1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
31 /* #define SPARC_BI_ARCH */
32 
33 /* Macro used later in this file to determine default architecture.  */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35 
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37    architectures to compile for.  We allow targets to choose compile time or
38    runtime selection.  */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (! TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (! TARGET_ARCH32)
53 
54 /* Code model selection in 64-bit environment.
55 
56    The machine mode used for addresses is 32-bit wide:
57 
58    TARGET_CM_32:     32-bit address space.
59                      It is the code model used when generating 32-bit code.
60 
61    The machine mode used for addresses is 64-bit wide:
62 
63    TARGET_CM_MEDLOW: 32-bit address space.
64                      The executable must be in the low 32 bits of memory.
65                      This avoids generating %uhi and %ulo terms.  Programs
66                      can be statically or dynamically linked.
67 
68    TARGET_CM_MEDMID: 44-bit address space.
69                      The executable must be in the low 44 bits of memory,
70                      and the %[hml]44 terms are used.  The text and data
71                      segments have a maximum size of 2GB (31-bit span).
72                      The maximum offset from any instruction to the label
73                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74 
75    TARGET_CM_MEDANY: 64-bit address space.
76                      The text and data segments have a maximum size of 2GB
77                      (31-bit span) and may be located anywhere in memory.
78                      The maximum offset from any instruction to the label
79                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80 
81    TARGET_CM_EMBMEDANY: 64-bit address space.
82                      The text and data segments have a maximum size of 2GB
83                      (31-bit span) and may be located anywhere in memory.
84                      The global register %g4 contains the start address of
85                      the data segment.  Programs are statically linked and
86                      PIC is not supported.
87 
88    Different code models are not supported in 32-bit environment.  */
89 
90 enum cmodel {
91   CM_32,
92   CM_MEDLOW,
93   CM_MEDMID,
94   CM_MEDANY,
95   CM_EMBMEDANY
96 };
97 
98 /* One of CM_FOO.  */
99 extern enum cmodel sparc_cmodel;
100 
101 /* V9 code model selection.  */
102 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106 
107 #define SPARC_DEFAULT_CMODEL CM_32
108 
109 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
110    which requires the following macro to be true if enabled.  Prior to V9,
111    there are no instructions to even talk about memory synchronization.
112    Note that the UltraSPARC III processors don't implement RMO, unlike the
113    UltraSPARC II processors.  Niagara, Niagara-2, and Niagara-3 do not
114    implement RMO either.
115 
116    Default to false; for example, Solaris never enables RMO, only ever uses
117    total memory ordering (TMO).  */
118 #define SPARC_RELAXED_ORDERING false
119 
120 /* Do not use the .note.GNU-stack convention by default.  */
121 #define NEED_INDICATE_EXEC_STACK 0
122 
123 /* This is call-clobbered in the normal ABI, but is reserved in the
124    home grown (aka upward compatible) embedded ABI.  */
125 #define EMBMEDANY_BASE_REG "%g4"
126 
127 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128    and specified by the user via --with-cpu=foo.
129    This specifies the cpu implementation, not the architecture size.  */
130 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131    capable cpu's.  */
132 #define TARGET_CPU_sparc	0
133 #define TARGET_CPU_v7		0	/* alias */
134 #define TARGET_CPU_cypress	0       /* alias */
135 #define TARGET_CPU_v8		1	/* generic v8 implementation */
136 #define TARGET_CPU_supersparc	2
137 #define TARGET_CPU_hypersparc	3
138 #define TARGET_CPU_leon		4
139 #define TARGET_CPU_leon3	5
140 #define TARGET_CPU_leon3v7	6
141 #define TARGET_CPU_sparclite	7
142 #define TARGET_CPU_f930		7       /* alias */
143 #define TARGET_CPU_f934		7       /* alias */
144 #define TARGET_CPU_sparclite86x	8
145 #define TARGET_CPU_sparclet	9
146 #define TARGET_CPU_tsc701	9       /* alias */
147 #define TARGET_CPU_v9		10	/* generic v9 implementation */
148 #define TARGET_CPU_sparcv9	10	/* alias */
149 #define TARGET_CPU_sparc64	10	/* alias */
150 #define TARGET_CPU_ultrasparc	11
151 #define TARGET_CPU_ultrasparc3	12
152 #define TARGET_CPU_niagara	13
153 #define TARGET_CPU_niagara2	14
154 #define TARGET_CPU_niagara3	15
155 #define TARGET_CPU_niagara4	16
156 
157 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
164 
165 #define CPP_CPU32_DEFAULT_SPEC ""
166 #define ASM_CPU32_DEFAULT_SPEC ""
167 
168 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169 /* ??? What does Sun's CC pass?  */
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 /* ??? It's not clear how other assemblers will handle this, so by default
172    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173    is handled in sol2.h.  */
174 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
175 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179 #endif
180 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183 #endif
184 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187 #endif
188 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195 #endif
196 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
199 #endif
200 
201 #else
202 
203 #define CPP_CPU64_DEFAULT_SPEC ""
204 #define ASM_CPU64_DEFAULT_SPEC ""
205 
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208 #define CPP_CPU32_DEFAULT_SPEC ""
209 #define ASM_CPU32_DEFAULT_SPEC ""
210 #endif
211 
212 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215 #endif
216 
217 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220 #endif
221 
222 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225 #endif
226 
227 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229 #define ASM_CPU32_DEFAULT_SPEC ""
230 #endif
231 
232 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234 #define ASM_CPU32_DEFAULT_SPEC ""
235 #endif
236 
237 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
238  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
239 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
240 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
241 #endif
242 
243 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
244 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
245 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
246 #endif
247 
248 #endif
249 
250 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
251  #error Unrecognized value in TARGET_CPU_DEFAULT.
