1 /* Predicate functions of Andes NDS32 cpu for GNU compiler
2    Copyright (C) 2012-2016 Free Software Foundation, Inc.
3    Contributed by Andes Technology Corporation.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 /* ------------------------------------------------------------------------ */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "optabs.h"		/* For GEN_FCN.  */
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "tm-constrs.h"
35 
36 /* ------------------------------------------------------------------------ */
37 
38 /* A subroutine that checks multiple load and store
39    using consecutive registers.
40      OP is a parallel rtx we would like to check.
41      LOAD_P indicates whether we are checking load operation.
42      PAR_INDEX is starting element of parallel rtx.
43      FIRST_ELT_REGNO is used to tell starting register number.
44      COUNT helps us to check consecutive register numbers.  */
45 static bool
nds32_consecutive_registers_load_store_p(rtx op,bool load_p,int par_index,int first_elt_regno,int count)46 nds32_consecutive_registers_load_store_p (rtx op,
47 					  bool load_p,
48 					  int par_index,
49 					  int first_elt_regno,
50 					  int count)
51 {
52   int i;
53   int check_regno;
54   rtx elt;
55   rtx elt_reg;
56   rtx elt_mem;
57 
58   for (i = 0; i < count; i++)
59     {
60       /* Pick up each element from parallel rtx.  */
61       elt = XVECEXP (op, 0, i + par_index);
62 
63       /* If this element is not a 'set' rtx, return false immediately.  */
64       if (GET_CODE (elt) != SET)
65 	return false;
66 
67       /* Pick up reg and mem of this element.  */
68       elt_reg = load_p ? SET_DEST (elt) : SET_SRC (elt);
69       elt_mem = load_p ? SET_SRC (elt) : SET_DEST (elt);
70 
71       /* If elt_reg is not a expected reg rtx, return false.  */
72       if (GET_CODE (elt_reg) != REG || GET_MODE (elt_reg) != SImode)
73 	return false;
74       /* If elt_mem is not a expected mem rtx, return false.  */
75       if (GET_CODE (elt_mem) != MEM || GET_MODE (elt_mem) != SImode)
76 	return false;
77 
78       /* The consecutive registers should be in (Rb,Rb+1...Re) order.  */
79       check_regno = first_elt_regno + i;
80 
81       /* If the register number is not continuous, return false.  */
82       if (REGNO (elt_reg) != (unsigned int) check_regno)
83 	return false;
84     }
85 
86   return true;
87 }
88 
89 /* Function to check whether the OP is a valid load/store operation.
90    This is a helper function for the predicates:
91    'nds32_load_multiple_operation' and 'nds32_store_multiple_operation'
92    in predicates.md file.
93 
94    The OP is supposed to be a parallel rtx.
95    For each element within this parallel rtx:
96      (set (reg) (mem addr)) is the form for load operation.
97      (set (mem addr) (reg)) is the form for store operation.
98    We have to extract reg and mem of every element and
99    check if the information is valid for multiple load/store operation.  */
100 bool
nds32_valid_multiple_load_store(rtx op,bool load_p)101 nds32_valid_multiple_load_store (rtx op, bool load_p)
102 {
103   int count;
104   int first_elt_regno;
105   rtx elt;
106 
107   /* Get the counts of elements in the parallel rtx.  */
108   count = XVECLEN (op, 0);
109   /* Pick up the first element.  */
110   elt = XVECEXP (op, 0, 0);
111 
112   /* Perform some quick check for the first element in the parallel rtx.  */
113   if (GET_CODE (elt) != SET
114       || count <= 1
115       || count > 8)
116     return false;
117 
118   /* Pick up regno of first element for further detail checking.
119      Note that the form is different between load and store operation.  */
120   if (load_p)
121     {
122       if (GET_CODE (SET_DEST (elt)) != REG
123 	  || GET_CODE (SET_SRC (elt)) != MEM)
124 	return false;
125 
126       first_elt_regno = REGNO (SET_DEST (elt));
127     }
128   else
129     {
130       if (GET_CODE (SET_SRC (elt)) != REG
131 	  || GET_CODE (SET_DEST (elt)) != MEM)
132 	return false;
133 
134       first_elt_regno = REGNO (SET_SRC (elt));
135     }
136 
137   /* Perform detail check for each element.
138      Refer to nds32-multiple.md for more information
139      about following checking.
140      The starting element of parallel rtx is index 0.  */
141   if (!nds32_consecutive_registers_load_store_p (op, load_p, 0,
142 						 first_elt_regno,
143 						 count))
144     return false;
145 
146   /* Pass all test, this is a valid rtx.  */
147   return true;
148 }
149 
150 /* Function to check whether the OP is a valid stack push/pop operation.
