1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                 A D A . T E X T _ I O . F I X E D _ I O                  --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  Fixed point I/O
33--  ---------------
34
35--  The following documents implementation details of the fixed point
36--  input/output routines in the GNAT run time. The first part describes
37--  general properties of fixed point types as defined by the Ada 95 standard,
38--  including the Information Systems Annex.
39
40--  Subsequently these are reduced to implementation constraints and the impact
41--  of these constraints on a few possible approaches to I/O are given.
42--  Based on this analysis, a specific implementation is selected for use in
43--  the GNAT run time. Finally, the chosen algorithm is analyzed numerically in
44--  order to provide user-level documentation on limits for range and precision
45--  of fixed point types as well as accuracy of input/output conversions.
46
47--  -------------------------------------------
48--  - General Properties of Fixed Point Types -
49--  -------------------------------------------
50
51--  Operations on fixed point values, other than input and output, are not
52--  important for the purposes of this document. Only the set of values that a
53--  fixed point type can represent and the input and output operations are
54--  significant.
55
56--  Values
57--  ------
58
59--  Set set of values of a fixed point type comprise the integral
60--  multiples of a number called the small of the type. The small can
61--  either be a power of ten, a power of two or (if the implementation
62--  allows) an arbitrary strictly positive real value.
63
64--  Implementations need to support fixed-point types with a precision
65--  of at least 24 bits, and (in order to comply with the Information
66--  Systems Annex) decimal types need to support at least digits 18.
67--  For the rest, however, no requirements exist for the minimal small
68--  and range that need to be supported.
69
70--  Operations
71--  ----------
72
73--  'Image and 'Wide_Image (see RM 3.5(34))
74
75--          These attributes return a decimal real literal best approximating
76--          the value (rounded away from zero if halfway between) with a
77--          single leading character that is either a minus sign or a space,
78--          one or more digits before the decimal point (with no redundant
79--          leading zeros), a decimal point, and N digits after the decimal
80--          point. For a subtype S, the value of N is S'Aft, the smallest
81--          positive integer such that (10**N)*S'Delta is greater or equal to
82--          one, see RM 3.5.10(5).
83
84--          For an arbitrary small, this means large number arithmetic needs
85--          to be performed.
86
87--  Put (see RM A.10.9(22-26))
88
89--          The requirements for Put add no extra constraints over the image
90--          attributes, although it would be nice to be able to output more
91--          than S'Aft digits after the decimal point for values of subtype S.
92
93--  'Value and 'Wide_Value attribute (RM 3.5(40-55))
94
95--          Since the input can be given in any base in the range 2..16,
96--          accurate conversion to a fixed point number may require
97--          arbitrary precision arithmetic if there is no limit on the
98--          magnitude of the small of the fixed point type.
99
100--  Get (see RM A.10.9(12-21))
101
102--          The requirements for Get are identical to those of the Value
103--          attribute.
104
105--  ------------------------------
106--  - Implementation Constraints -
107--  ------------------------------
108
109--  The requirements listed above for the input/output operations lead to
110--  significant complexity, if no constraints are put on supported smalls.
111
112--  Implementation Strategies
113--  -------------------------
114
115--  * Float arithmetic
116--  * Arbitrary-precision integer arithmetic
117--  * Fixed-precision integer arithmetic
118
119--  Although it seems convenient to convert fixed point numbers to floating-
120--  point and then print them, this leads to a number of restrictions.
121--  The first one is precision. The widest floating-point type generally
122--  available has 53 bits of mantissa. This means that Fine_Delta cannot
123--  be less than 2.0**(-53).
124
125--  In GNAT, Fine_Delta is 2.0**(-63), and Duration for example is a
126--  64-bit type. It would still be possible to use multi-precision
127--  floating-point to perform calculations using longer mantissas,
128--  but this is a much harder approach.
129
130--  The base conversions needed for input and output of (non-decimal)
131--  fixed point types can be seen as pairs of integer multiplications
132--  and divisions.
133
134--  Arbitrary-precision integer arithmetic would be suitable for the job
135--  at hand, but has the draw-back that it is very heavy implementation-wise.
136--  Especially in embedded systems, where fixed point types are often used,
137--  it may not be desirable to require large amounts of storage and time
138--  for fixed I/O operations.