252 #endif
253 
254 #ifdef SPARC_BI_ARCH
255 
256 #define CPP_CPU_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? "\
258 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
259 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
260 " : "\
261 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
262 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
263 ")
264 #define ASM_CPU_DEFAULT_SPEC \
265 (DEFAULT_ARCH32_P ? "\
266 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
267 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
268 " : "\
269 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
270 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
271 ")
272 
273 #else /* !SPARC_BI_ARCH */
274 
275 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
276 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
277 
278 #endif /* !SPARC_BI_ARCH */
279 
280 /* Define macros to distinguish architectures.  */
281 
282 /* Common CPP definitions used by CPP_SPEC amongst the various targets
283    for handling -mcpu=xxx switches.  */
284 #define CPP_CPU_SPEC "\
285 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
286 %{mcpu=sparclite:-D__sparclite__} \
287 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
288 %{mcpu=sparclite86x:-D__sparclite86x__} \
289 %{mcpu=v8:-D__sparc_v8__} \
290 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
291 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
292 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
293 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
294 %{mcpu=leon3v7:-D__leon__} \
295 %{mcpu=v9:-D__sparc_v9__} \
296 %{mcpu=ultrasparc:-D__sparc_v9__} \
297 %{mcpu=ultrasparc3:-D__sparc_v9__} \
298 %{mcpu=niagara:-D__sparc_v9__} \
299 %{mcpu=niagara2:-D__sparc_v9__} \
300 %{mcpu=niagara3:-D__sparc_v9__} \
301 %{mcpu=niagara4:-D__sparc_v9__} \
302 %{!mcpu*:%(cpp_cpu_default)} \
303 "
304 #define CPP_ARCH32_SPEC ""
305 #define CPP_ARCH64_SPEC "-D__arch64__"
306 
307 #define CPP_ARCH_DEFAULT_SPEC \
308 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
309 
310 #define CPP_ARCH_SPEC "\
311 %{m32:%(cpp_arch32)} \
312 %{m64:%(cpp_arch64)} \
313 %{!m32:%{!m64:%(cpp_arch_default)}} \
314 "
315 
316 /* Macros to distinguish the endianness, window model and FP support.  */
317 #define CPP_OTHER_SPEC "\
318 %{mflat:-D_FLAT} \
319 %{msoft-float:-D_SOFT_FLOAT} \
320 "
321 
322 /* Macros to distinguish the particular subtarget.  */
323 #define CPP_SUBTARGET_SPEC ""
324 
325 #define CPP_SPEC \
326   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
327 
328 /* This used to translate -dalign to -malign, but that is no good
329    because it can't turn off the usual meaning of making debugging dumps.  */
330 
331 #define CC1_SPEC ""
332 
333 /* Override in target specific files.  */
334 #define ASM_CPU_SPEC "\
335 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
336 %{mcpu=sparclite:-Asparclite} \
337 %{mcpu=sparclite86x:-Asparclite} \
338 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
339 %{mcpu=v8:-Av8} \
340 %{mcpu=supersparc:-Av8} \
341 %{mcpu=hypersparc:-Av8} \
342 %{mcpu=leon:" AS_LEON_FLAG "} \
343 %{mcpu=leon3:" AS_LEON_FLAG "} \
344 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
345 %{mv8plus:-Av8plus} \
346 %{mcpu=v9:-Av9} \
347 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
348 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
349 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
350 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
351 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
352 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
353 %{!mcpu*:%(asm_cpu_default)} \
354 "
355 
356 /* Word size selection, among other things.
357    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
358 
359 #define ASM_ARCH32_SPEC "-32"
360 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
361 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
362 #else
363 #define ASM_ARCH64_SPEC "-64"
364 #endif
365 #define ASM_ARCH_DEFAULT_SPEC \
366 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
367 
368 #define ASM_ARCH_SPEC "\
369 %{m32:%(asm_arch32)} \
370 %{m64:%(asm_arch64)} \
371 %{!m32:%{!m64:%(asm_arch_default)}} \
372 "
373 
374 #ifdef HAVE_AS_RELAX_OPTION
375 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
376 #else
377 #define ASM_RELAX_SPEC ""
378 #endif
379 
380 /* Special flags to the Sun-4 assembler when using pipe for input.  */
381 
382 #define ASM_SPEC "\
383 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
384 %(asm_cpu) %(asm_relax)"
385 
386 /* This macro defines names of additional specifications to put in the specs
387    that can be used in various specifications like CC1_SPEC.  Its definition
388    is an initializer with a subgrouping for each command option.
389 
390    Each subgrouping contains a string constant, that defines the
391    specification name, and a string constant that used by the GCC driver
392    program.
393 
394    Do not define this macro if it does not need to do anything.  */
395 
396 #define EXTRA_SPECS \
397   { "cpp_cpu",		CPP_CPU_SPEC },		\
398   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
399   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
400   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
401   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
402   { "cpp_arch",		CPP_ARCH_SPEC },	\
403   { "cpp_other",	CPP_OTHER_SPEC },	\
404   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
405   { "asm_cpu",		ASM_CPU_SPEC },		\
406   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
407   { "asm_arch32",	ASM_ARCH32_SPEC },	\
408   { "asm_arch64",	ASM_ARCH64_SPEC },	\
409   { "asm_relax",	ASM_RELAX_SPEC },	\
410   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
411   { "asm_arch",		ASM_ARCH_SPEC },	\
412   SUBTARGET_EXTRA_SPECS
413 
414 #define SUBTARGET_EXTRA_SPECS
415 
416 /* Because libgcc can generate references back to libc (via .umul etc.) we have
417    to list libc again after the second libgcc.  */
418 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
419 
420 
421 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
422 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
423 
424 /* ??? This should be 32 bits for v9 but what can we do?  */
425 #define WCHAR_TYPE "short unsigned int"
426 #define WCHAR_TYPE_SIZE 16
427 
428 /* Mask of all CPU selection flags.  */
429 #define MASK_ISA \
430 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
431 
432 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
433    TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
434    to get high 32 bits.  False in V8+ or V9 because multiply stores
435    a 64-bit result in a register.  */
436 
437 #define TARGET_HARD_MUL32				\
438   ((TARGET_V8 || TARGET_SPARCLITE			\
439     || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)	\
440    && ! TARGET_V8PLUS && TARGET_ARCH32)
441 
442 #define TARGET_HARD_MUL					\
443   (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET	\
444    || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
445 
446 /* MASK_APP_REGS must always be the default because that's what
447    FIXED_REGISTERS is set to and -ffixed- is processed before
448    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
449    -mno-app-regs).  */
450 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
451 
452 /* Recast the cpu class to be the cpu attribute.
453    Every file includes us, but not every file includes insn-attr.h.  */
454 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
455 
456 /* Support for a compile-time default CPU, et cetera.  The rules are:
457    --with-cpu is ignored if -mcpu is specified.
458    --with-tune is ignored if -mtune is specified.
459    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
460      are specified.  */
461 #define OPTION_DEFAULT_SPECS \
462   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
463   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
464   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
465 
466 /* target machine storage layout */
467 
468 /* Define this if most significant bit is lowest numbered
469    in instructions that operate on numbered bit-fields.  */
470 #define BITS_BIG_ENDIAN 1
471 
472 /* Define this if most significant byte of a word is the lowest numbered.  */
