1 /* Utilities for ipa analysis.
2    Copyright (C) 2005-2013 Free Software Foundation, Inc.
3    Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tree-flow.h"
27 #include "tree-inline.h"
28 #include "dumpfile.h"
29 #include "langhooks.h"
30 #include "pointer-set.h"
31 #include "splay-tree.h"
32 #include "ggc.h"
33 #include "ipa-utils.h"
34 #include "ipa-reference.h"
35 #include "gimple.h"
36 #include "cgraph.h"
37 #include "flags.h"
38 #include "diagnostic.h"
39 #include "langhooks.h"
40 
41 /* Debugging function for postorder and inorder code. NOTE is a string
42    that is printed before the nodes are printed.  ORDER is an array of
43    cgraph_nodes that has COUNT useful nodes in it.  */
44 
45 void
ipa_print_order(FILE * out,const char * note,struct cgraph_node ** order,int count)46 ipa_print_order (FILE* out,
47 		 const char * note,
48 		 struct cgraph_node** order,
49 		 int count)
50 {
51   int i;
52   fprintf (out, "\n\n ordered call graph: %s\n", note);
53 
54   for (i = count - 1; i >= 0; i--)
55     dump_cgraph_node(dump_file, order[i]);
56   fprintf (out, "\n");
57   fflush(out);
58 }
59 
60 
61 struct searchc_env {
62   struct cgraph_node **stack;
63   int stack_size;
64   struct cgraph_node **result;
65   int order_pos;
66   splay_tree nodes_marked_new;
67   bool reduce;
68   bool allow_overwritable;
69   int count;
70 };
71 
72 /* This is an implementation of Tarjan's strongly connected region
73    finder as reprinted in Aho Hopcraft and Ullman's The Design and
74    Analysis of Computer Programs (1975) pages 192-193.  This version
75    has been customized for cgraph_nodes.  The env parameter is because
76    it is recursive and there are no nested functions here.  This
77    function should only be called from itself or
78    ipa_reduced_postorder.  ENV is a stack env and would be
79    unnecessary if C had nested functions.  V is the node to start
80    searching from.  */
81 
82 static void
searchc(struct searchc_env * env,struct cgraph_node * v,bool (* ignore_edge)(struct cgraph_edge *))83 searchc (struct searchc_env* env, struct cgraph_node *v,
84 	 bool (*ignore_edge) (struct cgraph_edge *))
85 {
86   struct cgraph_edge *edge;
87   struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->symbol.aux;
88 
89   /* mark node as old */
90   v_info->new_node = false;
91   splay_tree_remove (env->nodes_marked_new, v->uid);
92 
93   v_info->dfn_number = env->count;
94   v_info->low_link = env->count;
95   env->count++;
96   env->stack[(env->stack_size)++] = v;
97   v_info->on_stack = true;
98 
99   for (edge = v->callees; edge; edge = edge->next_callee)
100     {
101       struct ipa_dfs_info * w_info;
102       enum availability avail;
103       struct cgraph_node *w = cgraph_function_or_thunk_node (edge->callee, &avail);
104 
105       if (!w || (ignore_edge && ignore_edge (edge)))
106         continue;
107 
108       if (w->symbol.aux
109 	  && (avail > AVAIL_OVERWRITABLE
110 	      || (env->allow_overwritable && avail == AVAIL_OVERWRITABLE)))
111 	{
112 	  w_info = (struct ipa_dfs_info *) w->symbol.aux;
113 	  if (w_info->new_node)
114 	    {
115 	      searchc (env, w, ignore_edge);
116 	      v_info->low_link =
117 		(v_info->low_link < w_info->low_link) ?
118 		v_info->low_link : w_info->low_link;
119 	    }
120 	  else
121 	    if ((w_info->dfn_number < v_info->dfn_number)
122 		&& (w_info->on_stack))
123 	      v_info->low_link =
124 		(w_info->dfn_number < v_info->low_link) ?