139
140--  Fixed-precision integer arithmetic has the advantage of simplicity and
141--  speed. For the most common fixed point types this would be a perfect
142--  solution. The downside however may be a too limited set of acceptable
143--  fixed point types.
144
145--  Extra Precision
146--  ---------------
147
148--  Using a scaled divide which truncates and returns a remainder R,
149--  another E trailing digits can be calculated by computing the value
150--  (R * (10.0**E)) / Z using another scaled divide. This procedure
151--  can be repeated to compute an arbitrary number of digits in linear
152--  time and storage. The last scaled divide should be rounded, with
153--  a possible carry propagating to the more significant digits, to
154--  ensure correct rounding of the unit in the last place.
155
156--  An extension of this technique is to limit the value of Q to 9 decimal
157--  digits, since 32-bit integers can be much more efficient than 64-bit
158--  integers to output.
159
160with Interfaces;                        use Interfaces;
161with System.Arith_64;                   use System.Arith_64;
162with System.Img_Real;                   use System.Img_Real;
163with Ada.Text_IO;                       use Ada.Text_IO;
164with Ada.Text_IO.Float_Aux;
165with Ada.Text_IO.Generic_Aux;
166
167package body Ada.Text_IO.Fixed_IO is
168
169   --  Note: we still use the floating-point I/O routines for input of
170   --  ordinary fixed-point and output using exponent format. This will
171   --  result in inaccuracies for fixed point types with a small that is
172   --  not a power of two, and for types that require more precision than
173   --  is available in Long_Long_Float.
174
175   package Aux renames Ada.Text_IO.Float_Aux;
176
177   Extra_Layout_Space : constant Field := 5 + Num'Fore;
178   --  Extra space that may be needed for output of sign, decimal point,
179   --  exponent indication and mandatory decimals after and before the
180   --  decimal point. A string with length
181
182   --    Fore + Aft + Exp + Extra_Layout_Space
183
184   --  is always long enough for formatting any fixed point number
185
186   --  Implementation of Put routines
187
188   --  The following section describes a specific implementation choice for
189   --  performing base conversions needed for output of values of a fixed
190   --  point type T with small T'Small. The goal is to be able to output
191   --  all values of types with a precision of 64 bits and a delta of at
192   --  least 2.0**(-63), as these are current GNAT limitations already.
193
194   --  The chosen algorithm uses fixed precision integer arithmetic for
195   --  reasons of simplicity and efficiency. It is important to understand
196   --  in what ways the most simple and accurate approach to fixed point I/O
197   --  is limiting, before considering more complicated schemes.
198
199   --  Without loss of generality assume T has a range (-2.0**63) * T'Small
200   --  .. (2.0**63 - 1) * T'Small, and is output with Aft digits after the
201   --  decimal point and T'Fore - 1 before. If T'Small is integer, or
202   --  1.0 / T'Small is integer, let S = T'Small and E = 0. For other T'Small,
203   --  let S and E be integers such that S / 10**E best approximates T'Small
204   --  and S is in the range 10**17 .. 10**18 - 1. The extra decimal scaling
205   --  factor 10**E can be trivially handled during final output, by adjusting
206   --  the decimal point or exponent.
207
208   --  Convert a value X * S of type T to a 64-bit integer value Q equal
209   --  to 10.0**D * (X * S) rounded to the nearest integer.
210   --  This conversion is a scaled integer divide of the form
211
212   --     Q := (X * Y) / Z,
213
214   --  where all variables are 64-bit signed integers using 2's complement,
215   --  and both the multiplication and division are done using full
216   --  intermediate precision. The final decimal value to be output is
217
218   --     Q * 10**(E-D)
219
220   --  This value can be written to the output file or to the result string
221   --  according to the format described in RM A.3.10. The details of this
222   --  operation are omitted here.
223
224   --  A 64-bit value can contain all integers with 18 decimal digits, but
225   --  not all with 19 decimal digits. If the total number of requested output
226   --  digits (Fore - 1) + Aft is greater than 18, for purposes of the
227   --  conversion Aft is adjusted to 18 - (Fore - 1). In that case, or
228   --  when Fore > 19, trailing zeros can complete the output after writing
229   --  the first 18 significant digits, or the technique described in the
230   --  next section can be used.
