1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                      S Y S T E M . V A L _ R E A L                       --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with System.Powten_Table;  use System.Powten_Table;
33with System.Val_Util;      use System.Val_Util;
34with System.Float_Control;
35
36package body System.Val_Real is
37
38   ---------------
39   -- Scan_Real --
40   ---------------
41
42   function Scan_Real
43     (Str : String;
44      Ptr : not null access Integer;
45      Max : Integer) return Long_Long_Float
46   is
47      P : Integer;
48      --  Local copy of string pointer
49
50      Base : Long_Long_Float;
51      --  Base value
52
53      Uval : Long_Long_Float;
54      --  Accumulated float result
55
56      subtype Digs is Character range '0' .. '9';
57      --  Used to check for decimal digit
58
59      Scale : Integer := 0;
60      --  Power of Base to multiply result by
61
62      Start : Positive;
63      --  Position of starting non-blank character
64
65      Minus : Boolean;
66      --  Set to True if minus sign is present, otherwise to False
67
68      Bad_Base : Boolean := False;
69      --  Set True if Base out of range or if out of range digit
70
71      After_Point : Natural := 0;
72      --  Set to 1 after the point
73
74      Num_Saved_Zeroes : Natural := 0;
75      --  This counts zeroes after the decimal point. A non-zero value means
76      --  that this number of previously scanned digits are zero. If the end
77      --  of the number is reached, these zeroes are simply discarded, which
78      --  ensures that trailing zeroes after the point never affect the value
79      --  (which might otherwise happen as a result of rounding). With this
80      --  processing in place, we can ensure that, for example, we get the
81      --  same exact result from 1.0E+49 and 1.0000000E+49. This is not
82      --  necessarily required in a case like this where the result is not
83      --  a machine number, but it is certainly a desirable behavior.
84
85      procedure Scanf;
86      --  Scans integer literal value starting at current character position.
87      --  For each digit encountered, Uval is multiplied by 10.0, and the new
88      --  digit value is incremented. In addition Scale is decremented for each
89      --  digit encountered if we are after the point (After_Point = 1). The
90      --  longest possible syntactically valid numeral is scanned out, and on
91      --  return P points past the last character. On entry, the current
92      --  character is known to be a digit, so a numeral is definitely present.
93
94      -----------
95      -- Scanf --
96      -----------
97
98      procedure Scanf is
99         Digit : Natural;
100
101      begin
102         loop
103            Digit := Character'Pos (Str (P)) - Character'Pos ('0');
104            P := P + 1;
105
106            --  Save up trailing zeroes after the decimal point
107
108            if Digit = 0 and then After_Point = 1 then
109               Num_Saved_Zeroes := Num_Saved_Zeroes + 1;
110
111            --  Here for a non-zero digit
112
113            else
114               --  First deal with any previously saved zeroes
115
116               if Num_Saved_Zeroes /= 0 then
117                  while Num_Saved_Zeroes > Maxpow loop
118                     Uval := Uval * Powten (Maxpow);
119                     Num_Saved_Zeroes := Num_Saved_Zeroes - Maxpow;
120                     Scale := Scale - Maxpow;
121                  end loop;
122
123                  Uval := Uval * Powten (Num_Saved_Zeroes);
124                  Scale := Scale - Num_Saved_Zeroes;
125
126                  Num_Saved_Zeroes := 0;
127               end if;
128
129               --  Accumulate new digit
130
131               Uval := Uval * 10.0 + Long_Long_Float (Digit);
132               Scale := Scale - After_Point;
133            end if;
134
135            --  Done if end of input field
136
137            if P > Max then
138               return;
139
140            --  Check next character
141
142            elsif Str (P) not in Digs then
143               if Str (P) = '_' then
144                  Scan_Underscore (Str, P, Ptr, Max, False);
145               else
146                  return;
147               end if;
148            end if;
149         end loop;
150      end Scanf;
151
152   --  Start of processing for System.Scan_Real
153
154   begin
155      --  We call the floating-point processor reset routine so that we can
156      --  be sure the floating-point processor is properly set for conversion
157      --  calls. This is notably need on Windows, where calls to the operating
158      --  system randomly reset the processor into 64-bit mode.
159
160      System.Float_Control.Reset;
161
162      Scan_Sign (Str, Ptr, Max, Minus, Start);
163      P := Ptr.all;
164      Ptr.all := Start;
165
166      --  If digit, scan numeral before point
167
168      if Str (P) in Digs then
169         Uval := 0.0;
170         Scanf;
171
172      --  Initial point, allowed only if followed by digit (RM 3.5(47))
173
174      elsif Str (P) = '.'
175        and then P < Max
176        and then Str (P + 1) in Digs
177      then
178         Uval := 0.0;
179
180      --  Any other initial character is an error
181
182      else
183         Bad_Value (Str);
184      end if;
185
186      --  Deal with based case
187
188      if P < Max and then (Str (P) = ':' or else Str (P) = '#') then
189         declare
190            Base_Char : constant Character := Str (P);
191            Digit     : Natural;
192            Fdigit    : Long_Long_Float;
193
194         begin
195            --  Set bad base if out of range, and use safe base of 16.0,
196            --  to guard against division by zero in the loop below.