125 		w_info->dfn_number : v_info->low_link;
126 	}
127     }
128 
129 
130   if (v_info->low_link == v_info->dfn_number)
131     {
132       struct cgraph_node *last = NULL;
133       struct cgraph_node *x;
134       struct ipa_dfs_info *x_info;
135       do {
136 	x = env->stack[--(env->stack_size)];
137 	x_info = (struct ipa_dfs_info *) x->symbol.aux;
138 	x_info->on_stack = false;
139 	x_info->scc_no = v_info->dfn_number;
140 
141 	if (env->reduce)
142 	  {
143 	    x_info->next_cycle = last;
144 	    last = x;
145 	  }
146 	else
147 	  env->result[env->order_pos++] = x;
148       }
149       while (v != x);
150       if (env->reduce)
151 	env->result[env->order_pos++] = v;
152     }
153 }
154 
155 /* Topsort the call graph by caller relation.  Put the result in ORDER.
156 
157    The REDUCE flag is true if you want the cycles reduced to single nodes.
158    You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
159    call graph nodes in a reduced node.
160 
161    Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
162    IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
163    for the topological sort.   */
164 
165 int
ipa_reduced_postorder(struct cgraph_node ** order,bool reduce,bool allow_overwritable,bool (* ignore_edge)(struct cgraph_edge *))166 ipa_reduced_postorder (struct cgraph_node **order,
167 		       bool reduce, bool allow_overwritable,
168 		       bool (*ignore_edge) (struct cgraph_edge *))
169 {
170   struct cgraph_node *node;
171   struct searchc_env env;
172   splay_tree_node result;
173   env.stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
174   env.stack_size = 0;
175   env.result = order;
176   env.order_pos = 0;
177   env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
178   env.count = 1;
179   env.reduce = reduce;
180   env.allow_overwritable = allow_overwritable;
181 
182   FOR_EACH_DEFINED_FUNCTION (node)
183     {
184       enum availability avail = cgraph_function_body_availability (node);
185 
186       if (avail > AVAIL_OVERWRITABLE
187 	  || (allow_overwritable
188 	      && (avail == AVAIL_OVERWRITABLE)))
189 	{
190 	  /* Reuse the info if it is already there.  */
191 	  struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->symbol.aux;
192 	  if (!info)
193 	    info = XCNEW (struct ipa_dfs_info);
194 	  info->new_node = true;
195 	  info->on_stack = false;
196 	  info->next_cycle = NULL;
197 	  node->symbol.aux = info;
198 
199 	  splay_tree_insert (env.nodes_marked_new,
200 			     (splay_tree_key)node->uid,
201 			     (splay_tree_value)node);
202 	}
203       else
204 	node->symbol.aux = NULL;
205     }
206   result = splay_tree_min (env.nodes_marked_new);
207   while (result)
208     {
209       node = (struct cgraph_node *)result->value;
210       searchc (&env, node, ignore_edge);
211       result = splay_tree_min (env.nodes_marked_new);
212     }
213   splay_tree_delete (env.nodes_marked_new);
214   free (env.stack);
215 
216   return env.order_pos;
217 }
218 
219 /* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
220    graph nodes.  */
221 
222 void
ipa_free_postorder_info(void)223 ipa_free_postorder_info (void)
224 {
225   struct cgraph_node *node;
226   FOR_EACH_DEFINED_FUNCTION (node)
227     {
228       /* Get rid of the aux information.  */
229       if (node->symbol.aux)
230 	{
231 	  free (node->symbol.aux);
232 	  node->symbol.aux = NULL;
233 	}
234     }
235 }
236 
237 /* Get the set of nodes for the cycle in the reduced call graph starting
238    from NODE.  */
239 
240 vec<cgraph_node_ptr>
ipa_get_nodes_in_cycle(struct cgraph_node * node)241 ipa_get_nodes_in_cycle (struct cgraph_node *node)
242 {
243   vec<cgraph_node_ptr> v = vNULL;
244   struct ipa_dfs_info *node_dfs_info;
245   while (node)
246     {
247       v.safe_push (node);
248       node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
249       node = node_dfs_info->next_cycle;
250     }
251   return v;
252 }
253 
254 struct postorder_stack
255 {
256   struct cgraph_node *node;
257   struct cgraph_edge *edge;
258   int ref;
259 };
260 
261 /* Fill array order with all nodes with output flag set in the reverse
262    topological order.  Return the number of elements in the array.