231
232   --  The final expression for D is
233
234   --     D :=  Integer'Max (-18, Integer'Min (Aft, 18 - (Fore - 1)));
235
236   --  For Y and Z the following expressions can be derived:
237
238   --     Q / (10.0**D) = X * S
239
240   --     Q = X * S * (10.0**D) = (X * Y) / Z
241
242   --     S * 10.0**D = Y / Z;
243
244   --  If S is an integer greater than or equal to one, then Fore must be at
245   --  least 20 in order to print T'First, which is at most -2.0**63.
246   --  This means D < 0, so use
247
248   --    (1)   Y = -S and Z = -10**(-D)
249
250   --  If 1.0 / S is an integer greater than one, use
251
252   --    (2)   Y = -10**D and Z = -(1.0 / S), for D >= 0
253
254   --  or
255
256   --    (3)   Y = 1 and Z = (1.0 / S) * 10**(-D), for D < 0
257
258   --  Negative values are used for nominator Y and denominator Z, so that S
259   --  can have a maximum value of 2.0**63 and a minimum of 2.0**(-63).
260   --  For Z in -1 .. -9, Fore will still be 20, and D will be negative, as
261   --  (-2.0**63) / -9 is greater than 10**18. In these cases there is room
262   --  in the denominator for the extra decimal scaling required, so case (3)
263   --  will not overflow.
264
265   pragma Assert (System.Fine_Delta >= 2.0**(-63));
266   pragma Assert (Num'Small in 2.0**(-63) .. 2.0**63);
267   pragma Assert (Num'Fore <= 37);
268   --  These assertions need to be relaxed to allow for a Small of
269   --  2.0**(-64) at least, since there is an ACATS test for this ???
270
271   Max_Digits : constant := 18;
272   --  Maximum number of decimal digits that can be represented in a
273   --  64-bit signed number, see above
274
275   --  The constants E0 .. E5 implement a binary search for the appropriate
276   --  power of ten to scale the small so that it has one digit before the
277   --  decimal point.
278
279   subtype Int is Integer;
280   E0 : constant Int := -(20 * Boolean'Pos (Num'Small >= 1.0E1));
281   E1 : constant Int := E0 + 10 * Boolean'Pos (Num'Small * 10.0**E0 < 1.0E-10);
282   E2 : constant Int := E1 +  5 * Boolean'Pos (Num'Small * 10.0**E1 < 1.0E-5);
283   E3 : constant Int := E2 +  3 * Boolean'Pos (Num'Small * 10.0**E2 < 1.0E-3);
284   E4 : constant Int := E3 +  2 * Boolean'Pos (Num'Small * 10.0**E3 < 1.0E-1);
285   E5 : constant Int := E4 +  1 * Boolean'Pos (Num'Small * 10.0**E4 < 1.0E-0);
286
287   Scale : constant Integer := E5;
288
289   pragma Assert (Num'Small * 10.0**Scale >= 1.0
290                   and then Num'Small * 10.0**Scale < 10.0);
291
292   Exact : constant Boolean :=
293     Float'Floor (Num'Small) = Float'Ceiling (Num'Small)
294       or else Float'Floor (1.0 / Num'Small) = Float'Ceiling (1.0 / Num'Small)
295       or else Num'Small >= 10.0**Max_Digits;
296   --  True iff a numerator and denominator can be calculated such that
297   --  their ratio exactly represents the small of Num.
298
299   procedure Put
300     (To   : out String;
301      Last : out Natural;
302      Item : Num;
303      Fore : Integer;
304      Aft  : Field;
305      Exp  : Field);
306   --  Actual output function, used internally by all other Put routines.
307   --  The formal Fore is an Integer, not a Field, because the routine is
308   --  also called from the version of Put that performs I/O to a string,
309   --  where the starting position depends on the size of the String, and
310   --  bears no relation to the bounds of Field.
