begin
928      --  Destroy internal mutex
929
930      Result := pthread_mutex_destroy (S.L'Access);
931      pragma Assert (Result = 0);
932
933      --  Destroy internal condition variable
934
935      Result := pthread_cond_destroy (S.CV'Access);
936      pragma Assert (Result = 0);
937   end Finalize;
938
939   -------------------
940   -- Current_State --
941   -------------------
942
943   function Current_State (S : Suspension_Object) return Boolean is
944   begin
945      --  We do not want to use lock on this read operation. State is marked
946      --  as Atomic so that we ensure that the value retrieved is correct.
947
948      return S.State;
949   end Current_State;
950
951   ---------------
952   -- Set_False --
953   ---------------
954
955   procedure Set_False (S : in out Suspension_Object) is
956      Result  : Interfaces.C.int;
957
958   begin
959      SSL.Abort_Defer.all;
960
961      Result := pthread_mutex_lock (S.L'Access);
962      pragma Assert (Result = 0);
963
964      S.State := False;
965
966      Result := pthread_mutex_unlock (S.L'Access);
967      pragma Assert (Result = 0);
968
969      SSL.Abort_Undefer.all;
970   end Set_False;
971
972   --------------
973   -- Set_True --
974   --------------
975
976   procedure Set_True (S : in out Suspension_Object) is
977      Result : Interfaces.C.int;
978
979   begin
980      SSL.Abort_Defer.all;
981
982      Result := pthread_mutex_lock (S.L'Access);
983      pragma Assert (Result = 0);
984
985      --  If there is already a task waiting on this suspension object then
986      --  we resume it, leaving the state of the suspension object to False,
987      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
988      --  the state to True.
989
990      if S.Waiting then
991         S.Waiting := False;
992         S.State := False;
993
994         Result := pthread_cond_signal (S.CV'Access);
995         pragma Assert (Result = 0);
996
997      else
998         S.State := True;
999      end if;
1000
1001      Result := pthread_mutex_unlock (S.L'Access);
1002      pragma Assert (Result = 0);
1003
1004      SSL.Abort_Undefer.all;
1005   end Set_True;
1006
1007   ------------------------
1008   -- Suspend_Until_True --
1009   ------------------------
1010
1011   procedure Suspend_Until_True (S : in out Suspension_Object) is
1012      Result : Interfaces.C.int;
1013
1014   begin
1015      SSL.Abort_Defer.all;
1016
1017      Result := pthread_mutex_lock (S.L'Access);
1018      pragma Assert (Result = 0);
1019
1020      if S.Waiting then
1021         --  Program_Error must be raised upon calling Suspend_Until_True
1022         --  if another task is already waiting on that suspension object
1023         --  (ARM D.10 par. 10).
1024
1025         Result := pthread_mutex_unlock (S.L'Access);
1026         pragma Assert (Result = 0);
1027
1028         SSL.Abort_Undefer.all;
1029
1030         raise Program_Error;
1031      else
1032         --  Suspend the task if the state is False. Otherwise, the task
1033         --  continues its execution, and the state of the suspension object
1034         --  is set to False (ARM D.10 par. 9).
1035
1036         if S.State then
1037            S.State := False;
1038         else
1039            S.Waiting := True;
1040
1041            loop
1042               --  Loop in case pthread_cond_wait returns earlier than expected
1043               --  (e.g. in case of EINTR caused by a signal).
