1------------------------------------------------------------------------------
2--                                                                          --
3--                 GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                 --
4--                                                                          --
5--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6--                                                                          --
7--                                  B o d y                                 --
8--                                                                          --
9--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNARL is free software; you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNARL was developed by the GNARL team at Florida State University.       --
28-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is a LynxOS version of this file, adapted to make SCHED_FIFO and
33--  ceiling locking (Annex D compliance) work properly.
34
35--  This package contains all the GNULL primitives that interface directly with
36--  the underlying OS.
37
38pragma Polling (Off);
39--  Turn off polling, we do not want ATC polling to take place during tasking
40--  operations. It causes infinite loops and other problems.
41
42with Ada.Unchecked_Deallocation;
43
44with Interfaces.C;
45
46with System.Tasking.Debug;
47with System.Interrupt_Management;
48with System.OS_Primitives;
49with System.Task_Info;
50
51with System.Soft_Links;
52--  We use System.Soft_Links instead of System.Tasking.Initialization
53--  because the later is a higher level package that we shouldn't depend on.
54--  For example when using the restricted run time, it is replaced by
55--  System.Tasking.Restricted.Stages.
56
57package body System.Task_Primitives.Operations is
58
59   package SSL renames System.Soft_Links;
60
61   use System.Tasking.Debug;
62   use System.Tasking;
63   use Interfaces.C;
64   use System.OS_Interface;
65   use System.Parameters;
66   use System.OS_Primitives;
67
68   ----------------
69   -- Local Data --
70   ----------------
71
72   --  The followings are logically constants, but need to be initialized
73   --  at run time.
74
75   Single_RTS_Lock : aliased RTS_Lock;
76   --  This is a lock to allow only one thread of control in the RTS at
77   --  a time; it is used to execute in mutual exclusion from all other tasks.
78   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
79
80   ATCB_Key : aliased pthread_key_t;
81   --  Key used to find the Ada Task_Id associated with a thread
82
83   Environment_Task_Id : Task_Id;
84   --  A variable to hold Task_Id for the environment task
85
86   Locking_Policy : Character;
87   pragma Import (C, Locking_Policy, "__gl_locking_policy");
88   --  Value of the pragma Locking_Policy:
89   --    'C' for Ceiling_Locking
90   --    'I' for Inherit_Locking
91   --    ' ' for none.
92
93   Unblocked_Signal_Mask : aliased sigset_t;
94   --  The set of signals that should unblocked in all tasks
95
96   --  The followings are internal configuration constants needed
97
98   Next_Serial_Number : Task_Serial_Number := 100;
99   --  We start at 100, to reserve some special values for
100   --  using in error checking.
101
102   Time_Slice_Val : Integer;
103   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
104
105   Dispatching_Policy : Character;
106   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
107
108   Foreign_Task_Elaborated : aliased Boolean := True;
109   --  Used to identified fake tasks (i.e., non-Ada Threads)
110
111   --------------------
112   -- Local Packages --
113   --------------------
114
115   package Specific is
116
117      procedure Initialize (Environment_Task : Task_Id);
118      pragma Inline (Initialize);
119      --  Initialize various data needed by this package
120
121      function Is_Valid_Task return Boolean;
122      pragma Inline (Is_Valid_Task);
123      --  Does the current thread have an ATCB?
124
125      procedure Set (Self_Id : Task_Id);
126      pragma Inline (Set);
127      --  Set the self id for the current task
128
129      function Self return Task_Id;
130      pragma Inline (Self);
131      --  Return a pointer to the Ada Task Control Block of the calling task
132
133   end Specific;
134
135   package body Specific is separate;
136   --  The body of this package is target specific
137
138   ---------------------------------
139   -- Support for foreign threads --
140   ---------------------------------
141
142   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
143   --  Allocate and Initialize a new ATCB for the current Thread
144
145   function Register_Foreign_Thread
146     (Thread : Thread_Id) return Task_Id is separate;
147
148   -----------------------
149   -- Local Subprograms --
150   -----------------------
151
152   procedure Abort_Handler (Sig : Signal);
153   --  Signal handler used to implement asynchronous abort
154
155   procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority);
156   --  This procedure calls the scheduler of the OS to set thread's priority
157
158   -------------------
159   -- Abort_Handler --
160   -------------------
161
162   procedure Abort_Handler (Sig : Signal) is
163      pragma Unreferenced (Sig);
164
165      T       : constant Task_Id := Self;
166      Result  : Interfaces.C.int;
167      Old_Set : aliased sigset_t;
168
169   begin
170      --  It is not safe to raise an exception when using ZCX and the GCC
171      --  exception handling mechanism.