311
312   ---------
313   -- Get --
314   ---------
315
316   procedure Get
317     (File  : File_Type;
318      Item  : out Num;
319      Width : Field := 0)
320   is
321      pragma Unsuppress (Range_Check);
322   begin
323      Aux.Get (File, Long_Long_Float (Item), Width);
324   exception
325      when Constraint_Error => raise Data_Error;
326   end Get;
327
328   procedure Get
329     (Item  : out Num;
330      Width : Field := 0)
331   is
332      pragma Unsuppress (Range_Check);
333   begin
334      Aux.Get (Current_In, Long_Long_Float (Item), Width);
335   exception
336      when Constraint_Error => raise Data_Error;
337   end Get;
338
339   procedure Get
340     (From : String;
341      Item : out Num;
342      Last : out Positive)
343   is
344      pragma Unsuppress (Range_Check);
345   begin
346      Aux.Gets (From, Long_Long_Float (Item), Last);
347   exception
348      when Constraint_Error => raise Data_Error;
349   end Get;
350
351   ---------
352   -- Put --
353   ---------
354
355   procedure Put
356     (File : File_Type;
357      Item : Num;
358      Fore : Field := Default_Fore;
359      Aft  : Field := Default_Aft;
360      Exp  : Field := Default_Exp)
361   is
362      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
363      Last : Natural;
364   begin
365      Put (S, Last, Item, Fore, Aft, Exp);
366      Generic_Aux.Put_Item (File, S (1 .. Last));
367   end Put;
368
369   procedure Put
370     (Item : Num;
371      Fore : Field := Default_Fore;
372      Aft  : Field := Default_Aft;
373      Exp  : Field := Default_Exp)
374   is
375      S    : String (1 .. Fore + Aft + Exp + Extra_Layout_Space);
376      Last : Natural;
377   begin
378      Put (S, Last, Item, Fore, Aft, Exp);
379      Generic_Aux.Put_Item (Text_IO.Current_Out, S (1 .. Last));
380   end Put;
381
382   procedure Put
383     (To   : out String;
384      Item : Num;
385      Aft  : Field := Default_Aft;
386      Exp  : Field := Default_Exp)
387   is
388      Fore : constant Integer :=
389        To'Length
390          - 1                      -- Decimal point
391          - Field'Max (1, Aft)     -- Decimal part
392          - Boolean'Pos (Exp /= 0) -- Exponent indicator
393          - Exp;                   -- Exponent
394
395      Last : Natural;
396
397   begin
398      if Fore - Boolean'Pos (Item < 0.0) < 1 then
399         raise Layout_Error;
400      end if;
401
402      Put (To, Last, Item, Fore, Aft, Exp);
403
404      if Last /= To'Last then
405         raise Layout_Error;
406      end if;
407   end Put;
408
409   procedure Put
410     (To   : out String;
411      Last : out Natural;
412      Item : Num;
413      Fore : Integer;
414      Aft  : Field;
415      Exp  : Field)
416   is
417      subtype Digit is Int64 range 0 .. 9;
418
419      X   : constant Int64   := Int64'Integer_Value (Item);
420      A   : constant Field   := Field'Max (Aft, 1);
421      Neg : constant Boolean := (Item < 0.0);
422      Pos : Integer := 0;  -- Next digit X has value X * 10.0**Pos;
423
424      procedure Put_Character (C : Character);
425      pragma Inline (Put_Character);
426      --  Add C to the output string To, updating Last
427
428      procedure Put_Digit (X : Digit);
429      --  Add digit X to the output string (going from left to right), updating
430      --  Last and Pos, and inserting the sign, leading zeros or a decimal
431      --  point when necessary. After outputting the first digit, Pos must not
432      --  be changed outside Put_Digit anymore.
433
434      procedure Put_Int64 (X : Int64; Scale : Integer);
435      --  Output the decimal number abs X * 10**Scale
436
437      procedure Put_Scaled
438        (X, Y, Z : Int64;
439         A       : Field;
440         E       : Integer);
441      --  Output the decimal number (X * Y / Z) * 10**E, producing A digits
442      --  after the decimal point and rounding the final digit. The value
443      --  X * Y / Z is computed with full precision, but must be in the
444      --  range of Int64.
445
446      -------------------
447      -- Put_Character --
448      -------------------
449
450      procedure Put_Character (C : Character) is
451      begin
452         Last := Last + 1;
453
454         --  Never put a character outside of string To. Exception Layout_Error
455         --  will be raised later if Last is greater than To'Last.