473 #define BYTES_BIG_ENDIAN 1
474 
475 /* Define this if most significant word of a multiword number is the lowest
476    numbered.  */
477 #define WORDS_BIG_ENDIAN 1
478 
479 #define MAX_BITS_PER_WORD	64
480 
481 /* Width of a word, in units (bytes).  */
482 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
483 #ifdef IN_LIBGCC2
484 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
485 #else
486 #define MIN_UNITS_PER_WORD	4
487 #endif
488 
489 /* Now define the sizes of the C data types.  */
490 #define SHORT_TYPE_SIZE		16
491 #define INT_TYPE_SIZE		32
492 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
493 #define LONG_LONG_TYPE_SIZE	64
494 #define FLOAT_TYPE_SIZE		32
495 #define DOUBLE_TYPE_SIZE	64
496 
497 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
498    SPARC ABI says that it is 128-bit wide.  */
499 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
500 
501 /* The widest floating-point format really supported by the hardware.  */
502 #define WIDEST_HARDWARE_FP_SIZE 64
503 
504 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
505 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
506 
507 /* This is the machine mode used for addresses.  */
508 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
509 
510 /* If we have to extend pointers (only when TARGET_ARCH64 and not
511    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
512    if ptr_mode and Pmode are the same.  */
513 #define POINTERS_EXTEND_UNSIGNED 1
514 
515 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
516 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
517 
518 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
519 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
520    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
521 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
522 /* Temporary hack until the FIXME above is fixed.  */
523 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
524 
525 /* ALIGN FRAMES on double word boundaries */
526 #define SPARC_STACK_ALIGN(LOC) \
527   (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
528 
529 /* Allocation boundary (in *bits*) for the code of a function.  */
530 #define FUNCTION_BOUNDARY 32
531 
532 /* Alignment of field after `int : 0' in a structure.  */
533 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
534 
535 /* Every structure's size must be a multiple of this.  */
536 #define STRUCTURE_SIZE_BOUNDARY 8
537 
538 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
539 #define PCC_BITFIELD_TYPE_MATTERS 1
540 
541 /* No data type wants to be aligned rounder than this.  */
542 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
543 
544 /* The best alignment to use in cases where we have a choice.  */
545 #define FASTEST_ALIGNMENT 64
546 
547 /* Define this macro as an expression for the alignment of a structure
548    (given by STRUCT as a tree node) if the alignment computed in the
549    usual way is COMPUTED and the alignment explicitly specified was
550    SPECIFIED.
551 
552    The default is to use SPECIFIED if it is larger; otherwise, use
553    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
554 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
555  (TARGET_FASTER_STRUCTS ?				\
556   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
557     || TREE_CODE (STRUCT) == UNION_TYPE                 \
558     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
559    && TYPE_FIELDS (STRUCT) != 0                         \
560      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
561      : MAX ((COMPUTED), (SPECIFIED)))			\
562    :  MAX ((COMPUTED), (SPECIFIED)))
563 
564 /* An integer expression for the size in bits of the largest integer machine
565    mode that should actually be used.  We allow pairs of registers.  */
566 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
567 
568 /* We need 2 words, so we can save the stack pointer and the return register
569    of the function containing a non-local goto target.  */
570 #define STACK_SAVEAREA_MODE(LEVEL) \
571   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
572 
573 /* Make strings word-aligned so strcpy from constants will be faster.  */
574 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
575   ((TREE_CODE (EXP) == STRING_CST	\
576     && (ALIGN) < FASTEST_ALIGNMENT)	\
577    ? FASTEST_ALIGNMENT : (ALIGN))
578 
579 /* Make arrays of chars word-aligned for the same reasons.  */
580 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
581   (TREE_CODE (TYPE) == ARRAY_TYPE		\
582    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
583    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
584 
585 /* Make local arrays of chars word-aligned for the same reasons.  */
586 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
587 
588 /* Set this nonzero if move instructions will actually fail to work
589    when given unaligned data.  */
590 #define STRICT_ALIGNMENT 1
591 
592 /* Things that must be doubleword aligned cannot go in the text section,
593    because the linker fails to align the text section enough!
594    Put them in the data section.  This macro is only used in this file.  */
595 #define MAX_TEXT_ALIGN 32
596 
597 /* Standard register usage.  */
598 
599 /* Number of actual hardware registers.
600    The hardware registers are assigned numbers for the compiler
601    from 0 to just below FIRST_PSEUDO_REGISTER.
602    All registers that the compiler knows about must be given numbers,
603    even those that are not normally considered general registers.
604 
605    SPARC has 32 integer registers and 32 floating point registers.
606    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
607    accessible.  We still account for them to simplify register computations
608    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
609    32+32+32+4 == 100.
610    Register 100 is used as the integer condition code register.
611    Register 101 is used as the soft frame pointer register.  */
612 
613 #define FIRST_PSEUDO_REGISTER 103
614 
615 #define SPARC_FIRST_INT_REG     0
616 #define SPARC_LAST_INT_REG     31
617 #define SPARC_FIRST_FP_REG     32
618 /* Additional V9 fp regs.  */
619 #define SPARC_FIRST_V9_FP_REG  64
620 #define SPARC_LAST_V9_FP_REG   95
621 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
622 #define SPARC_FIRST_V9_FCC_REG 96
623 #define SPARC_LAST_V9_FCC_REG  99
624 /* V8 fcc reg.  */
625 #define SPARC_FCC_REG 96
626 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
627 #define SPARC_ICC_REG 100
628 #define SPARC_GSR_REG 102
629 
630 /* Nonzero if REGNO is an fp reg.  */
631 #define SPARC_FP_REG_P(REGNO) \
632 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
633 
634 /* Nonzero if REGNO is an int reg.  */
635 #define SPARC_INT_REG_P(REGNO) \
636 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
637 
638 /* Argument passing regs.  */
639 #define SPARC_OUTGOING_INT_ARG_FIRST 8
640 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
641 #define SPARC_FP_ARG_FIRST           32
642 
643 /* 1 for registers that have pervasive standard uses
644    and are not available for the register allocator.
645 
646    On non-v9 systems:
647    g1 is free to use as temporary.
648    g2-g4 are reserved for applications.  Gcc normally uses them as
649    temporaries, but this can be disabled via the -mno-app-regs option.
650    g5 through g7 are reserved for the operating system.
651 
652    On v9 systems:
653    g1,g5 are free to use as temporaries, and are free to use between calls
654    if the call is to an external function via the PLT.
655    g4 is free to use as a temporary in the non-embedded case.
656    g4 is reserved in the embedded case.
657    g2-g3 are reserved for applications.  Gcc normally uses them as
658    temporaries, but this can be disabled via the -mno-app-regs option.
659    g6-g7 are reserved for the operating system (or application in
660    embedded case).
661    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
662    currently be a fixed register until this pattern is rewritten.
663    Register 1 is also used when restoring call-preserved registers in large
664    stack frames.
665 
666    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
667    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
668 */
669 
670 #define FIXED_REGISTERS  \
671  {1, 0, 2, 2, 2, 2, 1, 1,	\
672   0, 0, 0, 0, 0, 0, 1, 0,	\
673   0, 0, 0, 0, 0, 0, 0, 0,	\
674   0, 0, 0, 0, 0, 0, 0, 1,	\
675 				\
676   0, 0, 0, 0, 0, 0, 0, 0,	\
677   0, 0, 0, 0, 0, 0, 0, 0,	\
678   0, 0, 0, 0, 0, 0, 0, 0,	\
679   0, 0, 0, 0, 0, 0, 0, 0,	\
680 				\
681   0, 0, 0, 0, 0, 0, 0, 0,	\
682   0, 0, 0, 0, 0, 0, 0, 0,	\
683   0, 0, 0, 0, 0, 0, 0, 0,	\
684   0, 0, 0, 0, 0, 0, 0, 0,	\
685 				\
686   0, 0, 0, 0, 0, 1, 1}
687 
688 /* 1 for registers not available across function calls.
689    These must include the FIXED_REGISTERS and also any
690    registers that can be used without being saved.
691    The latter must include the registers where values are returned
692    and the register where structure-value addresses are passed.