263    FIXME: While walking, consider aliases, too.  */
264 
265 int
ipa_reverse_postorder(struct cgraph_node ** order)266 ipa_reverse_postorder (struct cgraph_node **order)
267 {
268   struct cgraph_node *node, *node2;
269   int stack_size = 0;
270   int order_pos = 0;
271   struct cgraph_edge *edge;
272   int pass;
273   struct ipa_ref *ref;
274 
275   struct postorder_stack *stack =
276     XCNEWVEC (struct postorder_stack, cgraph_n_nodes);
277 
278   /* We have to deal with cycles nicely, so use a depth first traversal
279      output algorithm.  Ignore the fact that some functions won't need
280      to be output and put them into order as well, so we get dependencies
281      right through inline functions.  */
282   FOR_EACH_FUNCTION (node)
283     node->symbol.aux = NULL;
284   for (pass = 0; pass < 2; pass++)
285     FOR_EACH_FUNCTION (node)
286       if (!node->symbol.aux
287 	  && (pass
288 	      || (!node->symbol.address_taken
289 		  && !node->global.inlined_to
290 		  && !node->alias && !node->thunk.thunk_p
291 		  && !cgraph_only_called_directly_p (node))))
292 	{
293 	  stack_size = 0;
294           stack[stack_size].node = node;
295 	  stack[stack_size].edge = node->callers;
296 	  stack[stack_size].ref = 0;
297 	  node->symbol.aux = (void *)(size_t)1;
298 	  while (stack_size >= 0)
299 	    {
300 	      while (true)
301 		{
302 		  node2 = NULL;
303 		  while (stack[stack_size].edge && !node2)
304 		    {
305 		      edge = stack[stack_size].edge;
306 		      node2 = edge->caller;
307 		      stack[stack_size].edge = edge->next_caller;
308 		      /* Break possible cycles involving always-inline
309 			 functions by ignoring edges from always-inline
310 			 functions to non-always-inline functions.  */
311 		      if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->symbol.decl)
312 			  && !DECL_DISREGARD_INLINE_LIMITS
313 			    (cgraph_function_node (edge->callee, NULL)->symbol.decl))
314 			node2 = NULL;
315 		    }
316 		  for (;ipa_ref_list_referring_iterate (&stack[stack_size].node->symbol.ref_list,
317 						       stack[stack_size].ref,
318 						       ref) && !node2;
319 		       stack[stack_size].ref++)
320 		    {
321 		      if (ref->use == IPA_REF_ALIAS)
322 			node2 = ipa_ref_referring_node (ref);
323 		    }
324 		  if (!node2)
325 		    break;
326 		  if (!node2->symbol.aux)
327 		    {
328 		      stack[++stack_size].node = node2;
329 		      stack[stack_size].edge = node2->callers;
330 		      stack[stack_size].ref = 0;
331 		      node2->symbol.aux = (void *)(size_t)1;
332 		    }
333 		}
334 	      order[order_pos++] = stack[stack_size--].node;
335 	    }
336 	}
337   free (stack);
338   FOR_EACH_FUNCTION (node)
339     node->symbol.aux = NULL;
340   return order_pos;
341 }
342 
343 
344 
345 /* Given a memory reference T, will return the variable at the bottom
346    of the access.  Unlike get_base_address, this will recurse through
347    INDIRECT_REFS.  */
348 
349 tree
get_base_var(tree t)350 get_base_var (tree t)
351 {
352   while (!SSA_VAR_P (t)
353 	 && (!CONSTANT_CLASS_P (t))
354 	 && TREE_CODE (t) != LABEL_DECL
355 	 && TREE_CODE (t) != FUNCTION_DECL
356 	 && TREE_CODE (t) != CONST_DECL
357 	 && TREE_CODE (t) != CONSTRUCTOR)
358     {
359       t = TREE_OPERAND (t, 0);
360     }
361   return t;
362 }
363 
364 
365 /* Create a new cgraph node set.  */
366 
367 cgraph_node_set
cgraph_node_set_new(void)368 cgraph_node_set_new (void)
369 {
370   cgraph_node_set new_node_set;
371 
372   new_node_set = XCNEW (struct cgraph_node_set_def);