456
457         if Last <= To'Last then
458            To (Last) := C;
459         end if;
460      end Put_Character;
461
462      ---------------
463      -- Put_Digit --
464      ---------------
465
466      procedure Put_Digit (X : Digit) is
467         Digs : constant array (Digit) of Character := "0123456789";
468
469      begin
470         if Last = To'First - 1 then
471            if X /= 0 or else Pos <= 0 then
472
473               --  Before outputting first digit, include leading space,
474               --  possible minus sign and, if the first digit is fractional,
475               --  decimal seperator and leading zeros.
476
477               --  The Fore part has Pos + 1 + Boolean'Pos (Neg) characters,
478               --  if Pos >= 0 and otherwise has a single zero digit plus minus
479               --  sign if negative. Add leading space if necessary.
480
481               for J in Integer'Max (0, Pos) + 2 + Boolean'Pos (Neg) .. Fore
482               loop
483                  Put_Character (' ');
484               end loop;
485
486               --  Output minus sign, if number is negative
487
488               if Neg then
489                  Put_Character ('-');
490               end if;
491
492               --  If starting with fractional digit, output leading zeros
493
494               if Pos < 0 then
495                  Put_Character ('0');
496                  Put_Character ('.');
497
498                  for J in Pos .. -2 loop
499                     Put_Character ('0');
500                  end loop;
501               end if;
502
503               Put_Character (Digs (X));
504            end if;
505
506         else
507            --  This is not the first digit to be output, so the only
508            --  special handling is that for the decimal point
509
510            if Pos = -1 then
511               Put_Character ('.');
512            end if;
513
514            Put_Character (Digs (X));
515         end if;
516
517         Pos := Pos - 1;
518      end Put_Digit;
519
520      ---------------
521      -- Put_Int64 --
522      ---------------
523
524      procedure Put_Int64 (X : Int64; Scale : Integer) is
525      begin
526         if X = 0 then
527            return;
528         end if;
529
530         if X not in -9 .. 9 then
531            Put_Int64 (X / 10, Scale + 1);
532         end if;
533
534         --  Use Put_Digit to advance Pos. This fixes a case where the second
535         --  or later Scaled_Divide would omit leading zeroes, resulting in
536         --  too few digits produced and a Layout_Error as result.
537
538         while Pos > Scale loop
539            Put_Digit (0);
540         end loop;
541
542         --  If and only if more than one digit is output before the decimal
543         --  point, pos will be unequal to scale when outputting the first
544         --  digit.
545
546         pragma Assert (Pos = Scale or else Last = To'First - 1);
547
548         Pos := Scale;
549
550         Put_Digit (abs (X rem 10));
551      end Put_Int64;
552
553      ----------------
554      -- Put_Scaled --
555      ----------------
556
557      procedure Put_Scaled
558        (X, Y, Z : Int64;
559         A       : Field;
560         E       : Integer)
561      is
562         pragma Assert (E >= -Max_Digits);
563         AA : constant Field := E + A;
564         N  : constant Natural := (AA + Max_Digits - 1) / Max_Digits + 1;
565
566         Q  : array (0 .. N - 1) of Int64 := (others => 0);
567         --  Each element of Q has Max_Digits decimal digits, except the
568         --  last, which has eAA rem Max_Digits. Only Q (Q'First) may have an
569         --  absolute value equal to or larger than 10**Max_Digits. Only the
570         --  absolute value of the elements is not significant, not the sign.
571
572         XX : Int64 := X;
573         YY : Int64 := Y;
574
575      begin
576         for J in Q'Range loop
577            exit when XX = 0;
578
579            if J > 0 then
580               YY := 10**(Integer'Min (Max_Digits, AA - (J - 1) * Max_Digits));
581            end if;
582
583            Scaled_Divide (XX, YY, Z, Q (J), R => XX, Round => False);
584         end loop;
585
586         if -E > A then
587            pragma Assert (N = 1);
588
589            Discard_Extra_Digits : declare
590               Factor : constant Int64 := 10**(-E - A);
591
592            begin
593               --  The scaling factors were such that the first division
594               --  produced more digits than requested. So divide away extra
595               --  digits and compute new remainder for later rounding.