1044
1045               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1046               pragma Assert (Result = 0 or else Result = EINTR);
1047
1048               exit when not S.Waiting;
1049            end loop;
1050         end if;
1051
1052         Result := pthread_mutex_unlock (S.L'Access);
1053         pragma Assert (Result = 0);
1054
1055         SSL.Abort_Undefer.all;
1056      end if;
1057   end Suspend_Until_True;
1058
1059   ----------------
1060   -- Check_Exit --
1061   ----------------
1062
1063   --  Dummy version
1064
1065   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1066      pragma Unreferenced (Self_ID);
1067   begin
1068      return True;
1069   end Check_Exit;
1070
1071   --------------------
1072   -- Check_No_Locks --
1073   --------------------
1074
1075   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1076      pragma Unreferenced (Self_ID);
1077   begin
1078      return True;
1079   end Check_No_Locks;
1080
1081   ----------------------
1082   -- Environment_Task --
1083   ----------------------
1084
1085   function Environment_Task return Task_Id is
1086   begin
1087      return Environment_Task_Id;
1088   end Environment_Task;
1089
1090   --------------
1091   -- Lock_RTS --
1092   --------------
1093
1094   procedure Lock_RTS is
1095   begin
1096      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1097   end Lock_RTS;
1098
1099   ----------------
1100   -- Unlock_RTS --
1101   ----------------
1102
1103   procedure Unlock_RTS is
1104   begin
1105      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1106   end Unlock_RTS;
1107
1108   ------------------
1109   -- Suspend_Task --
1110   ------------------
1111
1112   function Suspend_Task
1113     (T           : ST.Task_Id;
1114      Thread_Self : Thread_Id) return Boolean
1115   is
1116      pragma Unreferenced (T);
1117      pragma Unreferenced (Thread_Self);
1118   begin
1119      return False;
1120   end Suspend_Task;
1121
1122   -----------------
1123   -- Resume_Task --
1124   -----------------
1125
1126   function Resume_Task
1127     (T           : ST.Task_Id;
1128      Thread_Self : Thread_Id) return Boolean
1129   is
1130      pragma Unreferenced (T);
1131      pragma Unreferenced (Thread_Self);
1132   begin
1133      return False;
1134   end Resume_Task;
1135
1136   --------------------
1137   -- Stop_All_Tasks --
1138   --------------------
1139
1140   procedure Stop_All_Tasks is
1141   begin
1142      null;
1143   end Stop_All_Tasks;
1144
1145   ---------------
1146   -- Stop_Task --
1147   ---------------
1148
1149   function Stop_Task (T : ST.Task_Id) return Boolean is
1150      pragma Unreferenced (T);
1151   begin
1152      return False;
1153   end Stop_Task;
1154
1155   -------------------
1156   -- Continue_Task --
1157   -------------------
1158
1159   function Continue_Task (T : ST.Task_Id) return Boolean is
1160      pragma Unreferenced (T);
1161   begin
1162      return False;
1163   end Continue_Task;
1164
1165   ----------------
1166   -- Initialize --
1167   ----------------
1168
1169   procedure Initialize (Environment_Task : Task_Id) is
1170      act     : aliased struct_sigaction;
1171      old_act : aliased struct_sigaction;
1172      Tmp_Set : aliased sigset_t;
1173      Result  : Interfaces.C.int;
1174
1175      function State
1176        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1177      pragma Import (C, State, "__gnat_get_interrupt_state");
1178      --  Get interrupt state. Defined in a-init.c. The input argument is
1179      --  the interrupt number, and the result is one of the following:
1180
1181      Default : constant Character := 's';
1182      --    'n'   this interrupt not set by any Interrupt_State pragma
1183      --    'u'   Interrupt_State pragma set state to User
1184      --    'r'   Interrupt_State pragma set state to Runtime
1185      --    's'   Interrupt_State pragma set state to System (use "default"
1186      --           system handler)
1187
1188   begin
1189      Environment_Task_Id := Environment_Task;
1190
1191      Interrupt_Management.Initialize;
1192
1193      --  Initialize the lock used to synchronize chain of all ATCBs
1194
1195      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1196
1197      Specific.Initialize (Environment_Task);
1198
1199      --  Make environment task known here because it doesn't go through
1200      --  Activate_Tasks, which does it for all other tasks.
1201
1202      Known_Tasks (Known_Tasks'First) := Environment_Task;
1203      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1204
1205      Enter_Task (Environment_Task);
1206
1207      --  Install the abort-signal handler
1208
1209      if State (System.Interrupt_Management.Abort_Task_Interrupt)
1210                                                     /= Default
1211      then
1212         act.sa_flags := 0;
1213         act.sa_handler := Abort_Handler'Address;
1214
1215         Result := sigemptyset (Tmp_Set'Access);
1216         pragma Assert (Result = 0);
1217         act.sa_mask := Tmp_Set;
1218
1219         Result :=
1220           sigaction (
1221             Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1222             act'Unchecked_Access,
1223             old_act'Unchecked_Access);
1224         pragma Assert (Result = 0);
1225      end if;
1226   end Initialize;
1227
1228   --  NOTE: Unlike other pthread implementations, we do *not* mask all
1229   --  signals here since we handle signals using the process-wide primitive
1230   --  signal, rather than using sigthreadmask and sigwait. The reason of
1231   --  this difference is that sigwait doesn't work when some critical
1232   --  signals (SIGABRT, SIGPIPE) are masked.
1233
1234   -----------------------
1235   -- Set_Task_Affinity --
1236   -----------------------
1237
1238   procedure Set_Task_Affinity (T : ST.Task_Id) is
1239      pragma Unreferenced (T);
1240
1241   begin
1242      --  Setting task affinity is not supported by the underlying system
1243
1244      null;
1245   end Set_Task_Affinity;
1246
1247end System.Task_Primitives.Operations;
1248