172
173      if ZCX_By_Default and then GCC_ZCX_Support then
174         return;
175      end if;
176
177      if T.Deferral_Level = 0
178        and then T.Pending_ATC_Level < T.ATC_Nesting_Level
179        and then not T.Aborting
180      then
181         T.Aborting := True;
182
183         --  Make sure signals used for RTS internal purpose are unmasked
184
185         Result :=
186           pthread_sigmask
187             (SIG_UNBLOCK,
188              Unblocked_Signal_Mask'Access,
189              Old_Set'Access);
190         pragma Assert (Result = 0);
191
192         raise Standard'Abort_Signal;
193      end if;
194   end Abort_Handler;
195
196   -----------------
197   -- Stack_Guard --
198   -----------------
199
200   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
201      Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
202      Guard_Page_Address : Address;
203
204      Res : Interfaces.C.int;
205
206   begin
207      if Stack_Base_Available then
208
209         --  Compute the guard page address
210
211         Guard_Page_Address :=
212           Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
213
214         if On then
215            Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
216         else
217            Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
218         end if;
219
220         pragma Assert (Res = 0);
221      end if;
222   end Stack_Guard;
223
224   --------------------
225   -- Get_Thread_Id  --
226   --------------------
227
228   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
229   begin
230      return T.Common.LL.Thread;
231   end Get_Thread_Id;
232
233   ----------
234   -- Self --
235   ----------
236
237   function Self return Task_Id renames Specific.Self;
238
239   ---------------------
240   -- Initialize_Lock --
241   ---------------------
242
243   procedure Initialize_Lock
244     (Prio : System.Any_Priority;
245      L    : not null access Lock)
246   is
247      Attributes : aliased pthread_mutexattr_t;
248      Result : Interfaces.C.int;
249
250   begin
251      Result := pthread_mutexattr_init (Attributes'Access);
252      pragma Assert (Result = 0 or else Result = ENOMEM);
253
254      if Result = ENOMEM then
255         raise Storage_Error;
256      end if;
257
258      if Locking_Policy = 'C' then
259         L.Ceiling := Prio;
260      end if;
261
262      Result := pthread_mutex_init (L.Mutex'Access, Attributes'Access);
263      pragma Assert (Result = 0 or else Result = ENOMEM);
264
265      if Result = ENOMEM then
266         raise Storage_Error;
267      end if;
268
269      Result := pthread_mutexattr_destroy (Attributes'Access);
270      pragma Assert (Result = 0);
271   end Initialize_Lock;
272
273   procedure Initialize_Lock
274     (L     : not null access RTS_Lock;
275      Level : Lock_Level)
276   is
277      pragma Unreferenced (Level);
278
279      Attributes : aliased pthread_mutexattr_t;
280      Result     : Interfaces.C.int;
281
282   begin
283      Result := pthread_mutexattr_init (Attributes'Access);
284      pragma Assert (Result = 0 or else Result = ENOMEM);
285
286      if Result = ENOMEM then
287         raise Storage_Error;
288      end if;
289
290      Result := pthread_mutex_init (L, Attributes'Access);
291      pragma Assert (Result = 0 or else Result = ENOMEM);
292
293      if Result = ENOMEM then
294         Result := pthread_mutexattr_destroy (Attributes'Access);
295         raise Storage_Error;
296      end if;
297
298      Result := pthread_mutexattr_destroy (Attributes'Access);
299      pragma Assert (Result = 0);
300   end Initialize_Lock;
301
302   -------------------
303   -- Finalize_Lock --
304   -------------------
305
306   procedure Finalize_Lock (L : not null access Lock) is
307      Result : Interfaces.C.int;
308   begin
309      Result := pthread_mutex_destroy (L.Mutex'Access);
310      pragma Assert (Result = 0);
311   end Finalize_Lock;
312
313   procedure Finalize_Lock (L : not null access RTS_Lock) is
314      Result : Interfaces.C.int;
315   begin
316      Result := pthread_mutex_destroy (L);
317      pragma Assert (Result = 0);
318   end Finalize_Lock;
319
320   ----------------
321   -- Write_Lock --
322   ----------------
323
324   procedure Write_Lock
325     (L                 : not null access Lock;
326      Ceiling_Violation : out Boolean)
327   is
328      Result : Interfaces.C.int;
329      T      : constant Task_Id := Self;
330
331   begin
332      if Locking_Policy = 'C' then
333         if T.Common.Current_Priority > L.Ceiling then
334            Ceiling_Violation := True;
335            return;
336         end if;
337
338         L.Saved_Priority := T.Common.Current_Priority;
339
340         if T.Common.Current_Priority < L.Ceiling then
341            Set_OS_Priority (T, L.Ceiling);
342         end if;
343      end if;
344
345      Result := pthread_mutex_lock (L.Mutex'Access);
346
347      --  Assume that the cause of EINVAL is a priority ceiling violation
348
349      Ceiling_Violation := (Result = EINVAL);
350      pragma Assert (Result = 0 or else Result = EINVAL);
351   end Write_Lock;
352
353   --  No tricks on RTS_Locks
354
355   procedure Write_Lock
356     (L           : not null access RTS_Lock;
357      Global_Lock : Boolean := False)
358   is
359      Result : Interfaces.C.int;
360   begin
361      if not Single_Lock or else Global_Lock then
362         Result := pthread_mutex_lock (L);
363         pragma Assert (Result = 0);
364      end if;