373   new_node_set->map = pointer_map_create ();
374   new_node_set->nodes.create (0);
375   return new_node_set;
376 }
377 
378 
379 /* Add cgraph_node NODE to cgraph_node_set SET.  */
380 
381 void
cgraph_node_set_add(cgraph_node_set set,struct cgraph_node * node)382 cgraph_node_set_add (cgraph_node_set set, struct cgraph_node *node)
383 {
384   void **slot;
385 
386   slot = pointer_map_insert (set->map, node);
387 
388   if (*slot)
389     {
390       int index = (size_t) *slot - 1;
391       gcc_checking_assert ((set->nodes[index]
392 		           == node));
393       return;
394     }
395 
396   *slot = (void *)(size_t) (set->nodes.length () + 1);
397 
398   /* Insert into node vector.  */
399   set->nodes.safe_push (node);
400 }
401 
402 
403 /* Remove cgraph_node NODE from cgraph_node_set SET.  */
404 
405 void
cgraph_node_set_remove(cgraph_node_set set,struct cgraph_node * node)406 cgraph_node_set_remove (cgraph_node_set set, struct cgraph_node *node)
407 {
408   void **slot, **last_slot;
409   int index;
410   struct cgraph_node *last_node;
411 
412   slot = pointer_map_contains (set->map, node);
413   if (slot == NULL || !*slot)
414     return;
415 
416   index = (size_t) *slot - 1;
417   gcc_checking_assert (set->nodes[index]
418 	      	       == node);
419 
420   /* Remove from vector. We do this by swapping node with the last element
421      of the vector.  */
422   last_node = set->nodes.pop ();
423   if (last_node != node)
424     {
425       last_slot = pointer_map_contains (set->map, last_node);
426       gcc_checking_assert (last_slot && *last_slot);
427       *last_slot = (void *)(size_t) (index + 1);
428 
429       /* Move the last element to the original spot of NODE.  */
430       set->nodes[index] = last_node;
431     }
432 
433   /* Remove element from hash table.  */
434   *slot = NULL;
435 }
436 
437 
438 /* Find NODE in SET and return an iterator to it if found.  A null iterator
439    is returned if NODE is not in SET.  */
440 
441 cgraph_node_set_iterator
cgraph_node_set_find(cgraph_node_set set,struct cgraph_node * node)442 cgraph_node_set_find (cgraph_node_set set, struct cgraph_node *node)
443 {
444   void **slot;
445   cgraph_node_set_iterator csi;
446 
447   slot = pointer_map_contains (set->map, node);
448   if (slot == NULL || !*slot)
449     csi.index = (unsigned) ~0;
450   else
451     csi.index = (size_t)*slot - 1;
452   csi.set = set;
453 
454   return csi;
455 }
456 
457 
458 /* Dump content of SET to file F.  */
459 
460 void
dump_cgraph_node_set(FILE * f,cgraph_node_set set)461 dump_cgraph_node_set (FILE *f, cgraph_node_set set)
462 {
463   cgraph_node_set_iterator iter;
464 
465   for (iter = csi_start (set); !csi_end_p (iter); csi_next (&iter))
466     {
467       struct cgraph_node *node = csi_node (iter);
468       fprintf (f, " %s/%i", cgraph_node_name (node), node->uid);
469     }
470   fprintf (f, "\n");
471 }
472 
473 
474 /* Dump content of SET to stderr.  */
475 
476 DEBUG_FUNCTION void
debug_cgraph_node_set(cgraph_node_set set)477 debug_cgraph_node_set (cgraph_node_set set)
478 {
479   dump_cgraph_node_set (stderr, set);
480 }
481 
482 
483 /* Free varpool node set.  */
484 
485 void
free_cgraph_node_set(cgraph_node_set set)486 free_cgraph_node_set (cgraph_node_set set)
487 {
488   set->nodes.release ();
489   pointer_map_destroy (set->map);
490   free (set);
491 }
492 
493 
494 /* Create a new varpool node set.  */
495 
496 varpool_node_set
varpool_node_set_new(void)497 varpool_node_set_new (void)
