1 /* Operations on HOST_WIDE_INT.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "diagnostic-core.h"
23 
24 #if GCC_VERSION < 3004
25 
26 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
27    and exact_log2 are defined as inline functions in hwint.h
28    if GCC_VERSION >= 3004.
29    The definitions here are used for older versions of GCC and
30    non-GCC bootstrap compilers.  */
31 
32 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
33    If X is 0, return -1.  */
34 
35 int
floor_log2(unsigned HOST_WIDE_INT x)36 floor_log2 (unsigned HOST_WIDE_INT x)
37 {
38   int t = 0;
39 
40   if (x == 0)
41     return -1;
42 
43   if (HOST_BITS_PER_WIDE_INT > 64)
44     if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
45       t += 64;
46   if (HOST_BITS_PER_WIDE_INT > 32)
47     if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
48       t += 32;
49   if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
50     t += 16;
51   if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
52     t += 8;
53   if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
54     t += 4;
55   if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
56     t += 2;
57   if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
58     t += 1;
59 
60   return t;
61 }
62 
63 /* Given X, an unsigned number, return the largest Y such that 2**Y >= X.  */
64 
65 int
ceil_log2(unsigned HOST_WIDE_INT x)66 ceil_log2 (unsigned HOST_WIDE_INT x)
67 {
68   return floor_log2 (x - 1) + 1;
69 }
70 
71 /* Return the logarithm of X, base 2, considering X unsigned,
72    if X is a power of 2.  Otherwise, returns -1.  */
73 
74 int
exact_log2(unsigned HOST_WIDE_INT x)75 exact_log2 (unsigned HOST_WIDE_INT x)
76 {
77   if (x != (x & -x))
78     return -1;
79   return floor_log2 (x);
80 }
81 
82 /* Given X, an unsigned number, return the number of least significant bits
83    that are zero.  When X == 0, the result is the word size.  */
84 
85 int
ctz_hwi(unsigned HOST_WIDE_INT x)86 ctz_hwi (unsigned HOST_WIDE_INT x)
87 {
88   return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
89 }
90 
91 /* Similarly for most significant bits.  */
92 
93 int
clz_hwi(unsigned HOST_WIDE_INT x)94 clz_hwi (unsigned HOST_WIDE_INT x)
95 {
96   return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
97 }
98 
99 /* Similar to ctz_hwi, except that the least significant bit is numbered
100    starting from 1, and X == 0 yields 0.  */
101 
102 int
ffs_hwi(unsigned HOST_WIDE_INT x)103 ffs_hwi (unsigned HOST_WIDE_INT x)
104 {
105   return 1 + floor_log2 (x & -x);
106 }
107 
108 /* Return the number of set bits in X.  */
109 
110 int
popcount_hwi(unsigned HOST_WIDE_INT x)111 popcount_hwi (unsigned HOST_WIDE_INT x)
112 {
113   int i, ret = 0;
114   size_t bits = sizeof (x) * CHAR_BIT;
115 
116   for (i = 0; i < bits; i += 1)
117     {
118       ret += x & 1;
119       x >>= 1;
120     }
121 
122   return ret;
123 }
124 
125 #endif /* GCC_VERSION < 3004 */
126 
127 /* Compute the absolute value of X.  */
128 
129 HOST_WIDE_INT
abs_hwi(HOST_WIDE_INT x)130 abs_hwi (HOST_WIDE_INT x)
131 {
132   gcc_checking_assert (x != HOST_WIDE_INT_MIN);
133   return x >= 0 ? x : -x;
134 }
135 
136 /* Compute the absolute value of X as an unsigned type.  */
137 
138 unsigned HOST_WIDE_INT
absu_hwi(HOST_WIDE_INT x)139 absu_hwi (HOST_WIDE_INT x)
140 {
141   return x >= 0 ? (unsigned HOST_WIDE_INT)x : -(unsigned HOST_WIDE_INT)x;
142 }
143 
144 /* Compute the greatest common divisor of two numbers A and B using
145    Euclid's algorithm.  */
146 
147 HOST_WIDE_INT
gcd(HOST_WIDE_INT a,HOST_WIDE_INT b)148 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
149 {
150   HOST_WIDE_INT x, y, z;
151 
152   x = abs_hwi (a);
153   y = abs_hwi (b);
154 
155   while (x > 0)
156     {
157       z = y % x;
158       y = x;
159       x = z;
160     }
161 
162   return y;
163 }
164 
165 /* For X and Y positive integers, return X multiplied by Y and check
166    that the result does not overflow.  */
167 
168 HOST_WIDE_INT
pos_mul_hwi(HOST_WIDE_INT x,HOST_WIDE_INT y)169 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
170 {
171   if (x != 0)
172     gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
173 
174   return x * y;
175 }
176 
177 /* Return X multiplied by Y and check that the result does not
178    overflow.  */
179 
180 HOST_WIDE_INT
mul_hwi(HOST_WIDE_INT x,HOST_WIDE_INT y)181 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
182 {
183   gcc_checking_assert (x != HOST_WIDE_INT_MIN
184 		       && y != HOST_WIDE_INT_MIN);
185 
186   if (x >= 0)
187     {
188       if (y >= 0)
189 	return pos_mul_hwi (x, y);
190 
191       return -pos_mul_hwi (x, -y);
192     }
193 
194   if (y >= 0)
195     return -pos_mul_hwi (-x, y);
196 
197   return pos_mul_hwi (-x, -y);
198 }
199 
200 /* Compute the least common multiple of two numbers A and B .  */
201 
202 HOST_WIDE_INT
least_common_multiple(HOST_WIDE_INT a,HOST_WIDE_INT b)203 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
204 {
205   return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
206 }
207