365   end Write_Lock;
366
367   procedure Write_Lock (T : Task_Id) is
368      Result : Interfaces.C.int;
369   begin
370      if not Single_Lock then
371         Result := pthread_mutex_lock (T.Common.LL.L'Access);
372         pragma Assert (Result = 0);
373      end if;
374   end Write_Lock;
375
376   ---------------
377   -- Read_Lock --
378   ---------------
379
380   procedure Read_Lock
381     (L                 : not null access Lock;
382      Ceiling_Violation : out Boolean)
383   is
384   begin
385      Write_Lock (L, Ceiling_Violation);
386   end Read_Lock;
387
388   ------------
389   -- Unlock --
390   ------------
391
392   procedure Unlock (L : not null access Lock) is
393      Result : Interfaces.C.int;
394      T      : constant Task_Id := Self;
395
396   begin
397      Result := pthread_mutex_unlock (L.Mutex'Access);
398      pragma Assert (Result = 0);
399
400      if Locking_Policy = 'C' then
401         if T.Common.Current_Priority > L.Saved_Priority then
402            Set_OS_Priority (T, L.Saved_Priority);
403         end if;
404      end if;
405   end Unlock;
406
407   procedure Unlock
408     (L           : not null access RTS_Lock;
409      Global_Lock : Boolean := False)
410   is
411      Result : Interfaces.C.int;
412   begin
413      if not Single_Lock or else Global_Lock then
414         Result := pthread_mutex_unlock (L);
415         pragma Assert (Result = 0);
416      end if;
417   end Unlock;
418
419   procedure Unlock (T : Task_Id) is
420      Result : Interfaces.C.int;
421   begin
422      if not Single_Lock then
423         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
424         pragma Assert (Result = 0);
425      end if;
426   end Unlock;
427
428   -----------------
429   -- Set_Ceiling --
430   -----------------
431
432   --  Dynamic priority ceilings are not supported by the underlying system
433
434   procedure Set_Ceiling
435     (L    : not null access Lock;
436      Prio : System.Any_Priority)
437   is
438      pragma Unreferenced (L, Prio);
439   begin
440      null;
441   end Set_Ceiling;
442
443   -----------
444   -- Sleep --
445   -----------
446
447   procedure Sleep
448     (Self_ID : Task_Id;
449      Reason  : System.Tasking.Task_States)
450   is
451      pragma Unreferenced (Reason);
452      Result : Interfaces.C.int;
453
454   begin
455      if Single_Lock then
456         Result :=
457           pthread_cond_wait
458             (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
459      else
460         Result :=
461           pthread_cond_wait
462             (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
463      end if;
464
465      --  EINTR is not considered a failure
466
467      pragma Assert (Result = 0 or else Result = EINTR);
468   end Sleep;
469
470   -----------------
471   -- Timed_Sleep --
472   -----------------
473
474   --  This is for use within the run-time system, so abort is
475   --  assumed to be already deferred, and the caller should be
476   --  holding its own ATCB lock.
477
478   procedure Timed_Sleep
479     (Self_ID  : Task_Id;
480      Time     : Duration;
481      Mode     : ST.Delay_Modes;
482      Reason   : Task_States;
483      Timedout : out Boolean;
484      Yielded  : out Boolean)
485   is
486      pragma Unreferenced (Reason);
487
488      Base_Time  : constant Duration := Monotonic_Clock;
489      Check_Time : Duration := Base_Time;
490      Rel_Time   : Duration;
491      Abs_Time   : Duration;
492      Request    : aliased timespec;
493      Result     : Interfaces.C.int;
494
495   begin
496      Timedout := True;
497      Yielded := False;
498
499      if Mode = Relative then
500         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
501
502         if Relative_Timed_Wait then
503            Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
504         end if;
505
506      else
507         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
508
509         if Relative_Timed_Wait then
510            Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
511         end if;
512      end if;
513
514      if Abs_Time > Check_Time then
515         if Relative_Timed_Wait then
516            Request := To_Timespec (Rel_Time);
517         else
518            Request := To_Timespec (Abs_Time);
519         end if;
520
521         loop
522            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
523
524            if Single_Lock then
525               Result :=
526                 pthread_cond_timedwait
527                   (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
528                    Request'Access);
529
530            else
531               Result :=
532                 pthread_cond_timedwait
533                   (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
534                    Request'Access);
535            end if;
536
537            Check_Time := Monotonic_Clock;
538            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
539
540            if Result = 0 or Result = EINTR then
541
542               --  Somebody may have called Wakeup for us
543
544               Timedout := False;
545               exit;
546            end if;
547
548            pragma Assert (Result = ETIMEDOUT);
549         end loop;
550      end if;
551   end Timed_Sleep;
552
553   -----------------
554   -- Timed_Delay --
555   -----------------
556
557   --  This is for use in implementing delay statements, so we assume
558   --  the caller is abort-deferred but is holding no locks.