693    Aside from that, you can include as many other registers as you like.  */
694 
695 #define CALL_USED_REGISTERS  \
696  {1, 1, 1, 1, 1, 1, 1, 1,	\
697   1, 1, 1, 1, 1, 1, 1, 1,	\
698   0, 0, 0, 0, 0, 0, 0, 0,	\
699   0, 0, 0, 0, 0, 0, 0, 1,	\
700 				\
701   1, 1, 1, 1, 1, 1, 1, 1,	\
702   1, 1, 1, 1, 1, 1, 1, 1,	\
703   1, 1, 1, 1, 1, 1, 1, 1,	\
704   1, 1, 1, 1, 1, 1, 1, 1,	\
705 				\
706   1, 1, 1, 1, 1, 1, 1, 1,	\
707   1, 1, 1, 1, 1, 1, 1, 1,	\
708   1, 1, 1, 1, 1, 1, 1, 1,	\
709   1, 1, 1, 1, 1, 1, 1, 1,	\
710 				\
711   1, 1, 1, 1, 1, 1, 1}
712 
713 /* Return number of consecutive hard regs needed starting at reg REGNO
714    to hold something of mode MODE.
715    This is ordinarily the length in words of a value of mode MODE
716    but can be less for certain modes in special long registers.
717 
718    On SPARC, ordinary registers hold 32 bits worth;
719    this means both integer and floating point registers.
720    On v9, integer regs hold 64 bits worth; floating point regs hold
721    32 bits worth (this includes the new fp regs as even the odd ones are
722    included in the hard register count).  */
723 
724 #define HARD_REGNO_NREGS(REGNO, MODE) \
725   ((REGNO) == SPARC_GSR_REG ? 1 :					\
726    (TARGET_ARCH64							\
727     ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM			\
728        ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
729        : (GET_MODE_SIZE (MODE) + 3) / 4)				\
730     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
731 
732 /* Due to the ARCH64 discrepancy above we must override this next
733    macro too.  */
734 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
735 
736 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
737    See sparc.c for how we initialize this.  */
738 extern const int *hard_regno_mode_classes;
739 extern int sparc_mode_class[];
740 
741 /* ??? Because of the funny way we pass parameters we should allow certain
742    ??? types of float/complex values to be in integer registers during
743    ??? RTL generation.  This only matters on arch32.  */
744 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
745   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
746 
747 /* Value is 1 if it is OK to rename a hard register FROM to another hard
748    register TO.  We cannot rename %g1 as it may be used before the save
749    register window instruction in the prologue.  */
750 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
751 
752 #define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
753 
754 /* Specify the registers used for certain standard purposes.
755    The values of these macros are register numbers.  */
756 
757 /* Register to use for pushing function arguments.  */
758 #define STACK_POINTER_REGNUM 14
759 
760 /* The stack bias (amount by which the hardware register is offset by).  */
761 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
762 
763 /* Actual top-of-stack address is 92/176 greater than the contents of the
764    stack pointer register for !v9/v9.  That is:
765    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
766      address, and 6*4 bytes for the 6 register parameters.
767    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
768      parameter regs.  */
769 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
770 
771 /* Base register for access to local variables of the function.  */
772 #define HARD_FRAME_POINTER_REGNUM 30
773 
774 /* The soft frame pointer does not have the stack bias applied.  */
775 #define FRAME_POINTER_REGNUM 101
776 
777 /* Given the stack bias, the stack pointer isn't actually aligned.  */
778 #define INIT_EXPANDERS							 \
779   do {									 \
780     if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)	 \
781       {									 \
782 	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
783 	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
784       }									 \
785   } while (0)
786 
787 /* Base register for access to arguments of the function.  */
788 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
789 
790 /* Register in which static-chain is passed to a function.  This must
791    not be a register used by the prologue.  */
792 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
793 
794 /* Register which holds the global offset table, if any.  */
795 
796 #define GLOBAL_OFFSET_TABLE_REGNUM 23
797 
798 /* Register which holds offset table for position-independent
799    data references.  */
800 
801 #define PIC_OFFSET_TABLE_REGNUM \
802   (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
803 
804 /* Pick a default value we can notice from override_options:
805    !v9: Default is on.
806    v9: Default is off.
807    Originally it was -1, but later on the container of options changed to
808    unsigned byte, so we decided to pick 127 as default value, which does
809    reflect an undefined default value in case of 0/1.  */
810 
811 #define DEFAULT_PCC_STRUCT_RETURN 127
812 
813 /* Functions which return large structures get the address
814    to place the wanted value at offset 64 from the frame.
815    Must reserve 64 bytes for the in and local registers.
816    v9: Functions which return large structures get the address to place the
817    wanted value from an invisible first argument.  */
818 #define STRUCT_VALUE_OFFSET 64
819 
820 /* Define the classes of registers for register constraints in the
821    machine description.  Also define ranges of constants.
822 
823    One of the classes must always be named ALL_REGS and include all hard regs.
824    If there is more than one class, another class must be named NO_REGS
825    and contain no registers.
826 
827    The name GENERAL_REGS must be the name of a class (or an alias for
828    another name such as ALL_REGS).  This is the class of registers
829    that is allowed by "g" or "r" in a register constraint.
830    Also, registers outside this class are allocated only when
831    instructions express preferences for them.
832 
833    The classes must be numbered in nondecreasing order; that is,
834    a larger-numbered class must never be contained completely
835    in a smaller-numbered class.
836 
837    For any two classes, it is very desirable that there be another
838    class that represents their union.  */
839 
840 /* The SPARC has various kinds of registers: general, floating point,
841    and condition codes [well, it has others as well, but none that we
842    care directly about].
843 
844    For v9 we must distinguish between the upper and lower floating point
845    registers because the upper ones can't hold SFmode values.
846    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
847    satisfying a group need for a class will also satisfy a single need for
848    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
849    regs.
850 
851    It is important that one class contains all the general and all the standard
852    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
853    because reg_class_record() will bias the selection in favor of fp regs,
854    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
855    because FP_REGS > GENERAL_REGS.
856 
857    It is also important that one class contain all the general and all
858    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
859    EXTRA_FP_REGS but find_reloads() may use class
860    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
861    because the compiler thinks it doesn't have a spill reg when in
862    fact it does.
863 
864    v9 also has 4 floating point condition code registers.  Since we don't
865    have a class that is the union of FPCC_REGS with either of the others,
866    it is important that it appear first.  Otherwise the compiler will die
867    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
868    constraints.
869 
870    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
871    may try to use it to hold an SImode value.  See register_operand.
872    ??? Should %fcc[0123] be handled similarly?
873 */
874 
875 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
876 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
877 		 ALL_REGS, LIM_REG_CLASSES };
878 
879 #define N_REG_CLASSES (int) LIM_REG_CLASSES
880 
881 /* Give names of register classes as strings for dump file.  */
882 
883 #define REG_CLASS_NAMES \
884   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
885      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
886      "ALL_REGS" }
887 
888 /* Define which registers fit in which classes.
889    This is an initializer for a vector of HARD_REG_SET
890    of length N_REG_CLASSES.  */
891 
892 #define REG_CLASS_CONTENTS				\
893   {{0, 0, 0, 0},	/* NO_REGS */			\
894    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
895    {0xffff, 0, 0, 0},	/* I64_REGS */			\
896    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
897    {0, -1, 0, 0},	/* FP_REGS */			\
898    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
899    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
900    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
901    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
902 
903 /* The same information, inverted:
904    Return the class number of the smallest class containing
905    reg number REGNO.  This could be a conditional expression
906    or could index an array.  */
907 
908 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
909 
910 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
911 
912 /* Defines invalid mode changes.  Borrowed from the PA port.