498 {
499   varpool_node_set new_node_set;
500 
501   new_node_set = XCNEW (struct varpool_node_set_def);
502   new_node_set->map = pointer_map_create ();
503   new_node_set->nodes.create (0);
504   return new_node_set;
505 }
506 
507 
508 /* Add varpool_node NODE to varpool_node_set SET.  */
509 
510 void
varpool_node_set_add(varpool_node_set set,struct varpool_node * node)511 varpool_node_set_add (varpool_node_set set, struct varpool_node *node)
512 {
513   void **slot;
514 
515   slot = pointer_map_insert (set->map, node);
516 
517   if (*slot)
518     {
519       int index = (size_t) *slot - 1;
520       gcc_checking_assert ((set->nodes[index]
521 		           == node));
522       return;
523     }
524 
525   *slot = (void *)(size_t) (set->nodes.length () + 1);
526 
527   /* Insert into node vector.  */
528   set->nodes.safe_push (node);
529 }
530 
531 
532 /* Remove varpool_node NODE from varpool_node_set SET.  */
533 
534 void
varpool_node_set_remove(varpool_node_set set,struct varpool_node * node)535 varpool_node_set_remove (varpool_node_set set, struct varpool_node *node)
536 {
537   void **slot, **last_slot;
538   int index;
539   struct varpool_node *last_node;
540 
541   slot = pointer_map_contains (set->map, node);
542   if (slot == NULL || !*slot)
543     return;
544 
545   index = (size_t) *slot - 1;
546   gcc_checking_assert (set->nodes[index]
547 	      	       == node);
548 
549   /* Remove from vector. We do this by swapping node with the last element
550      of the vector.  */
551   last_node = set->nodes.pop ();
552   if (last_node != node)
553     {
554       last_slot = pointer_map_contains (set->map, last_node);
555       gcc_checking_assert (last_slot && *last_slot);
556       *last_slot = (void *)(size_t) (index + 1);
557 
558       /* Move the last element to the original spot of NODE.  */
559       set->nodes[index] = last_node;
560     }
561 
562   /* Remove element from hash table.  */
563   *slot = NULL;
564 }
565 
566 
567 /* Find NODE in SET and return an iterator to it if found.  A null iterator
568    is returned if NODE is not in SET.  */
569 
570 varpool_node_set_iterator
varpool_node_set_find(varpool_node_set set,struct varpool_node * node)571 varpool_node_set_find (varpool_node_set set, struct varpool_node *node)
572 {
573   void **slot;
574   varpool_node_set_iterator vsi;
575 
576   slot = pointer_map_contains (set->map, node);
577   if (slot == NULL || !*slot)
578     vsi.index = (unsigned) ~0;
579   else
580     vsi.index = (size_t)*slot - 1;
581   vsi.set = set;
582 
583   return vsi;
584 }
585 
586 
587 /* Dump content of SET to file F.  */
588 
589 void
dump_varpool_node_set(FILE * f,varpool_node_set set)590 dump_varpool_node_set (FILE *f, varpool_node_set set)
591 {
592   varpool_node_set_iterator iter;
593 
594   for (iter = vsi_start (set); !vsi_end_p (iter); vsi_next (&iter))
595     {
596       struct varpool_node *node = vsi_node (iter);
597       fprintf (f, " %s", varpool_node_name (node));
598     }
599   fprintf (f, "\n");
600 }
601 
602 
603 /* Free varpool node set.  */
604 
605 void
free_varpool_node_set(varpool_node_set set)606 free_varpool_node_set (varpool_node_set set)
607 {
608   set->nodes.release ();
609   pointer_map_destroy (set->map);
610   free (set);
611 }
612 
613 
614 /* Dump content of SET to stderr.  */
615 
616 DEBUG_FUNCTION void
debug_varpool_node_set(varpool_node_set set)617 debug_varpool_node_set (varpool_node_set set)
618 {
619   dump_varpool_node_set (stderr, set);
620 }
621