559
560   procedure Timed_Delay
561     (Self_ID : Task_Id;
562      Time    : Duration;
563      Mode    : ST.Delay_Modes)
564   is
565      Base_Time  : constant Duration := Monotonic_Clock;
566      Check_Time : Duration := Base_Time;
567      Abs_Time   : Duration;
568      Rel_Time   : Duration;
569      Request    : aliased timespec;
570
571      Result : Interfaces.C.int;
572      pragma Warnings (Off, Result);
573
574   begin
575      if Single_Lock then
576         Lock_RTS;
577      end if;
578
579      --  Comments needed in code below ???
580
581      Write_Lock (Self_ID);
582
583      if Mode = Relative then
584         Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
585
586         if Relative_Timed_Wait then
587            Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
588         end if;
589
590      else
591         Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
592
593         if Relative_Timed_Wait then
594            Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
595         end if;
596      end if;
597
598      if Abs_Time > Check_Time then
599         if Relative_Timed_Wait then
600            Request := To_Timespec (Rel_Time);
601         else
602            Request := To_Timespec (Abs_Time);
603         end if;
604
605         Self_ID.Common.State := Delay_Sleep;
606
607         loop
608            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
609
610            if Single_Lock then
611               Result :=
612                 pthread_cond_timedwait
613                   (Self_ID.Common.LL.CV'Access,
614                    Single_RTS_Lock'Access,
615                    Request'Access);
616            else
617               Result :=
618                 pthread_cond_timedwait
619                   (Self_ID.Common.LL.CV'Access,
620                    Self_ID.Common.LL.L'Access,
621                    Request'Access);
622            end if;
623
624            Check_Time := Monotonic_Clock;
625            exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
626
627            pragma Assert (Result = 0         or else
628                           Result = ETIMEDOUT or else
629                           Result = EINTR);
630         end loop;
631
632         Self_ID.Common.State := Runnable;
633      end if;
634
635      Unlock (Self_ID);
636
637      if Single_Lock then
638         Unlock_RTS;
639      end if;
640
641      Result := sched_yield;
642   end Timed_Delay;
643
644   ---------------------
645   -- Monotonic_Clock --
646   ---------------------
647
648   function Monotonic_Clock return Duration is
649      TS     : aliased timespec;
650      Result : Interfaces.C.int;
651   begin
652      Result :=
653        clock_gettime
654          (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
655      pragma Assert (Result = 0);
656      return To_Duration (TS);
657   end Monotonic_Clock;
658
659   -------------------
660   -- RT_Resolution --
661   -------------------
662
663   function RT_Resolution return Duration is
664      Res    : aliased timespec;
665      Result : Interfaces.C.int;
666   begin
667      Result :=
668        clock_getres
669          (clock_id => CLOCK_REALTIME, res => Res'Unchecked_Access);
670      pragma Assert (Result = 0);
671      return To_Duration (Res);
672   end RT_Resolution;
673
674   ------------
675   -- Wakeup --
676   ------------
677
678   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
679      pragma Unreferenced (Reason);
680      Result : Interfaces.C.int;
681   begin
682      Result := pthread_cond_signal (T.Common.LL.CV'Access);
683      pragma Assert (Result = 0);
684   end Wakeup;
685
686   -----------
687   -- Yield --
688   -----------
689
690   procedure Yield (Do_Yield : Boolean := True) is
691      Result : Interfaces.C.int;
692      pragma Unreferenced (Result);
693   begin
694      if Do_Yield then
695         Result := sched_yield;
696      end if;
697   end Yield;
698
699   ------------------
700   -- Set_Priority --
701   ------------------
702
703   procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority) is
704      Result : Interfaces.C.int;
705      Param  : aliased struct_sched_param;
706
707      function Get_Policy (Prio : System.Any_Priority) return Character;
708      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
709      --  Get priority specific dispatching policy
710
711      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
712      --  Upper case first character of the policy name corresponding to the
713      --  task as set by a Priority_Specific_Dispatching pragma.
714
715   begin
716      Param.sched_priority := Interfaces.C.int (Prio);
717
718      if Time_Slice_Supported
719        and then (Dispatching_Policy = 'R'
720                   or else Priority_Specific_Policy = 'R'
721                   or else Time_Slice_Val > 0)
722      then
723         Result :=
724           pthread_setschedparam
725             (T.Common.LL.Thread, SCHED_RR, Param'Access);
726
727      elsif Dispatching_Policy = 'F'
728        or else Priority_Specific_Policy = 'F'
729        or else Time_Slice_Val = 0
730      then
731         Result :=
732           pthread_setschedparam
733             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
734
735      else
736         Result :=
737           pthread_setschedparam
738             (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
739      end if;
740
741      pragma Assert (Result = 0);
742   end Set_OS_Priority;
743
744   type Prio_Array_Type is array (System.Any_Priority) of Integer;
745   pragma Atomic_Components (Prio_Array_Type);
746   Prio_Array : Prio_Array_Type;
747   --  Comments needed for these declarations ???