596
597               if abs (Q (0) rem Factor) >= Factor / 2 then
598                  Q (0) := abs (Q (0) / Factor) + 1;
599               else
600                  Q (0) := Q (0) / Factor;
601               end if;
602
603               XX := 0;
604            end Discard_Extra_Digits;
605         end if;
606
607         --  At this point XX is a remainder and we need to determine if the
608         --  quotient in Q must be rounded away from zero.
609
610         --  As XX is less than the divisor, it is safe to take its absolute
611         --  without chance of overflow. The check to see if XX is at least
612         --  half the absolute value of the divisor must be done carefully to
613         --  avoid overflow or lose precision.
614
615         XX := abs XX;
616
617         if XX >= 2**62
618            or else (Z < 0 and then (-XX) * 2 <= Z)
619            or else (Z >= 0 and then XX * 2 >= Z)
620         then
621            --  OK, rounding is necessary. As the sign is not significant,
622            --  take advantage of the fact that an extra negative value will
623            --  always be available when propagating the carry.
624
625            Q (Q'Last) := -abs Q (Q'Last) - 1;
626
627            Propagate_Carry :
628            for J in reverse 1 .. Q'Last loop
629               if Q (J) = YY or else Q (J) = -YY then
630                  Q (J) := 0;
631                  Q (J - 1) := -abs Q (J - 1) - 1;
632
633               else
634                  exit Propagate_Carry;
635               end if;
636            end loop Propagate_Carry;
637         end if;
638
639         for J in Q'First .. Q'Last - 1 loop
640            Put_Int64 (Q (J), E - J * Max_Digits);
641         end loop;
642
643         Put_Int64 (Q (Q'Last), -A);
644      end Put_Scaled;
645
646   --  Start of processing for Put
647
648   begin
649      Last := To'First - 1;
650
651      if Exp /= 0 then
652
653         --  With the Exp format, it is not known how many output digits to
654         --  generate, as leading zeros must be ignored. Computing too many
655         --  digits and then truncating the output will not give the closest
656         --  output, it is necessary to round at the correct digit.
657
658         --  The general approach is as follows: as long as no digits have
659         --  been generated, compute the Aft next digits (without rounding).
660         --  Once a non-zero digit is generated, determine the exact number
661         --  of digits remaining and compute them with rounding.
662
663         --  Since a large number of iterations might be necessary in case
664         --  of Aft = 1, the following optimization would be desirable.
665
666         --  Count the number Z of leading zero bits in the integer
667         --  representation of X, and start with producing Aft + Z * 1000 /
668         --  3322 digits in the first scaled division.
669
670         --  However, the floating-point routines are still used now ???
671
672         System.Img_Real.Set_Image_Real (Long_Long_Float (Item), To, Last,
673            Fore, Aft, Exp);
674         return;
675      end if;
676
677      if Exact then
678         declare
679            D : constant Integer := Integer'Min (A, Max_Digits
680                                                            - (Num'Fore - 1));
681            Y : constant Int64   := Int64'Min (Int64 (-Num'Small), -1)
682                                     * 10**Integer'Max (0, D);
683            Z : constant Int64   := Int64'Min (Int64 (-(1.0 / Num'Small)), -1)
684                                     * 10**Integer'Max (0, -D);
685         begin
686            Put_Scaled (X, Y, Z, A, -D);
687         end;
688
689      else -- not Exact
690         declare
691            E : constant Integer := Max_Digits - 1 + Scale;
692            D : constant Integer := Scale - 1;
693            Y : constant Int64   := Int64 (-Num'Small * 10.0**E);
694            Z : constant Int64   := -10**Max_Digits;
695         begin
696            Put_Scaled (X, Y, Z, A, -D);
697         end;
698      end if;
699
700      --  If only zero digits encountered, unit digit has not been output yet
701
702      if Last < To'First then
703         Pos := 0;
704
705      elsif Last > To'Last then
706         raise Layout_Error; -- Not enough room in the output variable
707      end if;
708
709      --  Always output digits up to the first one after the decimal point
710
711      while Pos >= -A loop
712         Put_Digit (0);
713      end loop;
714   end Put;
715
716end Ada.Text_IO.Fixed_IO;
717