151    For a valid stack operation, it must satisfy following conditions:
152      1. Consecutive registers push/pop operations.
153      2. Valid $fp/$gp/$lp push/pop operations.
154      3. The last element must be stack adjustment rtx.
155    See the prologue/epilogue implementation for details.  */
156 bool
nds32_valid_stack_push_pop_p(rtx op,bool push_p)157 nds32_valid_stack_push_pop_p (rtx op, bool push_p)
158 {
159   int index;
160   int total_count;
161   int rest_count;
162   int first_regno;
163   int save_fp, save_gp, save_lp;
164   rtx elt;
165   rtx elt_reg;
166   rtx elt_mem;
167   rtx elt_plus;
168 
169   /* Get the counts of elements in the parallel rtx.  */
170   total_count = XVECLEN (op, 0);
171 
172   /* Perform some quick check for that every element should be 'set'.  */
173   for (index = 0; index < total_count; index++)
174     {
175       elt = XVECEXP (op, 0, index);
176       if (GET_CODE (elt) != SET)
177         return false;
178     }
179 
180   /* For push operation, the parallel rtx looks like:
181      (parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
182                      (reg:SI Rb))
183                 (set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
184                      (reg:SI Rb+1))
185                 ...
186                 (set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
187                      (reg:SI Re))
188                 (set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
189                      (reg:SI FP_REGNUM))
190                 (set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
191                      (reg:SI GP_REGNUM))
192                 (set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
193                      (reg:SI LP_REGNUM))
194                 (set (reg:SI SP_REGNUM)
195                      (plus (reg:SI SP_REGNUM) (const_int -32)))])
196 
197      For pop operation, the parallel rtx looks like:
198      (parallel [(set (reg:SI Rb)
199                      (mem (reg:SI SP_REGNUM)))
200                 (set (reg:SI Rb+1)
201                      (mem (plus (reg:SI SP_REGNUM) (const_int 4))))
202                 ...
203                 (set (reg:SI Re)
204                      (mem (plus (reg:SI SP_REGNUM) (const_int 16))))
205                 (set (reg:SI FP_REGNUM)
206                      (mem (plus (reg:SI SP_REGNUM) (const_int 20))))
207                 (set (reg:SI GP_REGNUM)
208                      (mem (plus (reg:SI SP_REGNUM) (const_int 24))))
209                 (set (reg:SI LP_REGNUM)
210                      (mem (plus (reg:SI SP_REGNUM) (const_int 28))))
211                 (set (reg:SI SP_REGNUM)
212                      (plus (reg:SI SP_REGNUM) (const_int 32)))]) */
213 
214   /* 1. Consecutive registers push/pop operations.
215         We need to calculate how many registers should be consecutive.
216         The $sp adjustment rtx, $fp push rtx, $gp push rtx,
217         and $lp push rtx are excluded.  */
218 
219   /* Detect whether we have $fp, $gp, or $lp in the parallel rtx.  */
220   save_fp = reg_mentioned_p (gen_rtx_REG (SImode, FP_REGNUM), op);
221   save_gp = reg_mentioned_p (gen_rtx_REG (SImode, GP_REGNUM), op);
222   save_lp = reg_mentioned_p (gen_rtx_REG (SImode, LP_REGNUM), op);
223   /* Exclude last $sp adjustment rtx.  */
224   rest_count = total_count - 1;
225   /* Exclude $fp, $gp, and $lp if they are in the parallel rtx.  */
226   if (save_fp)
227     rest_count--;
228   if (save_gp)
229     rest_count--;
230   if (save_lp)
231     rest_count--;
232 
233   if (rest_count > 0)
234     {
235       elt = XVECEXP (op, 0, 0);
236       /* Pick up register element.  */
237       elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
238       first_regno = REGNO (elt_reg);
239 
240       /* The 'push' operation is a kind of store operation.
241          The 'pop' operation is a kind of load operation.
242          Pass corresponding false/true as second argument (bool load_p).
243          The par_index is supposed to start with index 0.  */
244       if (!nds32_consecutive_registers_load_store_p (op,
245 						     !push_p ? true : false,
246 						     0,
247 						     first_regno,
248 						     rest_count))
249         return false;
250     }
251 
252   /* 2. Valid $fp/$gp/$lp push/pop operations.
253         Remember to set start index for checking them.  */
254 
255   /* The rest_count is the start index for checking $fp/$gp/$lp.  */
256   index = rest_count;
257   /* If index < 0, this parallel rtx is definitely
258      not a valid stack push/pop operation.  */
259   if (index < 0)
260     return false;
261 
262   /* Check $fp/$gp/$lp one by one.