748
749   procedure Set_Priority
750     (T                   : Task_Id;
751      Prio                : System.Any_Priority;
752      Loss_Of_Inheritance : Boolean := False)
753   is
754      Array_Item : Integer;
755
756   begin
757      Set_OS_Priority (T, Prio);
758
759      if Locking_Policy = 'C' then
760
761         --  Annex D requirements: loss of inheritance puts task at the start
762         --  of the queue for that prio; copied from 5ztaprop (VxWorks).
763
764         if Loss_Of_Inheritance
765           and then Prio < T.Common.Current_Priority then
766
767            Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
768            Prio_Array (T.Common.Base_Priority) := Array_Item;
769
770            loop
771               Yield;
772               exit when Array_Item = Prio_Array (T.Common.Base_Priority)
773                 or else Prio_Array (T.Common.Base_Priority) = 1;
774            end loop;
775
776            Prio_Array (T.Common.Base_Priority) :=
777              Prio_Array (T.Common.Base_Priority) - 1;
778         end if;
779      end if;
780
781      T.Common.Current_Priority := Prio;
782   end Set_Priority;
783
784   ------------------
785   -- Get_Priority --
786   ------------------
787
788   function Get_Priority (T : Task_Id) return System.Any_Priority is
789   begin
790      return T.Common.Current_Priority;
791   end Get_Priority;
792
793   ----------------
794   -- Enter_Task --
795   ----------------
796
797   procedure Enter_Task (Self_ID : Task_Id) is
798   begin
799      Self_ID.Common.LL.Thread := pthread_self;
800      Self_ID.Common.LL.LWP := lwp_self;
801
802      Specific.Set (Self_ID);
803
804      Lock_RTS;
805
806      for J in Known_Tasks'Range loop
807         if Known_Tasks (J) = null then
808            Known_Tasks (J) := Self_ID;
809            Self_ID.Known_Tasks_Index := J;
810            exit;
811         end if;
812      end loop;
813
814      Unlock_RTS;
815   end Enter_Task;
816
817   --------------
818   -- New_ATCB --
819   --------------
820
821   function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
822   begin
823      return new Ada_Task_Control_Block (Entry_Num);
824   end New_ATCB;
825
826   -------------------
827   -- Is_Valid_Task --
828   -------------------
829
830   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
831
832   -----------------------------
833   -- Register_Foreign_Thread --
834   -----------------------------
835
836   function Register_Foreign_Thread return Task_Id is
837   begin
838      if Is_Valid_Task then
839         return Self;
840      else
841         return Register_Foreign_Thread (pthread_self);
842      end if;
843   end Register_Foreign_Thread;
844
845   --------------------
846   -- Initialize_TCB --
847   --------------------
848
849   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
850      Mutex_Attr : aliased pthread_mutexattr_t;
851      Result     : Interfaces.C.int;
852      Cond_Attr  : aliased pthread_condattr_t;
853
854   begin
855      --  Give the task a unique serial number
856
857      Self_ID.Serial_Number := Next_Serial_Number;
858      Next_Serial_Number := Next_Serial_Number + 1;
859      pragma Assert (Next_Serial_Number /= 0);
860
861      if not Single_Lock then
862         Result := pthread_mutexattr_init (Mutex_Attr'Access);
863         pragma Assert (Result = 0 or else Result = ENOMEM);
864
865         if Result = 0 then
866            Result :=
867              pthread_mutex_init
868                (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
869            pragma Assert (Result = 0 or else Result = ENOMEM);
870         end if;
871
872         if Result /= 0 then
873            Succeeded := False;
874            return;
875         end if;
876
877         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
878         pragma Assert (Result = 0);
879      end if;
880
881      Result := pthread_condattr_init (Cond_Attr'Access);
882      pragma Assert (Result = 0 or else Result = ENOMEM);
883
884      if Result = 0 then
885         Result :=
886           pthread_cond_init (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
887         pragma Assert (Result = 0 or else Result = ENOMEM);
888      end if;
889
890      if Result = 0 then
891         Succeeded := True;
892      else
893         if not Single_Lock then
894            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
895            pragma Assert (Result = 0);
896         end if;
897
898         Succeeded := False;
899      end if;
900
901      Result := pthread_condattr_destroy (Cond_Attr'Access);
902      pragma Assert (Result = 0);
903   end Initialize_TCB;
904
905   -----------------
906   -- Create_Task --
907   -----------------
908
909   procedure Create_Task
910     (T          : Task_Id;
911      Wrapper    : System.Address;
912      Stack_Size : System.Parameters.Size_Type;
913      Priority   : System.Any_Priority;
914      Succeeded  : out Boolean)
915   is
916      Attributes          : aliased pthread_attr_t;
917      Adjusted_Stack_Size : Interfaces.C.size_t;
918      Result              : Interfaces.C.int;
919
920      use System.Task_Info;
921
922   begin
923      Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
924
925      if Stack_Base_Available then
926
927         --  If Stack Checking is supported then allocate 2 additional pages:
928
929         --  In the worst case, stack is allocated at something like
930         --  N * Get_Page_Size - epsilon, we need to add the size for 2 pages
931         --  to be sure the effective stack size is greater than what
932         --  has been asked.