913 
914    SImode loads to floating-point registers are not zero-extended.
915    The definition for LOAD_EXTEND_OP specifies that integer loads
916    narrower than BITS_PER_WORD will be zero-extended.  As a result,
917    we inhibit changes from SImode unless they are to a mode that is
918    identical in size.
919 
920    Likewise for SFmode, since word-mode paradoxical subregs are
921    problematic on big-endian architectures.  */
922 
923 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
924   (TARGET_ARCH64						\
925    && GET_MODE_SIZE (FROM) == 4					\
926    && GET_MODE_SIZE (TO) != 4					\
927    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
928 
929 /* This is the order in which to allocate registers normally.
930 
931    We put %f0-%f7 last among the float registers, so as to make it more
932    likely that a pseudo-register which dies in the float return register
933    area will get allocated to the float return register, thus saving a move
934    instruction at the end of the function.
935 
936    Similarly for integer return value registers.
937 
938    We know in this case that we will not end up with a leaf function.
939 
940    The register allocator is given the global and out registers first
941    because these registers are call clobbered and thus less useful to
942    global register allocation.
943 
944    Next we list the local and in registers.  They are not call clobbered
945    and thus very useful for global register allocation.  We list the input
946    registers before the locals so that it is more likely the incoming
947    arguments received in those registers can just stay there and not be
948    reloaded.  */
949 
950 #define REG_ALLOC_ORDER \
951 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
952   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
953   15,					/* %o7 */	\
954   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
955   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
956   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
957   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
958   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
959   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
960   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
961   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
962   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
963   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
964   96, 97, 98, 99,			/* %fcc0-3 */   \
965   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
966 
967 /* This is the order in which to allocate registers for
968    leaf functions.  If all registers can fit in the global and
969    output registers, then we have the possibility of having a leaf
970    function.
971 
972    The macro actually mentioned the input registers first,
973    because they get renumbered into the output registers once
974    we know really do have a leaf function.
975 
976    To be more precise, this register allocation order is used
977    when %o7 is found to not be clobbered right before register
978    allocation.  Normally, the reason %o7 would be clobbered is
979    due to a call which could not be transformed into a sibling
980    call.
981 
982    As a consequence, it is possible to use the leaf register
983    allocation order and not end up with a leaf function.  We will
984    not get suboptimal register allocation in that case because by
985    definition of being potentially leaf, there were no function
986    calls.  Therefore, allocation order within the local register
987    window is not critical like it is when we do have function calls.  */
988 
989 #define REG_LEAF_ALLOC_ORDER \
990 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
991   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
992   15,					/* %o7 */	\
993   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
994   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
995   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
996   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
997   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
998   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
999   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
1000   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
1001   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1002   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1003   96, 97, 98, 99,			/* %fcc0-3 */	\
1004   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1005 
1006 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1007 
1008 extern char sparc_leaf_regs[];
1009 #define LEAF_REGISTERS sparc_leaf_regs
1010 
1011 extern char leaf_reg_remap[];
1012 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1013 
1014 /* The class value for index registers, and the one for base regs.  */
1015 #define INDEX_REG_CLASS GENERAL_REGS
1016 #define BASE_REG_CLASS GENERAL_REGS
1017 
1018 /* Local macro to handle the two v9 classes of FP regs.  */
1019 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1020 
1021 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1022 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1023 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1024 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1025 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1026 
1027 /* 10- and 11-bit immediates are only used for a few specific insns.
1028    SMALL_INT is used throughout the port so we continue to use it.  */
1029 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1030 
1031 /* Predicate for constants that can be loaded with a sethi instruction.
1032    This is the general, 64-bit aware, bitwise version that ensures that
1033    only constants whose representation fits in the mask
1034 
1035      0x00000000fffffc00
1036 
1037    are accepted.  It will reject, for example, negative SImode constants
1038    on 64-bit hosts, so correct handling is to mask the value beforehand
1039    according to the mode of the instruction.  */
1040 #define SPARC_SETHI_P(X) \
1041   (((unsigned HOST_WIDE_INT) (X) \
1042     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1043 
1044 /* Version of the above predicate for SImode constants and below.  */
1045 #define SPARC_SETHI32_P(X) \
1046   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1047 
1048 /* On SPARC when not VIS3 it is not possible to directly move data
1049    between GENERAL_REGS and FP_REGS.  */
1050 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1051   ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1052    && (! TARGET_VIS3 \
1053        || GET_MODE_SIZE (MODE) > 8 \
1054        || GET_MODE_SIZE (MODE) < 4))
1055 
1056 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1057    because the movsi and movsf patterns don't handle r/f moves.
1058    For v8 we copy the default definition.  */
1059 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1060   (TARGET_ARCH64						\
1061    ? (GET_MODE_BITSIZE (MODE) < 32				\
1062       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1063       : MODE)							\
1064    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1065       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1066       : MODE))
1067 
1068 /* Return the maximum number of consecutive registers
1069    needed to represent mode MODE in a register of class CLASS.  */
1070 /* On SPARC, this is the size of MODE in words.  */
1071 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1072   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1073    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1074 
1075 /* Stack layout; function entry, exit and calling.  */
1076 
1077 /* Define this if pushing a word on the stack
1078    makes the stack pointer a smaller address.  */
1079 #define STACK_GROWS_DOWNWARD
1080 
1081 /* Define this to nonzero if the nominal address of the stack frame
1082    is at the high-address end of the local variables;
1083    that is, each additional local variable allocated
1084    goes at a more negative offset in the frame.  */
1085 #define FRAME_GROWS_DOWNWARD 1
1086 
1087 /* Offset within stack frame to start allocating local variables at.
1088    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1089    first local allocated.  Otherwise, it is the offset to the BEGINNING
1090    of the first local allocated.  */
1091 #define STARTING_FRAME_OFFSET 0
1092 
1093 /* Offset of first parameter from the argument pointer register value.
1094    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1095    even if this function isn't going to use it.
1096    v9: This is 128 for the ins and locals.  */
1097 #define FIRST_PARM_OFFSET(FNDECL) \
1098   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1099 
1100 /* Offset from the argument pointer register value to the CFA.
1101    This is different from FIRST_PARM_OFFSET because the register window
1102    comes between the CFA and the arguments.  */
1103 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1104 
1105 /* When a parameter is passed in a register, stack space is still
1106    allocated for it.
1107    !v9: All 6 possible integer registers have backing store allocated.
1108    v9: Only space for the arguments passed is allocated.  */
1109 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1110    meaning to the backend.  Further, we need to be able to detect if a
1111    varargs/unprototyped function is called, as they may want to spill more
1112    registers than we've provided space.  Ugly, ugly.  So for now we retain
1113    all 6 slots even for v9.  */
1114 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1115 
1116 /* Definitions for register elimination.  */
1117 
1118 #define ELIMINABLE_REGS \
1119   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1120    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1121 
1122 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1123   do								\
1124     {								\
1125       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1126     }								\
1127   while (0)
1128 
1129 /* Keep the stack pointer constant throughout the function.
1130    This is both an optimization and a necessity: longjmp
1131    doesn't behave itself when the stack pointer moves within
1132    the function!  */
1133 #define ACCUMULATE_OUTGOING_ARGS 1
1134 
1135 /* Define this macro if the target machine has "register windows".  This
1136    C expression returns the register number as seen by the called function
1137    corresponding to register number OUT as seen by the calling function.