263      We use 'push_p' to pick up reg rtx and mem rtx.  */
264   if (save_fp)
265     {
266       elt = XVECEXP (op, 0, index);
267       elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
268       elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
269       index++;
270 
271       if (GET_CODE (elt_mem) != MEM
272           || GET_CODE (elt_reg) != REG
273           || REGNO (elt_reg) != FP_REGNUM)
274         return false;
275     }
276   if (save_gp)
277     {
278       elt = XVECEXP (op, 0, index);
279       elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
280       elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
281       index++;
282 
283       if (GET_CODE (elt_mem) != MEM
284           || GET_CODE (elt_reg) != REG
285           || REGNO (elt_reg) != GP_REGNUM)
286         return false;
287     }
288   if (save_lp)
289     {
290       elt = XVECEXP (op, 0, index);
291       elt_mem = push_p ? SET_DEST (elt) : SET_SRC (elt);
292       elt_reg = push_p ? SET_SRC (elt) : SET_DEST (elt);
293       index++;
294 
295       if (GET_CODE (elt_mem) != MEM
296           || GET_CODE (elt_reg) != REG
297           || REGNO (elt_reg) != LP_REGNUM)
298         return false;
299     }
300 
301   /* 3. The last element must be stack adjustment rtx.
302         Its form of rtx should be:
303           (set (reg:SI SP_REGNUM)
304                (plus (reg:SI SP_REGNUM) (const_int X)))
305         The X could be positive or negative value.  */
306 
307   /* Pick up the last element.  */
308   elt = XVECEXP (op, 0, total_count - 1);
309 
310   /* Extract its destination and source rtx.  */
311   elt_reg  = SET_DEST (elt);
312   elt_plus = SET_SRC (elt);
313 
314   /* Check this is (set (stack_reg) (plus stack_reg const)) pattern.  */
315   if (GET_CODE (elt_reg) != REG
316       || GET_CODE (elt_plus) != PLUS
317       || REGNO (elt_reg) != SP_REGNUM)
318     return false;
319 
320   /* Pass all test, this is a valid rtx.  */
321   return true;
322 }
323 
324 /* Function to check if 'bclr' instruction can be used with IVAL.  */
325 int
nds32_can_use_bclr_p(int ival)326 nds32_can_use_bclr_p (int ival)
327 {
328   int one_bit_count;
329 
330   /* Calculate the number of 1-bit of (~ival), if there is only one 1-bit,
331      it means the original ival has only one 0-bit,
332      So it is ok to perform 'bclr' operation.  */
333 
334   one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (~ival));
335 
336   /* 'bclr' is a performance extension instruction.  */
337   return (TARGET_PERF_EXT && (one_bit_count == 1));
338 }
339 
340 /* Function to check if 'bset' instruction can be used with IVAL.  */
341 int
nds32_can_use_bset_p(int ival)342 nds32_can_use_bset_p (int ival)
343 {
344   int one_bit_count;
345 
346   /* Caculate the number of 1-bit of ival, if there is only one 1-bit,
347      it is ok to perform 'bset' operation.  */
348 
349   one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (ival));
350 
351   /* 'bset' is a performance extension instruction.  */
352   return (TARGET_PERF_EXT && (one_bit_count == 1));
353 }
354 
355 /* Function to check if 'btgl' instruction can be used with IVAL.  */
356 int
nds32_can_use_btgl_p(int ival)357 nds32_can_use_btgl_p (int ival)
358 {
359   int one_bit_count;
360 
361   /* Caculate the number of 1-bit of ival, if there is only one 1-bit,
362      it is ok to perform 'btgl' operation.  */
363 
364   one_bit_count = popcount_hwi ((unsigned HOST_WIDE_INT) (ival));
365 
366   /* 'btgl' is a performance extension instruction.  */
367   return (TARGET_PERF_EXT && (one_bit_count == 1));
368 }
369 
370 /* Function to check if 'bitci' instruction can be used with IVAL.  */
371 int
nds32_can_use_bitci_p(int ival)372 nds32_can_use_bitci_p (int ival)
373 {
374   /* If we are using V3 ISA, we have 'bitci' instruction.
375      Try to see if we can present 'andi' semantic with
376      such 'bit-clear-immediate' operation.
377      For example, 'andi $r0,$r0,0xfffffffc' can be
378      presented with 'bitci $r0,$r0,3'.  */
379   return (TARGET_ISA_V3
380 	  && (ival < 0)
381 	  && satisfies_constraint_Iu15 (gen_int_mode (~ival, SImode)));
382 }
383 
384 /* ------------------------------------------------------------------------ */
385