933
934         Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
935      end if;
936
937      Result := pthread_attr_init (Attributes'Access);
938      pragma Assert (Result = 0 or else Result = ENOMEM);
939
940      if Result /= 0 then
941         Succeeded := False;
942         return;
943      end if;
944
945      Result :=
946        pthread_attr_setdetachstate
947          (Attributes'Access, PTHREAD_CREATE_DETACHED);
948      pragma Assert (Result = 0);
949
950      Result :=
951        pthread_attr_setstacksize
952          (Attributes'Access, Adjusted_Stack_Size);
953      pragma Assert (Result = 0);
954
955      if T.Common.Task_Info /= Default_Scope then
956
957         --  We are assuming that Scope_Type has the same values than the
958         --  corresponding C macros
959
960         Result :=
961           pthread_attr_setscope
962             (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
963         pragma Assert (Result = 0);
964      end if;
965
966      --  Since the initial signal mask of a thread is inherited from the
967      --  creator, and the Environment task has all its signals masked, we
968      --  do not need to manipulate caller's signal mask at this point.
969      --  All tasks in RTS will have All_Tasks_Mask initially.
970
971      Result :=
972        pthread_create
973          (T.Common.LL.Thread'Access,
974           Attributes'Access,
975           Thread_Body_Access (Wrapper),
976           To_Address (T));
977      pragma Assert (Result = 0 or else Result = EAGAIN);
978
979      Succeeded := Result = 0;
980
981      Result := pthread_attr_destroy (Attributes'Access);
982      pragma Assert (Result = 0);
983
984      if Succeeded then
985         Set_Priority (T, Priority);
986      end if;
987   end Create_Task;
988
989   ------------------
990   -- Finalize_TCB --
991   ------------------
992
993   procedure Finalize_TCB (T : Task_Id) is
994      Result : Interfaces.C.int;
995      Tmp    : Task_Id := T;
996      Is_Self : constant Boolean := T = Self;
997
998      procedure Free is new
999        Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
1000
1001   begin
1002      if not Single_Lock then
1003         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
1004         pragma Assert (Result = 0);
1005      end if;
1006
1007      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1008      pragma Assert (Result = 0);
1009
1010      if T.Known_Tasks_Index /= -1 then
1011         Known_Tasks (T.Known_Tasks_Index) := null;
1012      end if;
1013
1014      Free (Tmp);
1015
1016      if Is_Self then
1017         Result := st_setspecific (ATCB_Key, System.Null_Address);
1018         pragma Assert (Result = 0);
1019      end if;
1020   end Finalize_TCB;
1021
1022   ---------------
1023   -- Exit_Task --
1024   ---------------
1025
1026   procedure Exit_Task is
1027   begin
1028      Specific.Set (null);
1029   end Exit_Task;
1030
1031   ----------------
1032   -- Abort_Task --
1033   ----------------
1034
1035   procedure Abort_Task (T : Task_Id) is
1036      Result : Interfaces.C.int;
1037   begin
1038      Result :=
1039        pthread_kill
1040          (T.Common.LL.Thread,
1041           Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1042      pragma Assert (Result = 0);
1043   end Abort_Task;
1044
1045   ----------------
1046   -- Initialize --
1047   ----------------
1048
1049   procedure Initialize (S : in out Suspension_Object) is
1050      Mutex_Attr : aliased pthread_mutexattr_t;
1051      Cond_Attr  : aliased pthread_condattr_t;
1052      Result     : Interfaces.C.int;
1053
1054   begin
1055      --  Initialize internal state (always to False (RM D.10(6)))
1056
1057      S.State := False;
1058      S.Waiting := False;
1059
1060      --  Initialize internal mutex
1061
1062      Result := pthread_mutexattr_init (Mutex_Attr'Access);
1063      pragma Assert (Result = 0 or else Result = ENOMEM);
1064
1065      if Result = ENOMEM then
1066         raise Storage_Error;
1067      end if;
1068
1069      Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1070      pragma Assert (Result = 0 or else Result = ENOMEM);
1071
1072      if Result = ENOMEM then
1073         Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1074         pragma Assert (Result = 0);
1075
1076         raise Storage_Error;
1077      end if;
1078
1079      Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1080      pragma Assert (Result = 0);