1138    Return OUT if register number OUT is not an outbound register.  */
1139 
1140 #define INCOMING_REGNO(OUT) \
1141  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1142 
1143 /* Define this macro if the target machine has "register windows".  This
1144    C expression returns the register number as seen by the calling function
1145    corresponding to register number IN as seen by the called function.
1146    Return IN if register number IN is not an inbound register.  */
1147 
1148 #define OUTGOING_REGNO(IN) \
1149  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1150 
1151 /* Define this macro if the target machine has register windows.  This
1152    C expression returns true if the register is call-saved but is in the
1153    register window.  */
1154 
1155 #define LOCAL_REGNO(REGNO) \
1156   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1157 
1158 /* Define the size of space to allocate for the return value of an
1159    untyped_call.  */
1160 
1161 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1162 
1163 /* 1 if N is a possible register number for function argument passing.
1164    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1165 
1166 #define FUNCTION_ARG_REGNO_P(N) \
1167 (TARGET_ARCH64 \
1168  ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1169  : ((N) >= 8 && (N) <= 13))
1170 
1171 /* Define a data type for recording info about an argument list
1172    during the scan of that argument list.  This data type should
1173    hold all necessary information about the function itself
1174    and about the args processed so far, enough to enable macros
1175    such as FUNCTION_ARG to determine where the next arg should go.
1176 
1177    On SPARC (!v9), this is a single integer, which is a number of words
1178    of arguments scanned so far (including the invisible argument,
1179    if any, which holds the structure-value-address).
1180    Thus 7 or more means all following args should go on the stack.
1181 
1182    For v9, we also need to know whether a prototype is present.  */
1183 
1184 struct sparc_args {
1185   int words;       /* number of words passed so far */
1186   int prototype_p; /* nonzero if a prototype is present */
1187   int libcall_p;   /* nonzero if a library call */
1188 };
1189 #define CUMULATIVE_ARGS struct sparc_args
1190 
1191 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1192    for a call to a function whose data type is FNTYPE.
1193    For a library call, FNTYPE is 0.  */
1194 
1195 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1196 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1197 
1198 /* If defined, a C expression which determines whether, and in which direction,
1199    to pad out an argument with extra space.  The value should be of type
1200    `enum direction': either `upward' to pad above the argument,
1201    `downward' to pad below, or `none' to inhibit padding.  */
1202 
1203 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1204 function_arg_padding ((MODE), (TYPE))
1205 
1206 
1207 /* Generate the special assembly code needed to tell the assembler whatever
1208    it might need to know about the return value of a function.
1209 
1210    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1211    information to the assembler relating to peephole optimization (done in
1212    the assembler).  */
1213 
1214 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1215   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1216 
1217 /* Output the special assembly code needed to tell the assembler some
1218    register is used as global register variable.
1219 
1220    SPARC 64bit psABI declares registers %g2 and %g3 as application
1221    registers and %g6 and %g7 as OS registers.  Any object using them
1222    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1223    and how they are used (scratch or some global variable).
1224    Linker will then refuse to link together objects which use those
1225    registers incompatibly.
1226 
1227    Unless the registers are used for scratch, two different global
1228    registers cannot be declared to the same name, so in the unlikely
1229    case of a global register variable occupying more than one register
1230    we prefix the second and following registers with .gnu.part1. etc.  */
1231 
1232 extern GTY(()) char sparc_hard_reg_printed[8];
1233 
1234 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1235 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1236 do {									\
1237   if (TARGET_ARCH64)							\
1238     {									\
1239       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1240       int reg;								\
1241       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1242 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1243 	  {								\
1244 	    if (reg == (REGNO))						\
1245 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1246 	    else							\
1247 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1248 		       reg, reg - (REGNO), (NAME));			\
1249 	    sparc_hard_reg_printed[reg] = 1;				\
1250 	  }								\
1251     }									\
1252 } while (0)
1253 #endif
1254 
1255 
1256 /* Emit rtl for profiling.  */
1257 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1258 
1259 /* All the work done in PROFILE_HOOK, but still required.  */
1260 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1261 
1262 /* Set the name of the mcount function for the system.  */
1263 #define MCOUNT_FUNCTION "*mcount"
1264 
1265 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1266    the stack pointer does not matter.  The value is tested only in
1267    functions that have frame pointers.  */
1268 #define EXIT_IGNORE_STACK 1
1269 
1270 /* Length in units of the trampoline for entering a nested function.  */
1271 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1272 
1273 /* Alignment required for trampolines, in bits.  */
1274 #define TRAMPOLINE_ALIGNMENT 128
1275 
1276 /* Generate RTL to flush the register windows so as to make arbitrary frames
1277    available.  */
1278 #define SETUP_FRAME_ADDRESSES()			\
1279   do {						\
1280     if (!TARGET_FLAT)				\
1281       emit_insn (gen_flush_register_windows ());\
1282   } while (0)
1283 
1284 /* Given an rtx for the address of a frame,
1285    return an rtx for the address of the word in the frame
1286    that holds the dynamic chain--the previous frame's address.  */
1287 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1288   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1289 
1290 /* Given an rtx for the frame pointer,
1291    return an rtx for the address of the frame.  */
1292 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1293 
1294 /* The return address isn't on the stack, it is in a register, so we can't
1295    access it from the current frame pointer.  We can access it from the
1296    previous frame pointer though by reading a value from the register window
1297    save area.  */
1298 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1299 
1300 /* This is the offset of the return address to the true next instruction to be
1301    executed for the current function.  */
1302 #define RETURN_ADDR_OFFSET \
1303   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1304 
1305 /* The current return address is in %i7.  The return address of anything
1306    farther back is in the register window save area at [%fp+60].  */
1307 /* ??? This ignores the fact that the actual return address is +8 for normal
1308    returns, and +12 for structure returns.  */
1309 #define RETURN_ADDR_REGNUM 31
1310 #define RETURN_ADDR_RTX(count, frame)		\
1311   ((count == -1)				\
1312    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1313    : gen_rtx_MEM (Pmode,			\
1314 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1315 							15 * UNITS_PER_WORD \
1316 							+ SPARC_STACK_BIAS))))
1317 
1318 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1319    +12, but always using +8 is close enough for frame unwind purposes.
1320    Actually, just using %o7 is close enough for unwinding, but %o7+8
1321    is something you can return to.  */
1322 #define INCOMING_RETURN_ADDR_REGNUM 15
1323 #define INCOMING_RETURN_ADDR_RTX \
1324   plus_constant (word_mode, \
1325 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1326 #define DWARF_FRAME_RETURN_COLUMN \
1327   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1328 
1329 /* The offset from the incoming value of %sp to the top of the stack frame
1330    for the current function.  On sparc64, we have to account for the stack
1331    bias if present.  */
1332 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1333 
1334 /* Describe how we implement __builtin_eh_return.  */
1335 #define EH_RETURN_REGNUM 1
1336 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1337 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1338 
1339 /* Define registers used by the epilogue and return instruction.  */
1340 #define EPILOGUE_USES(REGNO)					\
1341   ((REGNO) == RETURN_ADDR_REGNUM				\
1342    || (TARGET_FLAT						\
1343        && epilogue_completed					\
1344        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1345    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1346 
1347 /* Select a format to encode pointers in exception handling data.  CODE
1348    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1349    true if the symbol may be affected by dynamic relocations.