197
198            if Uval < 2.0 or else Uval > 16.0 then
199               Bad_Base := True;
200               Uval := 16.0;
201            end if;
202
203            Base := Uval;
204            Uval := 0.0;
205            P := P + 1;
206
207            --  Special check to allow initial point (RM 3.5(49))
208
209            if Str (P) = '.' then
210               After_Point := 1;
211               P := P + 1;
212            end if;
213
214            --  Loop to scan digits of based number. On entry to the loop we
215            --  must have a valid digit. If we don't, then we have an illegal
216            --  floating-point value, and we raise Constraint_Error, note that
217            --  Ptr at this stage was reset to the proper (Start) value.
218
219            loop
220               if P > Max then
221                  Bad_Value (Str);
222
223               elsif Str (P) in Digs then
224                  Digit := Character'Pos (Str (P)) - Character'Pos ('0');
225
226               elsif Str (P) in 'A' .. 'F' then
227                  Digit :=
228                    Character'Pos (Str (P)) - (Character'Pos ('A') - 10);
229
230               elsif Str (P) in 'a' .. 'f' then
231                  Digit :=
232                    Character'Pos (Str (P)) - (Character'Pos ('a') - 10);
233
234               else
235                  Bad_Value (Str);
236               end if;
237
238               --  Save up trailing zeroes after the decimal point
239
240               if Digit = 0 and then After_Point = 1 then
241                  Num_Saved_Zeroes := Num_Saved_Zeroes + 1;
242
243               --  Here for a non-zero digit
244
245               else
246                  --  First deal with any previously saved zeroes
247
248                  if Num_Saved_Zeroes /= 0 then
249                     Uval := Uval * Base ** Num_Saved_Zeroes;
250                     Scale := Scale - Num_Saved_Zeroes;
251                     Num_Saved_Zeroes := 0;
252                  end if;
253
254                  --  Now accumulate the new digit
255
256                  Fdigit := Long_Long_Float (Digit);
257
258                  if Fdigit >= Base then
259                     Bad_Base := True;
260                  else
261                     Scale := Scale - After_Point;
262                     Uval := Uval * Base + Fdigit;
263                  end if;
264               end if;
265
266               P := P + 1;
267
268               if P > Max then
269                  Bad_Value (Str);
270
271               elsif Str (P) = '_' then
272                  Scan_Underscore (Str, P, Ptr, Max, True);
273
274               else
275                  --  Skip past period after digit. Note that the processing
276                  --  here will permit either a digit after the period, or the
277                  --  terminating base character, as allowed in (RM 3.5(48))
278
279                  if Str (P) = '.' and then After_Point = 0 then
280                     P := P + 1;
281                     After_Point := 1;
282
283                     if P > Max then
284                        Bad_Value (Str);
285                     end if;
286                  end if;
287
288                  exit when Str (P) = Base_Char;
289               end if;
290            end loop;
291
292            --  Based number successfully scanned out (point was found)
293
294            Ptr.all := P + 1;
295         end;
296
297      --  Non-based case, check for being at decimal point now. Note that
298      --  in Ada 95, we do not insist on a decimal point being present
299
300      else
301         Base := 10.0;
302         After_Point := 1;
303
304         if P <= Max and then Str (P) = '.' then
305            P := P + 1;
306
307            --  Scan digits after point if any are present (RM 3.5(46))
308
309            if P <= Max and then Str (P) in Digs then
310               Scanf;
311            end if;
312         end if;
313
314         Ptr.all := P;
315      end if;
316
317      --  At this point, we have Uval containing the digits of the value as
318      --  an integer, and Scale indicates the negative of the number of digits
319      --  after the point. Base contains the base value (an integral value in
320      --  the range 2.0 .. 16.0). Test for exponent, must be at least one
321      --  character after the E for the exponent to be valid.
322
323      Scale := Scale + Scan_Exponent (Str, Ptr, Max, Real => True);
324
325      --  At this point the exponent has been scanned if one is present and
326      --  Scale is adjusted to include the exponent value. Uval contains the
327      --  the integral value which is to be multiplied by Base ** Scale.
328
329      --  If base is not 10, use exponentiation for scaling
330
331      if Base /= 10.0 then
332         Uval := Uval * Base ** Scale;
333
334      --  For base 10, use power of ten table, repeatedly if necessary
335
336      elsif Scale > 0 then
337         while Scale > Maxpow loop
338            Uval := Uval * Powten (Maxpow);
339            Scale := Scale - Maxpow;
340         end loop;
341
342         if Scale > 0 then
343            Uval := Uval * Powten (Scale);
344         end if;
345
346      elsif Scale < 0 then
347         while (-Scale) > Maxpow loop
348            Uval := Uval / Powten (Maxpow);
349            Scale := Scale + Maxpow;
350         end loop;
351
352         if Scale < 0 then
353            Uval := Uval / Powten (-Scale);
354         end if;
355      end if;
356
357      --  Here is where we check for a bad based number
358
359      if Bad_Base then
360         Bad_Value (Str);
361
362      --  If OK, then deal with initial minus sign, note that this processing
363      --  is done even if Uval is zero, so that -0.0 is correctly interpreted.
364
365      else
366         if Minus then
367            return -Uval;
368         else
369            return Uval;
370         end if;
371      end if;
372   end Scan_Real;
373
374   ----------------
375   -- Value_Real --
376   ----------------
377
378   function Value_Real (Str : String) return Long_Long_Float is
379      V : Long_Long_Float;
380      P : aliased Integer := Str'First;
381   begin
382      V := Scan_Real (Str, P'Access, Str'Last);
383      Scan_Trailing_Blanks (Str, P);
384      return V;
385   end Value_Real;
386
387end System.Val_Real;
388