1081
1082      --  Initialize internal condition variable
1083
1084      Result := pthread_condattr_init (Cond_Attr'Access);
1085      pragma Assert (Result = 0 or else Result = ENOMEM);
1086
1087      if Result /= 0 then
1088         Result := pthread_mutex_destroy (S.L'Access);
1089         pragma Assert (Result = 0);
1090
1091         if Result = ENOMEM then
1092            raise Storage_Error;
1093         end if;
1094      end if;
1095
1096      Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1097      pragma Assert (Result = 0 or else Result = ENOMEM);
1098
1099      if Result /= 0 then
1100         Result := pthread_mutex_destroy (S.L'Access);
1101         pragma Assert (Result = 0);
1102
1103         if Result = ENOMEM then
1104            Result := pthread_condattr_destroy (Cond_Attr'Access);
1105            pragma Assert (Result = 0);
1106
1107            raise Storage_Error;
1108         end if;
1109      end if;
1110
1111      Result := pthread_condattr_destroy (Cond_Attr'Access);
1112      pragma Assert (Result = 0);
1113   end Initialize;
1114
1115   --------------
1116   -- Finalize --
1117   --------------
1118
1119   procedure Finalize (S : in out Suspension_Object) is
1120      Result : Interfaces.C.int;
1121
1122   begin
1123      --  Destroy internal mutex
1124
1125      Result := pthread_mutex_destroy (S.L'Access);
1126      pragma Assert (Result = 0);
1127
1128      --  Destroy internal condition variable
1129
1130      Result := pthread_cond_destroy (S.CV'Access);
1131      pragma Assert (Result = 0);
1132   end Finalize;
1133
1134   -------------------
1135   -- Current_State --
1136   -------------------
1137
1138   function Current_State (S : Suspension_Object) return Boolean is
1139   begin
1140      --  We do not want to use lock on this read operation. State is marked
1141      --  as Atomic so that we ensure that the value retrieved is correct.
1142
1143      return S.State;
1144   end Current_State;
1145
1146   ---------------
1147   -- Set_False --
1148   ---------------
1149
1150   procedure Set_False (S : in out Suspension_Object) is
1151      Result : Interfaces.C.int;
1152
1153   begin
1154      SSL.Abort_Defer.all;
1155
1156      Result := pthread_mutex_lock (S.L'Access);
1157      pragma Assert (Result = 0);
1158
1159      S.State := False;
1160
1161      Result := pthread_mutex_unlock (S.L'Access);
1162      pragma Assert (Result = 0);
1163
1164      SSL.Abort_Undefer.all;
1165   end Set_False;
1166
1167   --------------
1168   -- Set_True --
1169   --------------
1170
1171   procedure Set_True (S : in out Suspension_Object) is
1172      Result : Interfaces.C.int;
1173
1174   begin
1175      SSL.Abort_Defer.all;
1176
1177      Result := pthread_mutex_lock (S.L'Access);
1178      pragma Assert (Result = 0);
1179
1180      --  If there is already a task waiting on this suspension object then
1181      --  we resume it, leaving the state of the suspension object to False,
1182      --  as specified in (RM D.10(9)). Otherwise, just leave state set True.
1183
1184      if S.Waiting then
1185         S.Waiting := False;
1186         S.State := False;
1187
1188         Result := pthread_cond_signal (S.CV'Access);
1189         pragma Assert (Result = 0);
1190
1191      else
1192         S.State := True;
1193      end if;
1194
1195      Result := pthread_mutex_unlock (S.L'Access);
1196      pragma Assert (Result = 0);
1197
1198      SSL.Abort_Undefer.all;
1199   end Set_True;
1200
1201   ------------------------
1202   -- Suspend_Until_True --
1203   ------------------------
1204
1205   procedure Suspend_Until_True (S : in out Suspension_Object) is
1206      Result : Interfaces.C.int;
1207
1208   begin
1209      SSL.Abort_Defer.all;
1210
1211      Result := pthread_mutex_lock (S.L'Access);
1212      pragma Assert (Result = 0);
1213
1214      if S.Waiting then
1215
1216         --  Program_Error must be raised upon calling Suspend_Until_True
1217         --  if another task is already waiting on that suspension object
1218         --  (RM D.10 (10)).
1219
1220         Result := pthread_mutex_unlock (S.L'Access);
1221         pragma Assert (Result = 0);
1222
1223         SSL.Abort_Undefer.all;
1224
1225         raise Program_Error;
1226
1227      else
1228         --  Suspend the task if the state is False. Otherwise, the task
1229         --  continues its execution, and the state of the suspension object
1230         --  is set to False (RM D.10(9)).