1350 
1351    If assembler and linker properly support .uaword %r_disp32(foo),
1352    then use PC relative 32-bit relocations instead of absolute relocs
1353    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1354    for binaries, to save memory.
1355 
1356    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1357    symbol %r_disp32() is against was not local, but .hidden.  In that
1358    case, we have to use DW_EH_PE_absptr for pic personality.  */
1359 #ifdef HAVE_AS_SPARC_UA_PCREL
1360 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1361 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1362   (flag_pic								\
1363    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1364    : ((TARGET_ARCH64 && ! GLOBAL)					\
1365       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1366       : DW_EH_PE_absptr))
1367 #else
1368 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1369   (flag_pic								\
1370    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1371    : ((TARGET_ARCH64 && ! GLOBAL)					\
1372       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1373       : DW_EH_PE_absptr))
1374 #endif
1375 
1376 /* Emit a PC-relative relocation.  */
1377 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1378   do {							\
1379     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1380     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1381     assemble_name (FILE, LABEL);			\
1382     fputc (')', FILE);					\
1383   } while (0)
1384 #endif
1385 
1386 /* Addressing modes, and classification of registers for them.  */
1387 
1388 /* Macros to check register numbers against specific register classes.  */
1389 
1390 /* These assume that REGNO is a hard or pseudo reg number.
1391    They give nonzero only if REGNO is a hard reg of the suitable class
1392    or a pseudo reg currently allocated to a suitable hard reg.
1393    Since they use reg_renumber, they are safe only once reg_renumber
1394    has been allocated, which happens in reginfo.c during register
1395    allocation.  */
1396 
1397 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1398 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1399  || (REGNO) == FRAME_POINTER_REGNUM				  \
1400  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1401 
1402 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1403 
1404 #define REGNO_OK_FOR_FP_P(REGNO) \
1405   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1406    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1407 
1408 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1409  (TARGET_V9 \
1410   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1411       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1412 
1413 /* Maximum number of registers that can appear in a valid memory address.  */
1414 
1415 #define MAX_REGS_PER_ADDRESS 2
1416 
1417 /* Recognize any constant value that is a valid address.
1418    When PIC, we do not accept an address that would require a scratch reg
1419    to load into a register.  */
1420 
1421 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1422 
1423 /* Define this, so that when PIC, reload won't try to reload invalid
1424    addresses which require two reload registers.  */
1425 
1426 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1427 
1428 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1429 
1430 #ifdef HAVE_AS_OFFSETABLE_LO10
1431 #define USE_AS_OFFSETABLE_LO10 1
1432 #else
1433 #define USE_AS_OFFSETABLE_LO10 0
1434 #endif
1435 
1436 /* Try a machine-dependent way of reloading an illegitimate address
1437    operand.  If we find one, push the reload and jump to WIN.  This
1438    macro is used in only one place: `find_reloads_address' in reload.c.  */
1439 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1440 do {									   \
1441   int win;								   \
1442   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1443 					 (int)(TYPE), (IND_LEVELS), &win); \
1444   if (win)								   \
1445     goto WIN;								   \
1446 } while (0)
1447 
1448 /* Specify the machine mode that this machine uses
1449    for the index in the tablejump instruction.  */
1450 /* If we ever implement any of the full models (such as CM_FULLANY),
1451    this has to be DImode in that case */
1452 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1453 #define CASE_VECTOR_MODE \
1454 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1455 #else
1456 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1457    we have to sign extend which slows things down.  */
1458 #define CASE_VECTOR_MODE \
1459 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1460 #endif
1461 
1462 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1463 #define DEFAULT_SIGNED_CHAR 1
1464 
1465 /* Max number of bytes we can move from memory to memory
1466    in one reasonably fast instruction.  */
1467 #define MOVE_MAX 8
1468 
1469 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1470    move-instruction pairs, we will do a movmem or libcall instead.  */
1471 
1472 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1473 
1474 /* Define if operations between registers always perform the operation
1475    on the full register even if a narrower mode is specified.  */
1476 #define WORD_REGISTER_OPERATIONS
1477 
1478 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1479    will either zero-extend or sign-extend.  The value of this macro should
1480    be the code that says which one of the two operations is implicitly
1481    done, UNKNOWN if none.  */
1482 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1483 
1484 /* Nonzero if access to memory by bytes is slow and undesirable.
1485    For RISC chips, it means that access to memory by bytes is no
1486    better than access by words when possible, so grab a whole word
1487    and maybe make use of that.  */
1488 #define SLOW_BYTE_ACCESS 1
1489 
1490 /* Define this to be nonzero if shift instructions ignore all but the low-order
1491    few bits.  */
1492 #define SHIFT_COUNT_TRUNCATED 1
1493 
1494 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1495    is done just by pretending it is already truncated.  */
1496 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1497 
1498 /* For SImode, we make sure the top 32-bits of the register are clear and
1499    then we subtract 32 from the lzd instruction result.  */
1500 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1501   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1502 
1503 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1504    return the mode to be used for the comparison.  For floating-point,
1505    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1506    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1507    processing is needed.  */
1508 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1509 
1510 /* Return nonzero if MODE implies a floating point inequality can be
1511    reversed.  For SPARC this is always true because we have a full
1512    compliment of ordered and unordered comparisons, but until generic
1513    code knows how to reverse it correctly we keep the old definition.  */
1514 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1515 
1516 /* A function address in a call instruction for indexing purposes.  */
1517 #define FUNCTION_MODE Pmode
1518 
1519 /* Define this if addresses of constant functions
1520    shouldn't be put through pseudo regs where they can be cse'd.
1521    Desirable on machines where ordinary constants are expensive
1522    but a CALL with constant address is cheap.  */
1523 #define NO_FUNCTION_CSE
1524 
1525 /* The _Q_* comparison libcalls return booleans.  */
1526 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1527 
1528 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1529    that the inputs are fully consumed before the output memory is clobbered.  */
1530 
1531 #define TARGET_BUGGY_QP_LIB	0
1532 
1533 /* Assume by default that we do not have the Solaris-specific conversion
1534    routines nor 64-bit integer multiply and divide routines.  */
1535 
1536 #define SUN_CONVERSION_LIBFUNCS 	0
1537 #define DITF_CONVERSION_LIBFUNCS	0
1538 #define SUN_INTEGER_MULTIPLY_64 	0
1539 
1540 /* Provide the cost of a branch.  For pre-v9 processors we use
1541    a value of 3 to take into account the potential annulling of
1542    the delay slot (which ends up being a bubble in the pipeline slot)
1543    plus a cycle to take into consideration the instruction cache
1544    effects.
1545 
1546    On v9 and later, which have branch prediction facilities, we set
1547    it to the depth of the pipeline as that is the cost of a
1548    mispredicted branch.
1549 
1550    On Niagara, normal branches insert 3 bubbles into the pipe
1551    and annulled branches insert 4 bubbles.
1552 
1553    On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1554    a taken branch costs 6 cycles.  */
1555 
1556 #define BRANCH_COST(speed_p, predictable_p) \
1557 	((sparc_cpu == PROCESSOR_V9 \
1558 	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
1559 	 ? 7 \
1560          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1561             ? 9 \
1562 	 : (sparc_cpu == PROCESSOR_NIAGARA \
1563 	    ? 4 \
1564 	 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1565 	     || sparc_cpu == PROCESSOR_NIAGARA3) \
1566 	    ? 5 \
1567 	 : 3))))
1568 
1569 /* Control the assembler format that we output.  */
1570 
1571 /* A C string constant describing how to begin a comment in the target
1572    assembler language.  The compiler assumes that the comment will end at
1573    the end of the line.  */
1574 
1575 #define ASM_COMMENT_START "!"
1576 
1577 /* Output to assembler file text saying following lines
1578    may contain character constants, extra white space, comments, etc.  */
1579 
1580 #define ASM_APP_ON ""
1581 
1582 /* Output to assembler file text saying following lines
1583    no longer contain unusual constructs.  */
1584 
1585 #define ASM_APP_OFF ""
1586 
1587 /* How to refer to registers in assembler output.
1588    This sequence is indexed by compiler's hard-register-number (see above).  */
1589 
1590 #define REGISTER_NAMES \
1591 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1592  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1593  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1594  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1595  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1596  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1597  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1598  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1599  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1600  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1601  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1602  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1603  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1604 
1605 /* Define additional names for use in asm clobbers and asm declarations.  */
1606 
1607 #define ADDITIONAL_REGISTER_NAMES \
1608 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1609 
1610 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1611    can run past this up to a continuation point.  Once we used 1500, but
1612    a single entry in C++ can run more than 500 bytes, due to the length of
1613    mangled symbol names.  dbxout.c should really be fixed to do
1614    continuations when they are actually needed instead of trying to
1615    guess...  */
1616 #define DBX_CONTIN_LENGTH 1000
1617 
1618 /* This is how to output a command to make the user-level label named NAME
1619    defined for reference from other files.  */
1620 
1621 /* Globalizing directive for a label.  */
1622 #define GLOBAL_ASM_OP "\t.global "
1623 
1624 /* The prefix to add to user-visible assembler symbols.  */
1625 
1626 #define USER_LABEL_PREFIX "_"
1627 
1628 /* This is how to store into the string LABEL
1629    the symbol_ref name of an internal numbered label where
1630    PREFIX is the class of label and NUM is the number within the class.
1631    This is suitable for output with `assemble_name'.  */
1632 
1633 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1634   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1635 
1636 /* This is how we hook in and defer the case-vector until the end of
1637    the function.  */
1638 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1639   sparc_defer_case_vector ((LAB),(VEC), 0)
1640 
1641 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1642   sparc_defer_case_vector ((LAB),(VEC), 1)
1643 
1644 /* This is how to output an element of a case-vector that is absolute.  */
1645 
1646 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1647 do {									\
1648   char label[30];							\
1649   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1650   if (CASE_VECTOR_MODE == SImode)					\
1651     fprintf (FILE, "\t.word\t");					\
1652   else									\
1653     fprintf (FILE, "\t.xword\t");					\
1654   assemble_name (FILE, label);						\
1655   fputc ('\n', FILE);							\
1656 } while (0)
1657 
1658 /* This is how to output an element of a case-vector that is relative.
1659    (SPARC uses such vectors only when generating PIC.)  */
1660 
1661 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1662 do {									\
1663   char label[30];							\
1664   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1665   if (CASE_VECTOR_MODE == SImode)					\
1666     fprintf (FILE, "\t.word\t");					\
1667   else									\
1668     fprintf (FILE, "\t.xword\t");					\
1669   assemble_name (FILE, label);						\
1670   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1671   fputc ('-', FILE);							\
1672   assemble_name (FILE, label);						\
1673   fputc ('\n', FILE);							\
1674 } while (0)
1675 
1676 /* This is what to output before and after case-vector (both
1677    relative and absolute).  If .subsection -1 works, we put case-vectors
1678    at the beginning of the current section.  */
1679 
1680 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1681 
1682 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1683   fprintf(FILE, "\t.subsection\t-1\n")
1684 
1685 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1686   fprintf(FILE, "\t.previous\n")
1687 
1688 #endif
1689 
1690 /* This is how to output an assembler line
1691    that says to advance the location counter
1692    to a multiple of 2**LOG bytes.  */
1693 
1694 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1695   if ((LOG) != 0)			\
1696     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1697 
1698 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1699   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1700 
1701 /* This says how to output an assembler line
1702    to define a global common symbol.  */
1703 
1704 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1705 ( fputs ("\t.common ", (FILE)),		\
1706   assemble_name ((FILE), (NAME)),		\
1707   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1708 
1709 /* This says how to output an assembler line to define a local common
1710    symbol.  */
1711 
1712 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1713 ( fputs ("\t.reserve ", (FILE)),					\
1714   assemble_name ((FILE), (NAME)),					\
1715   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1716 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1717 
1718 /* A C statement (sans semicolon) to output to the stdio stream
1719    FILE the assembler definition of uninitialized global DECL named
1720    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1721    Try to use asm_output_aligned_bss to implement this macro.  */
1722 
1723 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1724   do {								\
1725     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1726   } while (0)
1727 
1728 /* Output #ident as a .ident.  */
1729 
1730 #undef TARGET_ASM_OUTPUT_IDENT
1731 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1732 
1733 /* Prettify the assembly.  */
1734 
1735 extern int sparc_indent_opcode;
1736 
1737 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1738   do {					\
1739     if (sparc_indent_opcode)		\
1740       {					\
1741 	putc (' ', FILE);		\
1742 	sparc_indent_opcode = 0;	\
1743       }					\
1744   } while (0)
1745 
1746 /* TLS support defaulting to original Sun flavor.  GNU extensions
1747    must be activated in separate configuration files.  */
1748 #ifdef HAVE_AS_TLS
1749 #define TARGET_TLS 1
1750 #else
1751 #define TARGET_TLS 0
1752 #endif
1753 
1754 #define TARGET_SUN_TLS TARGET_TLS
1755 #define TARGET_GNU_TLS 0
1756 
1757 #ifdef HAVE_AS_FMAF_HPC_VIS3
1758 #define AS_NIAGARA3_FLAG "d"
1759 #else
1760 #define AS_NIAGARA3_FLAG "b"
1761 #endif
1762 
1763 #ifdef HAVE_AS_SPARC4
1764 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1765 #else
1766 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1767 #endif
1768 
1769 #ifdef HAVE_AS_LEON
1770 #define AS_LEON_FLAG "-Aleon"
1771 #define AS_LEONV7_FLAG "-Aleon"
1772 #else
1773 #define AS_LEON_FLAG "-Av8"
1774 #define AS_LEONV7_FLAG "-Av7"
1775 #endif
1776 
1777 /* We use gcc _mcount for profiling.  */
1778 #define NO_PROFILE_COUNTERS 0
1779 
1780 /* Debug support */
1781 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1782 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1783 
1784 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1785 
1786 /* By default, use the weakest memory model for the cpu.  */
1787 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1788 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1789 #endif
1790