1231
1232         if S.State then
1233            S.State := False;
1234         else
1235            S.Waiting := True;
1236            Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1237         end if;
1238
1239         Result := pthread_mutex_unlock (S.L'Access);
1240         pragma Assert (Result = 0);
1241
1242         SSL.Abort_Undefer.all;
1243      end if;
1244   end Suspend_Until_True;
1245
1246   ----------------
1247   -- Check_Exit --
1248   ----------------
1249
1250   --  Dummy version
1251
1252   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1253      pragma Unreferenced (Self_ID);
1254   begin
1255      return True;
1256   end Check_Exit;
1257
1258   --------------------
1259   -- Check_No_Locks --
1260   --------------------
1261
1262   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1263      pragma Unreferenced (Self_ID);
1264   begin
1265      return True;
1266   end Check_No_Locks;
1267
1268   ----------------------
1269   -- Environment_Task --
1270   ----------------------
1271
1272   function Environment_Task return Task_Id is
1273   begin
1274      return Environment_Task_Id;
1275   end Environment_Task;
1276
1277   --------------
1278   -- Lock_RTS --
1279   --------------
1280
1281   procedure Lock_RTS is
1282   begin
1283      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1284   end Lock_RTS;
1285
1286   ----------------
1287   -- Unlock_RTS --
1288   ----------------
1289
1290   procedure Unlock_RTS is
1291   begin
1292      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1293   end Unlock_RTS;
1294
1295   ------------------
1296   -- Suspend_Task --
1297   ------------------
1298
1299   function Suspend_Task
1300     (T           : ST.Task_Id;
1301      Thread_Self : Thread_Id) return Boolean
1302   is
1303      pragma Unreferenced (T);
1304      pragma Unreferenced (Thread_Self);
1305   begin
1306      return False;
1307   end Suspend_Task;
1308
1309   -----------------
1310   -- Resume_Task --
1311   -----------------
1312
1313   function Resume_Task
1314     (T           : ST.Task_Id;
1315      Thread_Self : Thread_Id) return Boolean
1316   is
1317      pragma Unreferenced (T);
1318      pragma Unreferenced (Thread_Self);
1319   begin
1320      return False;
1321   end Resume_Task;
1322
1323   --------------------
1324   -- Stop_All_Tasks --
1325   --------------------
1326
1327   procedure Stop_All_Tasks is
1328   begin
1329      null;
1330   end Stop_All_Tasks;
1331
1332   ---------------
1333   -- Stop_Task --
1334   ---------------
1335
1336   function Stop_Task (T : ST.Task_Id) return Boolean is
1337      pragma Unreferenced (T);
1338   begin
1339      return False;
1340   end Stop_Task;
1341
1342   -------------------
1343   -- Continue_Task --
1344   -------------------
1345
1346   function Continue_Task (T : ST.Task_Id) return Boolean is
1347      pragma Unreferenced (T);
1348   begin
1349      return False;
1350   end Continue_Task;
1351
1352   ----------------
1353   -- Initialize --
1354   ----------------
1355
1356   procedure Initialize (Environment_Task : Task_Id) is
1357      act     : aliased struct_sigaction;
1358      old_act : aliased struct_sigaction;
1359      Tmp_Set : aliased sigset_t;
1360      Result  : Interfaces.C.int;
1361
1362      function State
1363        (Int  : System.Interrupt_Management.Interrupt_ID) return Character;
1364      pragma Import (C, State, "__gnat_get_interrupt_state");
1365      --  Get interrupt state.  Defined in a-init.c
1366      --  The input argument is the interrupt number,
1367      --  and the result is one of the following:
1368
1369      Default : constant Character := 's';
1370      --    'n'   this interrupt not set by any Interrupt_State pragma
1371      --    'u'   Interrupt_State pragma set state to User
1372      --    'r'   Interrupt_State pragma set state to Runtime
1373      --    's'   Interrupt_State pragma set state to System (use "default"
1374      --           system handler)
1375
1376   begin
1377      Environment_Task_Id := Environment_Task;
1378
1379      Interrupt_Management.Initialize;
1380
1381      --  Prepare the set of signals that should unblocked in all tasks
1382
1383      Result := sigemptyset (Unblocked_Signal_Mask'Access);
1384      pragma Assert (Result = 0);
1385
1386      for J in Interrupt_Management.Interrupt_ID loop
1387         if System.Interrupt_Management.Keep_Unmasked (J) then
1388            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1389            pragma Assert (Result = 0);
1390         end if;
1391      end loop;
1392
1393      --  Initialize the lock used to synchronize chain of all ATCBs
1394
1395      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1396
1397      Specific.Initialize (Environment_Task);
1398
1399      Enter_Task (Environment_Task);
1400
1401      --  Install the abort-signal handler
1402
1403      if State
1404          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1405      then
1406         act.sa_flags := 0;
1407         act.sa_handler := Abort_Handler'Address;
1408
1409         Result := sigemptyset (Tmp_Set'Access);
1410         pragma Assert (Result = 0);
1411         act.sa_mask := Tmp_Set;
1412
1413         Result :=
1414           sigaction
1415             (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1416              act'Unchecked_Access,
1417              old_act'Unchecked_Access);
1418
1419         pragma Assert (Result = 0);
1420      end if;
1421   end Initialize;
1422
1423end System.Task_Primitives.Operations;
1424